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Entanglement transitivity problems
Gelo Noel M. Tabia 1,2,3✉, Kai-Siang Chen1, Chung-Yun Hsieh4, Yu-Chun Yin1 and Yeong-Cherng Liang 1,2✉

One of the goals of science is to understand the relation between a whole and its parts, as exemplified by the problem of certifying
the entanglement of a system from the knowledge of its reduced states. Here, we focus on a different but related question: can a
collection of marginal information reveal new marginal information? We answer this affirmatively and show that (non-) entangled
marginal states may exhibit (meta)transitivity of entanglement, i.e., implying that a different target marginal must be entangled. By
showing that the global n-qubit state compatible with certain two-qubit marginals in a tree form is unique, we prove that
transitivity exists for a system involving an arbitrarily large number of qubits. We also completely characterize—in the sense of
providing both the necessary and sufficient conditions—when (meta)transitivity can occur in a tripartite scenario when the two-
qudit marginals given are either the Werner states or the isotropic states. Our numerical results suggest that in the tripartite
scenario, entanglement transitivity is generic among the marginals derived from pure states.
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INTRODUCTION
Entanglement1 is a characteristic of quantum theory that
profoundly distinguishes it from classical physics. The modern
perspective considers entanglement as a resource for information
processing tasks, such as quantum computation2–6, quantum
simulation7, and quantum metrology8. With the huge effort
devoted to scaling up quantum technologies9, considerable
attention has been given to the study of quantum many-body
systems10,11, specifically the ability to prepare and manipulate
large-scale entanglement in various experimental systems.
As the number of parameters to be estimated is huge,

entanglement detection via the so-called state tomography is
often impractical. Indeed, significant efforts have been made for
detecting entanglement in many-body systems10,11 using limited
marginal information. For example, some tackle the problem using
properties of the reduced states12–23, while others exploit directly
the data from local measurements24–35. Despite their differences,
they can all be seen as some kind of entanglement marginal
problem (EMP)36, where the entanglement of the global system is
to be deduced from some (partial knowledge of the) reduced
states.
The entanglement of the global system, nonetheless, is not

always the desired quality of interest. For instance, in scaling up a
quantum computer, one may wish to verify that a specific subset
of qubits indeed get entangled, but this generally does not follow
from the entanglement of the global state (recall, e.g., the
Greenberger-Horne-Zeilinger states37). Thus, one requires a more
general version of the problem: Given certain reduced states, can
we certify the entanglement in some other target (marginal) state?
We call this the entanglement transitivity problem (ETP). Since the
global system is a legitimate target system, ETPs include the EMP
as a special case.
As a concrete example beyond EMPs, one may wonder whether

a set of entangled marginals are sufficient to guarantee the
entanglement of some other target subsystems. If so, inspired by
the work38 on nonlocality transitivity of post-quantum correla-
tions39, we say that such marginals exhibit entanglement

transitivity. Indeed, one of the motivations for considering
entanglement transitivity is that it is a prerequisite for the
nonlocality transitivity of quantum correlations, a problem that
has, to our knowledge, remained open.
More generally, one may also wonder whether separable

marginals alone, or with some entangled marginals could imply
the entanglement of other marginal(s). To distinguish this from
the above phenomenon, we say that such marginals exhibit
metatransitivity. Note that any instance of metatransitivity with
only separable marginals represents a positive answer to the EMP.
Here, we show that examples of both types of transitivity can
indeed be found. Moreover, we completely characterize when two
Werner-state40 marginals and two isotropic-state41 marginals may
exhibit (meta)transitivity.

