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Parallel tomography of quantum non-demolition
measurements in multi-qubit devices
L. Pereira 1✉, J. J. García-Ripoll1✉ and T. Ramos 1✉

An efficient characterization of QND measurements is an important ingredient toward certifying and improving the performance
and scalability of quantum processors. In this work, we introduce a parallel tomography of QND measurements that addresses
single- and two-qubit readout on a multi-qubit quantum processor. We provide an experimental demonstration of the tomographic
protocol on a 7-qubit IBM-Q device, characterizing the quality of conventional qubit readout as well as generalized measurements
such as parity or measurement-and-reset schemes. Our protocol reconstructs the Choi matrices of the measurement processes,
extracts relevant quantifiers—fidelity, QNDness, destructiveness—and identifies sources of errors that limit the performance of the
device for repeated QND measurements. We also show how to quantify measurement crosstalk and use it to certify the quality of
simultaneous readout on multiple qubits.
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INTRODUCTION
Quantum non-demolition (QND) measurements allow the
repeated evaluation of an observable without changing its
expected value1,2. They have been implemented in many
quantum platforms such as atomic3–8 or solid-state systems9–14.
In superconducting quantum processors, in particular, the most
widespread qubit measurement is, in its ideal form, also a QND
measurement15–17. In practice, this qubit readout is not yet
perfectly QND and has larger errors than single- and two-qubit
gates18,19. The origin of these measurement errors is diverse: non-
dispersive interactions20,21, leakage to excited states22,23, deco-
herence17,24, or crosstalk25,26, and they accumulate exponentially
with repeated measurements.
While state-of-the-art is adequate for restricted models of

computation—e.g., variational quantum algorithms27,28 or proof-
of-principle quantum error correction18,29,30—large-scale and
fault-tolerant quantum computing schemes31–35 require that we
improve on the quality of QND measurements, through efficient,
reliable, and self-consistent characterization techniques, which
also help us identify and mitigate experimental errors36.
Quantum tomography (QT) is a powerful and general technique

to characterize the evolution of a physical system37, used e.g. in
superconducting qubits38–40, trapped ions41–43, or photonic
systems44–46. We proposed QND measurement tomography
(QND-MT)47 as a self-consistent reconstruction of the Choi
operators for a general QND detector, describing the measurement
process, its dynamics, relevant quantifiers, and sources of error. A
similar approach based on gate set tomography (GST) has also
been recently developed48. QND-MT is more informationally
complete than a direct estimation of readout fidelity and
QNDness15,49,50, or a standard measurement tomography
(MT)26,51–53 of the positive operator-valued measurements (POVM).
In this work, we experimentally implement an efficient parallel

QND-MT to characterize the most important measurement
properties of a 7-qubit IBM-Q quantum computer19. The protocol
exploits the low correlations between the qubit readout to
implement a cheap parallel single-qubit characterization of each
measurement, obtaining relevant quantifiers from the Choi

operators such as readout fidelity, QNDness, and destructive-
ness47. We observe that the device is optimized to maximize the
fidelity—calibrated at around ~98% for every qubit—but not the
QNDness, which varies more across the devices and it is lower on
average ~96.7%. QND-MT also reveals that bit-flip errors are the
main source of imperfections. Using a two-qubit QND-MT we
quantify measurement crosstalk across devices. We find a similar
correlation strength between local and non-local pairs of qubits,
which introduces an error of less than 1% in the simultaneous
execution of qubit readout. This validates the application in
parallel with the single- and two-qubit tomographic protocol on
the IBM-Q device, which can be executed with a constant number
of circuits, avoiding the exponential scaling of a full QT. This
parallelization is also extended to the post-processing of data on
classical computers.
Finally, we demonstrate the generality of QND-MT by recon-

structing composite measurement processes relevant to quantum
error correction protocols such as parity measurements (PMs) and
measurement-and-reset schemes with classical feedback. Our
experiment shows that the PM involves more errors—mainly non-
dispersive—than a direct QND measurement due to the presence
of an entangling gate. In addition, we observe that the
measurement-and-reset scheme can enhance the QND nature of
the readout.

RESULTS
QND measurement tomography on a multi-qubit device
A generalized quantum measurement of an N-qubit system in
state ρ is described by a set of non-trace-preserving quantum
processes En, which add up to a trace-preserving one, E ¼ P

nEn
2.

Each individual process determines a post-measurement state
ρn ¼ EnðρÞ=pðnÞ, conditioned to the measurement outcome
occurring with probability pðnÞ ¼ TrðEnðρÞÞ. A representation of
quantum processes commonly used in QT is the Choi matrices54.
In this representation, a measurement is described by a set of Choi
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operators {ϒn} whose matrix elements are given by47

ϒijkl
n ¼ hijjϒnjkli ¼ hijEnð kj i lh jÞjji; (1)

with f ij ig the basis of the measured system with dimension d. In
terms of these matrices, we can conveniently determine the
dynamics of the post-measurement states EnðρÞ ¼

