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QuantumZenoMonteCarlo for computing
observables
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The recent development of logical quantum processors marks a pivotal transition from the noisy
intermediate-scale quantum (NISQ) era to the fault-tolerant quantum computing (FTQC) era. These
devices have the potential to address classically challenging problemswith polynomial computational
time using quantum properties. However, they remain susceptible to noise, necessitating noise
resilient algorithms. We introduce Quantum Zeno Monte Carlo (QZMC), a classical-quantum hybrid
algorithm that demonstrates resilience to device noise and Trotter errors while showing polynomial
computational cost for a gapped system. QZMC computes static and dynamic properties without
requiring initial state overlap or variational parameters, offering reduced quantum circuit depth.

The quantum computer1–3 utilizes quantum algorithms to tackle compu-
tationally challenging problems, offering potential solutions to classically
hard problems. A significant challenge lies in finding Hamiltonian eigen-
states and their physical properties4, crucial for material design and quan-
tum machine learning implementation. By providing an initial state
sufficiently close to the target eigenstate, this problem can be solved within
polynomial quantum time5,6 with a fully fault-tolerant quantum computer
(FTQC)7,8. However, the preceding decades have been marked by the noisy
intermediate-scale quantum (NISQ) era9 rather than the FTQC era. Due to
substantial device noise, quantum algorithms for NISQ systems prioritize
noise resilience, leading to the dominance of ansatz-based algorithms10–12

without provable polynomial complexity.
The emergence of quantum devices with 48 logical qubits13 marks the

start of error-correctedquantumcomputing. These devices, alongwith their
future advancements, have the potential to showcase quantum advantage,
bridging the gap between NISQ and FTQC eras. Early error-corrected
quantum computers are expected to handle longer quantum circuits than
NISQ devices and execute quantum algorithms with polynomial com-
plexity.However, algorithmsdesigned for the FTQCeramaynot be suitable
for early error-corrected quantum computers, as they still face device noise
due to limited error corrections. As a result, developing new quantum
algorithms that cost polynomial quantum time and are resilient to noise
shows promise for achieving quantum advantage in early error-corrected
quantum computers.

We introduce the quantum Zeno Monte Carlo (QZMC) algorithm.
This algorithm is robust against device noise as well as Trotter error. Fur-
thermore, this algorithm enables the computation of static as well as
dynamic physical properties for gapped quantum systems within poly-
nomial quantum time. Notably, QZMC does not necessitate overlap
between the initial state and the target state, nor does it require variational

parameters.We validate its resilience to device noise by implementing it on
IBM’s NISQ devices for systems with up to 12 qubits. We also demonstrate
its resilience to the Trotter error and the polynomial dependence of
its computational cost by numerical demonstration on a noiseless quantum
computer simulator. Our method’s resilience to Trotter errors allows us
to compute eigenstate propertieswith shallower circuits, as demonstrated in
comparisons with recent phase estimation techniques14,15.

Results
The Quantum Zeno Monte Carlo algorithm draws inspiration from the
quantum Zeno effect16. This is the phenomenon that repeated measure-
ments slow down state transitions. We briefly outline this effect: A system
varying with a continuous variable λ is represented by the state ∣ψλi.
Increasing λ to λ + Δλ yields the state ∣ψλþΔλi, which remains ∣ψλi with a
probability of jhψλjψλþΔλij2. Because its maximum is at Δλ = 0, this
probability becomes 1�OððΔλÞ2Þ for sufficiently smallΔλ. By dividingΔλ
into N slices and measuring at each interval of Δλ/N, the probability of
measuring ∣ψλi is 1�OððΔλÞ2=NÞ. Increasing themeasurement frequency
N ensures the system remains in its initial state ∣ψλi.

While the original article16 focused on state freezing through con-
tinuousmeasurements, the principle can also be applied to obtain an energy
eigenstate by varying the Hamiltonian for each measurement17–21. Let’s
denote our target Hamiltonian asH, with its eigenstate as ∣Φi. Suppose we
have an easily preparable eigenstate ∣Φ0i ofH0 and the state is adiabatically
connected to ∣Φi. Due to the VanVleck catastrophe22,23, ∣Φ0i has very small
overlap with ∣Φi in general, potentially requiring a large number of mea-
surements to obtain ∣Φi directly from ∣Φ0i. Instead, we considermeasuring
Hα = (1− λα)H0+ λαH consecutively for λα= 1/Nα, 2/Nα…, 1. Utilizing the
quantumZeno principle, we can obtain ∣Φiwith very high probability as we
increase the number of consecutive measurements Nα.
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Quantum Zeno Monte Carlo
The quantum Zeno principle can be implemented using projections, which
are equivalent tomeasurements. Let’s considerHα= (1− λα)H0+ λαHwith
λα = 1/Nα, 2/Nα…, 1, and ∣Φ0i is the eigenstate of H0 that can be readily
prepared. For the eigenstate ∣Φαi ofHα, the operator that projects onto ∣Φαi
is represented as ∣ΦαihΦα∣. Then, the consecutive projectionsPα applied to
∣Φ0i is

∣Ψαi ¼ Pα∣Φ0i; Pα ¼ ∣ΦαihΦα∣ . . . ∣Φ1ihΦ1∣; ð1Þ

which is equal to ∣Φαi apart from the normalization. The quantum Zeno
principle ensures that hΨαjΨαi approaches 1 as Nα → ∞. Direct imple-
mentationof ∣ΦαihΦα∣ is not straightforward, andapproximating it requires
knowledge of the exact eigenstate, which is unknown. To address this, we
consider the projection onto the subspacewith the energyE. This projection
is defined as PHðEÞ ¼

P
j∣jihj∣1E j¼E , where Ej and ∣ji are the energy

eigenvalues and eigenstates of the Hamiltonian H. The function 1a¼b is an
indicator function that equals 1 if a = b, and 0 otherwise. By approximating
the indicator function 1Ej¼E with the Gaussian function
expð�β2ðEj � EÞ2=2Þ, we obtain the approximate projection function:

Pβ
HðEÞ ¼

X
j

∣jihj∣e�β2ðEj�EÞ2=2 ¼ e�β2ðH�EÞ2=2; ð2Þ

which satisfies limβ!1 Pβ
HðEÞ ¼ PHðEÞ. This non-unitary operator can not

be directly implemented in the quantum computer, which only allows the
unitary operation. Instead, we use a Fourier expansion24–27 of the
approximate projection,

Pβ
HðEÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
2πβ2

q Z 1

�1
e
� t2

2β2e�iðH�EÞtdt: ð3Þ

Here, the integrand corresponds to Hamiltonian time evolution, which can
be simulated in polynomial time on a quantum computer28,29,30. Then, the
consecutive projection Pα can be approximated as

Pβ
α ¼ Pβ

Hα
ðEαÞPβ

Hα�1
ðEα�1Þ . . . Pβ

H1
ðE1Þ; ð4Þ

where Eα is the energy eigenvalue of Hα corresponding to ∣Φαi. By sub-
stituting Pα with Pβ

