npj ‘ quantum information

ARTICLE

www.nature.com/npjqi

W) Check for updates

6-qubit optimal Clifford circuits

Sergey Bravyi', Joseph A. Latone@®? and Dmitri Maslov @'

Clifford group lies at the core of quantum computation—it underlies quantum error correction, its elements can be used to perform
magic state distillation and they form randomized benchmarking protocols, Clifford group is used to study quantum entanglement,
and more. The ability to utilize Clifford group elements in practice relies heavily on the efficiency of their circuit-level
implementation. Finding short circuits is a hard problem; despite Clifford group being finite, its size grows quickly with the number
of qubits n, limiting known optimal implementations to n =4 qubits. For n =6, the number of Clifford group elements is about
2.1 x 1023, In this paper, we report a set of algorithms, along with their C++ implementation, that implicitly synthesize optimal
circuits for all 6-qubit Clifford group elements by storing a subset of the latter in a database of size 2.1TB (1kB = 1024B). We
demonstrate how to extract arbitrary optimal 6-qubit Clifford circuit in 0.0009358 and 0.0006274 s using consumer- and enterprise-
grade computers (hardware) respectively, while relying on this database. We use this implementation to establish a new example of
quantum advantage by Clifford circuits over CNOT gate circuits and find optimal Clifford 2-designs for up to 4 qubits.

npj Quantum Information (2022)8:79; https://doi.org/10.1038/s41534-022-00583-7

INTRODUCTION

Quantum computations are studied for their promise to outper-
form classical counterparts for certain kinds of computations'. The
Clifford group is an important finite subgroup of the full unitary
group, describing the set of quantum computations. Despite being
possible to simulate classically>® by a low degree polynomial and
having a simple structure* (admitting efficient parametrization and
being possible to compute by linear depth circuits), the group is
most famous for lying at the core of quantum error correction’,
which is believed to be necessary for scalable quantum computa-
tion. Restricted to the study of fault-tolerance, Clifford group plays
multiple roles still. To illustrate, all (standard) encoding circuits are
Clifford", and so are the circuits for state distillation>®, necessary for
fault-tolerant implementation of non-Clifford gates. Clifford circuits
lie at the core of randomized benchmarking protocols”2. Other use
cases include shadow tomography®'®, the study of entangle-
ment"'", and quantum data hiding'% It is perhaps fair to regard
the Clifford group as one of the most visible and important
subgroups of the group of all quantum computations.
Superconducting circuits and trapped ions are two technologi-
cal frameworks that produced a stream of (universal prototype)
programmable quantum computers, publicly available since the
year 2016. Each technology comes in a range of flavors: e.g.,
superconducting circuits can be based on phase, charge, or flux
qubits (or even hybrid kinds), and rely on various qubit coupling
mechanisms, and trapped ions can be based on various ion
species and rely on different approaches to the two-qubit gates
(e.g., stationary vs mobile qubits). However, no matter the specific
flavor, all prototype quantum computers based on these two
approaches share one property'>'*: the two-qubit gate has
notably lower fidelity than a single-qubit gate. Thus, to the first
degree of approximation, the fidelity of an entire quantum
computation depends on the number of two-qubit gates it uses.
To make a more subtle point, since the single-qubit gates are most
frequently implemented by pulses with real-valued control
parameters, the number of two-qubit gates in a circuit upper
bounds the number of the single-qubit gates (up to a constant

factor), meaning the reduction of the two-qubit gate count likely
leads to the reduction in the number of single-qubit gates. We
further note that the CNOT gates are available natively (i.e.,
requiring the minimal number of one two-qubit physical-level
interaction) in both superconducting circuits and trapped ions
technologies. Finally, recall that the physical-level entangling
pulses frequently take the form of XX, ZX, and ZZ, requiring single-
qubit corrections to turn those interactions into commonly used
CNOT or CZ gates. This means that minimizing single-qubit gate
count in an abstract circuit may not directly minimize the number
of single-qubit physical pulses, since the single-qubit gates will be
reshuffled during technology mapping. This justifies our focus on
minimizing the CNOT gate count, selected as the optimization
criterion in this paper.

In this paper, we study the problem of optimal synthesis of
Clifford circuits. Since the problem of optimal circuit synthesis is
hard, we restrict our attention to a small number of qubits, at most
6. The number of Clifford group elements over 6 qubits, 2.1 x 10%,
is still very large, and we employ a range of techniques to make
the search tractable using modern computers. At the core of our
approach is a mechanism to break down the set of Clifford
unitaries into a set of classes containing unitaries sharing a similar
optimal circuit structure, efficient computation of the canonical
representative of each class, and efficient manipulation of class
members and the database of canonical representatives.

We define the n-qubit Clifford group C, as the group of 2nx2n
symplectic matrices M over the two-element field I, Sp(2n, I,) :=
{M: MM = Q, 1, where M denotes the transpose matrix, Q, is
the matrix (IO I(')’) and I, is the n x n identity matrix. Symplectic

n
matrices are equivalent to and alternatively known as the tableaux’.
n
The size of the symplectic group is |Sp(2n, Fy)| = 2" [](2% — 1),
j=1
which for the purpose of this paper implies |C¢| =
208, 114, 637, 736, 580, 743, 168, 000 ~ 2.1x 10® and assigns
the numeric value to the size of the search space we are exploring.

'IBM Quantum, IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA. 2IBM Quantum, Almaden Research Center, San Jose, CA 95120, USA.

HMemail: dmitri.maslov@ibm.com

Published in partnership with The University of New South Wales

npj

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00583-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00583-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00583-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00583-7&domain=pdf
http://orcid.org/0000-0002-7829-9589
http://orcid.org/0000-0002-7829-9589
http://orcid.org/0000-0002-7829-9589
http://orcid.org/0000-0002-7829-9589
http://orcid.org/0000-0002-7829-9589
http://orcid.org/0000-0001-7381-4556
http://orcid.org/0000-0001-7381-4556
http://orcid.org/0000-0001-7381-4556
http://orcid.org/0000-0001-7381-4556
http://orcid.org/0000-0001-7381-4556
https://doi.org/10.1038/s41534-022-00583-7
mailto:dmitri.maslov@ibm.com
www.nature.com/npjqi

npj

S. Bravyi et al.

EHIE

EIE

[Pl

[=l[=][=]
T

L=

(b)

Fig. 1 All most expensive 6-qubit Clifford unitaries requiring 15 entangling gates (up to left and right multiplication by the single-qubit
gates and qubit relabeling). a left: a compact representation in the form (U ® U)SWAP, right: its optimal implementation. b left: a compact
representation in the form (U’ ® V') SWAP, right: its optimal implementation. Not illustrated is the cyclic SWAP of all 6 qubits, that also

requires 15 entangling gates.

Table 1. The distribution of the number of 6-qubit Clifford unitaries
across the entangling gate cost.
CNOT cost Number of 6-qubit Clifford unitaries
0 46,656
1 6,298,560
2 554,273,280
3 39,045,473,280
4 2,365,081,986,240
5 126,526,140,927,360
6 5,998,793,185,860,480
7 249,378,588,704,827,008
8 8,870,235,256,471,637,952
9 255,646,483,904,239,690,752
10 5,278,109,585,506,533,785,088
1 58,697,087,161,047,579,538,560
12 135,876,260,385,953,644,020,480
13 7,998,401,853,543,422,302,848
14 6,525,042,824,342,016
15 13,308,157,440
208,114,637,736,580,743,168,000

Tableau representation is particularly useful since it allows to
define quantum gates and circuits directly without the need to
resort to standard definitions in quantum information that employ
2" x 2" unitary matrices'. Indeed,

® the Hadamard gate H on qubit k can be defined as the 2n x 2n
identity matrix with swapped columns k and n + k,

® the Phase gate P on qubit k can be defined as the addition of
column k to column n + k in the 2n X 2n identity matrix,

® the CNOT gate with control qubit k and target j performs
simultaneous addition of column k to column j and column
n—+j to column n+ k in the 2n X 2n identity matrix,

and circuits are matrix multiplications. The computational
completeness of the {H,P,CNOT} library is readily exposed by
the ability to apply Gaussian elimination to obtain arbitrary
symplectic matrix as a product of gates. An additional advantage
of such a definition of gates and circuits comes from displaying

npj Quantum Information (2022) 79

the capacity to implement transformations by Clifford gates
efficiently by a computer program.

As a side note, we highlight that each element of the Clifford
group C, defines an equivalence class of 2" x 2" unitary matrices
realizable by the circuits over H, P, and CNOT gates (defined, in
turn, via unitary matrices'). A pair of unitary matrices is considered
equivalent if they can be mapped to each other by the left (or
right) multiplication with single-qubit Pauli gates and overall
phase factors. Since we focus on the minimization of the two-
qubit gate count, Pauli gates and phase factors can be safely
factored out. Had Pauli gates been included in the Clifford group,
the search space size for n =6 would read 8.5 x 105,

RESULTS
6-qubit optimal Clifford circuits

The distribution of the number of equivalence classes across CNOT
gate costs is shown in Table 6. For the number of qubits 2 through
5 the most complex function to implement is unique (within the
equivalence class definition), and it is equivalent to a cyclic
permutation of qubits. For n =6, the cyclic permutation is one of
three such functions; the other two are illustrated in Fig. 1. The
small number of equivalence classes for a small number of qubits
implies an efficient formula (based on ReduceU) to compute the
CNOT cost of a small Clifford unitary.