RESULTS
Formulation of the entanglement transitivity problems
Let us first stress that in an ETP, the set of given reduced states
must be compatible, i.e., giving a positive answer to the quantum
marginal problem42,43. With some thought, one realizes that the
simplest nontrivial ETP involves a three-qubit system where two of
the two-qubit marginals are provided. Then, the problem of
deciding if the remaining two-qubit marginal can be separable is
an ETP different from EMPs.
More generally, for any n-partite system S, an instance of the

ETP is defined by specifying a set S ¼ fSi : i ¼ 1; 2; ¼ ; kg of k
marginal systems Si (each in its respective state σSi ) and a target
system T∉S. Here, S is a strict subset of all the 2n possible
combinations of at most n subsystems, i.e., k < 2n. Then, σ :¼ fσSig
exhibits entanglement (meta)transitivity in T if for all joint states ρS
compatible with σ, the reduced state ρT is always entangled while
(not) all given σSi are entangled. Formally, the compatible
requirement reads as: trSnSi ðρSÞ ¼ σSi for all Si 2 S where S\Si
denotes the complement of Si in the global system S.
Notice that for the problem to be nontrivial, there must be (1)

some overlap among the subsystems specified by Si’s, as well as
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with T, and (2) the global system S cannot be a member of S.
However, the target system T may be chosen to be S and if all σSi
are separable, we recover the EMP36 (see also refs. 19,23 for some
strengthened version of the EMP). Hereafter, we focus on ETPs
beyond EMPs, albeit some of the discussions below may also find
applications in EMPs.

Certification of (meta)transitivity by a linear witness
Let WðρÞ be an entanglement witness26, i.e., WðρÞ � 0 for all
separable states in T, and WðρÞ< 0 for some entangled states. We
can certify the (meta)transitivity of S in T if a negative optimal
value is obtained for the following optimization problem:

max
ρS

WðρTÞ; s:t:trSnSi ðρSÞ ¼ σSi8 Si 2 S; ρSk0; (1)

where trðρSÞ ¼ 1 is implied by the compatibility requirement and
“≽ ” denotes matrix positivity. Then, W detects the entanglement
in T from the given marginals in S.
Consider now a linear entanglement witness, i.e., WðρTÞ ¼

tr ρSðWT � ISnTÞ
� �

for some Hermitian operator WT, where ρT ¼
trSnTðρSÞ is the reduced state of ρ in T. In this case, Eq. (1) is a
semidefinite program44. Interestingly, its dual problem44 can be
seen as the problem of minimizing the total interaction energies
among the subsystems Si while ensuring that the global
Hamiltonian is non-negative, see Supplementary Note 1.
Hereafter, we focus, for simplicity, on T being a two-body

system. Then, a convenient witness is that due to the positive-
partial-transpose (PPT) criterion45,46, with WT ¼ ηΓT, where ηT≽ 0
and Γ denotes the partial transposition operation. Further
minimizing the optimum value of Eq. (1) over all ηT such that
trðηTÞ ¼ 1 gives an optimum λ* that is provably the smallest
eigenvalue of all compatible ρΓT (see Supplementary Note 1).
Hence, λ* < 0 is a sufficient condition for witnessing the
entanglement (meta)transitivity of the given σ in T.
Three remarks are now in order. Firstly, the ETP defined above is

straightforwardly generalized to include multiple target systems
{Tj: j= 1,…, t} with Tj ∉S for all j. A certification of the joint (meta)
transitivity is then achieved by certifying each Tj separately.
Secondly, other entanglement witnesses26 may be considered. For
instance, to certify the entanglement of a two-body ρT that is
PPT47, a witness based on the computable cross-norm/ realign-
ment (CCNR) criterion48–51, may be employed. Finally, for a
multipartite target system, a witness tailored for detecting the
genuine multipartite entanglement in ρT (see, e.g., Refs. 14,16) is
surely of interest.

A family of transitivity examples with n qubits
As a first illustration, let Ψþj i ¼ 1ffiffi

2
p ð 10j i þ 01j iÞ and consider:

ρnðγÞ ¼
n� 2γ

n

� �
00j i 00h j þ 2γ

n
Ψþj i Ψþh j; n � 3; (2)

which is a two-qubit reduced state of
ΩnðγÞ ¼ γ Wnj i Wnh j þ ð1� γÞ 0nj i 0nh j, i.e., a mixture of 0nj i and
an n-qubit W state Wnj i ¼ 1ffiffi

n
p

Pn
j¼1 1j

�� �
, where 1j denotes an n-bit

string with a 1 in position j and 0 elsewhere. Now, imagine
drawing these n qubits as vertices of a tree graph52 with (n− 1)

edges, see Fig. 1, such that every edge corresponds to a pair of
qubits in the state ρn(γ), that is,

trSnSi ðρÞ ¼ σSi ¼ ρnðγÞ 8 Si 2 S; (3)

where S represents the set of edges. Then we prove the following
result:

Theorem 1. For any tree graph with n vertices that satisfies Eq. (3),
ΩnðγÞ ¼ γ Wnj i Wnh j þ ð1� γÞ 0nj i 0nh j is the unique global state
and all the two-qubit reduced states are ρn(γ).