α, the consecutive projection transforms into a multi-
dimensional integral of consecutive time evolution. Using this expansion,
we focus on computing the expectation values hOi of observables similar to
recently proposed algorithms24,25. Specifically, hOiα ¼ hΦαjOjΦαi is
determined as

hOiα ¼
hΨαjOjΨαi
hΨαjΨαi

; ð5Þ

which requires the computation of hΨαjOjΨαi and hΨαjΨαi. For an
operator A, hΨαjAjΨαi can be calculated by using approximating con-
secutive projection Pα by Eq. (4). This leads to hΨαjAjΨαi � hΨβ

αjAjΨβ
αi,

where

hΨβ
αjAjΨβ

αi ¼ 1
ð2πβ2Þα

R
dt1dt2 � � � dt2αe

�t2
1
þt2

2
þ���þt2

2α
2β2

hΦ0∣e�iK1t2αe�iK2t2α�1 � � � e�iKαtαþ1

Ae�iKαtαe�iKα�1tα�1 � � � e�iK1t1 ∣Φ0i:

ð6Þ

where Kα0 is equal to Hα0 � Eα0 for α
0 ¼ 1; 2; . . . ; α. This integral can be

evaluated using the Monte Carlo method31 by sampling t1, t2,…t2α from a
Gaussian distribution. More precisely,

hΨβ
αjAjΨβ

αi ¼ 1
Nν

P
tν
hΦ0∣e�iK1tν;2αe�iK2tν;2α�1 � � �

e�iKαtν;αþ1Ae�iKαtν;αe�iKα�1tν;α�1 � � � e�iK1tν;1 ∣Φ0i;
ð7Þ

where Nν is the number of samples of tν ¼ ½tν;1tν;2 � � � tν;2α�T . Each tν,k is
drawn fromaGaussian distributionwith a standard deviation of β.We refer
to this approachas the quantumZenoMonteCarlo (QZMC)method. From
its formulation, it is evident that QZMC can be used to compute various
static and dynamic properties of Hamiltonian eigenstates. Figure 1 provides
a summary of the method.

Among various eigenstate properties, the energy eigenvalue holds prime
importance, as it is essential forQZMCtoperformtheapproximateprojection
PH(E). In this section, we describe the method for computing energy eigen-
values using Quantum ZenoMonte Carlo. QZMC employs eigenstates ∣Ψαi,
which satisfy hΨα∣ΦαihΦα∣ðHα � Hα�1Þ∣Ψα�1i ¼ ðEα � Eα�1ÞhΨα∣Ψαi.
Using this, the energy eigenvalue is estimated from

Eα ¼ Eα�1 þ
hΨα∣ΦαihΦα∣ðHα � Hα�1ÞjΨα�1i

hΨαjΨαi
: ð8Þ

This equation can be computed using the same strategy we used in Eq. (7).
Compared to estimating entire energy from hHαiα using Eq. (5), this
approach improves robustness against noise by limiting its impact to the
energy difference alone. Building on this insight, we propose the predictor-
corrector QZMC method for determining energy eigenvalues. Suppose we
know E0, E1, …, Eα−1 and seek to compute Eα. Inspired by the predictor-
corrector method commonly used for solving differential equations32, we
begin with an initial estimate of Eα, referred to as the predictor. Various
approaches can be employed to determine the predictor. One frequently
used method in this manuscript is the first-order perturbation
approximation33, given byEα ¼ Eα�1 þ hΦα�1∣ðHα � Hα�1Þ∣Φα�1i. Here,
hΦα�1∣ðHα � Hα�1Þ∣Φα�1i is computed using Eq. (5). Using the predictor
Eα, we then compute a more accurate estimate of Eα using Eq. (8). Further
details of theQZMCmethod, including formulations for the computationof
Green’s functions, are provided in the Supplementary Information Sec. I.

Fig. 1 | Overview of the Quantum Zeno Monte Carlo. The construction of the
unnormalized eigenstate ∣Ψαi ofHα from the eigenstate ∣Φ0i ofH0 is depicted (left).
Each ∣Φki represents the normalized eigenstate of Hk. In the right, we present a
summary of ourQuantumZenoMonte Carlo for computing the expectation value of
an observable (O). First, classical computer generates a time vector

tν ¼ ½tν;1tν;2 � � � tν;2α�T , where tν,k follows Gaussian distribution. Next, quantum
computermeasures the expectation valuewith the given time vector. Finally, the sum
overNνMonte Carlo sampling as well as the division is conducted by using classical
computer. Here, Kα0 represents Hα0 � Eα0 .
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In the formulation of the method, we began with H0, which can be
easily solved on a classical computer, and whose eigenstate ∣Φ0i is readily
preparable as aquantumcircuit.Notably, ∣Φ0i is not required tohave afinite
overlap with the target eigenstate ∣Φi. However, the synthesis of arbitrary
unitary operations can incur exponential quantum time costs34, making the
preparation of ∣Φ0i challenging even when H0 is exactly solvable on a
classical computer. Our method can also be applied in such cases by fol-
lowing an alternative procedure. First, we prepare an easily accessible state
∣~Φ0iwith afinite overlapwith ∣Φ0i (e.g., jhΦ0j~Φ0ij2 > 0:5).Then,weproject
∣~Φ0i onto ∣Φ0i using Eq. (2) and perform QZMC in an equivalent way.
Consequently,

∣Ψαi ¼ Pα∣Φ0ihΦ0j~Φ0i; ð9Þ

is used instead of Eq. (1). As ∣Φ0i is known and can be processed on a
classical computer, finding ∣~Φ0i can be efficiently accomplished using
classical computing resources. Thus, applying QZMC is feasible even for
systems where ∣Φ0i is not easily preparable

Finally, we note that the transformation in Eq. (3) can be interpreted as
the Hubbard-Stratonovich transformation35–37, which underpins the
auxiliary-field quantum Monte Carlo (AFQMC) method38,39. AFQMC is a
widely-used classical approach for computing ground state properties of
quantum many-body systems. In AFQMC, the Hubbard-Stratonovich
transformation is employed to transform two-body interactions term into
one-body termat the cost of introducing auxiliaryfields. In contrast,QZMC
leverages a similar transformation to express non-unitary operators as
integrals over unitary operations, enabling its implementation on quantum
computers. Unlike AFQMC or diffusion Monte Carlo (DMC)40, which
iteratively adjust the trial energy as randomwalkers propagate in imaginary
time under a fixed Hamiltonian, QZMC calculates the ground-state energy
by integrating the energy difference formula (Eq. (8)) while gradually
changing the Hamiltonian toward the target Hamiltonian.

Error analysis and cost estimation
This section provides an error analysis and cost estimation for our method.
A detailed analysis is available in Sec. II of the Supplementary Information.
For simplicity, we assume a linear interpolation betweenH0 andH, defined
as Hα ¼ H0 þ λαH

0, where H0 ¼ H � H0 and λα = 1/Nα, 2/Nα,…, 1. We
also assume the target state is gapped from other states, with a lower bound
Δg on the energy gap.Here, we consider only the leading-order contribution
from the perturbative analysis in terms of kH0k=Nα. IfNα is not sufficiently
large, the estimated bounds and computational cost become inaccurate,
necessitating a higher-order analysis for a more precise estimate.