We ran a script to calculate the distribution of the number of
Clifford group elements across optimal CNOT gate costs. Given the
database, it took a few days to collect the data using an HPC
system. This computation is highly parallelizable, and the runtime
can be reduced significantly with many processors, e.g., GPUs; we
have not pursued those reductions. The results are reported in
Table 1.

We used the database to look for examples of quantum Clifford
advantage over classical reversible CNOT circuits, meaning
optimal CNOT circuits that can be implemented with fewer
entangling gates as a Clifford circuit. We found one such example,
illustrated in Fig. 2, that gives a reduction of 14 gates into 12,
improving the 8 to 7 reduction seen earlier*(indeed, 12 >8).

The compiler was benchmarked using both consumer-grade
and enterprise-grade systems for a test set with 10,000 elements
of the Clifford group Cs. Each element was generated by a Clifford
circuit with 600 randomly chosen gates over the library {H,P,
CNOT}. The number of gates was selected to be high enough to
effect a close to random uniform distribution over the elements of

Published in partnership with The University of New South Wales

S. Bravyi et al.
D D Fany @_
% N S
4 D _@ Va Va
¥ N N —@ P
D g 1] STAS (i}
D—e—p—e—] b (1}

Fig. 2 Quantum advantage by Clifford circuits. An optimal CNOT gate

optimal Clifford circuit (right).

Table 2. Average runtime for optimally compiling n-qubit Clifford
operators with the full database of reduced elements loaded into
RAM. The runtime was measured on MacBook Pro laptop (early 2015
model) with Intel® i7-5557U 3.1GHz CPU and 16GB RAM.

Qubits Average runtime (s) Database size (bytes)
n=5 0.0002922 69,162,544
n=4 0.0001928 37,808
n=3 0.0001351 432
n=2 0.00007968 64

the group Cs. We observed that such random test set is
dominated by the elements with costs 11 and 12. The compiler
runtime reported below is the time required to obtain optimal
circuits for all test set elements divided by the size of the test set.
We observed the runtime of 0.0009358 s for a laptop with Intel” i7-
1068NG7 2.3 GHz CPU and 16GB RAM with USB-C-attached
consumer-grade SSD. The search relies on the database stored on
SSD, and a 2.5GB index in RAM, see the section “Software tricks”
for details. The time reported measures hot cache performance,
cold cache performance reads 0.003708 s per an optimal circuit,
on average. The compiler performance improves when the entire
database can be stored in RAM. We observed the hot cache
runtime of approximately 0.0006274 s for a server with Intel®
Xeon® 128-CPU E7-4850 v4 @ 2.10GHz and 6TB RAM. The process
of loading the full database into RAM took approximately 2 h.

This performance allows to use our implementation to obtain
individual circuits and entire randomized benchmarking schedules
in mere seconds using consumer-grade hardware as well as online
via a web interface. For the use in demanding applications such as
peep-hole optimization of large circuits, we suggest relying on
large-RAM commercial-grade servers and note that it takes
roughly half the time to look up the cost without computing
the optimal circuit (the procedure that would likely get called
most frequently during peep-holing).

The average runtime of our compiler for random n-qubit
Clifford operators with n <5 is shown in Table 2.

Optimal 2-designs
Unitary designs'® are probability distributions on the unitary
group that reproduce low-order moments of the Haar (uniform)
distribution. Of particular interest are unitary designs that can be
efficiently implemented by quantum circuits'S. Such designs can
serve as a substitute for the Haar distribution in certain
randomized quantum protocols such as data hiding'?, estimating
fidelity of quantum operations®'”, and quantum state tomogra-
phy'®. In this section, we leverage the database of reduced Clifford
elements to construct optimal unitary designs that have the
minimum average cost, subject to the constraint that all elements
of the design are Clifford operators.

Let U(2") be the group of unitary complex matrices of size
2" x 2", Suppose D C U(2") is a finite subsetand u: D — R, is

Published in partnership with The University of New South Wales

circuit (left) can be implemented with fewer entangling gates as an

a probability distribution on D. The pair (D, u) is called a unitary
2-design’'® if

S u(0)(0'A0) @ (0'80) = / (U'A0) @ (0'B0)dU .
UeD u@")

for any complex matrices A and B. Here the tensor product
separates two n-qubit registers and the integral in the right-hand
side of Eq. (1) is the average over the Haar distribution on the
unitary group U(2"). We reserve the hat notation for complex
unitary matrices to avoid confusion with binary symplectic
matrices considered in the rest of the paper. Below we choose
D to be the n-qubit Clifford group and construct a probability
distribution u that minimizes the average cost

ZH(U) - cost(U), Q)
ueD

subject to the constraint that (D, u) is a unitary 2-design. Here
cost(U) is the minimum number of the CNOT gates required to
implement U by a quantum circuit composed of the Hadamard,
Phase, and CNOT gates.

Since Pauli operators have zero cost, we can assume wlog that
the optimal solution u is Pauli-invariant, i.e., u(U) = u(UO) for all
n-qubit Pauli operators O. As defined earlier, the unitary version of
the n-qubit Clifford group is isomorphic to C, x {I,X,Y,Z}". Here
we ignore the overall phase factors. Define the probability
distribution m: C, — R, such that m(U) =4"u(Ux P) for all U €
C, and Pe{l,X,Y,2Z}". The distribution m is well-defined whenever
u is Pauli-invariant. In the section “Pauli mixing constraint”, we
show that u is a Clifford 2-design iff m obeys the so-called Pauli
mixing constraint'®

PrynlUx =y] := Z (V) for all non-zero vectors x,y € {0, 1}2"A

1
—an
UeCy: Ux=y 4" -1

3)

Furthermore, u has the average cost

> n(U) - cost(V).)

vec,

Thus it suffices to minimize the average cost Eq. (4) over variables
m(U) 2 0 subject to the normalization constraint } .. m(U) = 1
and the Pauli mixing constraint, Eq. (3). This gives a linear program
with |C,| variables.

The next step is to reduce the number of variables and the
number of constraints in the linear program. Suppose 7 is a Pauli
mixing distribution on C,, that is, m obeys Eqg. (3). Define a
symmetrized version of 1 as follows. First, sample U € C, from the
distribution 7. Second, sample We<S, and L,R € Cg from the
uniform distribution on the respective groups. Finally, output
U = LW~TUWR. The probability distribution of U’ is given by

1
7)) = o S>> awURT W,
n

: LRECS Wesy

Since the cost is invariant under a qubit relabeling and left/right
multiplications by the elements of local subgroup Cg, the

npj Quantum Information (2022) 79

npj

S. Bravyi et al.

4

distributions m and 7’ have the same average cost. We claim that
" is Pauli mixing. Indeed, pick any non-zero vectors x, y € {0, 1}*", a
qubit permutation W € S,,, and local Cliffords L,R € Cg. Then
Pry~a[LWTUWRX = y] = Pry,[Ux = y] = 4n1—1, (5)
where x' = WRx#0 and y’ = WL~ 'y=0. The last equality in Eq.
(5) follows from the assumption that 77 is Pauli mixing. Thus 7’ is a
convex linear combination of Pauli mixing distributions, that is, 7/
itself is Pauli mixing.

The above shows that an optimal Clifford 2-design can be found
by minimizing the average cost Eq. (4) over symmetric Pauli mixing
distributions such that the probability 77(U) depends only on the
equivalence class [U] that contains U. Such distribution 7 can be
compactly specified by considering the set of reduced elements

Ry := {ReduceU(U) : U € Cp}.

Given a reduced element U € R, define the probability
distribution

() =Y n(U)=n(U)-|[U].

