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Two-axis quantum control of a fast valley qubit in silicon
Nicholas E. Penthorn 1, Joshua S. Schoenfield1, John D. Rooney1, Lisa F. Edge2 and HongWen Jiang1*

Quantum dots in silicon are a promising architecture for semiconductor quantum computing due to a high degree of electric
control and compatibility with existing silicon fabrication processes. Although electron charge and spin are prominent methods for
encoding the qubit state, valley states in silicon can also store quantum information via valley-orbit coupling with protection
against charge noise. By observing coherent oscillations between valley states in a Si/SiGe double quantum dot device tuned to the
two-electron charge configuration, we measure the valley energy splitting in both quantum dots individually. We further
demonstrate two-axis quantum control of the valley qubit using gated pulse sequences with X and Z rotations occurring within a
fast operation time of 300 ps. This control is used to completely map out the surface of the Bloch sphere in a single phase-space
plot that is subsequently used for state and process tomography.
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INTRODUCTION
Quantum dots are a leading architecture for scalable quantum
computing in silicon.1–5 While electrons in quantum dots can
often be approximated as particles in potential wells, the
electronic band structure cannot be ignored. In particular, the
low-lying valley states in silicon greatly affect electron physics in
silicon-based heterostructures.6,7 In the case of Si/SiGe quantum
dots, the energy splitting between out-of-plane valley states can
be suppressed in the presence of disorder at the Si/SiGe
interface.8–11 For electron charge- and spin-based qubit imple-
mentations, an excited valley state that is nearly degenerate with
the ground state represents an unwanted avenue for quantum
information loss.12–14 On the other hand, the valley states have
properties that could be exploited to form a qubit basis with
several desirable traits. First, such a valley qubit can be electrically
manipulated and measured through valley-orbit coupling with no
need for a magnetic field gradient.15–17 Second, since there exists
a broad window of quantum dot gate voltages that do not impact
the valley splitting, a valley-encoded qubit would have protection
against charge noise, the leading source of decoherence in charge
and spin qubits.18,19 Finally, gate operation times are determined
by the valley splitting, which can be on the order of 10 GHz.20,21 In
this article, we demonstrate quantum control of a valley qubit in a
Si/SiGe double quantum dot by mapping out the surface of the
Bloch sphere with sub-nanosecond gate operations. To bench-
mark the valley qubit performance, we perform quantum process
tomography on rotations about the z axis and measure gate
fidelities of 79–93%.

RESULTS
Device characterization
Experiments were performed on an accumulation-mode double
quantum dot fabricated on a high-mobility Si/SiGe wafer (Fig. 1a).
Two dots are formed in the lower current channel where voltages
applied to the five local gates control dot energies and coupling
strengths. The left (right) dot energy can be tuned with the
application of voltage to the plunger gate VL (VR), and the inter-
dot coupling is controlled by barrier gate M. Dot charge sensing is
achieved by passing a current through the upper channel that

contains a gate-defined single-electron transistor (SET). Peaks in
QPC transconductance correspond to electrons hopping in or out
of either dot, and the sign of each peak indicates whether or not
the charge transition occurred in the left dot (positive) or the right
dot (negative). Here we focus on the (1,1)↔ (2,0) charge transition
as the qubit operation point; in other words, there is one electron
in the left dot and a second is allowed to tunnel between dots
(Fig. 1b). This transition yielded the best operation, although valley
oscillations were also seen at the (1,0)↔ (0,1) transition in an
earlier work.20

Coherent valley oscillations
To observe coherent valley oscillations in the left dot, the system is
initialized in the (1,1) charge configuration corresponding to the
right dot ground state |Rv1〉. Then a trapezoidal voltage pulse with
~200 ps rise time is applied simultaneously to VL and VR (with
opposite polarities) to modify the system detuning ϵ � VR � VL, or
the relative energy of the two quantum dots. The ramp rate is
slow enough that there are no transitions to excited states for all
detunings ϵ < 0. As the detuning is increased to positive values,
there is an anticrossing between the lowest two levels at ϵ � 0.
Here the state experiences a Landau-Zener transition into a
superposition of the two lowest energy states, each state itself a
superposition of all four charge-valley states, with state coeffi-
cients determined by the pulse ramp rate.22 Due to valley-orbit
coupling, the state evolves smoothly into a superposition of the
two left dot valley levels ψ ¼ 1=