The computational cost is evaluated in terms of circuit depth and the
number of circuits (Nν) required. Circuit depth depends on Nα and sys-
tematic errors from β, while the number of circuits accounts for statistical
errors arising from Gaussian sampling of tν. The goal is to estimate the
energy eigenvalue within an error ϵ. From the formulation (e.g., Eqs. (5),
(8)), it is essential to maintain a finite value of Ψβ

αjΨβ
α

� �
for a feasible

computation. We first analyze error of Ψβ
αjΨβ

α

� �
and address the condition

under which Ψβ
αjΨβ

α

� �
≥ ð1� ηÞ for η ∈ (0, 1).

Error analysis of Ψβ
αjΨβ

α

� �
Our analysis begins with the assumption of exact projection. We then
incorporate the effects of finite β, trotterization, andNν.We decompose η as
η0 + δηβ + δηT + δηmc, where η0 corresponds to exact projection, δηβ
represents the error due to finite β, δηT arises from trotterization, and δηmc

reflects the finite number of samplings.
First, under the assumption of exact projection, we estimate the

number of projections Nα required to satisfy ΨαjΨα

� �
≥ 1� η0. Applying

perturbation theory33, we obtain

jhΦαjΦαþ1ij2 ≥ 1� kH0k2Δ�2
g N�2

α ð10Þ

up to the leading order in N�1
α . Consequently, hΨαjΨαi ¼

jhΦ0jΦ1ij2jhΦ1jΦ2ij2 � � � jhΦα�1jΦαij2 is bounded below by
1� kH0k2=Δ�2

g N�1
α . By setting Nα ≥ kH0k2Δ�2

g η�1
0 , we ensure that

ΨαjΨα

� �
≥ 1� η0. For the ground state, a smallerNα can be used due to the

ground state property, yielding

Nα ≥ kH0kΔ�1
g η�1

0 : ð11Þ

Please see Sec. II A 1 of Supplementary Information for derivations of Eq.
(10) and Eq. (11).

Next, we examine the effect of finite β. The error in the projected state
due tofiniteβ canbewritten as ∣δΨβ

α

� ¼ ∣Ψβ
α

�� ∣Ψα

�
. Perturbative analysis

shows that

k∣δΨβ
αik ≤ ðα=NαÞe�β2Δ2

g=2kH0kΔ�1
g ; ð12Þ

up to the leadingorder in 1/Nα. As a result, δηβ ≤ 2 expð�β2Δ2
g=2ÞkH0kΔ�1

g .
By choosing

β≥Δ�1
g

ffiffiffi
2

p
log1=2ð2kH0kΔ�1

g ðη� η0Þ�1Þ; ð13Þ

we ensure that η0 + δηβ ≤ η.
For time evolution, we primarily use trotterization. The circuit depth

required for ourmethod is determined by the total number of trotterization
steps. The error in the projected state due to trotterization is expressed as
∣δΨβ;T

α i ¼ ∣Ψβ;T
α i � ∣Ψβ

αi, where ∣δΨβ;T
α i rises from trotterized time evo-

lutions. The trotterization error for each α-th time evolution with evolution
time t is bounded by Cα;pjtj1þpN�p

T;α, where NT,α is the number of trotter-
ization steps for eachα, p is the trotterization order andCα,p is the coefficient
which is proportional to the sum of the norms of the commutators41. Then,
we can show

k∣δΨβ;T
α ik≤

Xα
α0¼1

Cα0;pM1þpðβÞN�p
T;α0 ; ð14Þ

and δηT ≤ 2
PNα

α0¼1 Cα0;pM1þpðβÞN�p
T;α0 , up to the leading order of N�1

T;α.
Here M1+p(β) is the expectation value of ∣t∣1+p for a Gaussian distribution
with a standard deviation of β. To ensure the trotterization error is smaller

than δηT, the total number of trotter steps NT ¼ 2
PNα

α¼1 NT;α can be
chosen as

NT ≥ 2
2Nα

δηT

� �1=pXNα

α¼1

C1=p
α;p M

1=p
1þpðβÞ; ð15Þ

with each NT,α proportional to C
1=p
α;pM

1=p
1þpðβÞ.

Finally, we consider the statistical error δηmc, which arises
arises from the finite number of samples Nν. Defining
xðtÞ ¼ hΦ0∣e�iK1t2αe�iK2t2α�1 � � � e�iKαtαþ1Ae�iKαtαe�iKα�1tα�1 � � � e�iK1t1 ∣Φ0i,
gðtÞ ¼ ð2πβ2Þ�α

e�ðt21þt22þ���þt22αÞ=ð2β2Þ, Eq. (6) can be seen as finding the
expectation value E[x] of x(t) with the probability of g(t). The case ofA ¼ I
corresponds to hΨβ

αjΨβ
αi. The variance of x, σ2x , is given by E[x2] − (E[x])2.

Since ∥x(t)∥ ≤ 1, σ2x ≤ 1� ðE½x�Þ2. So, the standard error of hΨβ
αjΨβ

αi using
Nν samples is bounded by Nν

�1=2ð2η� η2Þ. Therefore, getting hΨβ
αjΨβ

αi
with desired precision δηmc will requires

Nν ≥ ð2η� ηÞ2δη�2
mc : ð16Þ

In the samplingprocedure, an additional sourceof statistical error, knownas
shot noise, arises. On currently accessible quantum computers, each circuit
is measured with Ns repeated measurements, referred to as “shots". The
finite number of shots introduces a standard error of 1=

ffiffiffiffiffiffi
Ns

p
for each

measurement. This modified the statistical error dependence from Nv
�1=2

to Nv
�1=2ð1þ Ns

�1=2Þ.
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Error analysis of Eα

The error ϵofEα is analyzed similarly to hΨβ
αjΨβ

αi. Like η, ϵ is decomposed as
ϵβ+ ϵT+ ϵmc,Here, ϵβ arises from thefiniteβ, ϵT is due to trotterization, and
ϵmc results from the finite number of samples.

First, we consider the energy estimation error arises fromfinite β, ϵβ. In
our method, the energy difference is computed based on Eq. (8).
Each energy difference estimator introduces an error of order
N�1

α kH0kk∣δΨβ
α�1ik=ð1� ηÞ. Detailed calculations in Sec. II B 1 of the

Supplementary Information show that the proportionality constant is 4.
Thus ϵβ ≤

PNα
α¼1 4N

�1
α k∣δΨβ

α�1ikkH 0k=ð1� ηÞ. From Eq. (12), we have

ϵβ ≤ 2 expð�β2Δ2
g=2ÞkH0k2Δ�1

g =ð1� ηÞ ð17Þ

To ensure the projection error is smaller than ϵβ, we use β that satisfy

β≥Δ�1
g

ffiffiffi
2

p
log1=2ð2kH0k2Δ�1

g ð1� ηÞ�1ϵ�1
β Þ: ð18Þ

The discussion of the trotterization error follows a similar
approach to that of β. The error ϵT is bounded as

ϵT ≤
PNα

α¼1 4N
�1
α k ∣δΨβ;T

α�1ikkH0k=ð1� ηÞ. Using Eq. (14) and assum-

ingNT,α is determine to be proportional toC1=p
α;p M

1=p
1þpðβÞ, the error can be

expressed as

ϵT ≤ 2Nα

NT

2

� ��p XNα

α¼1

C1=p
α;pM

1=p
1þpðβÞ

 !p
kH0k
1� η

: ð19Þ

To achieve a desired ϵT, the total number of trotter steps can be chosen as

NT ≥ 2
ð2NαkH0kÞ1=p
ðϵT ð1� ηÞÞ1=p

XNα

α¼1

C1=p
α;p M

1=p
1þpðβÞ: ð20Þ

In practice, Trotter errors are considerably smaller than the theoretical
bounds41,42. Additionally, as discussed in Noise resilience of QZMC section,
error cancellation occurs between the numerator and the denominator.
Consequently, the number of Trotter steps required is substantially lower
than the theoretical estimate.