Ue
Table 3. Optimal two-qubit Clifford 2-design with the average cost
1.5. This coincides with the average cost of the full Clifford group C,.
circuit U; | probability n(U;)
—— 0.6
LB
+ 0.3
A
A
o 0.1
Jany Y
N> N>

Note that n is a probability distribution on R, since each
equivalence class [U] contains a unique reduced element, see the
section “Computation of ReduceU”. For brevity, we will refer to n
as a reduced distribution. The average cost of the original
distribution 7 depends only on n and can be computed using the
formula

Z n(U) - cost(U). ©6)
UER,

It remains to express the Pauli mixing constraint in terms of the
reduced distribution n. Given a reduced element U € R, and
non-zero vectors x,y € {0, 1}*", define the quantity

CH#HU eV Ux=y}
gU.x,y) = 0]

In words, g(U,x,y) is the probability that a random uniformly
distributed element of the equivalence class [U] maps x to y. Then
m is Pauli mixing iff

1

> nU)gU.xy) = 5 7)
UER,

for all non-zero vectors x,y € {0, 1}*". It remains to note that some
constraints Eq. (7) are redundant. Indeed, since the equivalence class
[U] is invariant under the left/right multiplications of U by the
elements of the local subgroup Cg, one has g(U, x,y) = g(U, Lx, Ry) for
allL,R e Cg. Suppose (x; Xn.,) # (0, 0) for some qubit j. Then one can
choose L € CS acting non-trivially only on the jth qubit such that
(Lx);=0 and (Lx),4;=1, see the section “Computation of ReduceU".
Applying this transformation to all qubits we conclude that the Pauli
mixing constraint Eq. (7) has to be imposed only for vectors

x,y € {(0"z) : z€ {0,1}"\ 0"}. 8

Minimizing the average cost Eq. (6) over variables n(U) = 0 with
U € R, subject to the normalization)~ .. n(U) = 1 and the
Pauli mixing constraints Eqgs. ((7), (8)), gives a finear program with
|Rn| variables and 1 + (2" — 1) equality constraints. We were
able to find an optimal solution of this linear program numerically
for n=2,3,4 qubits. The optimal reduced distributions n
presented in Table 3, Table 4, and Table 5 are compactly
represented by a list of reduced elements U;,U,, ... ,Un € R,
along with their probabilities n(U)). Only reduced elements that
appear with non-zero probability are shown. The tables display an
optimal circuit implementation of each reduced element U, To

Table 4. Optimal three-qubit Clifford 2-design with the average cost 3.12363.... For comparison, the full Clifford group C; has the average cost
3.50937....
circuit U; | probability n(U;) circuit U; | probability n(U;)
0.074175 0.098901
A
N
| 4 0.035715 -+ -+ 0.098901
4
0.692309
A
N

npj Quantum Information (2022) 79

Published in partnership with The University of New South Wales

S. Bravyi et al.

npj

Table 5.

Optimal four-qubit Clifford 2-design with the average cost 5.08034.... For comparison, the full Clifford group C4 has the average cost
5.85856.... We note that all except for two circuits in this table have cost 5. The remaining pair of circuits have cost 6.

circuit U; | n(U;) circuit U n(U;)
419% a b— | 0.141176 0.023663
- \I\ > N
L/ .'
G- P} 4 0.009893 P PHH 0.013368
Pany ,?\ Va Va
T | \
1] &Pl
rd rd
4 PHH 0.146526 o{PHH 0.014572
Ja @ ¢ Ja
Jany la
—o{H} &— | 0.164572 7 & 0.206952
& Si 1/
— N
D 0.198930 &P 0.007353
\]
— D H B
0.072994
IS
NZENS GRS
N L
7 7

avoid clutter, we omit single-qubit gates on the left and on the
right. The actual 2-design has the form LW 'UWR, where the
index j€{1,2,...,m} is sampled with the probability n(U), the
qubit permutation W is sampled uniformly from S,, and L,R are
sampled uniformly from the local subgroup C%.

Comparison to prior work

Similar-spirited prior work includes the synthesis of 4-qubit
optimal Clifford circuits'®, the synthesis of 4-bit optimal reversible
circuits?°, and optimal solution of Rubik’s cube puzzle?''® is most
closely related to our work, given the focus on Clifford circuits; the
difference is we chose to study the two-qubit gate cost, which
better reflects the constraints of the existing quantum computers
than the total gate count. The search space size comparison is
4.7%10" in' to 2.1 x 10?2 in our work—an almost 13 orders of
magnitude difference?® study reversible circuits, being a highly
relevant type of computations. Their search space size is
2.1x 103, meaning we solved a problem with 10 orders of
magnitude higher search space size. Finally 2', studies Rubik’s
cube, which is also a finite group. Their search space size is
4.3 x 10'°, meaning ours is almost 4 orders of magnitude higher.

Published in partnership with The University of New South Wales

DISCUSSION

In this paper, we reported algorithms and their C++
implementation that compute all two-qubit gate count optimal
6-qubit Clifford circuits. There are about 2.1 x 10?2 different
Clifford functions. The large search space required us to employ
server-class machines to make the computation possible. In
particular, we used HPC to break down the set of canonical
representatives of Clifford group elements sharing similar
optimal circuit structure, and store them in a database of size
2.1TB. Given this database on an SSD and a 2.5GB index file in
RAM, the time to extract an optimal circuit using a consumer-
grade laptop is 0.0009358 s—10 times faster than the typical
access time for a spindle drive. The time to extract an optimal
circuit using an enterprise-level system while storing the
database in RAM is 0.0006274 s—15 times faster than the
typical HDD access time. We used the database to establish the
maximal gate count needed to implement an arbitrary 6-qubit
Clifford unitary and showed the distribution of the number of
Clifford functions across their required gate counts. We
established a new example of quantum advantage by Clifford
circuits over CNOT gate circuits and found optimal Clifford
2-designs for the number of qubits up to, and including, 4.

npj Quantum Information (2022) 79

npj

S. Bravyi et al.

& 2
(a) g (c) (d) (e)

(b)

n(n—1)

Fig. 3 CNOT gate equivalent entangling transformations that need to be applied to each of ™=— pairs of qubits of a Clifford group

2

element implementable with k entangling gates to explore the possibility of expanding it into a Clifford group element requiring k + 1
gates. It suffices to apply these gates to a pair of qubits in an arbitrary fixed order, since the application of a gate in the other order is enabled
by some other gate among those listed. For instance, the CNOT with flipped controls with respect to (a) is accomplished by (h), noting that the
single-qubit gates on the right side do not matter due to the choice to work with equivalence classes.

METHODS
Algorithm and its implementation: an overview

Our approach relies on the use of pruned breadth-first search (BFS) to
generate a number of databases containing Clifford unitaries that can be
implemented by equal cost optimal circuits, and augment it by a set of
tools that extract useful statistics (e.g., distribution of the number of
unitaries by entangling gate cost, average cost, largest cost) as well as
individual optimal circuits. BFS is a strategy that relies on taking optimal
implementations of cost up to k, modifying them by applying cost-1
transformations to cost-k elements, and recording the result as a cost k + 1
element if it is not yet found in the database. BFS is initiated with the
identity operator costing zero and ends when all elements in the target set
were explored. While our algorithm can be applied to obtain optimal 2-, 3-,
4-, 5-, and 6-qubit Clifford circuits using modern computers, we focus the
rest of the description on the most difficult but still amenable to classical
computers 6-qubit case.

Since the database we are synthesizing contains Clifford unitaries, the
first order of business is to choose a suitable data structure to store those.
The data structure must be both compact and allow quick application of
gates; this is because BFS boils down to a series of gate applications and
memory lookups. We start with the tableau, which is naturally suited for
quick gate application, and modify it to remove two last rows
corresponding to X and Z stabilizers each®. As described in the section
“Data structure”, these rows can be quickly restored. However, removing
them allows to reduce the storage from 4n?|,_¢=144 bits to
2% 2n(n — 1)|,—¢ = 120 bits. Each unitary is thus stored across two 64-bit
machine words (each half corresponding to X and Z parts), with 4 bits per
machine word of (yet) unused space. While information-theoretic
minimum storage requirement, [log,(|Cs|)] = 78, implies that more
compact storage exists, BFS imposes the requirement of quick gate
application and we furthermore rely on canonicity (discussed in next
paragraph) to reduce the size of the database; thus, it is not obvious if
more efficient storage is possible.

Should each Clifford element require storage, the search would not be
possible to execute on modern computers since |Cs| ~ 2x 103, We,
therefore, break Clifford group elements into classes of equivalence such
that class members share the same optimal circuit structure, a canonical
representative exists, and it is efficient to compute. In our approach, a class
of equivalence can be thought of as containing unitaries with optimal
circuits equivalent up to left- and right-hand multiplication by single-qubit
Clifford unitaries, and qubit relabeling; the canonical representative is
chosen to be the one with the least lexicographic order across all elements
in its equivalence class. This means that we can pack up to \CI\Z”~
ISnll,es = 6'? - 6! = 1,567,283,281,920 unitaries into one class. More
precisely, the number of unitaries contained in each equivalence class may
vary between |C;]" and |C;|*" - |S,|. The former case is realized for the
identity operator which is invariant under all qubit relabelings and does
not differentiate between left- and right-hand multiplications by single-
qubit Clifford unitaries. The latter case is realized for a generic element of
the Clifford group without any special symmetries. Here, |C;] is the size of
the single-qubit Clifford group C; raised to the power 2n to represent one-
qubit operators on each qubit in the beginning and end of the circuit, and
S, is the permutation group. However, the computation of canonical
representative must be efficient, as otherwise, complexity moves from
storage to computation. We utilized a Pareto-efficient definition of the
equivalence class, as determined by ReduceU, the function computing
the canonical representative, to be most practical. Our
computationally-defined canonical representative is at most factor
14 storage inefficient, but it allows a quick computation of the
canonical representative, taking on average 0.000003 s (using Intel
Core i7-10700K processor). The computation of ReduceU turns out
to be the runtime-level bottleneck of our implementation since

npj Quantum Information (2022) 79

other operations that are applied with a comparable frequency
(such as tableau restoration and gate application) are faster.
Further details about ReduceU may be found in the section
“Computation of ReduceU”.