P
ijklϒ

ijkl
n ρkl ij i jh j,

the POVM elements Πn ¼
P

ijkϒ
kjki
n ij i jh j, and the measurement

statistics pðnÞ ¼ TrfΠnρg, where ρkl ¼ kh jρ lj i are the components of
the density matrix before measurement. Note that ϒn is the
transposed of the positive Choi operator ~ϒn, whose components
are related by ijh jϒn klj i ¼ ikh j~ϒn jlj i54.
The Choi matrices ϒijkl

n are a complete description of the
quantum processes of a system and from them, we can extract all
the relevant physical properties of the measurements. We discuss
three relevant quantifiers of the measurement: the readout fidelity
F, the QNDness Q, and the destructiveness D47 (see methods).
Comparing them, we can quantify the quality of the measurement
for particular tasks and discriminate between different types of
measurements. The readout fidelity F describes the efficiency of
the readout irrespective of the post-measurement state, and it is
thus maximal when the POVMs are projectors, Πn ¼ nj i nh j.
Operationally, it is defined as the average probability of
successfully detecting a state nj i of the computational basis, after
preparing the system in the same state. The QNDness Q is the
fidelity with respect to an ideal measurement of an observable O,
that is, a measurement that projects the states into the
eigenvectors nj i of O and whose Choi matrices are projectors,
ϒn ¼ nnj i nnh j. QNDness incorporates information on the post-
measurement states and can be determined by the average
probability that states of the computational basis nj i are
preserved in two consecutive measurements. Finally, the destruc-
tiveness D quantifies the back-action introduced by the measure-
ment47. For D= 0, the measurement is exactly QND which means
that it preserves the expected value of the observable O after
consecutive measurement hOi ¼ Tr½Oρ� ¼ Tr½OEðρÞ�. For D > 0,
the destructiveness signals a deviation from the QND condition,
which can occur independent of how ideal the measurement is.
Therefore, it is convenient to know the three quantifiers F, Q, and
D to provide a more complete analysis of general non-destructive
measurements.
Our QND-MT protocol47 reconstructs the Choi matrices of a

QND measurement self-consistently. As shown in Fig. 1a, it
consists of two applications of the measurement interspersed by a
unitary gate Vi that prepares a complete basis of initial states, and
a second gate Uj that enables a complete set of measurements.
Given sufficient statistics, this protocol provides conditional
probability distributions of single QND measurements p(n∣i) and

of consecutive measurements p(nm∣ij). A maximum-likelihood-
based classical post-processing55–57 transforms p(n∣i) and p(nm∣ij)
into a set of physically admissible set of POVM elements {Πn} and
Choi matrices {ϒn}, requiring to solve a total ofN þ 1 optimization
problems, withN the number of outcomes (see methods). The full
characterization of QND detectors with N qubits and N ¼ 2N

possible outcomes demands reconstructing 2N Choi operators of
size 4N. In the general case, using a strategy based on Pauli
observables, QND-MT requires a total of 18N circuits, correspond-
ing to 6N initial gates prepared with the tensor product of Vi 2
fI; σx ; e ∓ iπσy=4; e ∓ iπσx=4g and 3N intermediate unitaries given by
the tensor products of Ui 2 fI; e�iπσy=4; e�iπσx=4g, with I and σj the
identity and Pauli operators. Figure 1b–d shows the circuits for the
particular case of a single qubit and two qubits, as explained
below.
The exponential scaling in the number of circuits makes QT—in

the QND-MT or in any other form—unfeasible for systems with
large numbers of qubits. This scaling may be avoided if the
measurements of separate quantum subsystems are shown to be
independent. QND measurements in superconducting circuits are
implemented via dispersive readout15–17, where each qubit is
coupled to an off-resonance cavity, on which one performs
homodyne detection to individually extract the outcome of each
qubit state. These readouts are thus built to be independent of
each other, but imperfections in the device can lead to crosstalk
between the qubit measurements26,58. Nevertheless, these corre-
lations can be characterized by two-qubit QND-MT of each pair of
qubits. If the correlations are weak enough, it is possible to
execute a highly parallelized and scalable QND-MT for multi-qubit
detectors, reducing the number of circuits and the classical post-
processing time.

Parallel single-qubit QND measurement tomography
Let us first discuss the tomographic reconstruction of every single-
qubit measurement of a quantum processor with N qubits. This
means using QND-MT to reconstruct 2N single-qubit Choi matrices
ϒα

n, for qubits α= 1,..., N and n= 0, 1. Single-qubit QND-MT applies
two measurements ϒα

n in between single-qubit gates Vi and Uj, as
shown in Fig. 1c, requiring the evaluation of 18 different circuits.
For each pair of measurement outcomes, the associated Choi
matrix ϒα

n is estimated as the solution of a maximum likelihood
optimization problem.
Initialization and gate errors are accounted for in this

optimization by means of single-qubit GST48,59–61. GST self-
consistently characterizes the initial state, the final POVM
measurement, and a complete set of linearly independent gates
Gi of a device. In our case, Gi 2 fI; σx ; e�iπσy=4; e�iπσx=4g are the
gates used to implement all the Vi and Ui operations from QND-