To estimate the statistical error ϵmc in the energy calculation, we
examine Eq. (8). The numerator in this equation is computed through a
Monte Carlo summation of hΦ0∣e�iK1tν;2αe�iK2tν;2α�1 � � � e�iKαtν;αþ

1e�iKαtν;αΔλH0e�iKα�1tν;α�1e�iKα�2tν;α�2 � � � e�iK1tν;1 ∣Φ0i. Because time evolu-
tions are unitary, each term in the summation is bounded by ΔλkH0k. This
results in aMonteCarlo error of the numerator bounded byΔλkH0k= ffiffiffiffiffiffi

Nν

p
.

Taking into account the effect of thedenominator and summingoverα from
1 to Nα, we find that the total error is bounded by

ϵmc ≤ kH0k=
ffiffiffiffiffiffi
Nν

p
ð1� ηÞ�1ð1þ ð1� ηÞ�2Þ1=2: ð21Þ

The statistical precision of ϵmc can be achieved by using Nν such that

Nν ≥ ϵ
�2
mckH0k2ð1� ηÞ�2ð1þ ð1� ηÞ�2Þ: ð22Þ

Computational cost
Based on the error analysis discussed, we estimate the computational cost of
determining the ground state energy using QZMC and summarize the
results in Table 1.

First, we discuss the circuit depth required to estimate ground state
energy usingQZMC. Excluding the cost of preparing the initial state, the
circuit depth required for our method is determined by the total time
evolution length, which is proportional to βNα. From the previous dis-
cussion, Nα / Δ�1

g kH0k, so Nα ¼ OðΔ�1
g polyðnÞÞ. Similarly,

β / Δ�1
g ðlogð2kH0kΔ�1

g ð1� ηÞ�1ϵ�1ÞÞ1=2, β ¼ OðΔ�1
g log1=2ðΔ�1

g ϵ�1nÞÞ.

Therefore, the total time evolution length required for our method

is OðΔ�2
g log1=2ðΔ�1

g ϵ�1nÞpolyðnÞÞ.

The practical implementation of our method requires trotteriza-
tion, so the circuit depth for QZMC is determined by the total
number of Trotter steps NT. From the previous discussion,

NT / ϵ�1=pkH0k1=pN1=p
α

P
αC

1=p
α;p M

1=p
1þpðβÞ, where p is the order of trot-

terization. Since Cα;p ¼ OðpolyðnÞÞ41 and M1=p
1þpðβÞ ¼ Oðβð1þ1=pÞÞ,

NT ¼ Oðϵ�1=ppolyðnÞðβNαÞ1þ1=pÞ. Substituting β and Nα, we have

NT ¼ Oðϵ�1
pΔ

�2�2
p

g log
1
2þ 1

2pðΔ�1
g ϵ�1nÞpolyðnÞÞ: ð23Þ

Second, we discuss the total number of samples required to estimate
ground state energy within a precision of ϵ. From Eq. (22), the number of
samplesNν required to achieve a precision ϵ isOðϵ�2polyðnÞÞ. SinceQZMC
should be performed for α = 1, 2, …, Nα, the total number of samples
required isOðϵ�2polyðnÞNαÞ ¼ OðΔ�1

g ϵ�2polyðnÞÞ.

Remarks
A key characteristic of our method is that the approximate projection
depends on the energy estimate ϵ, meaning the calculational precision can
affect subsequent calculations. If ϵ comparable to or larger than Δg, the
approximate projection fails to target the desired states, making the calcu-
lations infeasible. For ϵmuch smaller than Δg, the projected state becomes
expð�αβ2ϵ2=2Þ∣Ψβ

α

�
, inducing attenuation of ra ¼ expð�Nαβ

2ϵ2Þ of

Ψβ
αjΨβ

α

� �
for α = Nα. To ensure ra ≥ r for some finite r, β should satisfy

β≤ ϵ�1N�1=2
α log�1=2ð1=rÞ. Thus the energy estimate precision ϵ imposes a

limit on β.

Another aspect worth addressing is the potential for a sign problem.
The error analysis and computational cost estimation indicate that our
method is, in principle, free from the sign problem for gapped systems. For
such systems, for any η ∈ (0, 1), there exist sufficiently large parameters β,
Nα, and Nν, scaling polynomially with the number of qubits n, such that
Ψβ

αjΨβ
α

� �
is lower-bounded by 1 − η. In practice, error sources such as

Trotter errors and device noise reduce Ψβ
αjΨβ

α

� �
, resulting in noise ampli-

fication inEq. (5) andEq. (8), analogous to the conventional signproblem in
Monte Carlo methods.

The realization of ourmethod requires computing the overlap between
the initial and time-evolved states on a quantum computer. In the most
general setting, this involves controlled time evolution3, which demands
attaching control lines to every gate,making it resource-intensive. However,
ifHα shares a common eigenstate, controlled time evolution can be avoided,
as shown in other methods14. Since chemical and physical Hamiltonians
often share a commoneigenstate, suchas the vacuum, this featuremakesour

Table 1 | Computational cost of QZMC and other quantum
algorithms

Maximum time evolution length Total number of
samples

QZMC OðΔ�2
g ðlogðΔ�1

g ϵ�1nÞÞ1=2polyðnÞÞ Oðϵ�2Δ�1
g polyðnÞÞ

QPE62,63 ~Oðϵ�1p�1
0 Þ ~Oðp�1

0 polylogðϵ�1ÞÞ
QEEA64 ~Oðϵ�1polylogðp�1

0 ÞÞ ~Oðϵ�3p�2
0 Þ

Ref. 14 ~Oðϵ�1polylogðp�1
0 ÞÞ ~Oðp�2

0 polylogðϵ�1ÞÞ
Ref. 26 OðΔ�1

g polylogðϵ�1p�1
0 ΔgÞÞ Oðp�2

0 ϵ�2Δ2
gÞ

This table summarize the cost of QZMC to compute the ground state energy and compares it with
several other quantumalgorithms that compute theground state energywithin a single ancilla qubit.
Complexity analysisofQPEandQEEA imported from ref. 14.Here,p0 theprobability of getting exact
eigenstate from the initial states, ϵ is a desired precision in the energy, n is the number of qubits, and
Δg is the lower bound of the energy gap between the ground and other states. Optimized algorithms
for highly overlapped initial states15,59 show similar dependence with algorithm of ref. 14, only
constant factor is different.
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method practical for applications in chemistry and physics. For the specific
form of the quantum circuit used in our method, see Sec. II D 2 of the
Supplementary Information.

Applications of QZMC
Here, we verify our method by applying it to solve various quantum many
body systems.