The restriction to equivalence classes helps not only to dramatically
reduce the storage requirement, but also to minimize the number of
CNOT-equivalent transformations that we need to apply to a Clifford
unitary requiring k gates to explore Clifford unitaries requiring k+ 1
entangling gates. Specifically, the number of transformations is only
9@“26 = 135, as illustrated in Fig. 3.

The 15-part (one part per a fixed gate count ranging from 1 to 15, with 15
turning out to be the maximum) sorted database with canonical
representatives of equal cost is 2.1TB in size, and it took roughly 6 months
to synthesize it on a small cluster of Intel® server-class machines. Since we
made software updates as the search progressed, and improved the
performance in doing so, we believe it may take about 2 months to rerun
it from scratch. We store the database on an SSD (2 + TB RAM was expensive
at the time of this writing). Given the database, an optimal circuit for a given
6-qubit Clifford unitary U may be found as follows: compute ReduceU(U),
find it in part of the database containing size k unitaries, apply
each of 9@ gates, compute the resulting canonical element
and look it up in the size k — 1 database; once found repeat for
k:=k — 1 until k= 0. Our implementation of the above algorithm
takes an average of 0.1 s to extract an optimal circuit. The
bottleneck is the database search on the SSD, since the average
number of times an element needs to be searched is at most
% = 67.5, the databases for large k are large, and search needs to
make multiple queries that add up quickly given SSD’s limited
access time. Instead, recall that 4 4 4 = 8 bits of the original data
structure are unused, and note that 8 bits suffice to store the gate
information, since [log,(135)] = 8. We thus augment the
database by loading these 8 bits with the last gate information,
allowing to select the correct gate right away during the circuit
restoration. This modification reduces the runtime by roughly a
factor of 67.5. We further optimize the performance by storing an
index with each 1024th element of the database in RAM. This
allows finding an optimal circuit implementation of an arbitrary
6-qubit Clifford unitary in as little as 0.0009358 s on a MacBook
Pro°® (2.3 GHz Quad-Core Intel® Core i7-1068NG7 CPU, 16GB RAM)
with a USB-C attached SSD (4TB VectoTech Rapid” 540MB/s 3D
NAND Flash), and 0.0006274 s on a high-performance server
(Quad Intel® Xeon E7-4850 v4 16-Core/2.1GHz, 6TB RAM). These
performance figures were established by averaging out the time
to synthesize optimal circuits for 10,000 random uniformly
distributed Clifford unitaries while relying on kernel-owned
memory to cache files with the use of mmap and using a
supplementary index for the laptop version of the search.

In the following subsections we report further details of our
implementation.

Database generation

Let Cf, C Cp be the set of all Clifford group elements with the CNOT cost k.
Here k=0, 1, ..., knax(n) for some a-priori unknown maximum cost K,qx(n).
For example, CS is the local subgroup of C,, i.e,, one generated by the
single-qubit Clifford gates. Suppose ReduceU : C, — C, is a function such
that ReduceU(U) = ReduceU(V) if and only if U and V are equivalent
up to left and right multiplications by single-qubit gates and a
qubit relabeling. In other words, ReduceU(U) is a canonical

Published in partnership with The University of New South Wales

representative of the equivalence class
(U] := {KWTUWL : K,L€C°, W €S,}. 9)

Here and below S, C C, is the subgroup of qubit permutations. A specific
implementation of the function ReduceU, which we refer to the section
“Computation of ReduceU”, does not matter at this point. Let R‘; be the set
of all reduced cost-k Clifford group elements,

R .= {ReduceU(U) : U € Ck}.

Our database consists of k,,q(n) + 1 parts, such that the k-th part contains
all elements of RX. The elements are furthermore stored in the
lexicographic order to enable binary search.

Let/ € C, be the identity matrix and CNOT;; be the CNOT gate with the
control qubit j and the target qubit j. Since any cost-0 and cost-1 element is
equivalent to / and CNOT; ; respectively, we have

R® = {ReduceU(/)} and R} = {ReducelU(CNOT; ,)}.

Suppose we have the sets RS, R}, ... ,RK™" for some k=2 (initially
k = 2). The rest of this section explalns how to compute R First, we need
to choose a set of cost-1 generators that obey certain technlcal conditions.
Let m=9n(n —1)/2 and G;,G,, ... ,Gy, € C,'7 be the generators shown in
Fig. 3. By definition, each generator has the form AB,CNOT;; for some pair
of qubits i<j and A, B € {l, PH, HP}. We will use the following properties of
the generator set.

Lemma 1. Any cost-k element U € Ck can be written as U=
Gg,Gg, - - - Gg,L for some L € C and some a;,dy, ..., ax€1{1,2,...,m}

The proof is deferred to the section “Proof of Lemma 1”. This lemma has
the following simple corollaries.

Corollary 1. Suppose W e S, is a qubit permutation and L € C° For any
generator G, there exist a generator G, and M € C° such that
WLG, = G,WM.

Proof. Let U= WLG,W~". Note that U € C:, since U is equivalent to a cost-1
element G,. Lemma 1 with k=1 implies that U = G,M for some
generator G, and some M' € C0 Thus WLG, = GoM'W = G,WM, where
M=W"MW e .

Corollary 2. For any generator Ggand L € C° there exists a generator G,
such that G,LG, € C

Proof. Let U = (G,L)™". Note that U € C} since the cost is invariant under
taking the inverse. Lemma 1 with k=1 implies that U= G,M for some
generator G, and M € CC. Thus G,LG, = M~" € C°.

We claim that the following algorithm outputs the set S = Rﬁ

Algorithm 1.
S0
for V € RE" do
forbe{1,2,....,m} do
U < ReduceU(VG)
if UZRK2URE™ then
S<SufuL
end if
end for
end for

Let us first check that Rk C S. Consider any element U € ’Rk Then
U = ReduceU(U) for some U € CX. By Lemma 1, we can write U =
Ga, Gy, - - - Gg,M for some M € C°. Define
V := Gy Gy, - - - Gg,_, and V := ReduceU(V).

Note that V € CX~' (if V € C’ for some €<k — 1 then U = VG, M would
have cost less than k). Accordmgly, V e Rk ! . By definition of the function
ReduceU, we have V = KW~ 'VWL for some K,L eC and some qubit
relabeling W € S,,. Thus

U=Gy,Gq, -+ - GgM = VGy M = KW~ 'VWLG, M.

Commutlng Gg, through WL next to V using Corollary 1 we obtain U =
KW~ (VG,)WM' for some generator G, and some M' € C2. This shows that

Published in partnership with The University of New South Wales

npj

S. Bravyi et al.

Table 6. The distribution of the number of equivalence classes across
Clifford circuits over 2, 3, 4, 5, and 6 qubits.

CNOT count Qubits 2 3 4 5 6

0 1 1 1 1 1
1 1 1 1 1 1
2 1 3 4 4 4
3 1 8 20 22 23
4 10 112 183 198
5 3 525 1958 2549
6 1 1230 22,257 42,883
7 453 223,723 824,723
8 16 1,441,124 16,086,167
9 1 2,471,855 294,266,642
10 161,458 4,399,997,085
11 72 40,791,942,327
12 1 92,804,759,960
13 5,666,221,415
14 8,281
15 3
Total 4 27 2363 4,322,659 143,974,152,262

U is equivalent to VG, and thus Reduce(VG,) = Reduce(U) = U for some
v e Rk ' and some generator G, Thus U€S. We have proved that
RE C s,

Conversely, suppose U € S. Then U is a reduced element obtained from
some cost-(k — 1) element V by adding a single generator, relabeling the
qubits, and left/right multiplications by the single-qubit gates. Since
adding a single generator can change the cost by at most one, we
conclude that U € Rk"2URK™T URK. The cost cannot grow by more than
1 for an obvious reason. It cannot decline by d > 1 since this would imply
that V can be implemented with cost (k—1—-d)+1=k—d<k—1 as the
circuit (Vg). g, where g is the generator, which contradicts the notion that
Vis a cost-(k — 1) element. Thus the algorithm adds U to S only if U € Rk
We have proved that S C Rk

By sorting the elements of each set R’ and using the binary search to
check set membership, the above algorlthm requires O(|RX"'|m) calls to
the function ReduceU, where the O notation hides factors
logarithmic in the size of RK™2, RE~", and Rk. The database
generation terminates as soon as Rq‘ = (. This determines the
maximum cost K,q(n) as k— 1.

As discussed in the section “Methods”, the generation of the 6-qubit
database spans a few CPU months and involves manipulations with
terabytes of data. How can we be confident that this computation is error-
free? Our correctness tests included the verification that the size of the
Clifford group inferred from the database agrees with the analytic formula
|Cal = 27 Hj (4 —1).In more detail, the number of cost-k Clifford group
elements can be inferred from the identity

|Cﬁ|: Z [, (10)

UeRK

where |[U]] is the size of the equivalence class [U] that contains U, see Eq.
(9). Furthermore,

) = G - 15al __6nl
[Aut(U)| |Aut(U)|’
where Aut(U) is the automorphism group of U that consists of all triples
KxLxW e Cg X CS x S, such that U =KW~ TUWL. We have checked that the
counts |CX| inferred from Egs. ((10), (11)) indeed obey Zi’;"g(") ICk| = |Cal.
Thus our database passed the self-consistency test. Table 6 and Table 1

display the counts |RX| and |C¥| can be found in the section “Results”.