The details of its proof can be found in Supplementary Notes 2.
Thus, these ρn(γ) exhibit transitivity for any of the

ðn�1Þðn�2Þ
2 pairs of

qubits that are not linked by an edge. Indeed, the symmetry of
Ωn(γ) implies that all its two-qubit marginals are ρn(γ), and the

smallest eigenvalue of ρn(γ)Γ is λ� ¼ ðn�2γÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�2γÞ2þ4γ2

p
2n < 0 for

γ∈ (0, 1].
We should clarify that the transitivity exhibited by ρn(γ) requires

a tree graph only in that it represents the minimal amount of
marginal information for the global state to be uniquely
determined. Any other n-vertex graph with equivalent marginal
information or more leads to the same conclusion.
These examples involve only entangled marginals. Next, we

present examples where some of the given marginals are
separable. In particular, we provide a complete solution of the
ETPs with the input marginals being a Werner state40 or an
isotropic state41.

Metatransitivity from Werner state marginals
A Werner state40 Wd(v) is a two-qudit density operator invariant
under arbitrary U⊗ U unitary transformations, where U belongs to
the set of d-dimensional unitaries Ud for finite d. Let Pds ðPdasÞ be the
projection onto the symmetric (antisymmetric) subspace of
Cd �Cd . Then we can write qudit Werner states as the one-
parameter family40

WdðvÞ ¼ v
2

dðd þ 1Þ P
d
s þ ð1� vÞ 2

dðd � 1Þ P
a
as; v 2 ½0; 1�: (4)

Consider a pair of Werner states σ= {Wd(vAB),Wd(vAC)} that are
the marginals of some joint state ρABC. Then the Werner-twirled
state53 eρABC ¼ R

dμUðU � U � UÞρABCðU � U � UÞy, where μU is a
uniform Haar measure over Ud , is trivially verified to be a valid
joint state for these marginals. Moreover, eρABC has a Werner state
Wd(vBC) as its BC marginal.
Importantly, the aforementioned twirling bringing ρABC to eρABC

is achievable by local operations and classical communications
(LOCC). Since LOCC cannot create entanglement from none, if the
BC marginal eρBC of eρABC is entangled, so must the BC marginal ρBC
of ρABC. Conversely, since eρABC is a legitimate joint state of the
given marginals σ, if eρBC is separable, by definition, the given
marginals σ cannot exhibit transitivity. Without loss of generality,
we may thus restrict our attention to a Werner-twirled joint stateeρABC. Then, since a Werner state Wd(v) is entangled if and only if
(iff)40 v 2 ½0; 12Þ, combinations of Werner state marginals Wd(vAB)
and Wd(vAC) leading to eρBC ¼ WdðvBCÞ with vBC < 1

2 must exhibit
entanglement (meta)transitivity.
Next, let us recall from Ref. 54 the following characterization: three

Werner states with parameters v!¼ ðvAB; vAC; vBCÞ are compatible iff
the vector v! lies within the bicone given by f ð v!Þ � gð v!Þ and
3� f ð v!Þ � gð v!Þ, where f ð v!Þ ¼ vAB þ vAC þ vBC and

gð v!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðvAC � vABÞ2 þ ð2vBC � vAB � vACÞ2

q
. To find the (meta)

transitivity region for (vAB, vAC), it suffices to determine the boundary
where the largest compatible vBC ¼ 1

2. These boundaries are found
(see Supplementary Note 3) to be the two parabolas

Fig. 1 Tree graph. A tree graph is any undirected acyclic graph such
that a unique path connects any two vertices. Graph a and b are the
only two nonisomorphic trees with (n− 1) edges for n= 4. Graph
c is not a tree because it is disconnected and has a cycle.
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ðvAB � vAC � 1
2Þ