First, we used our method to compute physical properties with NISQ
devices. Thefirst systemweconsider (Fig. 2) is the one-qubit systemwith the
Hamiltonian. H(λ) = X/2+ (2λ− 1)Z. Next, we simulate the H2 molecule
(Fig. 3a) in the STO-3Gbasis43, a typical testbed for quantumalgorithms44,45.
By constraining the electron number to be 2 and the total spin to be 046,47, the
system can be represented by a 2-qubit Hamiltonian. We calculate the
energy spectrumof 4 low-lying eigenstates ofH2 as a function of interatomic
distance (R). Then, we consider the 2-site Hubbard model48, the Hubbard
dimer. The Hubbard dimer (Fig. 3b–f) at its half filling and singlet spin
configuration can also be mapped to a two-qubit Hamiltonian. 4 low-lying
Energy eigenvalues of theHubbarddimer are computedby increasingonsite
Coulomb interaction(U) from 0. For these calculations, we create a discrete
pathwithNα= 10 and apply the predictor-correctorQZMC forHα=H(λα).
Lastly, we applied ourmethod to the XXZmodel (Fig. 4) in one-dimension,
which has the Hamiltonian

H ¼ �J
Xn�1

i¼1

Sxi S
x
iþ1 þ Syi S

y
iþ1 þ ΔSzi S

z
iþ1

� �
: ð24Þ

We computed systems with n = 4 to n = 12, using J = 1 and Δ =− 1. For a
quantum circuit implementation of trotterization for XXZ model, we used
recently suggested optimized circuit49, with two trotter steps.

The one-qubit system results are displayed in Fig. 2. Figure 2a shows
the ground and the excited state energy eigenvalues, while Fig. 2b shows
ground state expectation value ofX,Y andZoperators.Despite devicenoises
in ibmq_lima, measured observables match well with exact values (dashed
lines). Moreover, computed ground state fidelity F α ¼

jhΦαjΨαij2=hΨαjΨαi (Fig. 2c) is almost 1, which demonstrates accurate
projection to the desired state by QZMC.

Figure 3 presents computational results for two-qubit systems: H2 and
theHubbard dimer.We determined the energy eigenvalues of H2 within an
error of 0.02Ha using ibm_lagos. Energy eigenvalues for the Hubbard
dimer are calculated within an error of 0.06 t on ibm_perth, where t is
electron hopping between two hubbard atoms. And we compute the elec-
tronic spectral functionA(ω)50 of theHubbard dimer with theNISQ device.
Figure 3(e, f) displays A(ω) at k = 0 and k = π, showing good agreements
between exact values and measured values.

The additional computations for these one- and two-qubit systems,
specifically the parameter dependence of QZMC for the one-qubit system
and the ground state energy calculation of the Hubbard dimer with Trot-
terized time evolution, are provided in Sec. III of the Supplementary
Information.

Figure 4 presents the computational results for the XXZmodel with 4
to 12 qubits. The energy eigenvalues are well reproduced, even for 12 qubits,
despite severe degradation of ΨjΨh i due to device noise and trotterization
errors. Specifically, we obtained ground state energy errors of 0.015 for 4
qubits, 0.0275 for 6 qubits, 0.016 for 8 qubits, 0.041 for 10 qubits, and 0.051
for 12 qubits on ibm_torino. These values are significantly lower than the
errors in ΨjΨh i (represented by the differences between the squares and
crosses) shown in the right panel of the figure. Thus, we conclude that our
methodprovides reasonable results even in thepresenceof bothdevicenoise
and trotterization errors. All calculations were performed with dynamical
decoupling (DD)51 and readout error mitigation52, without employing
advanced techniques such as zero-noise extrapolation (ZNE)53–55 or prob-
abilistic error cancellation (PEC)52,56. We anticipate that larger-scale simu-
lations will become feasible soonwith thesemethods or with advancements
in hardware.

Next, we demonstrate our method for a large system by applying
QZMC on the Hubbard model at the half-filling in various sizes with
noiseless qsim-cirq (https://quantumai.google/qsim) quantum compu-
ter simulator. As H0, we choose dimer array, featuring easily imple-
mentable non-degenerate ground state. We gradually increased the

Fig. 2 | A one-qubit system.The energy eigenvalues
of the ground (red) and the excited state (blue) are
plotted in (a). In (b), we plotted Xh i (blue), Yh i
(green), and Zh i (red) calculated for the ground
states. c, d display the fidelity F and ΨjΨh i for the
ground state. In (a–d), dotted lines represent the
exact result, boxes represent QZMC results with a
noiseless simulator, and crosses represent results
with ibmq_lima. In this figure, we used β = 5 and
Nν = 400.
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inter-dimer hopping tinter from 0 to the desired value t as α increased.We
explored two geometries, chains and ladders, with periodic boundary
conditions, as illustrated in Fig. 5a. For each geometry, we computed
systems with 6, 8, and 10 sites when U/t = 5. For QZMC, we used β = 3,
withNα equal to the number of sites andNν increases as kH0k2 increases.
For the time evolution, we used the first order Trotterization28,41,57,
adjusting the Trotter steps as system changes. More specifically, we used
amaximum of 528 Trotter steps for the 6 × 1 system and up to 1960 steps
for the 2 × 5 Hubbard model.

Figure 5c shows that QZMC accurately reproduces the exact ground
state energy across various configurations, from 6 to 10 sites, in both chain
and ladder geometries. And our method also accurately computes local
spectral functions for Hubbard models as shown in in Fig. 5d–g, which
reproduces the exact positions and widths of every peak in the spectral
functions. Further data not included in Fig. 5(c), such as ΨjΨh i for all
geometries and spectral functions for the 6-site Hubbard models, can be
found in Sec. V of the Supplementary Information.

In Fig. 5, the ground state energies are determined within an error of
0.01t by setting Nα as the number of sites and Nν / kH0k2. Using this
parameter rule, we estimate the required number of samples for large-scale
Hubbardmodel simulations.Foreachα,we compute ΨαjΨα

� �
, thepredictor,

and the corrector for the energy difference, usingNνMonteCarlo samples for
each quantity. Thus, the total number of required samples is approximately
3NαNν. Since kH0k scales linearly with the number of sites, Nν scales quad-
ratically, and the total number of required samples scales cubically. For a 10-
site Hubbard chain (ladder), we set Nα = 10 and Nν = 1600 (2594) in Fig. 5,
resulting in approximately 4.8 × 104 (7.78 × 104) samples. By applying the
cubic scaling derived above, we estimate that a 30-site calculation requires
1.3 × 106 (2.1 × 106) samples, a 50-site calculation requires 6 × 106 (9.73 × 106)
samples, and a 100-site calculation requires 4.8 × 107 (7.78 × 107) samples.

Finally, we computed Hubbard chains under open boundary condi-
tions to compare our method with other methods for ground state energy
estimation. We compare our method with two state-of-the-art approaches:
the Heisenberg-limited method developed by Lin and Tong14, and the

Fig. 4 | NISQ simulation of XXZ model. a The
energy eigenvalues and (b) ΨjΨh i of XXZ model for
various sizes from 4 to 12 qubits are plotted. In this
figure, dotted lines represent the calculation with
exact projection, boxes represent noiselees simula-
tion result, and crosses are QZMC results with the
ibm_torino. For QZMC, we used β ¼ ffiffiffi

2
p

, Nα = 1,
and Nν = 300.