In order to speed up the synthesis of optimal circuits, we augmented
each database entry U € R with 8 auxiliary bits speafylng a generator G,
that reduces the cost of U by one, such that UG, € C . Here we assume
k = 1. Let us prove that such cost-reducing generator G, exists for any

(1m

npj Quantum Information (2022) 79

npj

S. Bravyi et al.

8

U e Rﬁ Indeed, use Lemma 1 to write U = Gg,Gg, - - Gg,L for some
Le Cﬁ. By Corollary 2, there exists a generator G, such that
F =Gg LGy € C°. Now UGy = G,, G, - - - Gg,_,F for some F € C°, that is,
UG, has cost k— 1.

To augment a given element U of the cost-k database R’,‘, we find the first
cost-reducing generator b €{1,2,...,m} such that ReduceU(UGy) € RET,
This requires at most m calls to ReduceU and binary searches in RE”
(computing the group multiplication takes a negligible time).
Once a cost-reducing generator G, is found, its index b is recorded
in the database using the unused bits of U. The augmentation step
is applied to all U € R and for all k=1,2, ..., kmax(n).

Synthesis of optimal circuits

The optimal compiler takes as input an element of the Clifford group
U € C, and outputs a Clifford circuit (a list of the primitive gates H, P, and
CNOT) implementing U with the smallest possible CNOT gate count, equal
to the cost of U. The cost can be computed by making a single call to
ReduceU and performing at most k.,(n) database searches. Below
we assume that the database is augmented with the cost-
reducing generators, as discussed in the section “Database
generation”. Thus the database search returns the cost k element
V such that V = Reduce(U) € RX and a cost-reducing generator
G, such that VG, € Cf,”. The next step is to convert G, into a
cost-reducing %enerator for U. To this end, write V= KW~ "UWL for
some K,L€C, and some qubit permutation W. The group
elements K, L, and W that transform U into the reduced form
are readily available by adding appropriate bookkeeping steps to
the implementation of ReduceU described in the section
“Computation of ReduceU”. At this point we have

KW™UWLG, € CK .
Commute G, through WL next to U using Corollary 1. This gives
KW='UG,WM € C&~

for some generator G, and some M € C2. The generator G, can be
computed in time O(1) using the standard commutation rules of the
Clifford group. Thus UG, € Cﬁ”, that is, Gy, is a cost-reducing generator for
U. Replacing U by UG, and applying the above step recursively, one
constructs a k-tuple of generators such that M = UG,,Gg, - - Gg, € CY is a
product of single-qubit gates. This gives U™ = Gg, Gg, - - - Gg,M~"'. Decom-
posing each generator and M~ into a product of primitive gates H, P, and
CNOT gives an optimal circuit implementing U~". Since all primitive gates
are self-inverse, an optimal circuit implementing U is obtained simply by
reversing the order of gates. If needed, the number of single-qubit gates in
the compiled circuit can be optimized by commuting single-qubit gates to
the last time step (whenever possible) and merging them using optimal
lookup of C; elements.

Computation of ReduceU

In this section we introduce reduced forms of Clifford group elements and
give algorithms for computing these forms. A given matrix U € C, is
transformed into a reduced form by applying a sequence of elementary
reductions from the following list:

1. Multiplication of U on the left by single-qubit Clifford gates.
2. Multiplication of U on the right by single-qubit Clifford gates.
3. Relabeling of qubits.

Depending on which type of reductions is considered, there are three
different reduced forms: a left-reduced form (reductions of type 1 only), a
locally reduced form (reductions of types 1 and 2), and a fully reduced
form (reductions of types 1, 2, and 3). Each form comes with an algorithm
specifying the sequence of reductions to be applied. We define the
reduced forms inductively starting from the left-reduced form. The
function ReduceU used in the sections “Database generation” and
“Synthesis of optimal circuits” computes the fully reduced form.

We begin by defining convenient notations. Let e',€?, ... ,e*" € I'2" be
the standard basis of Fg": the basis vector € has a single non-zero at the jth
position. We consider € as column vectors. Let e := (¢/)' be the

npj Quantum Information (2022) 79

corresponding row vector. For example, if n=1 then

el = {1}, e’ = [0}, e;=[1 0],ande;=[0 1]
0 1

We write u @ v to denote the addition of binary vectors u and v modulo 2.

Elements of the Clifford group U € C, are treated as binary symplectic

matrices of the size 2n x 2n. A matrix U has the jth column and the jth row

Ueé' and eU, respectively.

Recall that C2 C C, is the local subgroup generated by the single-qubit
gates (H and P). Define a subgroup C,; C Cg generated by the single-
qubit gates acting on the jth qubit, where j=1, 2, ..., n. Equivalently, U €
Cpj iff Ue'=¢ for all i¢{in+j}, whereas Ue=ae@be™ and Ue"
H=ce @ de"" for some coefficients a, b, c,d € I, such that

a c

€ GL(2,).

{b d} (2,¥2)

Note that the subgroups C,; pairwise commute.
A matrix U € C, is said to be left-reduced if

gU<en U< (e ey)Uforallj=1,2,...,n. (12)

Here and below the bit strings are compared using the lexicographic order
(i.e, 00<01<10< 11 in the case n=1). The following lemma shows that
left-reduced elements of C, can serve as canonical representatives of
cosets cgu. In other words, C, is a disjoint union of cosets CSU and each
coset contains a unique left-reduced element, which can be efficiently
computed. We refer to the unique left-reduced element of a coset CgU as
the left-reduced form of U and denote it leftReduce(U). Our symplectic
matrix data structure described in the section “Data structure” enables the
computation of leftReduce(U) for a randomly picked matrix U € C, in time
less than 2 x 1078 s for any n < 6 on a server-class CPU, in this case an Intel”
Xeon® CPU E7-4850 v4 @ 2.10GHz.

Lemma 2. Each coset CJU with U € C, contains a unique left-reduced
element that can be computed in time O(n?), given symplectic matrix
representation of U.

Proof. First note that the rows of a symplectic matrix are linearly
independent. Thus for each qubit j the bit strings x;: =eU, z:=e, U,
and y;: = (e;@ e,.)U are all distinct: x; # y; # z. It follows directly from the
above definitions that multiplying U on the left by the elements of the
subgroup C,; we can implement any permutation of the bit strings x; y;
and z;. For example, the Hadamard gate swaps x; and z, the Phase gate
swaps x; and ;. Since |Cnj| = 6, there is a one-to-one correspondence
between elements of C,; and permutations of x;, y; z. Multiply U on the left
by the unique element of C,; that permutes the bit strings such that
x;<z;<y;. Now Eq. (12) is satisfied for the jth qubit. Repeating this for all n
qubits and noting that CZ is generated by the subgroups C,; proves that
the coset C2U contains a unique left-reduced element. All above steps can
be efficiently implemented. Indeed, given a matrix U, one can compute the
bit strings X; y;, and z and sort all three in time O(n). Repeating this for all n
qubits gives the total runtime of O(n?).

Given a matrix U € C, define a double coset
I
[U]° := cduct.

It includes all elements of the Clifford group obtained from U by adding
single-qubit Clifford gates on the left and on the right. Clearly, the full
Clifford group C, is a disjoint union of double cosets [U]'°° and the cost of
the matrix U depends only on the double coset that contains U. The next
step is to choose an efficiently computable canonical representative of
each double coset. First define the map x : 2" — FJ as

X(V) = [V1 VVni1, V2 VVnia, .o ,Vp V V2n]7

where Vv stands for the logical OR operation. The jth component of x(v) is
non-zero iff v;=1 or v, ;=1 (the bit string x(v) can be interpreted as the
support of an n-qubit Pauli operator parameterized by v, according to the
standard binary parameterization of Pauli operators®). We claim that the
map x is invariant under left multiplications by the elements of the local
subgroup, in the sense that

x(Lv) = x(v)forallL € C°andv € FZ". (13)

Indeed, it suffices to check Eq. (13) for the special case L € C,; (since the
local subgroup is generated by matrices L € C,; with j=1,2,...,n). As
discussed above, the action of L € C,; on v is equivalent to applying a

Published in partnership with The University of New South Wales

2 x 2 binary invertible matrix to the components v; and v, ; while all other
components of v remain unchanged. Since an invertible matrix maps non-
zero vectors to non-zero vectors, (Lv);V (LV)pyj=1 iff v;Vv, ;=1. This
implies Eq. (13).