2 ¼ 2ð1� vABÞ and ðvAB þ vAC � 1
2Þ

2 ¼ 4vABvAC, mir-
rored along the line vAB+ vAC= 1, as shown in Fig. 2. It also shows
the compatible regions of (vAB, vAC) obtained directly from Ref. 54, and
the desired (shaded) regions exhibiting the (meta)transitivity of these
marginals. In particular, the lower-left region corresponds to (a) while
the top-left and bottom-right regions correspond to (b) in Fig. 4.
Remarkably, these results hold for arbitrary Hilbert space dimension
d≥ 2 (but for d= 2, the lower-left shaded region does not
correspond to compatible Werner marginals).

Metatransitivity from isotropic state marginals
An isotropic state41 is a bipartite density operator in Cd �Cd that
is invariant under U � U (or U � U) transformations for any unitary
U 2 Ud ; here, U is the complex conjugation of U. We can write
qudit isotropic states as a one-parameter family41

IdðpÞ ¼ p Φdj i Φdh j þ 1� p

d2 � 1
Id2 � Φdj i Φdh j	 


; (5)

where Φdj i ¼ 1ffiffi
d

p
Pd�1

j¼0 jj i jj i and p gives the fully entangled
fraction55,56 of IdðpÞ.
Consider now a pair of isotropic marginals σ ¼

fIdðpABÞ; IdðpACÞg as the reduced states of some joint state τABC.
Then the “twirled” state eτABC ¼ R

dμUðU � U � UÞτABCðU � U �UÞy,
which has a Werner state marginal Wd(vBC) in BC, is easily verified
to be a valid joint state for the given marginals. As in the case of
given Werner states marginals, it suffices to consider eτABC in
determining the region of (pAB, pAC) that demonstrates
metatransitivity.
To this end, note that two isotropic states and one Werner state

with parameters p!¼ ðpAB; pAC; vBCÞ are compatible iff54 the
vector p! lies within the convex hull of the origin p!0 ¼ ð0; 0; 0Þ
and the cone given by αþ � 1þ 1

d ðβþ 1Þ and

dαþ � β � d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ þ βð Þ2 þ dþ1

d�1

	 

α�

q
, where α±= pAB ± pAC and

β= 2(vBC− 1). To find the metatransitivity region for (pAB, pAC)
we again look for the boundary where the largest compatible
vBC ¼ 1

2, which we show in Supplementary Note 4 to be

4pABpAC ¼ ðpAB þ pAC � 1þ 1
dÞ

2. The resulting regions of interest
are illustrated for the d= 3 case in Fig. 3, and they correspond to
(b) in Fig. 4.

Metatransitivity with only separable marginals
Curiously, none of the infinitely compatible pairs of marginals
given above result in the most exotic type of metatransitivity,
even though there are known examples where separable
marginals imply a global entangled state (see, e.g., refs. 12,24,25,36).
In the following, we provide examples where the entanglement of
a subsystem is implied by only separable marginals. This already
occurs in the simplest case of a three-qubit system. Consider the

Fig. 2 Parameter space for a pair of Werner state marginals with,
respectively, weight vAB and vAC on the symmetric subspace. For
d ≥ 3 the compatible region for the pair is enclosed by the solid red
line, but for d= 2 it is restricted to the portion above the dotted line.
The blue curves (being parts of two parabolas) describe boundaries
where the largest compatible vBC is 1

2. Regions exhibiting (meta)
transitivity are shaded in (gray) cyan.

Fig. 3 Parameter space for a pair of isotropic state marginals
with, respectively, fully entangled fraction pAB and pAC. The
compatible region for the pair is enclosed by the solid red line. The
blue curves (shown for the case of d= 3) marks the boundary where
the largest compatible vBC is 1

2. Regions exhibiting metatransitivity
are shaded in gray, which shrink with increasing d, as the upper red
curve flattens towards the dashed black line and the blue curves
approach the two axes.