Fig. 1 Quantum circuits and parallelization strategies in the QND measurement tomography. Quantum circuits for a QND measurement
tomography of generic measurements, b single-qubit gate set tomography, and c single-qubit and d two-qubit QND measurement
tomography. e, f Schemes of IBM quantum devices (e) ibm_perth (7 qubits) and (f) ibm_brooklyn (65 qubits). Measurements of pairs of qubits
connected by a bar of the same color (red, green and yellow) are characterized simultaneously in one run of the parallel tomography.
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MT. Note that GST requires 64 circuits, each composed of three
gates Gi and a measurement, as shown in Fig. 1b.
The execution of the circuits of the N single-qubit QND-MTs and

GST circuits can be efficiently parallelized, applying the single-
qubit operations simultaneously as sketched in Fig. 1b, c. This
reduces the total number of experiments from OðNÞ down to the
sum of 18 QMD-MT and 64 GST circuits. With this refinement, we
studied the readout of all qubits in the IBM quantum device
ibm_perth. This processor has a quantum volume62 of 32 and
CLOPS (Circuit Layer operations per second) of 2.9 × 103 63, and a
qubit connectivity graph shown in Fig. 1e. Each circuit was
evaluated with 213 shots, resulting in an experiment that takes
approximately 2 min, with classical post-processing of 30 s on a
Ryzen-7 5800H processor with eight cores.
From the reconstructed Choi matrices of each qubit, we derived

the three quantifiers—readout fidelity F, the QNDness Q, and the
indestructiveness 1− D—shown in Fig. 2a. The ibm_perth
processor exhibits readout fidelities between 0.969 and 0.992,
with an average of F ¼ 0:98. QNDness varies much more along
the device, ranging from 0.951 in the qubit α= 0–0.987 in α= 6,
with an average of Q ¼ 0:967. Indestructiveness behaves similarly
to fidelity except for qubit α= 1 and ranges between 0.97 and
0.991. The arithmetic mean of F, Q, and 1− D—see colormap in
Fig. 2a—characterizes the performance across the device: qubits
in the upper sector (α= 0, 1, 2) perform notably worse than those
in the lower half of the chip.
The Choi matrices not only provide individual qubit metrics

(F,Q, D) but also hint at the physical processes behind measure-
ment errors. The Choi matrix element pa!b

n ¼ hbbjϒnjaai quan-
tifies the probability that the state flips from aj i to bj i when
outcome n is detected. Each element informs about deviations
from the ideal projective measurement pa!a

a ¼ 1, as well as
possible origins for those deviations.
Let us first put this into practice using the averaged Choi

matrices ϒn ¼
P

αϒ
α
n=N, shown in Fig. 2b. Note how the readout

of the 0j i state ðp0!0
0 ¼ 0:975Þ is implemented with better quality

than that of 1j iðp1!1
1 ¼ 0:960Þ. Bit-flip noise is identified as the

main source of errors, dominated by the qubit decay process
1j i ! 0j i (p1!0

1 ¼ 0:02), and slightly less influenced by the
excitation channel 0j i ! 1j i ðp0!1

1 ¼ 0:016Þ. Considering that

ibm_perth has a relaxation time T1 ≈ 100 μs and a measurement
time T= 700 ns19, we estimate a baseline probability of qubit
relaxation pth ¼ 1� e�T=T1 � 0:007, which accounts for 35% of
the observed decay error. The remaining bit-flip error may be due
to Purcell-induced decay and other non-dispersive errors that
occur during the measurement process itself47.
This analysis may also be done qubit by qubit. Figure 2c, d

shows the experimental Choi matrices for qubits α= 6 and α= 0,
respectively (all others being included in Supplementary Fig. 1).
Qubit α= 6 is the best on the device, with F= 0.991, Q= 0.985,
and 1− D= 0.988. Its Choi matrices are also the closest ones to an
ideal measurement, with large values of pn!n

n and below average
flip errors. On the other hand, Qubit α= 0 is the one exhibiting the
worst performance with F= 0.971, Q= 0.951, and 1− D= 0.97.
The Choi matrices for this qubit are dominated by a strong bit-flip
error p1!0

1 ¼ 0:035 and p0!1
1 ¼ 0:021 in the outcome 1j i, and

non-dispersive errors given by elements 〈ab∣ϒ0∣00〉 and
〈ab∣ϒ1∣11〉, with a ≠ b. The projection in this outcome is thus
not done correctly, which explains the reduction in the QNDness
and indestructiveness.
The parallelized tomography of the qubits has obvious

performance advantages, but it could increase the error of the
operations25. To quantify potential deviations, we have compared
the outcome of parallel tomography on ibm_perth with the
independent characterization of those qubits, running the OðNÞ
circuits separately. As shown in Fig. 2e, the differences in the three
quantifiers—fidelity ∣ΔF∣= ∣Find− Fpar∣, QNDness ∣ΔQ∣= ∣Qind−
Qpar∣, and destructiveness ∣ΔD∣= ∣Dind− Dpar∣—lay below 10−2,
and are smaller than the non-idealities of those quantifiers (see
Fig. 2a). Similarly, we have quantified the average distance in
diamond norm64,65 between the Choi operators computed using
both strategies ∣Δϒ∣◇= ∣ϒind−ϒpar∣◇ ≤ 1, and these lay below
1.4 × 10−2 (see Fig. 2e), validating the use of the parallelized
strategy.

Two-qubit QND measurement tomography and crosstalk
quantification
The low distinguishability between parallel and independent
single-qubit QND-MT suggests that measurement correlations are
weak across the device. We can further quantify such correlations

Fig. 2 Experimental tomographic characterization of single-qubit measurements in parallel. a Measurement quantifiers: fidelity F (green),
QNDness Q (orange), and indestructiveness 1− D (blue) for each qubit. The inset represents the average performance (F+Q+ 1− D)/3 of
each qubit, as they are located on the ibm_perth quantum processor. b Average Choi matrices ϒn of all qubits for both measurement
outcomes n= 0, 1. c, d Specific Choi matrices ϒ6

n and ϒ0
n corresponding to the qubits with best and worst readout performance, respectively.

e Error in the quantifiers and the Choi operators introduced by the parallelization of the QND-MT. Error bars are the standard deviation
estimated with 5 realizations of the experiment.
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comparing the joint measurement process for pairs of qubits (α, β),
given by ϒαβ

mn for outcomes m, n= 0, 1, with the individual
measurement processes ϒα

m � ϒβ
n.

The two-qubit QND-MT requires the evaluation of 324 circuits—
two measurement processes interspersed by layers of gates Vi and
Uj (cf. Fig. 1d). Since characterizing all N(N− 1)/2 pairs on an N-
qubit device is very costly, we first focused on neighboring qubits,
which we expect to exhibit the greatest correlations. More
precisely, for a device with M physical connections ðα; βÞ 2 C of
M, we aim to reconstruct the 4M two-qubit Choi matrices.
This two-qubit QND-MT can be parallelized by executing similar

circuits on non-overlapping pairs of physically connected qubits.
This requires dividing the quantum processor into sets of edges
that do not share a common qubit. For the 7-qubit ibm_perth and
the 65-qubit ibm_brooklyn quantum processors, illustrated in Fig.
1e, f, we only need three sets. For a generic planar graph with M
vertices, coloring theorems66 ensure that the number of sets is
never larger than 4, setting a bound on the number of circuits
4 × 182 that does not grow with the processor’s size. Finally, the
protocol requires solving 5M optimization problems, a task that
can be efficiently parallelized on classical computers. Here, we
employ a parallel two-qubit QND-MT to characterize the readout
of physically connected qubits on the IBM quantum device
ibm_perth. The experiment runs approximately in 38 min—using
213 shots per circuit—and the post-processing in 3 min.
Figure 3a shows the experimental results for the quantifiers F, Q,

and 1−D describing the two-qubit measurement. We see an
overall decrease in the readout performance of pairs qubits with
respect to the single-qubit results in Fig. 2a, but still we identify the
same qualitative behavior: F and Q increase from top to bottom of
the device (see inset of Fig. 3a) and QNDness is the worst and most
fluctuating quantifier. As discussed below, the two-qubit quantifiers
of all connected pairs are very well approximated as products of the
single-qubit ones—e.g., Fαβ ≈ FαFβ and Qαβ ≈QαQβ. This explains the
reduction in average two-qubit fidelity and QNDness between pairs
to F ¼ 0:958 and Q ¼ 0:937. Indestructiveness 1−D is the most
stable quantifier, ranging between 0.955 and 0.97, but reduces its
average in a similar amount to 1� D ¼ 0:963.

Figure 3b shows the two-qubit Choi matrices averaged over all
pairs of connected qubits, ϒnm ¼ P

ðα;βÞ2Cϒ
αβ
nm=M. The Choi

matrices for all pairs are included in Supplementary Fig. 2. The
largest probabilities of type pab!ab

ab ¼ habjϒabjabi show the same
behavior as pa!a

a ¼ hajϒajai for the singe-qubit case. The lowest
deviation from the ideal measurement corresponds to the state
00j i (p00!00

00 ¼ 0:95 � ðp0!0
0 Þ2), followed by 01j i and 10j i

(p01!01
01 ¼ p10!10

10 ¼ 0:938 � p0!0
0 p1!1

1 ), and finally the two-
excitation state 11j i (with p11!11

11 ¼ 0:924 � ðp1!1
1 Þ2), which

suffers more from bit-flip errors.
As in the single-qubit case, we estimate the errors introduced

by parallelization by comparing the parallelized two-qubit QND-
MT with the independent tomography of each pair. Figure 3c
shows the error in fidelity, QNDness, destructiveness, and Choi
operators for each pair of physically connected qubits, as defined
in the previous section. Parallelization introduces an error below
2 × 10−2 in all quantifiers and Choi operators.
We quantify the measurement crosstalk by comparing the

measurement processes of individuals and pairs of qubits. This is
done at the level of quantifiers, introducing heuristic measures of
separability for the fidelity C[Fαβ]= ∣Fαβ− FαFβ∣ and for the
QNDness C[Qαβ]= ∣Qαβ−QαQβ∣. It is also done at the level of
operators, with estimates of the POVM correlation C[Παβ] and the
Choi correlation C[ϒαβ] (see Methods).
As hinted above, we observe a good separability of quantifiers.