A matrix U € C, is said to be locally ordered if U is left-reduced and

x(Ue) < x(Ue") < x(Ue @ Ue"Y) forall j=1,2,... ,n. (14)

Here bit strings are compared using the lexicographic order. Let L(U) C
[U]®° be the set of all locally ordered elements of the double coset (s,
Define a locally reduced form of the matrix U € C,, denoted localRedu-
ce(U), as the lexicographically smallest element of the set £(U). The
following lemma shows that locally reduced elements of C, can serve as
canonical representatives of the double cosets [U]'°°. In other words, C,, is a
disjoint union of the double cosets [U]'°¢ and each double coset contains a
unique locally reduced element that can be efficiently computed (albeit
slightly less efficiently than leftReduce). The symplectic matrix data
structure described in the section “Data structure” enables the computa-
tion of localReduce(U) for a randomly picked matrix U € C, in time less
than 4x 107 s for all n<6 on a server-class CPU, in this case an Intel®
Xeon” CPU E7-4850 v4 @ 2.10GHz.

Lemma 3. Each double coset [U]*° = C2UC® contains a unique locally
reduced element that can be computed in time O(n%6"), given the
symplectic matrix U.

Proof. For each qubit j define the bit strings x;: = xweé), Z:i= x(Ue"), and
yj:=x(Ue @ Ue"™). Same as before, multiplying U on the right by the
elements of the subgroup C,; one can implement any permutation of the
bit strings X; y; and z;. Define a subset S; C C,; as the one including all
elements R; € Cp; such that the right multiplication U « UR; permutes the
bit strings X; y;, and z; into the non-decreasing order x; < z; < y;. Note that S;
is non-empty since the right multiplication by the elements of C,; can
implement any permutation of X y;, and z. Recall that the set L()
includes all locally ordered elements of the double coset [U]'°. We claim
that

£(U) = {/eftReduce(UR1R2-~-R,,) Ry € S1,R2 € 82, ,Rn € Sn}

(15)

Indeed, £(U) C [U] since any matrix W € L(U) has the form W= LUR
for some L,R € CZ. Furthermore, £(U) is non-empty since each subset S;
is non-empty. Let us check that any element W € L(U) is locally ordered.
Indeed, pick any matrices R; € S; and let R=R4R; - R,. By construction,
the matrix V=UR satisfies Eq. (14) with U replaced by V. Let W=
leftReduce(V). Then W=LV for some L € CS‘ The invariance of the map x
under left multiplications by the elements of the local subgroup, see Eq.
(13), implies that W satisfies Eq. (14) with U replaced by W. Thus W is locally
ordered. Conversely, suppose W € [U]® is locally ordered. Then W= LUR
for some L,R € CS and leftReduce(W) = W. The invariance of the map x
under left multiplications by the elements of the local subgroup and the
local ordering condition imply that the matrix V = UR satisfies Eq. (14) with
U replaced by V. Thus R=R;R, --- R, for some R; € S;. This proves that
W € L(U). The uniqueness follows from the ability to encode the
elements of the sets considered by distinct integers and the existence of
the smallest integer in any finite set of integers.

It remains to check that the set £(U) can be computed in time O(n?6").
Indeed, for any given qubit j one can compute the bit strings x; y; and z and
the subset S; C Cp; in time O(n). Note that |S;| < |Cp;| = 6. Thus the
number of matrices R=R;R, --- R, with R; € §; is at most 6. Since the right
multiplication by the elements of the subgroup C,,J changes at most two
rows of a matrix, we can compute UR in time O(n?). By Lemma 2, computing
the left reduced form of UR takes time O(n?). Thus the overall runtime of
computing L£(U) is O(n%6"). Once the set L(U) is computed, finding its
lexicographically smallest element takes time O(n|L(U)|) = O(n6").

Comment 1: Our implementation of localReduce(U) relies on a
streamlined version of the above algorithm with a modified
definition of the subsets S;. Namely, we define S; as a set of all
elements R; € C,; such that the right multiplication U « UR;
permutes the bit strings x; y;, and z; into the non-decreasing order
and leftReduce(UR)) # leftReduce(U). The last condition rules out
the possibility that the right multiplication of U by R; is equivalent
to a left multiplication of U by some element of the local subgroup
(for example, this is the case if U is the identity matrix). Since

Published in partnership with The University of New South Wales

S. Bravyi et al.

npj

leftReduce(U) depends only on the coset CoU, the left multi-
plication of U by any element of the local subgroup does not
change leftReduce(U). Thus the set of locally ordered elements
L(U) can be computed using Eq. (15) with the modified definition
of Sj.

Comment 2: We empirically observed that the average-case runtime of
the above algorithm is much better than the worst case upper bound of
0(n?6"). Indeed, a direct inspection shows that the runtime scales as
O(n°M), where M = |S;]-|S,] - ... -|Sy|- For randomly picked matrices
U € Cs we observed that M=5 on average even though M = |CJ| =
6° = 46,656 in the worst case. We leave it as an open question whether
the average-case runtime of the above algorithm scales polynomially with
n.

Recall that we consider the symmetric group S, that includes all qubit
permutations as a subgroup of C,. If w is a permutation of integers
{1,2,...,n}, then the corresponding symplectic matrix W € S,, acts on the
basis vectors as We/ = e*% and We"H = "™ for all j=1, 2, ...,n. Given a
matrix U € C,, define the equivalence class

(U] :== {LtWTTUWR : LLR€CO, W € S,}.

The rest of this section is devoted to choosing an efficiently computable
canonical representative of each class [U]. Let Z™" be the set of nxn
matrices with integer entries. Define the map k : C, — Z"*" such that
the matrix element of k(U) located at the ith row and the jth column is the
rank of the 2 x 2 submatrix of U formed by the intersection of rows i and
i+ n and columns j and j + n. The rank is computed over the binary field
5. In other words, each matrix element of k(U) has the form

Uj Uiy
k(U);; = rankp, "J” ’r"ﬂ NE
Un+l,j Un+t.n+]

By definition, k(U) contains entries from the set {0, 1, 2} and the full matrix
k(U) can be computed in time O(n?). We claim that the left and right
multiplications of U by the single-qubit Clifford gates leave k(U) invariant,
that is,

K(LUR) = k(U) for all L,R € C?. (16)

Indeed, suppose first that L=/ and R € C,;. Right multiplication U < UR
applies an invertible linear transformation to the pair of columns Ue’ and
Ue", and acts trivially on the remaining columns. Since the matrix rank is
invariant under applying an invertible linear transformation, we conclude
that k(UR) = k(U) for all R € Cp;. Same argument shows that k(LU) —K(U)
for all L € Cp;. This proves Eq. (16) since the local subgroup C is
generated by the subgroups C,.

Let Kmin(U) be the lexicographically smallest matrix in the set of matrices
{K(W='UW) : W € S,,}. Define a set of qubit permutations

S(U) = {W €S, K(W71UW) = Kmin(U)}

and a set of matrices

R(U) := {localReduce(W~'UW) : W € S(U)}.
Note that R(U) C [U] since
localReduce(W™"UW) = LW~ 'UWR € [U]

for some L,R € Cg. Define a fully reduced form of a matrix U € C,, denoted
ReduceU(V), as the lexicographically smallest element of the set R(U). The
following lemma shows that the fully reduced elements of C,, can serve as
canonical representatives of the equivalence classes [U]. In other words, C,,
is a disjoint union of the equivalence classes [U] and each class contains a
unique fully reduced element that can be efficiently computed (albeit
slightly less efficiently than localReduce). The symplectic matrix data
structure enables the computation of ReduceU(U) for a randomly picked
matrix U € C, in time less than 3x107° s for n=6 and time less than
107% s for all n< 5 on a server-class CPU, in this case an Intel® Xeon” CPU
E7-4850 v4 @ 2.10GHz.

Lemma 4. Each equivalence class [U] with U € C, contains a unique fully
reduced element that can be computed in time O(n?-n!+t, - |S(U)|),
given the symplectic matrix representation of U. Here t, is the runtime of
localReduce for elements of C,,.

npj Quantum Information (2022) 79

npj

S. Bravyi et al.

10

Proof. Consider a matrix U € C,,. It follows directly from the definitions that
ReduceU(U) € [U]. Thus it suffices to check that

R(U') = R(U) for all U' € [U]. (17)

Indeed, this equation implies ReduceU(U) = ReduceU(U') for all U' € [U],
that is, the equivalence class [U] contains a unique reduced element. Let us
prove Eq. (17). Write U' = LW~'UWR for some L,R € C° and W S,,. Then

R(U') = {localReduce(W 'LW~'UWRW) : W € S(U')}
= {localReduce(L'W "W~ 'UWWR') : W € S(U')} (18)
= {localReduce(W ™' W~'UWW) : W € S(U')}.

Herel' := W 'LW € CCand R := W 'RW € C°. In the third equality we
noted that localReduce is invariant under left/right multiplications by the
elements of the local subgroup CS, see Lemma 3. Finally, the invariance of
the map k under the left and right multiplications by the elements of the
local subgroup, see Eq. (16), implies Kmin (U") = Kmin(U). Thus W € S(U') iff
WW € S(U). Combining this and Eq. (18) gives R(U') = R(U), as claimed.

The runtime stated in the lemma consists of two terms. The term
O(n? - n!) is the time needed to compute the set of permutations S(U). The
term O(t, - |S(U)|) is the time needed to compute the set of matrices R(U)
and pick the lexicographically smallest element of R(U).