Fig. 4 A schematic diagram for the metatransitivity examples.
Each row describes the known bipartite marginals in a 3- or 4-partite
system and the target subsystems where metatransitivity are
exhibited.
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rank-two mixed state χABC ¼ 1
4 χ1j i χ1h j þ 3

4 χ2j i χ2h j where

χ1j i ¼ 1
3 ;

1
12 ;�

ffiffi
7

p
12 ; 0;

ffiffi
7

p
12 ;� 1

3 ;� 3
4 ;

1
3

� �T
;

χ2j i ¼ � 1
2 ;

ffiffi
5

p
24 ;

1
6 ;

1
8 ;� 1

3 ;� 3
4 ;

ffiffi
5

p
24 ;

1
8

� �T
:

(6)

It can be easily checked that the AB and BC marginals of χABC
are PPT, which suffices46 to guarantee their separability, while Eq.
(1) with the PPT criterion can be used to confirm that AC is always
entangled. Thus, this example corresponds to (c) in Fig. 4.
Likewise, examples exhibiting different kinds of transitivity can
also found in higher dimensions (with bound entanglement47) or
with more subsystems, see Supplementary Note 5 for details.
Here, we present one such example to illustrate some of the

subtleties of ETPs in a scenario involving more than three
subsystems. Consider the four-qubit pure state

ξj iABCD ¼
�

1
45 ;� 1

3 ;
1
3 ;

1
9 ;

2
9 ;� 1

4 ;� 2
5 ;

1
9 ;ffiffiffiffi

10
p
36 ; 19 ;� 1

9 ;� 1
4 ;� 1

2 ;
1
9 ;� 1

9 ;
1
3

�T
:

(7)

One can readily check that its AB, BC, and CD marginals are PPT
and are thus separable. At the same time, one can verify using Eq.
(1) with the PPT criterion that these three marginals together
imply the entanglement of all the three remaining two-qubit
marginals. Thus, this corresponds to (d) in Fig. 4.
At this point, one may think that the entanglement in the AC

marginal already follows from the given AB and BC marginals,
analogous to the tripartite examples presented above. This is
misguided: the CD marginal is essential to force the AC marginal
to be entangled. Similarly, the AB marginal is indispensable to
guarantee the entanglement of BD. Thus, the current metatransi-
tivity example illustrates a genuine four-party effect that cannot
exist in any tripartite scenario. For completeness, an example
exhibiting the same four-party effect but where all input two-
qubit marginals are entangled is also provided in Supplementary
Note 5.

Metatransitivity from marginals of random pure states
Naturally, one may wonder how common the phenomena of
(meta)transitivity is. Our numerical results based on pure states
randomly generated according to the Haar measure suggest that
transitivity is generic in the tripartite scenario: for local dimension
up to five, all sampled pure states have only non-PPT marginals
and demonstrate entanglement transitivity. However, with more
subsystems, (meta)transitivity seems rare. For example, among the
105 sampled four-qubit states, only about 7.32% show transitivity
while about 3.38% show metatransitivity. For a system with even
more subsystems or with a higher d, we do not find any example
of (meta)transitivity from random sampling (see Table 1 for
details).
Next, notice that for the convenience of verification, some

explicit examples that we provide actually involve marginals
leading to a unique global state. However, uniqueness is not a
priori required for entanglement (meta)transitivity. For example,
among those quadripartite (meta)transitivity examples found for
randomly sampled pure states, >73% of them (see Supplementary
Note 5) are not uniquely determined from three of its two-qubit
marginals (cf. refs. 57–59). In contrast, most of the tripartite
numerical examples found appear to be uniquely determined by
two of their two-qudit marginals, a fact that may be of
independent interest (see, e.g., refs. 60–63).

DISCUSSION
The example involving noisy W-state marginals demonstrate that
the transitivity can occur for arbitarily long chain of quantum
systems. This leads us to consider metatransitivity with only
separable marginals. Beyond the example given above, we
present also in Supplementary Note 5 a five-qubit example with
four separable marginals and discuss some possibility to extend
the chain. For future work, it could be interesting to determine if
such exotic metatransitivity examples exist at the two ends of an
arbitrarily long chain of multipartite system. For the closely related
EMP, we remind that an explicit construction for a state with only
two-body separable marginals and an arbitrarily large number of
subsystems is known23 (see also ref. 36).

Table 1. Summary of various features of uniformly sampled n-partite pure states of local dimension d according to the Haar measure.

(n,d) Nsample(×10
3) NPT (%) PPT (%) NPT⇒NPT (%) PPT⇒NPT (%) NPT +

PPT⇒NPT (%)
Maxð1�FÞ 1� F<ϵð%Þ 1�F<10�6

among⇒NPT (%)

(3,2) 1000 100 0 100 0 (-) 0 (-) 1.21 × 10−9 100; 100; 100 100

(3,3) 100 100 0 100 0 (-) 0 (-) 1.73 × 10−6 25.51;
69.55; 99.99

99.99

(3,4) 10 100 0 100 0 (-) 0 (-) 1.33 × 10−6 72.77;
85.47; 99.84

99.84

(3,5) 10 100 0 100 0 (-) 0 (-) 1.29 × 10−6 83.64;
94.31; 99.79

99.79

(4,2) 100 46.74 2.64 7.32 (15.66) 0.02 (0.87) 3.36 (6.64) 1† 0.29; 1.50; 3.20 26.18

(4,3) 10 99.93 0 0 (0) 0 (-) 0 (0) 1† 0.00; 0.00; 0.00 —

(5,2) 10 0.35 45.75 0 (0) 0 (0) 0 (0) 1† 0.00; 0.00; 0.00 —

(5,3) 1.030 0.10 54.85 0 (0) 0 (0) 0 (0) 1† 0.00; 0.00; 0.00 —

The second column gives the number of pure states sampled Nsample in each scenario (n, d). The next two columns list the fraction of states giving (n−1)
neighboring two-body marginals that are, respectively, all NPT (i.e., none of which being PPT) and all PPT. The next three columns summarize how generic the
phenomenon of (meta)transivitiy is among such states when the target system T lie at the two ends of an n-body chain. We give from left to right, respectively,
the fraction among all sampled states exhibiting transitivity (i.e., with only entangled marginals), metatransitivity with only separable marginals, and
metatransitivity with mixed marginals. Enclosed in each bracket is the corresponding fraction among samples having the associated kind of marginals. The
next two columns summarize the extent to which the (n−1) two-body marginals lead to a unique global pure state. These are expressed in terms of the largest
value of the infidelity 1� F , where F ¼ minρS ψh jρS ψj i and ψj i is the sampled pure state; the three numbers listed in the second last column are, respectively,
for ϵ= 10−8, 10−7, and 10−6. The final column shows the fraction of (meta)transitivity examples having a unique global state (with an infidelity threshold set to
10−6). Throughout, we use 1† to represent a number that differs from 1 by less than 10−8.
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So far, we have discussed only cases where both the input
marginals and the target marginal are for two-body subsystems. If
entanglement can be deduced from two-body marginals, it is also
deducible from higher-order marginals that include the former
from coarse graining. Hence, the consideration of two-body input
marginals allows us to focus on the crux of the ETP. As for the
target system, we provide—as an illustration—in Supplementary
Note 5 an example where the three two-qubit marginals of Fig.
1(b) imply the genuine three-qubit entanglement present in BCD.
Evidently, there are many other possibilities to be considered in
the future, as entanglement in a multipartite setting is known1,26

to be far richer.
Our metatransitivity examples also illustrate the disparity

between the local compatibility of probability distributions and
quantum states. Classically, probability distributions P(A, B) and
P(B, C) compatible in P(B) always have a joint distribution P(A, B, C)
(this extends to the multipartite case for marginal distributions
that form a tree graph64). One may think that the quantum
analogue of this is: compatible ρAB and ρBC must imply a separable
joint state, and hence a separable ρAC. However, our metatransi-
tivity example (as with nontrivial instances of tripartite EMPs),
illustrates that this generalization does not hold. Rather, as we
show in Supplementary Note 8, a possible generalization is given
by classical-quantum states ρAB and ρBC sharing the same diagonal
state in B—in this case, metatransitivity can never be established.
Evidently, there are many other possible research directions

that one may take from here. For example, as with the W-states,
we have also observed transitivity in n ≤ 3 ≤ d ≤ 6 for qudit Dicke
states65–67, which seems to be also uniquely determined by its
(n− 1) bipartite marginals. To our knowledge, this uniqueness
remains an open problem and, if proven, may allow us to establish
examples of transitivity for an arbitrarily high-dimensional
quantum state that involves an arbitrary number of particles.
From an experimental viewpoint, the construction of witnesses
specifically catered for ETPs are surely welcome.
Finally, notice that while ETPs include EMPs as a special case, an

ETP may be seen as an instance of the more general resource
transitivity problem (CYH, GNT, YCL), where one wishes to certify
the resourceful nature of some subsystem based on the
information of other subsystems. In turn, the latter can be seen
as a special case of the even more general resource marginal
problems68, where resource theories are naturally incorporated
with the marginal problems of quantum states.