In Fig. 4a we see correlations of ibm_perth device below 10−2 for
all pairs, allowing us to estimate the fidelity and QNDness of pairs
of qubits as products of the properties of individual qubits.
Figure 4a shows the POVM and Choi correlations for the

ibm_perth device. We certify the presence of measurement
crosstalk between all physically connected pairs of qubits: all
POVM elements and Choi matrices are non-separable with
correlations on the order of 10−2, which exceed the statistical
error bars from the tomography for most of the qubits. This
represents a crosstalk error of about 1%, which is smaller than the
physical error found on single- and two-qubit tomography.
QND-MT is not restricted to nearest-neighbor correlations. As an

example, we have analyzed the correlations between all qubits in
ibm_perth and the central qubit α= 3, in 6 sets of separate

Fig. 3 Experimental tomographic characterization of two-qubit measurements over every pair of connected qubits in parallel.
a Measurement quantifiers F, Q, and 1− D for each nearest-neighbor pair. The inset represents the average performance (F+ Q+ 1− D)/3 in
the device of each qubit (blue color code in circles) and of every pair of connected qubits (green color code in bars). b Reconstructed two-
qubit Choi matrices ϒnm averaged over all connected pairs of qubits for the four possible outcomes with n,m= 0, 1. c Error in the quantifiers F,
Q, and 1− D and the Choi operators introduced by the parallelization. Error bars are the standard deviation estimated with 5 realization of the
experiment.
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experiments. This produces pairs at two different distances, the
first neighbors (1, 3) and (3, 5), and the second neighbors (0, 3),
(2, 3), (3, 4), and (3, 6). Figure 4b shows the correlations obtained
for those pairs. We can see that correlations C[Fαβ] and C[Qαβ] are
of order 10−3 for all qubits, while C[Παβ] and C[ϒαβ] are
approximately 10−2. In this small device, we do not observe a
clear decay of correlations with distance, but we verify that all
correlations are smaller than the measurement errors detected for
independent single-qubit tomography.

Scaling of QND-MT on larger devices
Parallel single-qubit QND-MT is an efficient technique to
characterize large devices that requires a fixed number of
circuits—82 including GST—independently of the device size.
Using the execution times obtained in the experiments on the
ibm_perth we can extrapolate the performance in larger devices.
For the 65-qubit ibm_brooklyn, with a degree 3 connectivity
shown in Fig. 1f and a smaller CLOPS number of 1.5 × 103 63, we
estimate 4 min for the single-qubit characterization and 5min of
post-processing in a Ryzen-7 5800H processor with 8 cores. Notice
that all experimental execution times do not depend on the size of
the device, but they are limited by the number of CLOPS, which
are typically lower for larger devices.
We have discussed also three strategies to certify the errors in

parallel QND-MT. One strategy is the application of QND-MT of
individual qubits in separate, non-parallel experiments. This has a
cost that grows linearly OðNÞ with the number of sampled qubits,
but it is a routine that may be applied with less frequency than the
complete calibration. This method enables the development of
heat maps of the chip and suggests the order of magnitude of
underlying correlations.
The second strategy is the parallelized QND-MT of pairs of

neighboring qubits, a method that will provide results consistent
with the previous methodology, but also give information about
the strength of the crosstalk. In the two-qubit parallelized strategy,
our estimate gives a total of 1296 independent circuits for any
device size, taking 63min for the two-qubit circuit evaluation in a
65-qubit ibm_brooklyn processor, and 30min in a Ryzen-7 5800H
processor with eight cores.
The third and most expensive strategy is to implement a two-

qubit QND-MT for all qubit pairs in large devices with OðlogðNÞÞ

parallel groups67 and O(N2) optimization problems. In this case, we
estimate 2.5 h for the experiment and a similar amount of post-
processing to characterize the ibm_brooklyn device. This is an
efficient scaling that enables a very robust calibration of the
complete device, to be done only sporadically.
Finally, for larger devices, the execution and post-processing

times could be too long for a complete two-qubit MT—extending
to days for devices with more than 1000 qubits—in which case it
makes sense to either randomly sample those pairs, or concen-
trate the study to specific regions of the chip, that revealed more
problematic in the first two methods.

QND measurement tomography of generalized measurements
The QND-MT protocol we introduce can be applied to any kind of
generalized measurements2. These include synthetic measure-
ments that combine standard detectors with other computing
elements, such as local and entangling gates, auxiliary qubits, and
resets.
In this work, we discuss the application to stabilizer measure-

ments, a relevant example which are widely used in quantum
error correction protocols18,29,30. Such measurements are usually
implemented with controlled operations over an auxiliary qubit,
which is finally measured and reset, to discriminate states with
different stabilizer values. If we trace over the auxiliary qubit, the
generalized measurement is, up to implementation errors, QND,
enabling the repetitive monitoring of error syndromes.
As an illustration of how QND-MT works with a generalized