Comment 3: Our implementation of ReduceU(U) relies on a
streamlined version of the above algorithm with a modified
definition of the set S(U). Namely, we define S(U) as the set of all
permutations W € S,, such that k(W ~"UW) = kmin(U) and leftRedu-
ce(W"UW) = leftReduce(U). The last condition rules out the
possibility that the conjugation of U by W is equivalent to a left
multiplication of U by some element of the local subgroup (for
example, this is the case if U is the identity matrix). Since
localReduce(U) depends only on the double coset COUC?, a left
multiplication of U by any element of the local subgroup does not
change localReduce(U). Thus one can compute the set R(U) using
the modified definition of S(U).

Comment 4: We empirically observed that |S(U)| =1 for typical a
element of the Clifford group and the maximal value of |S(U)| is 14. The
mean value of [S(U)| is approximately 1.03 for a randomly picked U € Cs.

By a slight abuse of terminology, we refer to the computationally-defined
fully reduced elements of the Clifford group as the reduced elements in the
remainder of the paper. This should not lead to confusion since the left-
reduced and the locally reduced forms are used only in this subsection.

Data structure

By definition, any element of the Clifford group U € C, can be
represented by a binary matrix of size 2n x 2n. However, if we only care
about the reduced form of U, a slightly more efficient representation is
possible, as given by the following lemma.

Lemma 5. Let U’ be the matrix obtained from U € C, by removing the n-
th and the 2n-th rows from it. Then U is uniquely determined by U’ up to
left multiplication by the single-qubit Clifford gates acting on the n-
th qubit.

Proof. Let L C]F%" be the linear subspace spanned by the jth row of U
with j&{n,2n} and let £+ C Fg" be the linear subspace spanned by the
vectors orthogonal to £ with respect to the symplectic inner product. Note
that £ depends only on U'. The condition that U is a symplectic matrix
implies spany, (e,U, exU) = L. Here we use the notations from the
section “Computation of ReduceU”. The missing pair of rows e,U and e;,U
is uniquely defined by £ up to an invertible linear transformation
e U <« ae,U @ be,,U and e,,U « ce,U @ de,,U for some

[Z ;} € GL(2, IFy).

As discussed in the section “Computation of ReduceU”, there is a one-to-
one correspondence between such transformations and left multiplica-
tions U « LU, where L € CS acts non-trivially only on the nth qubit.

We refer to the matrix U’ obtained from U € C, by removing the pair of
rows n and 2n as a thin matrix representation of U. Our C+4++

npj Quantum Information (2022) 79

implementation adopts the thin matrix data format for all intermediate
steps of the algorithm. The thin matrix spans 4n(n — 1) bits and can be
conveniently distributed over two machine words, each of length 64 bits.
The first word stores the rows e,U, e,U, ...,e,_;U and the second word
stores the rows e, U, e,,2U, ..., e5,_1U. This leaves 128 — 4n(n — 1)|,<6 = 8
free bits that can be conveniently used to specify the cost-reducing
generator in the augmented database, see the section “Database
generation”. Recall that the number of generators is m=9n(n — 1)/
2|,<6 < 135. Thus the generator can be specified using only 8 bits. Note
also that storing the full matrix U € C, using only two machine words is
impossible for n =6, as it requires 4n?|,_c = 144 bits.

The thin matrix format enables fast left and right multiplication by the
single-qubit and two-qubit Clifford gates, that require at most 24 CPU
instructions per gate for all n <6 (each instruction implements a bitwise
operation on a single machine word). When needed, the thin matrix U’ can
be expanded into the full symplectic matrix U € C, by calculating the
missing pair of rows e,U and e,,U using the symplectic version of
Gram-Schmidt orthogonalization. Our implementation converts the thin
matrix to the full matrix in time less than 2x 1077 s for any n<6 on a
server-class CPU, in this case an Intel® Xeon® CPU E7-4850 v4 @ 2.10GHz,
which is negligible compared with the time it takes to compute the
reduced form.

Software tricks

Database generation. The calculation of the reduced cost-k Clifford group
set R'; as described in the section “Database generation”, lends itself to
parallel processing. Specifically, each element of the set Rf, can be
calculated concurrently from its own data on its own processor. The
implementation considerations for this run-once parallel processing job
depended on factors such as:

i. the cost and availability of scaled-up/scaled-out hardware, and

ii. the cost-benefit for implementing, measuring, and tuning for
different data-level parallel processing options, including shared
memory versus distributed memory (e.g, OpenMP/MPI) and
specialized processors (e.g., vector processors, GPUs, FPGAs),

not to mention the multiple software options with each, from program-
ming languages to libraries??.

Using Flynn’s taxonomy?3, the Single Program, Multiple Data (SPMD)
streams model was implemented using the C++ concurrent-set template
class; specifically, each reduced cost-k Clifford group set Rﬁ is an instance
of set<pair<uint64, uint64>>. This is a good choice for program-
mer productivity, i.e, letting the container's semantics deal with the
requirements of maintaining distinct and efficiently-searchable elements
of a multi-terabyte set on SMP hardware, in this case an Intel® Xeon® 128-
CPU E7-4850 v4 @ 2.10GHz with 6TB RAM.

Runtime was extrapolated to take about 100 days to complete the full
database generation on a single machine, amounting to approximately
100 - 24 - 128 = 307,200 CPU-hours that can be effectively divided among
as many machines as there are available. Hardware and software
measurements during database generation, using performance analysis
tools such as vmstat to VTune™, exposed heavy “NUMA thrashing,” i.e., soft
page faults?*. To alleviate this for the final half of the run, C's most basic
systems programming mechanisms were more readily and easily used to
replace the C++ set template in order to allocate, position, and search raw
memory, resulting in a 5x speed-up; namely, malloc, bsearch, and gsort,
along with read/write and uint128.

Synthesis of optimal circuits. With the one-time generation of the
database complete and saved on secondary storage (Solid State Disk),
similar systems programming mechanisms in C were exploited to optimize
performance and scalability in order to read/search what is now effectively
a lookup table (LUT), with the expensive runtime calculation of an optimal
6-qubit Clifford circuit completed and replaceable by a simple array
indexing operation. The database can be memory-mapped with mmap?*
for a greater degree of

i. programmer productivity, i.e., the database can be easily referenced
as memory using pointers, with no explicit file 10, and

ii. operational flexibility, i.e., the database can be effectively used by
any type of hardware, ranging from a single laptop to a cluster of
server-class machines, with scaling solely dependent on the choice
of hardware,

Published in partnership with The University of New South Wales

all without changing the code; while the OS kernel and mmap
transparently and efficiently take care of

i. demand paging, and
ii. maintaining only a single copy of data in memory, as opposed to
copies in both the file cache and user space.

In addition, to reduce the number of SSD queries, being the most time-
consuming operation our search relies on, we employed the following
strategy:

i. we store the databases of Clifford circuits requiring 1-8, 14, and 15
gates in RAM,
ii. we store an index consisting of each 1024th element of Clifford
unitaries implementable with 9-13 gates in RAM, and
iii. when the length-1024 chunk containing the desired element is
found by the binary search, we make one long query to extract all
2048 64-bit integers in this chunk.

The above modification limits the number of SSD queries required to
synthesize an optimal circuit to at most 10 (at most two queries
per searches over the gate counts of 9, 10, 11, 12, and 13) at the cost of
RAM memory usage of 2.5GB.

A machine with enough RAM to fit the entire database in will get the
best performance as the complete database fills the file cache, and a
machine with little-to-no available RAM will get the worst performance as
every pointer access to a memory-mapped region (e.g., bsearch) will touch
the secondary storage. A commodity machine with typical RAM sizes will
get near-best performance as the “hot” parts of the database—the internal
nodes of bsearch—will tend to remain in the cache hierarchy (L1-L3, file
cache) and result in minimal access to secondary storage. OS-specific
parameters were not explored but can also be benchmarked and tuned
independently of the database and code, including page sizes and pinned
memory.

Proof of Lemma 1

We need to show that any element U € C can be written as U=
Gg, Gg, - - Gg,L for some L € C° and some k- tuple of generators. We use
the induction in k. The base of induction is k=0, in which case the
statement is trivial. Suppose k=1 and U € C’;. By definition, U can be
implemented by a circuit composed of k CNOT gates and some number of
single-qubit gates. Let CNOT;; be the last CNOT gate in this circuit. Then

U = MCNOT;;V

for some M € Cg andV € C’,ﬁ. We can assume without loss of generality
that i <j. Indeed, if i > j, use the identity CNOT;; = HH,CNOT; HH; to flip the
control and the target qubits of the last CNOT gate. The extra H gates can
be absorbed into M and V layers. By the induction hypothesis, V =
Ga, - - G, L for some L € C2. Furthermore, we can assume without loss of
generality that M= AB; for some A,B € C;. Indeed, all single-qubit gates
in M that act on qubits £ ¢ {i,j} can be commuted through CNOT;; and
absorbed into V. If A,Be&{l,HP,PH}, we are done. Indeed, in this case
A;B,CNOT;; = Gg, is a generator and U = Gg, V = Gg,Gg, - - - Gq L with
Le C° Otherwise, transform A and B into the desired form by “borrowing"
the missing single-qubit gates from V and commuting them through
CNOT;; using the Clifford group identities:

P2 =H2 = (PHP)> =1, PHP = HPH,

P,CNOT;; = CNOT;;P;, H,CNOT;; = (HP),CNOT;;P;,
(PHP),CNOT;; = (PH),CNOT; ;P;,

P;CNOT;; = (HP),CNOT;(PHP);, H;CNOT;; = (PH);,CNOT;;(PHP);,
and (PHP),CNOT;; = CNOT;;(PHP),.