METHODS
Metatransitivity certified using separability criteria
As mentioned before, we can certify the entanglement (meta)transitivity of
a given set of marginals in a bipartite target system T by demonstrating
the violation of the PPT separability criterion. We can show this by solving
the following convex optimization problem:

max
ρS

λ

subj: to trSnSi ðρSÞ ¼ σSi 8 Si 2 S;
ρSk0; ρΓTkλI;

(8)

which directly optimizes over the joint state ρS with marginals σSi such that
the smallest eigenvalue λ of ρΓT is maximized. Because a bipartite state that
is not PPT is entangled45,46, if the optimal λ (denoted by λ⋆ throughout) is
negative, the marginal state in T of all possible joint states ρS must be
entangled.
In the Supplementary Notes, we compute the Lagrange dual problem to

Eq. (1) with a linear witnessWT. A similar calculation for Eq. (8) shows that it
is equivalent to a dual problem with W ¼ ηΓT, where ηT being an additional
optimization variable subjected to the constraint of ηT≽ 0 and trðηTÞ ¼ 1.
Meanwhile, to certify genuine tripartite entanglement in the target

tripartite marginal T, we use a simple criterion introduced in ref. 69.
Consider the density operator ρAB on Cm �Cn to be an m ×m block
matrix of n × n matrices ρ(i, j). Let fρAB denote the realigned matrix obtained

by transforming each block ρ(i, j) into rows. The CCNR criterion48,49 dictates
that for separable σAB, kfσABk1 � 1.
Now, let A∣BC denote a bipartition of a tripartite system ABC into a

bipartite system with parts A and BC. Finally, for any tripartite state ρABC on
Cd �Cd �Cd , define

MðρABCÞ :¼ 1
3 kρTAABCk1 þ kρTBABCk1 þ kρTCABCk1
	 


NðρABCÞ :¼ 1
3 k gρAjBCk1 þ k gρBjCAk1 þ k gρCjABk1
� �

;
(9)

where TX means a partial transposition with respect to the subsystem X. It
was shown in ref. 69 that for any biseparable ρABC, we must have

maxfMðρABCÞ;NðρABCÞg � 1þ 2d
3

: (10)

This means that if any of M(ρABC), N(ρABC) is larger than 1þ2d
3 , ρABC must

be genuinely tripartite entangled.
Therefore in the metatransitivity problem, we can use this, cf. Eq. (8) for

the bipartite target system, for detecting genuine tripartite entanglement.
This is done by minimizing M and N of the target marginal and taking the
larger of the two minima. To this end, note that the minimization of the
trace norm can be cast as an SDP70. Further details can be found in
Supplementary Notes 1.

Certifying the uniqueness of a global compatible (pure) state
A handy way of certifying the (meta)transitivity of marginals fσSig known
to be compatible with some pure state ψj i is to show that the global state
ρS compatible with these marginals is unique, i.e., ρS is necessarily ψj i ψh j.
This can be achieved by solving the following SDP:

min
ρS

ψh jρS ψj i
subj: to trSnSi ðρSÞ ¼ σSi 8 Si 2 S and ρSk0

(11)

The objective function here is the fidelity of ρS with respect to the pure
state ψj i. If this minimum is 1, then by the property of the Uhlmann-
Jozsa fidelity71, we know that the only compatible ρS is indeed given by
ψj i ψh j.
For the numerical results that show how typical transitivity is for the

bipartite marginals of a pure global state, the marginals are obtained from
a uniform random n-qudit state, which is obtained by taking the first
column of a dn-dimensional Haar-random unitary.
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