measurement, we discuss a single-qubit PM. As shown in Fig. 5a,
this protocol includes an auxiliary qubit, a controlled CNOT
operation, and a single-qubit readout and reset. Note that, unlike
all higher PMs, the single-qubit PM does not entangle multiple
system qubits and thus it is not directly applicable to quantum
error correction codes. However, it already includes all the
underlying operations supporting multi-qubit PM, which can be
scaled to characterize multi-qubit measurement errors in practical
error correction codes. Here, we study the performance of the
single-qubit PM using two fixed qubits of the ibm_perth quantum
processor, and we compare it with the performance of the direct
measurement (DM) on the same system qubit, as shown in Fig. 5b.
The Choi matrices and the quantifiers obtained for the parity and
DMs are shown in Fig. 5d, e, respectively.
In this study, we observe a decrease in the fidelity and QNDness of

the PM with respect to DM. The readout fidelity of the PM
FPM= 0.958 is close to the product of FDM= 0.973 and the fidelity of
the CNOT provided by IBM FCNOT= 0.9897. Therefore, we can
conclude that this decrease is mainly due to the CNOT gate as the
error from reset is expected to be smaller than 1%68. The
indestructiveness is the same for parity and DMs,
1−DPM= 1−DDM= 0.969, which is consistent with the fact that
the CNOT and reset operations do not add measurement back-action
to the system. In the Choi operators, we can also see the appearance
of new bars that describe the noise introduced by the CNOT gate, as
well as an increase in the overall error bars and fluctuations.
Another interesting example of generalized measurement is the

measure-reset-feedback (MRF) operation, shown in Fig. 5c. It
consists of a QND measurement followed by a reset and a
classically conditioned NOT operation that brings the measured
qubit exactly to the quantum state selected as measurement
outcome—i.e., the qubit is reset to state 0j i or 1j i when the
measurement outcome was deemed n= 0 or 1, respectively. If the
reset and NOT operations have high fidelities, measurement-and-
reset should fix the QND nature of measurement, bringing the
errors 1−Q and D closer to the measurement infidelity 1− F.
We applied QND-MT to this generalized measurement using a

single qubit of the IBM-Q ibm_perth processor. The resulting Choi
matrices and quantifiers are shown in Fig. 5f. The MRF scheme has
better performance than the DM in the same qubit, having

Fig. 4 Correlations in the joint measurement of pairs of qubits
obtained by QND-MT. a Correlations in fidelity C[F], QNDness C[Q],
and Choi operators C[ϒ] for the joint readout of each pair of
physically connected qubits. b Same correlations C[F], C[Q], and C[ϒ]
for the readout of qubit α= 3 with every other qubit of the device.
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approximately the same fidelity FDM ≈ FMRF ≈ 0.975 and indestruc-
tiveness 1− DDM ≈ 1−DMRF ≈ 0.969, but with an increase of
QNDness from QDM= 0.954 to QDM= 0.960. Considering the error
bars of the QNDness and indestructiveness, we find that the worst-
case MRF provides a QND readout with the same quality as a DM.
Moreover, we also witness a reduction in the noisy components of
the Choi operator, such as those describing bit-flip errors.

DISCUSSION
In this work, we have demonstrated an efficient, highly paralleliz-
able protocol for QND-MT of a state-of-the-art multi-qubit
quantum computer, which works with both single-qubit measure-
ment and generalized measurement—e.g., error syndrome
measurements, PMs, etc. Our method is based on a self-
consistent reconstruction of the Choi matrices for single-qubit
and two-qubit measurements, which provides information about
measurement quality, the QND nature of the measurement and
the strength and type of errors.
In the single-qubit scenario, we have developed strategies to

massively parallelize the tomography, an approximation that
works when multiple measurements can be executed with small
crosstalk or correlation. We have applied this protocol in
experiments with a 7-qubit IBM quantum computer, obtaining
fascinating insight into the performance of the device. First of all,
we have found that the chip is well tuned to high-fidelity
measurements, with weak and long pulses—much longer than
single- or two-qubit gates—that mitigate non-dispersive and
discrimination errors, at the expense of increasing incoherent
errors, in particular, single-qubit bit flip. This limits the QND nature
of the measurement which fluctuates along the different qubits of
the device.
We have also developed different strategies to determine

whether single-qubit measurements are independent, and can be
parallelized. The most sophisticated strategy involves applying
QND-MT to the simultaneous measurement of two qubits, to

reconstruct the joint Choi matrices and quantify the degree of
correlation. In the setup considered, these correlations lay below
1% and validate the parallelization strategy which, as discussed
above, can be efficiently scaled to large multi-qubit processors
with an almost fixed cost.
Finally, we have also demonstrated how QND-MT can be

generalized to custom measurements, in particular to parity-type
measurements relevant to quantum error correcting codes and
measurement-and-reset schemes with classical feedback. We used
the Choi matrices to identify coherent errors introduced by the
CNOT gate in PMs and we provided evidence that the reset
operation with classical feedback is an appealing way to improve
the QND quality of a measurement.
This work opens several avenues for further research. The

obvious one is to use QND-MT as an input for the systematic
optimization of the measurement pulses. The goal here is to
optimize the driving amplitude and measurement time, minimiz-
ing the errors that manifest in the Choi matrices. This would allow
us to reduce the decay channels found in the experiment, while
keeping other sources of error at bay—e.g., non-dispersive
effects21, discrimination errors47,69, decoherence20, leakage to
higher levels of the transmon23, or rotating wave corrections22.
Another approach is to design alternative schemes for qubit
readout that may be more QND49,50,70, but this would add new
error sources that could be similarly identified and characterized
with the application of QND-MT.
An additional research avenue is to further understand and

mitigate the correlations between simultaneous measurements. In
this work, we have explored two-qubit correlations, but higher-
order correlations, involving three or more qubits, could also be
analyzed with the help of better tomography methods, such as
compressed sensing71,72. These methods could also be used to
quantify readout and crosstalk errors occurring in multi-qubit
stabilizer measurements involving plaquettes of four or more
qubits as they are required in practical quantum error correction
codes such as the surface18,29,30 or color codes73.

Fig. 5 Experimental QND-MT characterization of generalized measurements. Circuits depicting a a single-qubit parity measurement via an
auxiliary qubit, b a direct qubit measurement, and c a measurement-and-reset scheme with classical feedback. d–f Choi matrices and
quantifiers corresponding to each scheme. Error bars are the standard deviation estimated from 5 realization of the experiments.

L. Pereira et al.

6

npj Quantum Information (2023)    22 Published in partnership with The University of New South Wales



METHODS
QND measurement quantifiers
To characterize the most important properties of non-destructive
measurements, we employ three quantifiers: the readout fidelity,
the QNDness, and the destructiveness. Here, we show how to
obtain these quantifiers from the reconstructed Choi matrices as
introduced in ref. 47.
The fidelity F is the standard quantifier of a detector’s readout

performance, measured by the probability that an initially
prepared eigenstate nj i is successfully identified,

F ¼ 1

2N
X2N�1

n¼0

hnjΠnjni: (2)

The fidelity can be interpreted as the efficiency of the readout as it
can be related to the signal-to-noise ratio of the measure-
ment15,70. It ignores any information about the post-measurement
state and the QND nature of the measurement. The QNDness Q
incorporates information from the post-measurement state and
quantifies how close are the Choi matrices with respect to an ideal
projective measurement. In quantitative terms, it is the probability
that an initially prepared eigenstate nj i is preserved and
successfully identified in two consecutive measurements,

Q ¼ 1

2N
X2N�1

n¼0

hnnjϒnjnni: (3)

The destructiveness D47 asserts precisely the QND nature of
generic measurements by verifying the preservation of the
expectation value 〈O〉 after the measurement. Operationally, it is
defined as the largest change suffered by any observable
compatible with O as:

D ¼ 1
2
max
jjOc jj¼1

kOc � EyðOcÞk; ½O;Oc� ¼ 0; (4)

where ∥ ⋅ ∥ is the Hilbert–Schmidt norm. Unlike F and Q,
computing D requires a complete tomographic reconstruction of
the measurement process, EyðOcÞ ¼

P
ijkln ϒklij

n

� ��
Okl
c ij i jh j, but it

allows us to quantify the measurement back-action without the
bias of Q toward ideal measurements47. Note that Eq. (4) is
motivated by the definition of a QND measurement,
TrðOρÞ ¼ TrðOEðρÞÞ. Moving into the Heisenberg picture this
condition becomes TrðOρÞ ¼ TrðEyðOÞρÞ, where Ey is the self-
adjoint process of E. Therefore, we can quantify how QND is a
measurement by the deviation between O and EyðOÞ, that is
jjO� EyðOÞjj. The last step to obtain Eq. (4) consists in searching
for the largest disagreement over the set of all normalized
observables compatible with O, so that we ensure that D is an
upper bound for the back-action of the measurement.

Quantification of measurement crosstalk and correlations
To quantify the correlations in the measurement of pairs of qubits,
we introduce heuristic metrics that compare the POVM and Choi
matrices derived from two-qubit tomography with the tensor
product of the operators obtained from single-qubit tomography.
Although this is a comparison between two detector models
rather than an intrinsic property of the operators, the outcome
provides information about the operation of the device and the
effect of including higher-order interactions in the QND-MT. We
also use these correlations to quantify the distinguishability error
of performing the tomography in parallel or independently, as
shown below.
First, we define the correlation in two-qubit Choi operators

C[ϒαβ]. Let ϒα
n and ϒβ

m be the process operators of two single
qubits α and β, and let ϒαβ

nm be the joint measurement of both

qubits. We define the Choi matrices correlation as:

C½ϒαβ� ¼ 1
8

X

nm

jjϒαβ
nm � ϒα

n�ϒβ
mjj (5)

where� is tensor product operation in the super-operator space and
∣∣ ⋅ ∣∣◇ is the diamond norm64,65. This quantity not only evaluates the
distance between the processes ϒα

n�ϒβ
m and ϒαβ

nm, but is also related
to the probability of discriminating the quantum states generated by
them. This probability is given by Pd= (1+ C[ϒαβ])/2. Therefore, a
small C[ϒαβ]≪ 1 means that the post-measurement states are nearly
indistinguishable. Notice that the pre-factor in C[ϒαβ] is chosen to
normalize the correlation between 0 and 1.
Conveniently, we can use the same definition in Eq. (5) to

evaluate the distinguishability of Choi matrices reconstructed in
parallel ϒpar or independently ϒind as C[Δϒ]= C[ϒpar−ϒind], and
thereby quantify the error introduced by the parallelization. This is
done in Figs. 2e and 3c.
In a similar spirit as done for C[ϒαβ], we can define the

correlation C[Παβ] in the POVMs of two-qubit measurements. Let
Πα
n and Πβ

m be the POVM elements of two single qubits α and β,
and Παβ

nm be the joint POVM element of both qubits. We define the
POVM correlation as:

C½Παβ� ¼ 1
4

X

nm

jjΠαβ
nm � Πα

n � Πβ
mjj2; (6)

where ∣∣ ⋅ ∣∣2 is the 2-norm, that is, the largest singular value. This
quantity establishes an upper bound for the average error on the
probability distribution predicted by the single-qubit reconstruc-
tion PSnm ¼ Trðρ½Πα

n � Πβ
m�Þ compared with the joint measurement

PJnm ¼ TrðρΠαβ
nmÞ, given by

P
nmjPSnm � PJnmj=4 � C½Παβ� for any

density matrix ρ. Notice that C[Παβ] is normalized between 0 and 1
as C[ϒαβ].

Maximum likelihood estimation for QND measurement
tomography
Maximum likelihood estimation (MLE) is a statistical inference
method widely used in QT. MLE allows us to recover density
matrices, POVMs, or Choi matrices that are meaningful and satisfy
all the physical constraints of a measurement. It achieves this goal
by optimizing the likelihood function Lðθĵf Þ of the experimental
data f̂ for a given parametric model MðθÞ. We employ a Gaussian
distribution as a likelihood function,

Lðθĵf Þ ¼
X

i

½̂f ðiÞ � pðiÞ�2
pðiÞ ; (7)

where f̂ ðiÞ are the estimated probabilities obtained from the
experiment and p(i) are the theoretical probabilities predicted by
the modelMðθÞ. We minimize this likelihood function (7) for both
the QND-MT and GST. Notice that, for simplicity, the notation of
the theoretical probabilities p(i) omits the dependence on the
parameters θ, and that the index i may refer to a group of indices
as shown below.
The QND-MT consists of two steps, first an MT of the POVM and

then a process tomography of each Choi matrix. We reconstruct
the POVMs {Πj} by first obtaining the theoretical probabilities,

pðnjkÞ ¼ TrðΠnVkðρÞÞ; (8)

of obtaining the outcome n condition to the application of gate Vk.
We then minimize the likelihood function of form (7) over the set
of feasible matrices {Πn} satisfying Πn ≥ 0 and

P
nΠn ¼ 1. Finally,

we estimate the Choi matrices ϒn by obtaining the theoretical
probabilities,

pðmnjjkÞ ¼ Tr½ðUy
j ðΠmÞ � VkðρÞT Þ~ϒn�; (9)

of obtaining the outcome n in the second measurement and the
outcome m in the first measurement, condition to the application
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of gates j and k. We then minimize the corresponding likelihood
function of the form (7) over the set of the Choi matrix ϒn that
satisfies ~ϒn � 0 and the POVM constraint Tr1ð~ϒnÞ ¼ Πn. Here,
Tr1ð	Þ is the partial trace over the first subsystem, and ~ϒ is the
transposed Choi matrix, which is a positive matrix with elements
hikj~ϒjjli ¼ hijjϒjkli.
To separate experimental errors in gates and state preparation

from the measurement errors that we want to characterize, we
can apply a GST previously to the QND-MT. The GST gives us an
experimental estimate of the set {ρ, Πi, Gj}, composed of estimators
of the initial state, the POVM elements, and the gates, respectively.
Here fGjg are generic trace-preserving processes and not
necessarily unitary operations. The theoretical probabilities of
obtaining the outcome l are

pðljijkÞ ¼ TrðΠlGkGjGiðρÞÞ; (10)

which are conditions for the application of gates i, j, k as shown by
the circuits in Fig. 1b. We then minimize (7) by comparing the
probabilities (10) with the experimental data to obtain a physically
meaningful set {ρ, Πi, Gj} that self-consistently accounts for state
preparation, gates, and measurement errors. Notice that when we
use GST, we can omit the first step of QND-MT as we already have
an experimental estimate of the POVMs {Πi}. In addition, the gates
{Uj} and {Vk} needed for the second step of QND-MT must be
formed as concatenations of the {Gk} processes in order to account
for gate errors.
In total, QND-MT of the device requires solving 3N+ 5M

optimization problems. We solve them using sequential least-
squares programming, satisfying the positivity of operators via
Cholesky decomposition, and the completeness constraints via
Lagrange multipliers.
To quantify the goodness-of-fit of our estimators, we employ

the χ2 test74,75. This is a standard tool for statistical hypothesis
testing, that is, for rigorously deciding if there is enough
evidence to reject a model. In our work, we apply this test to all
single- and two-qubit Choi matrix reconstructions and demon-
strate that the fits and models are in agreement with the
experimental data within a standard confidence interval of 95%.
See Supplementary Methods 1 for a detailed analysis and a
description of the method.

DATA AVAILABILITY
The code and the data used to perform the tomographic reconstructions and
generate the figures are publicly available in GitHub and Zenodo76.
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