ffiffiffi
2

p
Lv1j i þ eiϕ Lv2j i� �

as the
detuning is further increased. When the pulse reaches its
maximum detuning, the state undergoes Larmor precession
between the left dot valley states with a frequency determined
by the valley splitting. As the pulse returns to the initialization
point, the left dot valley state phase difference ϕ is mapped to
charge states |Lv1〉 and |Rv1〉 to facilitate quantum state readout
with the charge sensor. The measured current oscillations as a
result of the operation, averaged over roughly 5 × 106 pulse
realizations for each pulse width tp, reflect a changing ϕ between
valley states (Fig. 1c). This pulse technique is also used to probe
the right dot valley states by initializing in the left dot and pulsing
to negative detuning (Fig. 1d). A lower bound for the coherence
time T�

2 can be obtained from the characteristic decay time of the
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oscillations, which for large pulse heights is found to be over 7 ns
(Fig. 1c). This value is a significant improvement over standard
charge qubit coherence times and comparable to that of hybrid
qubits,23 and can be attributed to the charge noise protection
afforded by valley states.
It is useful to stress that projective read-out of the valley states

only relies upon the dot occupation. In Fig. 1c, following phase
accumulation at the height of the pulse, the system is brought
back to negative detunings where the states |Lv1〉 and |Lv2〉 evolve
smoothly to charge occupation states |Rv1〉 and |Lv1〉, respectively
(see Fig. 2c). Thus, the relatively small valley splitting is
transformed into a large energy difference that is readily
measured by charge sensing on the right dot. The presence of

an electron in the right dot immediately after the pulse implies
that the qubit was in the lower valley state, while the absence of
an electron in the right dot indicates that the qubit was in the
upper valley state. While the valley splitting can be modified by
spin states when a quantum dot contains multiple electrons, the
charge-based read-out sensitivity is not affected.

Ramsey spectroscopy
The full four-state Hamiltonian (consisting of two charge states,
each with two valley states) can be reconstructed with Ramsey
spectroscopy.24 For this experiment, pulses are only applied to VR;
additionally, the voltage on the right barrier gate BR was
decreased to reduce tunneling from (1,1) to (1,0). Changing the
QD tuning inevitably changes the static dot locations in the device
as well as the valley splitting, so we expect to see modified valley
oscillation frequencies. The voltage pulse begins as before with a
ramp to a sufficiently positive detuning point, chosen to yield the
highest visibility valley oscillations when performing a trapezoidal
pulse. As a result of the first pulse stage, the qubit state has been
transformed into �yj i ¼ Lv1j i � i Lv2j ið Þ= ffiffiffi

2
p

. In the middle stage
of the operation, the detuning is brought to an arbitrary point ϵp
where the state is allowed to precess for time tp. Finally the state is
brought back to the positive detuning point and then to the
initialization point ϵ0 for readout. This pulse scheme allows for
high-visibility precession between the two lowest lying energy
levels (Fig. 2a), and the frequency of precession can be directly
converted into an energy gap. All four energy levels can be
determined by plotting the energy gap as a function of ϵp (Fig.
2b). Left- and right-dot valley splittings δL= 4.55 GHz and δR=
15.7 GHz were extracted with this procedure. Important for high-
coherence quantum control, the two low-energy states have a
“sweet spot” at the anticrossing ϵ ¼ 20 μeV where the system is
first-order insensitive to charge noise, as well as two “extended
sweet spots” at large positive and negative detunings where the
valley splittings become largely independent of gate voltage (Fig.
2c). This result emphasizes that the valley splitting varies from dot
to dot. In six devices with identical geometry, fabricated on HRL
epi-wafers, the splitting ranged from 10 μeV to 60 μeV. Addition-
ally, local confinement gate voltages can modify the splitting by
up to 20% in these devices.

Fast two-axis control
Two-axis quantum control of the valley qubit was implemented on
the left dot valley states, using a fast three-stage DC-gated pulse

cb dI/dV (arb.)a dI/dV ).bra(

Fig. 2 Ramsey spectroscopy of the (1,1) → (2,0) transition. a Precession between the ground and first excited states of the system, induced by
a 3-stage Ramsey pulse, as a function of middle-stage pulse width tp and pulse height ϵp. b Fourier transform of a and a fit to a four-state
model (overlaid dots). Error bars are obtained from the root mean squared error of the fit. c Reconstructed energy levels as a function of
detuning using the fit from b. The calculated Hamiltonian matrix elements are Δ1= 1.8 GHz, Δ2= 12.7 GHz, Δ3= 15.6 GHz, and Δ4= 2.0 GHz,
as well as valley splittings δL= 4.55 GHz and δR= 15.74 GHz (see methods for model Hamiltonian). Inset: the pulse form, measured on an
oscilloscope, of a typical Ramsey pulse
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Fig. 1 Device structure and coherent valley oscillations. a Scanning
electron micrograph of the double QD device used in this study,
before deposition of the top gate. b Charge stability diagram as a
function of plunger voltages, measured by QPC transconductance,
in the operation region. Indices (i, j) indicate electron occupation in
the left and right dots. Arrows represent the general starting points
and pulse directions used to drive valley precession. c Oscillations of
5.5 GHz between left dot valley states when pulsing from (1,1) to
(2,0). d Oscillations of 7.8 GHz between right dot valley states when
pulsing from (2,0) to (1,1)
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scheme23 (Fig. 3c). After initialization into |Rv1〉 at ϵ0, the first stage
of the pulse brings the detuning to the anticrossing at ϵx . The
effective two-state Hamiltonian at ϵx is 2Δ1σx and the qubit state
will precess between the left and right dot ground states for the
duration of the pulse stage, tθ. On the Bloch sphere in the charge
basis, this corresponds to rotations of the qubit state about the x
axis with polar angle given by θ= 2Δ1tθ/ℏ in the diabatic limit. In
the second pulse stage, the detuning is brought to point ϵz and
held for time tϕ. During this time the state will precess about the z
axis of the Bloch sphere in the valley basis, with azimuthal angle
given by ϕ= δLtϕ/ℏ. The last stage of the pulse brings the
detuning back to ϵx for a time tθ, equal to that of the first pulse
stage. Similar to the first pulse stage, this operation performs x-
axis rotations and maps the phase ϕ of the valley qubit state to
charge states that can be read out at ϵ0. Since the 200 ps pulse rise
time is not fast compared to the state evolution in this stage, the
rotations actually occur about an axis that makes an angle α ≈ π/4
with the x axis in the x–z plane (Fig. 3e). By fixing operation points
ϵx and ϵz and varying the time spent at those points during the
pulse sequence, the qubit state is swept over the entire surface of
the Bloch sphere (Fig. 3a, b). This method of complete quantum
control has been achieved optically in self-assembled InGaAs
quantum dots,25 and has not yet been demonstrated in gate-
defined semiconductor quantum dots. In Fig. 3a, holding tθ fixed
at 0.22 ns and varying tϕ represents Z rotations after an X rotation
of 3π/2. Naturally, since the rotation about x brings the qubit state
to the Bloch sphere equator, subsequent Z rotations have
maximum amplitude (Fig. 4d, red line). Similarly, at time tθ = 0.5
ns the qubit state is rotated to back to state |+z〉 = |Lv1〉 at the
north pole of the Bloch sphere, where Z rotations have a minimal
effect on the state (Fig. 4d, blue line). The X and Z rotations have
frequencies of 2.5 GHz and 4.6 GHz, respectively, which agree with
the qubit energy splitting at the operation points. Since
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Fig. 3 Quantum control of the valley qubit. a, b Measured and simulated oscillations with a dynamical projection axis determined by tθ,
demonstrating a complete map of the Bloch sphere surface. Independent oscillations as functions of pulse widths are visible with frequencies
of 4.6 GHz and 2.5 GHz. A linear background is subtracted from the data. c Pulse form used for two-axis state rotations. Pulse heights are fixed
at ϵx and ϵz and the pulse widths tθ and tϕ are varied. d Theoretical prediction of the measured probability |−z〉|U(θ, ϕ)|z〉|2 with U(θ, ϕ) given
by the product of Eqs (1–3). See Supplementary Note 2 and Supplementary Fig. 2 for more details. e A schematic of the three pulse stages. In
stage 1 (blue), the state is rotated about x by angle θ. In stage 2 (red), the state is rotated about z by angle ϕ, and in stage 3 (cyan) the state is
rotated about a tilted axis by angle θ', where θ' = θ by design
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Fig. 4 State tomography of Z rotations. a–c Red dots represent state
projections when the qubit is initialized in state |−y〉 (θ= π/2), and
blue dots indicate an initial state of |+z〉 (θ= 2π). Data is extracted
from Fig. 3a and solid traces are fits to a decaying exponential with a
4.6 GHz frequency. d Normalized trajectories of the qubit state on
the Bloch sphere during Z rotations, using the fits from state
tomography
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operations take place in “sweet spots”, the detrimental effects of
charge noise on coherence are minimized.
It is important to emphasize that the mapping from valley

phase to charge configuration in Fig. 3a is dependent on tθ. The
operation performed on the qubit state in stage i of the pulse can
be written as a unitary transformation given by

U1 θð Þ ¼ cos
θ

2

� �
� i sin

θ

2

� �
σx ; (1)

U2 ϕð Þ ¼ cos
ϕ

2

� �
� i sin

ϕ

2

� �
σz; (2)

U3 θð Þ ¼ cos
θ

2

� �
� i sin

θ

2

� �
σx cos αþ σz sin αð Þ; (3)

where θ and ϕ are polar and azimuthal angles on the Bloch sphere,
σi are Pauli matrices, and α = π/4 in Eq. (3) is the angle the stage 3
rotation axis makes with the x axis. Using these expressions, the
measured projection after the pulse can be written as 〈−z|U(θ, ϕ)|
z〉, where U(θ, ϕ) = U3(θ)U2(ϕ)U1(θ). The corresponding probability
of finding the qubit to be in the excited valley state is sinusoidal in
ϕ, and oscillations vanish when θ is an even multiple of π, in good
agreement with the data. The model is further improved by adding
rotation axis deviations in pulse stages 1 and 2 of π/10 and π/30
(Fig. 3d). As a result, each trace at fixed ϕ represents projective
measurements of a state with initialization determined by tθ,
measured along an axis also set by tθ.

Valley qubit operation fidelities
Fidelities of qubit operations can be computed with quantum
process tomography (QPT).26 True QPT would entail initializing
into four linearly independent basis states and separately
measuring the x, y, and z projections of the final state after a
gate operation. Although the information given by our dynamical
projection approach does not constitute a complete set of state
tomography, a less rigorous calculation of QPT can be obtained by
matching the data with the theoretical model in Fig. 3d and then
reconstructing the qubit state from the measured probabilities

accordingly (Fig. 4). For instance, at θ= π/2 the y projection is
being measured while at θ= 3π/2 the x projection is probed.
Missing components, like the x and y projections of the qubit state
when initialized in state |+z〉= |Lv1〉, are approximated from traces
where oscillations are minimized at θ= 2π and 4π. Due to the
heavily suppressed tunneling rate from (1,1) to (1,0), we further
assume that electrons do not tunnel out of the dots during qubit
operations, which allows us to map the upper and lower limits of
the measured transconductance directly to the probability of the
qubit to be in state |−z〉. Since Z rotation processes take place at
large values of detuning, they offer a metric for the degree of
charge noise protection the valley states have to offer; accord-
ingly, we are most interested in the fidelities of Z rotations (Fig. 5).
Comparisons between calculated process matrices χ from QPT
with those associated with perfectly executed operations χideal
show good qualitative agreement.

DISCUSSION
Quantitatively, the gate fidelities defined as F ¼ Tr χ idealχð Þ for π/2,
π, and 2π rotations are respectively 85%, 79%, and 93%. The
decreases in fidelity of the smaller rotations when compared to
the full 2π rotation can be understood by the trajectory of the
qubit state. From state tomography, it is clear that the actual
rotation axis is tilted away from the z axis by about 10 degrees.
The identity (2π) process matrix is insensitive to the choice of
rotation axis, whereas the NOT (π) process matrix is maximally
sensitive. Since the fidelity of the 2π process is greater than the
fidelities of the smaller rotations, this suggests that the fidelity is
limited by rotation axis errors and not by decoherence. See
Supplementary Note 3 and Supplementary Fig. 3 for a more
detailed discussion on error sources. Attenuation and pulse-
shaping considerations may be able to alleviate this effect in
future work, although a crucial variable that controls decoherence
and rotation axis error is the choice of operation point ϵz . Analysis
of the energy level diagram suggests that the energy splitting is
still slowly converging in the region of ϵz , leading to a nonzero
first-order sensitivity to charge noise as well as a non-negligible

Fig. 5 Quantum process tomography for valley (Z) rotations. a, c, e Measured process matrices based on a fit of state tomography data. The
color of each matrix element bar denotes complex phase: blue is real, red is imaginary. b, d, f Ideal process matrices for comparison.
Calculated fidelities F ¼ Trðχ idealχÞ are F π=2 ¼ 0:85± 0:02, F π ¼ 0:79± 0:02, and F 2π ¼ 0:93± 0:01

N.E. Penthorn et al.

4

npj Quantum Information (2019)    94 Published in partnership with The University of New South Wales



charge coupling that contributes to the undesired rotation axis tilt.
This conclusion is further supported by the measured coherence
time during Z rotations of 1.5 ns, smaller than the value of T�

2
obtained from trapezoidal pulse experiments and much smaller
than typical valley relaxation times.27 Pulsing further into the
region of detuning-invariant energy splitting would certainly lead
to improved gate fidelities and coherence times.
In summary, we have shown that a semiconductor qubit formed

from valley states in silicon can be electrically controlled to
perform independent rotations about two orthogonal axes. Sub-
nanosecond operation times, determined by valley splitting, range
from 200 ps to 300 ps. Although the performance of this particular
valley qubit is inferior to the similarly operated hybrid qubit
system in terms of coherence times,28 proper pulse engineering
and readout can in principle lead to fidelities greater than 90% at
multiple charge configurations. This work explores the utility of
valley degrees of freedom as alternatives to electron charge and
spin for storing and manipulating quantum information in silicon,
and further investigates methods for limiting charge noise-
induced decoherence.

METHODS
Sample preparation
From top to bottom, the semiconductor wafer layers are a 2 nm silicon cap,
a 30–50 nm SiGe spacer, and a 10 nm silicon quantum well, grown on a
SiGe graded buffer on a silicon wafer. A peak mobility of 7 × 105 cm2/V s
and electron density of 4 × 1011 cm−2 was measured on a separately
fabricated Hall bar. Device depletion gates were fabricated through e-
beam evaporation of Ti/Au, followed by atomic layer deposition of 100 nm
Al2O3. An aluminum global top gate was evaporated above the insulating
layer. Ohmic contacts to the quantum well were made by phosphorous ion
implantation.

Measurement
All measurements were performed in a dilution refrigerator operating at a
base temperature of 36mK. Voltage pulses were generated by an Agilent
81134 A pulse generator with a repetition rate of 7.5 MHz and applied to
gate VR. The signal-to-noise ratio of charge sensing was improved by
applying a sinusoidal dithering voltage to the plunger gates and reading
the modulated QPC signal with a lock-in amplifier (Stanford Research
Systems 830).

Theory
Energy levels of the four-state system were calculated assuming a
Hamiltonian in the charge basis {|Rv1〉, |Rv2〉, |Lv1〉, |Lv2〉} of the form

H ¼

ϵ=2
0

Δ1

�Δ2

0
ϵ=2þ δR

�Δ3

Δ4

Δ1

�Δ3

�ϵ=2

0

�Δ2

Δ4

0

�ϵ=2þ δL

2
6664

3
7775: (4)

The energy difference between the lowest two eigenstates of Eq. (4) as a
function of detuning was solved analytically and the Ramsey spectroscopy
data was fit to the energy difference expression to obtain values for matrix
elements δL, δR, and Δi.
Numerical simulations of the qubit response to detuning pulses were

obtained with the master equation that relates the system density matrix ρ
to the Hamiltonian in Eq. (4):

_ρ ¼ � i
�h
H; ρ½ �: (5)

After the pulse, the system was allowed to evolve freely at ϵ ¼ ϵ0 for
2 ns, and time-averaged values of density matrix elements were obtained
over the last 2 ns to reproduce the inherent time averaging of the charge
sensor measurement. Decoherence due to charge noise was included in
the simulations. The probability of the qubit to be in state |Lv2〉 is obtained
from ρ and calibrated to the recorded current so that the amplitude of the
decaying oscillations is equal to 0.5 at t= 0.

Quantum process tomography
The system density matrix was constructed from the results of state
tomography (Fig. 4a–c). The y and z projections of the qubit state were
directly obtained from Fig. 3a, and the x projection was inferred by
subtracting a phase of π/2 from the y projection. Quantum process
tomography requires four linearly independent input states, which we
chose to be |Lv1〉, |Lv2〉, |x〉 and |y〉.26 The output state that results from a
quantum process on any input state ρ is given by

E ρð Þ ¼
X
m;n

χmnAmρA
y
n (6)

where χmn is the process matrix and Am is a vector containing the basis for
density matrix operators. The elements of χ are solved using maximum
likelihood estimation in a form that ensures χmn is positive and Hermitian.29

As an initial guess, χmn is solved by linear inversion of Eq. (6).30 To obtain
error bars for process fidelities, we perform QPT at different reference
times during rotations and calculate the standard deviation.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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