Recall that these identities only apply to elements of the binary symplectic
group; the corresponding identities for unitary Clifford operators may
include some extra phase factors and Pauli gates. This completes the proof.

Pauli mixing constraint

In this section, we prove that a Pauli-invariant probability distribution 4 on
the n-qubit Clifford group is a unitary 2-design iff u is Pauli mixing. The fact
that Pauli-invariance and Pauli mixing are sufficient for being a 2-design is
known'6APPendix DI Thys it suffices to prove that any Pauli-invariant Clifford
2-design is Pauli mixing.

Published in partnership with The University of New South Wales

npj

11

S. Bravyi et al.

The Haar integeral in Eq. (1) can be computed explicitly using
Weingarten functions?®,

. rhan P Tr(AB) Tr(A)Tr(B)
Sy (U'A0) @ (U'BU)dU = swip [— TATD)]

Tr(A)Tr(B) Tr(AB)
i@ I[H® _ 8.
Here SWAP is a unitary operator that swaps the two n-qubit registers
separated by the tensor product. It is well-known that any complex matrix
of size 2" x 2" can be expanded in the Pauli basis

Po={.X,v,2}".

Thus it suffices to impose Eq. (1) only for A, B € P,. Noting th?t the Pauli
basis is orthonormal with respect to the inner product Tr(A'B)/2" one
concludes that a pair (D,) is a unitary 2-design iff

{ 0 if A#B ralABeP, (19

N if A=B=z

i S R
A= @swap—Tal)=r— > 080
0eP,\{I}

A Pauli operator O € P, can be parameterized by a bit string v € {0, 1}*"
such that

O(v) = O(viVns1) ® O(VaVniz) ® -+ ® O(Vavan),

where 0(00) =], 0(10) = X, 6(01) = Z, and O(11) = Y. The unitary
version of the Clifford group, which we denote €, is a group of complex
matrices U € U(2") that map Pauli operators to Pauli operators under
conjugation. More formally, U € €, iff there exists a symplectic matrix
U € C, such that

06U = +O(Uv) (20)

for all v € {0, 1}*". Here the sign may depend on v. The symplectic matrix
U € C, in Eq. (20) is uniquely determined by U. Conversely, U is uniquely
determined by U up to (right) multiplications by Pauli operators and the
overall phase. In other words, €, is isomorphic (as a set) to C, x P, if one
ignores the overall phase of unitary matrices.

Suppose u: €, — R, is a Pauli-invariant probability distribution, that
is, u(U) = u(00) for all & € P, and U € €,. Using the isomorphism
€, = Cyx Pp, define a distribution m: C, — R, such that u(UxP)=

m(U)/4" for all U€ C, and P € P,. Suppose (€,) is a 2-design, that is, u
obeys Eq. (19) with D = €,,. Consider the second case of Eq. (19) such that
A=8= O() for some non-zero vector x € {0, 1}*". Then it is equivalent
to

; ; 1 . .
> n(U)0(Ux) @ O(Ux) = i O(y) ® O(y).
e ye{01y*"\0
Since Pauli operators are linearly independent, this is possible only if a
random vector Ux with U sampled from n(U) is distributed uniformly on the
set of all non-zero vectors {0, 1}2"\02”. This gives the Pauli mixing condition
Eq. 3).

DATA AVAILABILITY

A Python implementation of the described algorithms will be available at: https://
github.com/qiskit-community/prototype-clifford-optimizer.

Received: 12 April 2021; Accepted: 4 June 2022;
Published online: 05 July 2022

REFERENCES

1. Nielsen, M. A. & Chuang, |. Quantum Computation and Quantum Information
(Cambridge University Press, 2002).

2. Gottesman, D. The Heisenberg representation of quantum computers. Preprint at
https://arxiv.org/abs/quant-ph/9807006 (1998).

3. Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev.
A 70, 052328 (2004).

npj Quantum Information (2022) 79

https://github.com/qiskit-community/prototype-clifford-optimizer
https://github.com/qiskit-community/prototype-clifford-optimizer
https://arxiv.org/abs/quant-ph/9807006

npj

S. Bravyi et al.

12

20.

21.

22.
23.

24,
25.

. IBM. IBM Quantum Experience.

. Bravyi, S. & Maslov, D. Hadamard-free circuits expose the structure of the Clifford

group. IEEE Trans. Inform. Theory 67, 4546-4563 (2021).

. Brawyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates

and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39-44 (2005).
. Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77,

012307 (2008).

. Magesan, E., Gambetta, J. M. & Emerson, J. Scalable and robust randomized

benchmarking of quantum processes. Phys. Rev. Lett. 106, 180504 (2011).

. Aaronson, S. Shadow tomography of quantum states. SIAM J. Computing

(0):STOC18-368-STOC18-394, (2020).

. Huang, Hsin-Yuan, Kueng, R. & Preskill, J. Predicting many properties of a

quantum system from very few measurements. Nat. Phys. 16, 1050—1057 (2020).

. Bennett, C. H,, DiVincenzo, D. P, Smolin, J. A. & Wootters, W. K. Mixed-state

entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996).

. DiVincenzo, D. P., Leung, D. W. & Terhal, B. M. Quantum data hiding. IEEE Trans.

Inform. Theory 48, 580-598 (2002).
https://quantum-computing.ibm.com/, last
accessed 10/5/2020.

. Amazon Web Services. Amazon Bracket. https://aws.amazon.com/braket/, last

accessed 10/5/2020.

. R. A, Low. Pseudo-randomness and learning in quantum computation. PhD

Thesis, University of Bristol, UK (2010).

. Cleve, R, Leung, D. W,, Liu, L. & Wang, C. Near-linear constructions of exact

unitary 2-designs. Quantum Inform. Comput. 16, 721-756 (2016).

. Emerson, J., Alicki, R. & Zyczkowski, K. Scalable noise estimation with random

unitary operators. J. Opt. B: Quantum Semiclassical Opt 7, S347 (2005).

. Dankert, C, Cleve, R, Emerson, J. & Livine, E. Exact and approximate unitary

2-designs and their application to fidelity estimation. Phys. Rev. A 80, 012304 (2009).

. Kliuchnikov, V. & Maslov, D. Optimization of Clifford circuits. Phys. Rev. A 88,

052307 (2013).

Golubitsky, O. & Maslov, D. A study of optimal 4-bit reversible Toffoli circuits and
their synthesis. IEEE Trans. Comput. 61, 1341-1353 (2011).

Rokicki, T., Kociemba, H., Davidson, M. & Dethridge, J. The diameter of the Rubik’s
cube group is twenty. SIAM Rev. 56, 645-670 (2014).

Clang project. Clang version 9.0.0.

Wikipedia contributors. Flynn’s taxonomy. https://en.wikipedia.org/wiki/
Flynn’s_taxonomy (2020) (accessed 20 October 2020).

Wikipedia contributors. Page fault. https://en.wikipedia.org/wiki/Page_fault (2020).
Wikipedia contributors. mmap. https://en.wikipedia.org/wiki’/Mmap (2020). See
Further reading for the Windows®” mmap equivalent (accessed 20 October 2020).

npj Quantum Information (2022) 79

26. Collins, B. & Sniady, P. Integration with respect to the Haar measure on uni-
tary, orthogonal and symplectic group. Commun. Math. Phys. 264, 773-795
(2006).

AUTHOR CONTRIBUTIONS

All authors contributed equally to this work.

COMPETING INTERESTS

The authors declare no Competing Non-Financial Interests but the following
Competing Financial Interests. A provisional patent application US20220114468A1
covering this work was filed by IBM.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Dmitri Maslov.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

Published in partnership with The University of New South Wales

https://quantum-computing.ibm.com/
https://aws.amazon.com/braket/
https://clang.llvm.org/
https://en.wikipedia.org/wiki/Flynn�s_taxonomy
https://en.wikipedia.org/wiki/Flynn�s_taxonomy
https://en.wikipedia.org/wiki/Page_fault
https://en.wikipedia.org/wiki/Mmap
https://en.wikipedia.org/wiki/Mmap#Further_reading
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	6-nobreakqubit optimal Clifford circuits
	Introduction
	Results
	6-nobreakqubit optimal Clifford circuits
	Optimal 2-nobreakdesigns
	Comparison to prior work

	Discussion
	Methods
	Algorithm and its implementation: an overview
	Database generation
	Synthesis of optimal circuits
	Computation of ReduceU
	Data structure
	Software tricks
	Database generation
	Synthesis of optimal circuits

	Proof of Lemma 1
	Pauli mixing constraint

	DATA AVAILABILITY
	References
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION

