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Towards the standardization of quantum state verification

using optimal strategies
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Quantum devices for generating entangled states have been extensively studied and widely used. As so, it becomes necessary to
verify that these devices truly work reliably and efficiently as they are specified. Here we experimentally realize the recently
proposed two-qubit entangled state verification strategies using both local measurements (nonadaptive) and active feed-forward
operations (adaptive) with a photonic platform. About 3283/536 number of copies (N) are required to achieve a 99% confidence to
verify the target quantum state for nonadaptive/adaptive strategies. These optimal strategies provide the Heisenberg scaling of the
infidelity ¢ as a function of N (¢ ~ N') with the parameter r= —1, exceeding the standard quantum limit with r= —0.5. We
experimentally obtain the scaling parameters of r= —0.88 + 0.03 and —0.78 + 0.07 for nonadaptive and adaptive strategies,
respectively. Our experimental work could serve as a standardized procedure for the verification of quantum states.
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INTRODUCTION

Quantum state plays an important role in quantum information
processing’. Quantum devices for creating quantum states are
building blocks for quantum technology. Being able to verify
these quantum states reliably and efficiently is an essential step
towards practical applications of quantum devices®. Typically, a
quantum device is designed to output some desired state p, but
the imperfection in the device’s construction and noise in the
operations may result in the actual output state deviating from it
to some random and unknown states 0. A standard way to
distinguish these two cases is quantum-state tomography®~’.
However, this method is both time-consuming and computation-
ally challenging®®. Non-tomographic approaches have also been
proposed to accomplish the task'®""’, yet these methods make
some assumptions either on the quantum states or on the
available operations. It is then natural to ask whether there exists
an efficient non-tomographic approach to accomplish the task?
The answer is affirmative. Quantum-state verification protocol
checks the device’s quality efficiently. Various studies have been
explored using local measurements'*'%'8'° Some earlier works
considered the verification of maximally entangled states®* 23, In
the context of hypothesis testing, optimal verification of
maximally entangled state is proposed in ref. 2°. Under the
independent and identically distributed setting, Hayashi et al.®
discussed the hypothesis testing of the entangled pure states. In a
recent work, Pallister et al.>* proposed an optimal strategy to
verify non-maximally entangled two-qubit pure states under
locally projective and nonadaptive measurements. The locality
constraint induces only a constant-factor penalty over the
nonlocal strategies. Since then, numerous works have been done
along this line of research®>~3', targeting on different states and
measurements. Especially, the optimal verification strategies
under local operations and classical communication are proposed
recently?’~2°, which exhibit better efficiency. We also remark

related works by Dimi¢ and Daki¢®?, and Saggio et al.33, in which

they developed a generic protocol for efficient entanglement
detection using local measurements and with an exponentially
growing confidence vs. the number of copies of the
quantum state.

In this work, we report an experimental two-qubit-state
verification procedure using both optimal nonadaptive (local
measurements) and adaptive (active feed-forward operations)
strategies with an optical setup. Compared with previous works
merely on minimizing the number of measurement settings>*¢,
we also minimize the number of copies (i.e., coincidence counts
(CCs) in our experiment) required to verify the quantum state
generated by the quantum device. We perform two tasks-Task A
and Task B. With Task A, we obtain a fitting infidelity and the
number of copies required to achieve a 99% confidence to verify
the quantum state. Task B is performed to estimate the confidence
parameter § and infidelity parameter ¢ vs. the number of copies N.
We experimentally compare the scaling of 8-N and e-N by
applying the nonadaptive strategy®* and adaptive strategy?”~>° to
the two-qubit states. With our methods, we obtain a comprehen-
sive judgment about the quantum state generated by a quantum
device. Present experimental and data analysis workflow may be
regarded as a standard procedure for quantum-state verification.

RESULTS
Quantum-state verification

Consider a quantum device D designed to produce the two-qubit
pure state

|¥) = sin 6|HH) + cos B|WV), (1

where 6 € [0, 71/4]. However, it might work incorrectly and actually
outputs independent two-qubit fake states o, 0y, -+, oy in N runs.
The goal of the verifier is to determine the fidelity threshold of
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lllustration of quantum-state verification strategy. a Consider a quantum device D designed to produce the two-qubit pure state |¢).

However, it might work incorrectly and actually outputs two-qubit fake states o0;, 0,,::-, oy in N runs. For each copy o; randomly projective
measurements {M;, M,, Ms, ---} are performed by the verifier based on their corresponding probabilities {p;, ps, ps, ---}. Each measurement
outputs a binary outcome 1 for pass and 0 for fail. The verifier takes two tasks based on these measurement outcomes. b Task A gives the
statistics on the number of copies required before finding the first fail event. From these statistics, the verifier obtains the confidence §, that
the device outputs state |(). ¢ Task B performs a fixed number (N) of measurements and makes a statistic on the number of copies (Mpass)
passing the test. From these statistics, the verifier can judge with a certain confidence 6g;/6g; that the device belongs to Case 1 or Case 2.

these fake states to the target state with a certain confidence. We
remark that the state for 8 = n/4 is the maximally entangled state
and 6 = 0 is the product state. As special cases of the general state
in Eq. (1), all the analysis methods presented in the following can
be applied to the verification of maximally entangled state and
product state. The details of the verification strategies for
maximally entangled state and product state are given in
Supplementary Notes 1.C and 1.D. Previously, theoretical?>*>3’
and experimental® works have studied the verification of
maximally entangled state. Here we focus mainly on the
verification of non-maximally entangled state in the main text,
which is more advantageous in certain experiments in comparison
to maximally entangled state. For instance, in the context of
loophole-free Bell test, non-maximally entangled states require
lower detection efficiency than maximally entangled states®®™*'.
The details and experimental results for the verification of
maximally entangled state and product state are shown in the
Supplementary Notes 2 and 4. To realize the verification of our
quantum device, we perform the following two tasks in our
experiment (see Fig. 1):

Task A: Performing measurements on the fake states copy-by-
copy according to the verification strategy and making statistics
on the number of copies required before we find the first fail
event. The concept of Task A is shown in Fig. 1b.

Task B: Performing a fixed number (N) of measurements
according to verification strategy and making statistics on the
number of copies that pass the verification tests. The concept of
Task B is shown in Fig. 1c.

Task A is based on the assumption that there exists some ¢ >0
for which the fidelity (W|o;|¥) is either 1 or satisfies (W|oj|W) <1 —¢
for all i€ {1, ---, N} (see Fig. 1b). Our task is to determine which is
the case for the quantum device. To achieve Task A, we perform
binary-outcome measurements from a set of available projectors
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to test the state. Each binary-outcome measurement {M,1 — M}
(I=1, 2, 3, ---) is specified by an operator M, corresponding to
passing the test. For simplicity, we use M, to denote the
corresponding binary measurement. This measurement is per-
formed with probability p;. We require the target state |¥) always
passes the test, i.e, M|¥) = |¥). In the bad case ((W|o|¥) <1 —¢),
the maximal probability that o; can pass the test is given by>*

max  Tr(Qo;) =1—[1 =X (Q)e:=1- A,

(W]oi|¥)<1—e

)

where Q= >", p/M; is called an strategy, A, is the probability o; fails
a test and A,(Q) is the second largest eigenvalue of Q. Whenever g;
fails the test, we know immediately that the device works
incorrectly. After N runs, g; in the incorrect case can pass all these
tests with probability being at most [1 — [1 — A,(Q)]le]". Hence, to
achieve confidence 1—34, it suffices to conduct N number of
measurements satisfying*
Iné 1 1

Nz In[1 —[1 = A2(Q)]e] ~ [ —AZ(Q)]elné' @)

From Eq. (3), we can see that an optimal strategy is obtained by
minimizing the second largest eigenvalue A,(Q), with respect to
the set of available measurements. Pallister et al.>* proposed an
optimal strategy for Task A, using only locally projective
measurements. As no classical communication is involved, this
strategy (hereafter labeled as Qgp) is nonadaptive. Later, Wang
et al?’, Yu et al?®, and Li et al.? independently propose the
optimal strategy using one-way local operations and classical
communication (hereafter labeled as Q) for two-qubit pure
states. Furthermore, Wang et al.?” also gives the optimal strategy
for two-way classical communication. The adaptive strategy allows
general local operations and classical communication measure-
ments, and is shown to be more efficient than the strategies based
on local measurements. Thus, it is important to realize the
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Fig. 2 Experimental setup for optimal verification of two-qubit quantum state. We use a photon pair source based on a Sagnac
interferometer to generate various two-qubit quantum state. QWP1 and HWP1 are used for adjusting the relative amplitude of the two
counter-propagating pump light. For nonadaptive strategy, the measurement is realized with QWP, HWP, and polarizing beam splitter (PBS) at
both Alice’s and Bob's site. The adaptive measurement is implemented by real-time feed-forward operation of electro-optic modulators
(EOMs), which are triggered by the detection signals recorded with a field-programmable gate array (FPGA). The optical fiber delay is used to
compensate the electronic delay from Alice’s single photon detector (SPD) to the two EOMs. DM: dichroic mirror; dHWP: dual-wavelength half-
wave plate; dPBS: dual-wavelength polarizing beam splitter; FPC: fiber polarization controller; HWP: half-wave plate; IF: 3 nm interference filter
centered at 810 nm; PBS: polarizing beam splitter; PPKTP: periodically poled KTiOPO, QWP: quarter-wave plate.

adaptive strategy in the experiment. We refer to the Supplemen-
tary Notes 1 and 2 for more details on these strategies.

In reality, quantum devices are never perfect. Another practical
scenario is to conclude with high confidence that the fidelity of
the output states are above or below a certain threshold. To be
specific, we want to distinguish the following two cases:

Case 1: D works correctly—Vi, ({|oj|y) > 1 — e. In this case, we
regard the device as “good”.

Case 2: D works incorrectly—Vi, (¢|oj|¢) < 1 — €. In this case, we
regard the device as “bad".

We call this Task B (see Fig. 1c), which is different from Task A, as
the condition for “D works correctly” is less restrictive compared
with that of Task A. It turns out that the verification strategies
proposed for Task A are readily applicable to Task B. Concretely,
we perform the nonadaptive verification strategy Qg sequentially
in N runs and count the number of passing events mg,. Let X; be
a binary variable corresponding to the event that g; passes the test
(X;=1) or not (X;=0). Thus, we have mp,s = ZL Xi. Assuming
that the device is “good”, then from Eq. (2) we can derive that the
passing probability of the generated states is no smaller than 1 —
[1 = Ax(Qopile. We refer to Lemma 3 in the Supplementary Note 3.
A for proof. Thus, the expectation of X; satisfies E[X]>1 — (1 —
A(Qopr))e = . The independence assumption together with the
law of large numbers then guarantee mgy... =Ny, when N is
sufficiently large. We follow the statistical analysis methods using
the Chernoff bound in the context of state verification?®3%3342,
which is related to the security analysis of quantum key
distributions****, We then upper bound the probability that the
device works incorrectly as

5= e NO(Im), @)

where D(x || y) :=xlog, %+ (1 — x) log, 1= is the
Kullback-Leibler divergence. That is to say, we can conclude with
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confidence 6g; = 1 — 6 that D belongs to Case 1. Conversely, if the
device is “bad”, then using the same argument we can conclude
with confidence 6g, = 1 — 6 that D belongs to Case 2. Please refer
to the Supplementary Note 3 for rigorous proofs and arguments
on how to evaluate the performance of the quantum device for
these two cases.

To perform Task B with the adaptive strategy Q,, we record
the number of passing events mpass=Z,N:1 X;. If the device is
“good”, the passing probability of the generated states is no
smaller than p;=1—[1—A4(Q,;)le, where A,Q,;,) =sin’6/(1 +
c0s%6) is the smallest eigenvalue of Qs @s proved by Lemma 5 in
Supplementary Note 3.B. The independence assumption along
with the law of large numbers guarantee that my.ss = Nus, when N
is sufficiently large. On the other hand, if the device is “bad”, we
can prove that the passing probability of the generated states is
no larger than yy=1—-1[1— )\Z(Q:pt)]e, where /\Z(Q:pt) = cos%6/(1 +
cos%6), by Lemma 4 in Supplementary Note 3.B. Again, the
independence assumption and the law of large numbers
guarantee that mpa.ss < Ny, when N is large enough. Therefore,
we consider two regions regarding the value of my, in the
adaptive strategy, i.e, the region mp.<Nus; and the region
Mpass 2 N In these regions, we can conclude with g =1 — 6/
6g2;=1—06; that the device belongs to Case 1/Case 2. The
expressions for §; and &; and all the details for applying adaptive
strategy to Task B can be found in Supplementary Note 3.B.

Experimental setup and verification procedure

Our two-qubit entangled state is generated based on a type-ll
spontaneous parametric down-conversion in a 20mm-long
periodically poled potassium titanyl phosphate crystal, embedded
in a Sagnac interferometer**® (see Fig. 2). A continuous-wave
external-cavity ultraviolet diode laser at 405 nm is used as the
pump light. A half-wave plate (HWP1) and quarter-wave plate
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(QWP1) transform the linear polarized light into the appropriate
elliptically polarized light to provide the power balance and phase
control of the pump field. With an input pump power of ~30 mW,
we typically obtain 120 kHz CCs.

The target state has the following form

|@) = sin O|HV) + € cos B|VH), (5)

where 6 and ¢ represent amplitude and phase, respectively. This
state is locally equivalent to |¥) in Eq. (1) by
/i

U= (:) ?) ® (? e0¢)' By using Lemma 1 in Supplementary
Note 1, the optimal strategy for verifying |y) is Qgpt = UQothT,
where Q, is the optimal strategy verifying |¥) in Eq. (1). In the
Supplementary Note 2, we write down explicitly the optimal
nonadaptive strategy?* and adaptive strategy?’~%° for verifying
|v)-

In our experiment, we implement both the nonadaptive and
adaptive measurements to realize the verification strategies. There
are four settings {Py, P, Py, P} for nonadaptive measurements®,
while only three settings {To, T1, T>} are required for the adaptive
measurements?’~2°, The exact form of these projectors is given in
the Supplementary Note 2. It is noteworthy that the measure-
ments Py = To = |[H)(H| @ [V){V|+ |V){(V| ® |[H)(H| are deter-
mined by the standard o, basis for both the nonadaptive and
adaptive strategies, which are orthogonal and can be realized with
a combination of QWP, HWP, and polarization beam splitter. For
adaptive measurements, the measurement bases Vv, =
€?cosO|H) + sinb|V) /w, = e?cosO|H) —isinBlV) and V. =
€?cosB|H) — sinb|V) /w_ = e?cosO|H) + isin6|V) at Bob's site are
not orthogonal. It is noteworthy that we only implement the one-
way adaptive strategy in our experiment. The two-way adaptive
strategy is also derived in ref. . Compared to nonadaptive and
one-way adaptive strategy, the two-way adaptive strategy gives
improvements on the verification efficiency due to the utilization
of more classical communication resources. The implementation
of two-way adaptive strategy requires the following: first, Alice
performs her measurement and sends her results to Bob; then,
Bob performs his measurement according to Alice’s outcomes;
finally, Alice performs another measurement conditioning on
Bob’s measurement outcomes. This procedure requires the real-
time communications both from Alice to Bob and from Bob to
Alice. Besides, the two-way adaptive strategy requires the
quantum nondemolition measurement at Alice’s site, which is
difficult to implement in the current setup. To realize the one-way
adaptive strategy, we transmit the results of Alice’s measurements
to Bob through classical communication channel, which is
implemented by real-time feed-forward operations of the
electro-optic modulators (EOMs). As shown in Fig. 2, we trigger
two EOMs at Bob’s site to realize the adaptive measurements
based on the results of Alice’s measurement. If Alice’s outcome is
[+) = (V) +|H))/v2 or [R)=(|V)+iH))/v2, EOM1 imple-
ments the required rotation and EOM2 is identity operation.
Conversely, if Alice’s outcome is |=) = (|V) —|H))/v2 or
L) = (|V) — i|H))/+/2, EOM2 will implement the required rotation
and EOMT1 is identity operation. Our verification procedure is the
following.

(1) Specifications of quantum device. We adjust the HWP1 and
QWP1 of our Sagnac source to generate the desired
guantum state.

(2) Verification using the optimal strategy. In this stage, we
generate many copies of the quantum state sequentially
with our Sagnac source. These copies are termed as fake
states {0, i=1, 2,---, N}. Then, we perform the optimal
nonadaptive verification strategy to o;. From the parameters
6 and ¢ of the target state, we can compute the angles of
wave plates QWP2 and HWP2, QWP3 and HWP3 for realizing
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the projectors {Po, P;, P,, P3} required in the nonadaptive
strategy. To implement the adaptive strategy, we employ
two EOMs to realize the v, /v_ and w, /w_ measurements
once receiving Alice’s results (refer to Supplementary Note
2.B for the details). Finally, we obtain the timetag data of the
photon detection from the field-programmable gate array
and extract individual CC, which is regarded as one copy of
our target state. We use the timetag experimental technique
to record the channel and arrival time of each detected
photon for data processing™. The time is stored as multiples
of the internal time resolution (~156 ps). The first data in the
timetag is recorded as the starting time tj,. With the
increasing of time, we search the required CC between
different channels within a fixed coincidence window
(0.4 ns). If a single CC is obtained, we record the time of
the ended timetag data as tp. Then, we move to the next
time slice t;; — tq to search for the next CC. This process can
be cycled until we find the N-th CC in time slice tjy_q — tay_1-
This measurement can be viewed as single-shot measure-
ment of the bipartite state with post selection. The time
interval in each slice is about 100 ps in our experiment,
consistent with the 1/CR, CR-coincidence rate. By doing so,
we can precisely obtain the number of copies N satisfying
the verification requirements. We believe this procedure is
suitable in the context of verification protocol, because one
wants to verify the quantum state with the minimum
amount of copies.

(3) Data processing. From the measured timetag data, the
results for different measurement settings can be obtained.
For the nonadaptive strategy, {Po, P;, P, Ps} are chosen
randomly with the probabilities {u, u1, U ps} (Lo = a(b),
ui= (1 —a(6))/3)) with a(@) = (2 — sin(26))/(4 - sin(26)). For
the adaptive strategy, {To, T1, T2} projectors are randomly
chosen according to the probabilities {8(6), (1 — 8(8))/2, (1 —
B(6))/2}, where B(6) = cos?6/(1 + cos?6). For Task A, we use
CC to decide whether the outcome of each measurement is
pass or fail for each 0. The passing probabilities for the
nonadaptive strategy can be, respectively, expressed as,

Po: o COwtCCm
CCh+CChy+CCyy+CCyy 7
€yt +CCo 1, +CCy 1y (6)
Pi: CCU,V/'*C/Ca,-o,‘ *rcca, vﬁrccra.‘ W’

where i=1, 2, 3, and 0;/G and V;/Vi- are the orthogonal
bases for each photon and their expressions are given in the
Supplementary Note 2.A. For Py, if the individual CC is in
CChy or CCy, it indicates that o; passes the test and we set
X;=1; otherwise, it fails to pass the test and we set X;=0.
For P, i=1, 2, 3, if the individual CC is in CCy;1, CCyuy, OF
CC;.;., it indicates that o; passes the test and we set X;=1;
otherwise, it fails to pass the test and we set X;= 0. For the
adaptive strategy, we set the value of the random variables
X; in a similar way.

We increase the number of copies (N) to decide the occurrence
of the first failure for Task A and the frequency of passing events
for Task B. From these data, we obtain the relationship of the
confidence parameter §, the infidelity parameter ¢, and the
number of copies N. There are certain probabilities that the verifier
fail for each measurement. In the worst case, the probability that
the verifier fails to assert o; is given by 1 — A, where A,=1—¢/
(24 sin@ cosh) for nonadaptive strategy® and A.=1— /(2 —
sin®6) for adaptive strategy®’°.

Results and analysis of two-qubit optimal verification

The target state to be verified is the general two-qubit state in Eq.
(5), where the parameter 6 =k m/10 and ¢ is optimized with
maximum likelihood estimation method. In this section, we
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Fig.3 The distribution of the number required before the first failure. a For the nonadaptive strategy. b For the adaptive strategy. From the
statistics, we obtain the fitting infidelity of " =0.0034(15) and €% = 0.0121(6). The numbers required to achieve a 99% confidence are

exp exp

ngon = 3283 and ndP = 536, respectively.
present the results of k=2 state (termed as k2, see Supplemen-
tary Note 2) as an example. The verification results of other states,
such as the maximally entangled state and the product state, are
presented in Supplementary Note 4. Our theoretical non-
maximally target state is specified by 6=0.6283 (k=2). In
experiment, we obtain |) = 0.5987|HV) + 0.8010e>2934 |VH)
(6=0.6419, ¢p =3.2034) as our target state to be verified. To
realize the verification strategy, the projective measurement is
performed sequentially by randomly choosing the projectors. We
take 10,000 rounds for a fixed 6000 number of copies.

Task A: According to this verification task, we make a statistical
analysis on the number of measurements required for the first
occurrence of failure. According to the geometric distribution, the
probability that the n-th measurement (out of n measurements) is
the first failure is

Pr(Neese = n) = (1 — )" " - A, )

where n=1, 2, 3, - - . We then obtain the cumulative probability

Nexp

6A - Z Pr(Nﬁrst) (8)

Neirse=1

which is the confidence of the device generating the target state |
Y). In Fig. 3a, we show the distribution of the number Ng
required before the first failure for the nonadaptive (Non) strategy.
From the figure we can see that Ng obeys the geometric
distribution. We fit the distribution with the function in Eq. (7) and
obtain an experimental infidelity eN°F§‘ 0.0034(15), which is a
guantitative estimation of the infidelity for the generated state.
From the experimental statistics, we obtain the number nio" =
3283 required to achleve the 99% confidence (i.e., 99% cumulatlve
probability for N < nhS o) of judging the generated states to be
the target state in the nonadaptlve strategy.

The results for the adaptive (Adp) verification of Task A are
shown in Fig. 3b. The experimental fitting infidelity for this
distribution is eAd,'j =0.0121(6). The number required to achieve
the same 99% confidence as the nonadaptive strategy is nAde —
536. It is noteworthy that this nearly six times (i.e., nN°"/nAd%
difference of the experimental number required to obtam the 99%
confidence is partially because the infidelity with adaptive strategy
is approximately four times larger than the nonadaptive strategy.
However, the number of copies required to achieve the same
confidence by using the adaptive strategy is still about two times
fewer than the nonadaptive strategy even if the infidelity of the
generated states is the same (see the analysis presented in
Supplementary Note 5). This indicates that the adaptive strategy
requires a significant lower number of copies to conclude the
device output state |p) with 99% confidence compared with the
nonadaptive one.

Published in partnership with The University of New South Wales

Task B: We emphasize that Task B is considered under the
assumption that the quantum device is either in Case 1 or in Case
2 as described above. These two cases are complementary and
the confidence to assert whether the device belongs to Case 1 or
Case 2 can be obtained according to different values of mp,s,. We
refer to the Supplementary Note 3 for detailed information on
judging the quantum device for these two cases. For each case,
we can reduce the parameter 6 by increasing the number of
copies of the quantum state. Thus, the confidence §g=1—6 to
judge the device belongs to Case 1/Case 2 is obtained. For the
nonadaptive strategy, the passing probability mp,s/N can finally
reach a stable value 0.9986 + 0.0002 after about 1000 number of
copies (see Supplementary Note 6). This value is smaller than the
desired passing probability u when we choose the infidelity e, to
be 0.001. In this situation, we conclude the state belongs to Case
2. Conversely, the stable value is larger than the desired passing
probability u when we choose the infidelity €max to be 0.006. In
this situation, we conclude the state belongs to Case 1. In Fig. 4,
we present the results for the verification of Task B. First, we show
the confidence parameter § vs. the number of copies for the
nonadaptive strategy in Fig. 4a, b. With about 6000 copies of
quantum state, the 6 parameter reaches 0.01 for Case 2. This
indicates that the device belongs to Case 1 with probability at
most 0.01. In other words, there are at least 99% confidence that
we can say the device is in “bad” case after about 6000
measurements. In general, more copies of quantum states are
required to reach a same level 6 =0.01 for Case 1, because there
are fewer portion for the number of passing events my,.s to be
chosen in the range of uN to N. From Fig. 4b, we can see that it
takes about 17,905 copies of quantum state, to reduce the
parameter § to be below 0.01. At this stage, we can say that the
device belongs to Case 2 with probability at most 0.01. That is,
there are at least 99% confidence that we can say the device is in
“good” case after about 17,905 measurements.

Figure 4c, d are the results of adaptive strategy. For the adaptive
strategy, the passing probability mp,s/N finally reaches a stable
value 0.9914 +0.0005 (see Supplementary Note 6), which is
smaller than the nonadaptive measurement due to the limited
fidelity of the EOMs’ modulation. Correspondingly, the infidelity
parameter for the two cases are chosen to be ¢, =0.008 and
€max = 0.017, respectively. We can see from the figure that it takes
about 10,429 number of copies for §; to be decreased to 0.01
when choosing emin, Which indicates that the device belongs to
Case 2 with at least 99% confidence after about 10,429
measurements. On the other hand, about 23,645 number of
copies are needed for §, to be decreased to 0.01 when choosing
€maxs Which indicates that the device belongs to Case 1 with at
least 99% confidence after about 23,645 measurements. It is
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copies to reduce 6 below 0.01. ¢, d Adaptive strategy. The number of copies required to reduce &, and 6, to be 0.01 for the two cases are about
10,429 and 23,645, respectively. In general, it takes less number of copies for verifying Case 2, because more space are allowed for the states to
be found in the 0—uN region. The blue is the experimental error bar (Exp.), which is obtained by 100 rounds of measurements for each
coincidence. The insets show the log-scale plots, which indicates 6 can reach a value below 0.01 with about thousands to tens of thousands of
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Fig. 5 The variation of infidelity parameter vs. the number of
copies. a Nonadaptive strategy and b adaptive strategy. Here, the
data are plotted on a log-log scale. The confidence parameter 6 is
chosen to be 0.10. The parameter ¢ fast decays to a low value which
is asymptotically close to the infidelity 0.0036 (Nonadaptive) and
0.012 (Adaptive) of the generated quantum state when increasing
the number of copies. The fitting slopes for the linear scaling region
are —0.88 £ 0.03 and —0.78 + 0.07 for the nonadaptive and adaptive,
respectively. The blue symbol is the experimental data with error bar
(Exp.), which is obtained by 100 rounds of measurements for each
coincidence.

noteworthy that the difference of adaptive and nonadaptive
comes from the different descent speed of & vs. the number of
copies N, which results from the differences in passing prob-
abilities and the infidelity parameters. See Supplementary Note 6
for detailed explanations.

From another perspective, we can fix § and see how the
parameter ¢ changes when increasing the number of copies.
Figure 5 presents the variation of € vs. the number of copies in the
log-log scale when we set the 6 to be 0.10. At small number of
copies, the infidelity is large and drops fast to a low level when the
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number of copies increases to be ~100. The decline becomes slow
when the number of copies exceeds 100. It should be noted that
the ¢ asymptotically tends to a value of 0.0036 (calculated by 1 —
A, =0.9986) and 0.012 (calculated by 1 —A,=0.9914) for the
nonadaptive and adaptive strategies, respectively. Therefore, we
are still in the region of mp,s/N=pu. We can also see that the
scaling of e vs. N is linear in the small number of copies region. We
fit the data in the linear region with ¢ ~ N" and obtain a slope r ~
—0.88 £0.03 for nonadaptive strategy and r~ —0.78 +0.07 for
adaptive strategy. This scaling exceeds the standard quantum
limit € ~ N~ scaling***® for physical parameter estimation. Thus,
our method is better for estimating the infidelity parameter e than
the classical metrology. It is noteworthy that my../N is a good
estimation for our state fidelity. If the state fidelity increases, the
slope of linear region will decreases to the Heisenberg limit ¢ ~
N~" in quantum metrology (see Supplementary Note 6).

Comparison with standard quantum-state tomography

The advantage of the optimal verification strategy lies in that it
requires fewer number of measurement settings and, more
importantly, the number of copies to estimate the quantum
states generated by a quantum device. In standard quantum-state
tomography®®, the minimum number of settings required for a
complete reconstruction of the density matrix is 3", where n is the
number of qubits. For two-qubit system, the standard tomography
will cost nine settings whereas the present verification strategy
only needs four and three measurement settings for the
nonadaptive and adaptive strategies, respectively. To quantita-
tively compare the verification strategy with the standard
tomography, we show the scaling of the parameters 6 and ¢ vs.
the number of copies N in Fig. 6. For each number of copies, the
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Fig.6 Comparison of standard quantum-state tomography and present verification strategy. In the figure, we give the variation of a 6 and
b € vs. the number of copies N by using standard quantum-state tomography (tomo) and present verification strategy (verif). For standard
tomography, the fidelity F+ AF is first obtained from the reconstructed density matrix of each copy N. Then confidence parameter 6 is
estimated by assuming normal distribution of the fidelity with mean F and SD AF. The infidelity parameter ¢ is estimated by e=1—F. It is
noteworthy that the experimental data symbols shown in a looks like lines due to the dense data points.

fidelity estimation F+AF can be obtained by the standard
quantum-state tomography. The & of standard tomography is
calculated by the confidence assuming normal distribution of the
fidelity with mean F and SD AF. The ¢ of standard tomography is
calculated by ¢ =1 — F. The result of verification strategy is taken
from the data in Figs. 4 and 5 for the nonadaptive strategy. For §
vs. N, we fit the curve with equation & = e, where g is the scaling
of log(6) with N. We obtain gyomo = —6.84 x 10 for the standard
tomography and gyerif = —7.35 X 10~* for the verification strategy.
This indicates that present verification strategy achieves better
confidence than standard quantum-state tomography given the
same number of copies. For € vs. N, as shown in Fig. 6b, the
standard tomography will finally reach a saturation value when
increasing the number of copies. With the same number of copies
N, the verification strategy obtains a smaller ¢, which indicates that
the verification strategy can give a better estimation for the state
fidelity than the standard quantum-state tomography when small
number of quantum states are available for a quantum device.

DISCUSSION
Our work, including experiment, data processing and analysis
framework, can be used as a standardized procedure for verifying
quantum states. In Task A, we give an estimation of the infidelity
parameter ee, Of the generated states and the confidence 64 to
produce the target quantum state by detecting certain number of
copies. With the €., obtained from Task A, we can choose emay Or
€min Which divides our device to be Case 1 or Case 2. Task B is
performed based on the chosen emin and emax. We can have an
estimation for the scaling of the confidence parameter & vs. the
number of copies N based on the analysis method of Task B. With
a chosen §, we can also have an estimation for the scaling of the
infidelity parameter ¢ vs. N. With these steps, we can have a
comprehensive judgment about how well our device really works.
In summary, we report experimental demonstrations for the
optimal two-qubit pure state verification strategy with and
without adaptive measurements. We give a clear discrimination
and comprehensive analysis for the quantum states generated by
a quantum device. Two tasks are proposed for practical
applications of the verification strategy. The variation of con-
fidence and infidelity parameter with the number of copies for the
generated quantum states are presented. The obtained experi-
mental results are in good agreement with the theoretical
predictions. Furthermore, our experimental framework offers a
precise estimation on the reliability and stability of quantum
devices. This ability enables our framework to serve as a standard

Published in partnership with The University of New South Wales

tool for analyzing quantum devices. Our experimental framework
can also be extended to other platforms.
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