Fig. 3 | H2 and the Hubbard dimer. a plots energy eigenvalues of H2 in a STO-3G
basis as a function of the bond length. Here, we used β = 5 and NISQ device
calculation is conducted with ibm_lagos. In (b–f), we considered the Hubbard
dimer. b shows energy eigenvalues as a function of the Coulomb interactionU. In (a)
and (b), different states are distinguished by different colors. In (c), we compared
ΨjΨh i of the ground state calculated with the NISQ device with exact values and

noiseless QZMC results. d compares two energy estimators Hα

� �
α
¼ ΦαjHαjΦα

� �
and Eq. (8). The spectral functions for two different crystal momentum (e) k = 0 and
(f) k = π are plotted. For the Hubbard dimer, we used β = 0.5 and ibm_perth is used.
In this figure, we used Nν = 100 Monte Carlo samples for each α and the spectral
function is calculated with 300 Monte Carlo samples.
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quantumcomplex exponential least squares (QCELS)methoddeveloped by
Ding andLin15.We considered three cases: 4×1,U=4; 4×1,U=10; and8×
1, U = 10. The initial state ∣~Φ0i was chosen such that jhΦj~Φ0ij2 ¼ 0:4,
matched the conditions in the references14,15. Both methods were imple-
mented as described in the respective references.

The top panels of Fig. 6 compare the energy estimation error ϵ as a
function of themaximum time evolution lengthT. Inmost of cases, QZMC
requires a shorter T than Lin and Tong’s method and is comparable to
QCELS for a precision range of 10−4 to 10−2.

Themiddle panels show ϵ as a function of the total Trotterization steps
NT, which is directly proportional to the circuit depth. In these and the
bottom panels, the maximum time evolution length T for eachmethod was
set to achieve a similar accuracy of about 0.003 for the exact time evolution.
QZMC demonstrates higher precision with fewer Trotterization steps. For
example, in the 4 × 1, U/t = 10 case with NT = 412, the error for QZMC is
0.0046, compared to 0.043 forQCELS and0.015 for Lin andTong’smethod.

The bottom panels plot the total number of samples required for each
method. Lin and Tong’s method converges quickly, while QCELS and
QZMC converge more slowly, with QZMC requiring the most samples,
eventually reaching approximately 105.

In conclusion, overall our method achieves higher precision with
shorter circuit depth compared to other state-of-the-artmethods, at the cost
of requiring more samples. Therefore, QZMC is particularly useful when
quantum circuit depth is a limiting factor, but the number of accessible
samples is not severely constrained.

In addition to the methods discussed above, our approach can also be
compared to adiabatic state preparation (ASP), as both methods follow an
adiabatic path. However, QZMC offers two notable advantages over ASP.
First, QZMC is resilient to errors such as Trotter errors and device noise,
making it more practical in scenarios where such errors are significant.
Second, as highlighted inQuantumZenoMonteCarlo section,QZMCdoes
not require the initial state ∣Φ0i to be exact,whereasASPmust beginwith an
exact ∣Φ0i. This distinction is important becausepreparing anarbitrary state
on a quantum computer can be exponentially hard34, and the flexibility to
start with an approximate initial state enhances the practicality ofQZMC.A

comparison of ASP and QZMC under the influence of Trotter errors is
presented in Sec. V of the Supplementary Information.

Noise resilience of QZMC
Interestingly, our calculational results for observables accurately reproduce
exact values evenwith the device noises (Figs. 2 and 3) and theTrotter errors
(Fig. 5). The effect of these noises induces significant deviations of calculated
hΨjΨi (Fig. 2d, 3c, and 5b) from exact values. However, the observable
expectation values, which is computed by using the ratio of ΨjOjΨh i and
ΨjΨh i (Eq. (5)) are robust against device noises and Trotter errors. To
understand this, we tested the dependence of the calculated observables on
the device noise magnitude using the qiskit (https://www.ibm.com/
quantum/qiskit) aer simulator. We considered ΨjΨh i, ΨjZjΨh i, and Zh i
of the ground state of the one-qubit system. Figure 7 shows calculational
results. As the noise level increases, ΨjΨh i decreases and the absolute value
of ΨjZjΨh i also decreases (Fig. 7a). Surprisingly, these noise-induced errors
cancel each other through the ratio of ΨjΨh i and ΨjZjΨh i, so that Zh i ¼
ΨjZjΨh i= ΨjΨh i (Fig. 7b) remains robust against noise. Since quantum
circuits for computing the numerator and denominator are nearly identical,
division cancels out common noise effects, making the expectation value
resilient. The same argument can be applied to Trotterization (thus, the
method is resilient to Trotter error too). Becausewe use sameTrotterization
rule for both the numerator and the denominator, common Trotterization
errors are canceledout by division. This has beendemonstrated numerically
in Fig. 8(a, b). In thisfigure, we computed same quantities considered in Fig.
7 using trotterized time evolutions varying the total trotterization steps NT.
We can see that the low-trotterization steps makes ΨjΨh i small, but Zh i
does not change a lot because the magnitude of ΨjZjΨh i also decreased by
the trotterization.

Figures 7 and 8a, b demonstrates that error cancellation through
division occurs in practice for both device noise and Trotter errors. How-
ever, since these errors arise from fundamentally different sources, the
mechanisms behind their cancellation differ. In following, we provide a
detailed analysis of how error cancellation occurs for each type of error and
additional notes.

Fig. 5 | The Hubbard model in various sizes. a shows two geometries we con-
sidered. Here, colored circles denote sites, solid lines indicate intra-dimer hopping
tintra, and dotted lines represent inter-dimer hopping tinter. b displays ΨjΨh i for the
2 × 5 Hubbard model as a function of tinter, while (c) presents ground state energy
eigenvalues computed from QZMC. In each subplot of (c), red squares denote

energies for 6 × 1, 8 × 1, and 10 × 1 models with QZMC, with red dotted lines
indicating corresponding exact values. Blue squares and lines represent the same
values for 2 × 3, 2 × 4, and 2 × 5 cases. d–g depict the local spectral function for the
Hubbard models.
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First, we discuss themechanism for the device's noise resilience. In our
method, wemeasure consecutive time evolution using a single ancilla qubit
(See Sec. II D 2 of the Supplementary Information for quantum circuits).
With this in mind, let’s examine the following simple example. Consider a
qubitwith thedensitymatrix ρ. Then, exact outcomeof aZmeasurement on
this qubit is givenbyTrðρZÞ. The effect of noise the qubit canbe describedas
EðρÞ3. With this noise, the outcome of the Z measurement becomes
TrðEðρÞZÞ. Consider the depolarizing channel as a specific type of noise,
which alters the state ρ to EðρÞ ¼ pI=2þ ð1� pÞρ. Here, p represents the
probability of depolarization. With this model, TrðEðρÞZÞ becomes
ð1� pÞTrðρZÞ. Now, imagine another qubit with the density matrix ρ0

subjected to the same noise channel. TheZmeasurement of this qubit yields
ð1� pÞTrðρ0ZÞ. Then, the ratio of themeasurement outcomes of two qubits
with noise channel is

TrðEðρ0ÞZÞ
TrðEðρÞZÞ ¼

ð1� pÞTrðρ0ZÞ
ð1� pÞTrðρZÞ ¼

Trðρ0ZÞ
TrðρZÞ ; ð25Þ

which is same with the exact value. This demonstrates that the effect noise
can be effectively canceled out by the division. Though we only showed the
case with the depolarizing channel, same cancellation occurs for bit and
phase flip channels. Similar discussion can also be found in the literature on
the quantum-classical hybrid Quantum Monte Carlo algorithm (QC-
QMC)58,which estimates thewave functionoverlap efficiently using shadow
tomography.

To analyze the resilience of QZMC to Trotter errors, we consider the
state

∣Ψβ;T
α i ¼ ∣Ψβ

αi þ ∣δΨβ;T
α i ð26Þ

as defined in Error analysis of hΨβ
αjΨβ

αi section. The error term ∣δΨβ;T
α i can

be decomposed into two components: one parallel to ∣Ψβ
αi and the other

orthogonal to it. Suppose the error consists only of the parallel component.
In this case, we can express the state as

∣Ψβ;T
α i ¼ ð1� ηk=k∣Ψβ

αikÞeiϕk ∣Ψβ
αi: ð27Þ

Here, η∥ represents the norm of the parallel error, and ϕ∥ is the asso-
ciated phase shift. In such a scenario, the expectation value of an
observable O is

hΨβ;T
α jOjΨβ;T

α i
hΨβ;T

α jΨβ;T
α i ¼ ð1� ηk=k∣Ψβ

αikÞ
2hΨβ

αjOjΨβ
αi

ð1� ηk=k∣Ψβ
αikÞ

2hΨβ
αjΨβ

αi

¼ hΨβ
αjOjΨβ

αi
hΨβ

αjΨβ
αi

:

ð28Þ

Thus, the parallel component of the error cancels out through division,
demonstrating that QZMC is inherently resilient to this type of
Trotter error.

Fig. 6 | Hubbard chains with various methods. Ground energy estimation errors
are shown for: a–cU/t = 4, 4 sites; d–fU/t = 10, 4 sites; and (g–i)U/t = 10, 8 sites. The
figures plot the energy estimation error ϵ as a function of (a, d, g) themaximum time
evolution length, b, e, h the total number of Trotter steps, and (c, f, i) the total

number of samples. In all panels, blue points represent results from the method of
Lin and Tong14, black points represent results from QCELS15, and red points
represent results from QZMC.
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In practice, however, the error also contains an orthogonal component
η?∣Ψ

β
α;?i, resulting in

∣Ψβ;T
α i ¼ ð1� ηk=k∣Ψβ

αikÞeiϕk ∣Ψβ
αi þ η?∣Ψ

β
α;?i: ð29Þ

Here, η⊥ denotes the norm of the orthogonal component and ∣Ψβ
α;?i is a

normalized vector orthogonal to ∣Ψβ
αi. Unlike the parallel component, the

orthogonal error does not cancel out through division. Therefore, the key to
Trotter error resilience lies in the relative magnitudes of η∥ and η⊥.
Numerical tests in Fig. 8(c) demonstrate that η⊥ ≪ η∥ in practice. This
dominance of the parallel component ensures that error cancellation
through division remains effective, making the method robust against
Trotter errors.

One notable point regarding noise resilience is that, in addition to the
noise cancellation effect demonstrated in Figs. 7, 8, the use of the estimator
in Eq. (8) enhances robustness against noise. This is because it computes
only energy differences, limiting the influence of noise to the energy dif-
ference Eα− Eα−1. Figure 3(d) shows this. In this figure, we can see that the

energy computed by Eq. (8) is more precise and stable compared to the
energy computed by Hα

� �
α
¼ ΦαjHαjΦα

� �
using Eq. (5).

Another important note is that our discussion on noise resilience does
not imply resilience to statistical noise. In fact, as thenoise level increases, the
impact of statistical error on the results is amplified, requiring a larger
number of samples. More specifically, device and Trotter errors reduce
ΨαjΨα

� �
, which appears in the denominator of our observable estimators.

Because the statistical error of the energy estimator is proportional to (see
Eq. (S.48) of the Supplementary Information for the explicit form)

ΨαjΨα

� ��1ð1þ ΨαjΨα

� ��2Þ1=2; ð30Þ

if ΨαjΨα

� �
is reduced to ð1� pÞ ΨαjΨα

� �
, the statistical error amplification

factor is

1
1� p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΨαjΨα

� �2 þ ð1� pÞ�2

ΨαjΨα

� �2 þ 1

vuut : ð31Þ

Fig. 8 | Trotter Error resilience ofQZMC. a,b show
ΨjΨh i, ΨjZjΨh i, and Zh i as functions of the total
number of Trotter steps, for the one-qubit system
considered in Fig. 2. In (a, b), Nν = 400 was used.
c displays the total Trotter error j∣δΨβ;T

α

�j, the par-
allel component η∥, and the orthogonal component
η⊥, plotted against the total number of Trotter steps.
For (c), Nν = 4000 was used to reduce the statistical
error. In all panels, we set Nα = 10 and β = 5.

Fig. 7 | Device noise resilience of QZMC. ΨjΨh i,
ΨjZjΨh i, and Zh i of the one-qubit system con-
sidered in the Fig. 2 is drawn as a function of the
noise level. The calculations are conducted with the
qiskit noisy simulator using the noise model of
ibmq_lima. In this figure, we usedNα= 10, β= 5 and
Nν = 400.
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For example, if device or Trotter errors reduce ΨαjΨα

� �
from its exact value

of 0.8 to half of that value, the statistical error is amplified by a factor of
approximately 3.36.

Discussion
In this work, we introduced the quantum Zeno Monte Carlo (QZMC) for
the emerging stepping stone era of quantum computing13. This method
computes static and dynamical observables of gapped quantum systems
within a polynomial quantum time, without the need for variational para-
meters. Leveraging theQuantumZeno effect, we progressively approach the
unknown eigenstate from the readily solvable Hamiltonian’s eigenstate.
This aspect distinguishes our method from other methods for phase esti-
mations, which necessitate an initial state with significant overlap with the
desired eigenstate5,6,14,15,25,26,59. Preparing a statewith substantial overlapwith
an eigenstate of an easily solvable Hamiltonian is much simpler than pre-
paring an initial state with non-trivial overlap with the unknown eigenstate,
making our algorithm highly practical compared to other methods. The
next characteristic of the algorithm is its computation of eigenstate prop-
erties by dividing the properties of the unnormalized eigenstate by its norm
squared (Eq. (5)). We demonstrated that this approach effectively cancels
out noise effects in the denominator and the numerator, rendering the
method resilient to device noise aswell as Trotter error. This resilience arises
from the similar noise levels experienced by both the denominator and
the numerator of observable expectation value, leading us to conclude
that our approach is well-suited for homogeneous parallel quantum
computing.

Methods
NISQ simulation
Here, we provide the details of the NISQ simulations in Figs. 2–4.
Throughout the simulations, we used Ns = 4000 shots for one- and two-
qubit systems, and Ns = 2048 shots for the XXZ model. Since any 1- or
2-qubit unitary operation can be representedwith a small number of gates60,
the consecutive time evolutions encountered inQZMCcanbe implemented
within a shallow circuit with a few parameters. For the 1-qubit system, the
parameters θ1, θ2, θ3, θ4 for the unitary matrix U are obtained from60:

U ¼ eiθ4
cosðθ1=2Þ � sinðθ1=2Þeiθ3

sinðθ1=2Þeiθ2 cosðθ1=2Þeiðθ2þθ3Þ

" #
: ð32Þ

For the 2-qubit system, we applied the two-qubit Weyl decomposition61, as
implemented in Qiskit.

For the XXZmodel, we set β ¼ ffiffiffi
2

p
and combined ðPβ

1Þ
2
in Eq. (8) into

a single integral. For Trotterization, we employed second-order Trotter-
ization based on the efficient implementation of Trotterized quantum
circuits49, using two Trotter steps.We begin with XXZ dimers, described by
the Hamiltonian

H0 ¼ �J
X
i;odd

Sxi S
x
iþ1 þ Syi S

y
iþ1 þ ΔSzi S

z
iþ1

� �
: ð33Þ

For systems with up to 8 qubits, we used the first-order perturbation
energy as a predictor for the energy. For the 10-qubit system,we employed
E2+ E8 as the predictor, where E2 is the energy of a single XXZ dimer, and
E8 is the energy of an 8-site XXZ model computed using ibm_torino.
Subsequently, using the computed E10, we used E2 + E10 as the predictor
for the 12-site XXZmodel. We used an initialization circuit that prepares
the vacuum state ∣0niwhen the ancilla qubit is in ∣0i, and the ground state
ofH0 when the ancilla qubit is in ∣1i. The specific initialization circuit for
the10-siteXXZmodel is provided in the Supplementary Information. The
number of gates used in this simulation, in terms of the basis gates of
ibm_torino, is 237 for 4 sites, 384 for 6 sites, 534 for 8 sites, 696 for 10 sites,
and 857 for 12 sites.

Noiseless simulation
Here, we discuss more detailed information about noiseless simulations
(Figs. 5, 6). In these calculations, we consider the Hubbard model which is
described by the Hamiltonian

H ¼ �
X
hijiσ

tijc
y
iσcjσ �

X
i

μðni" þ ni#Þ þ
X
i

Uni"ni#; ð34Þ

with the chemical potential μ = U/2, corresponding to the half-filling. The
first two terms represent the kinetic energy and are denoted asHt, while the
last term represents electron-electron interaction and is referred to as HU.
The ground state of the Hubbard dimer can be expressed as

∣Φ0;dimer

� ¼ cosðθd=2Þ∣0011i þ sinðθd=2Þ∣0110i
� sinðθd=2Þ∣1001i þ cosðθd=2Þ∣1100i:

ð35Þ

Here, the angle θd is given by

θd ¼ �2 arctan
1
2t

U
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

4
þ 4t2

r ! !
: ð36Þ

The ground state ofH0, composed of a collection of dimers, is formed by
the direct product of Eq. (35) for each dimer. The following describes the
details specific to the calculations in Fig. 5, performed using the cirq
quantum computer simulator. In the simulations, we used Nν and
Trotter steps (NT) that varied with the system size, while fixing the
number of shots at Ns = 10, 000. Based on Eq. (22), Nν was set propor-
tional to kH0k2, where

kH0k ¼ t × ðnumber of sitesÞ ðfor a chainÞ ; ð37Þ

and

kH0k ¼ 4t
π

× ðnumber of sitesÞ ðfor a ladderÞ : ð38Þ

The proportionality constant was determined by testing the 6 × 1 system
numerically. The first-order Trotterized time evolution U1(τ) for the
Hubbard model with nT Trotter steps introduces a Trotter error

41 given by

ke�iHτ � U1ðτÞk≤
τ2

2nT
k½Ht ;HU �k; ð39Þ

where

k½Ht ;HU �k≤
X
hijiσ

tijU cyiσcjσ ;
X
i

ni"ni#

" #					
					: ð40Þ

Since all orbital indices are equivalent, k½cyiσcjσ ;
P

ini"ni#�k remain constant
for any i and j. Consequently,

k½Ht ;HU �k ≤CUðtintraN intra þ tinterN interÞ; ð41Þ

where Nintra denotes the number of intra-dimer hoppings and Ninter

represents the number of inter-dimer hoppings, and C is a proportionality
constant.

Based on this, NT,α was determined as

NT;α ¼ int 75×
tintraN intra þ tinter;αN inter

� �
8

" #
; ð42Þ
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with a minimum value of 20. Specific values of Nν and total Trotter steps
NT ¼ 2

PNα
α¼1 NT;α for each model are summarized in Supplementary

information.
Next,weprovidedetailed informationon the comparative study for the

Hubbard models in Fig. 6. In this case, we considered open boundary
conditions, and the initial state is prepared from direct product of Eq. (35),
with θd adjusted to achieve j Φj~Φ0

� �j2 ¼ 0:4.
For all data in Fig. 6, each calculation is repeated 30 times, and the

absolute values of energy errors were averaged over repetitions. Tomeasure
themaximum time length T, we used the 99th percentile of the distribution
of time evolution lengths, as all three methods are stochastic. This means
that 99% of the time evolution lengths are smaller than T.

The computational parameters are set according to the references for
the compared methods. For Lin and Tong’s method14, we set the para-
meter δ = 4/d as in the reference and varied d, which determines the time
length. We used 1800 samples, consistent with the original paper. For
QCELS15, we followed the relative gap D estimation and parameter set-
tings in the original article, using d = ⌊15/D⌋ and N = 5. The sample
number for each nτj was set to 2048, higher than the values used in the
original paper.

For QZMC, we used Nν = 16,384 for calculations with ϵ ≥ 0.001 and
Nν = 1,638,400 for calculations with ϵ < 0.001. For precise calculation, after
obtaining the energy difference using Eq. (8), we recomputed it with the
obtained Eα value at each α.

For the middle and bottom panels of Fig. 6, we noted that the max-
imum time evolution lengthT is set for eachmethod to achieve a precision ϵ
of about 0.003 under exact time evolution. In practice, the following para-
meters were used in our calculations.

For the 4-site Hubbard model with U/t = 4, we used d = 4000 for Lin
andTong’smethod, resulting inT=398.56 and ϵ=2.46× 10−3. ForQCELS,
we used J = 5 and τJ = 40, yielding T = 23.09 and ϵ = 2.45 × 10−3. In QZMC,
we used β = 1.6, which gave T = 20.53 and ϵ = 2.23 × 10−3.

For the 4-site Hubbard model withU/t = 10, we used d = 6000 for Lin
andTong’smethod, leading toT=323.26 and ϵ=2.79×10−3. InQCELS,we
used J=7and τJ=108, resulting inT=32.32 and ϵ=3.16×10

−3. ForQZMC,
we used β = 2.6, yielding T = 33.36 and ϵ = 3.24 × 10−3.

For the 8-site Hubbardmodel withU/t = 10, we used d= 12000 for Lin
and Tong’s method, producing T = 316.13 and ϵ = 2.84 × 10−3. In QCELS,
we used J = 9 and τJ = 372, resulting in T = 54.65 and ϵ = 2.42 × 10−3. For
QZMC, we used β = 4.2, giving T = 53.88 and ϵ = 2.96 × 10−3.

In the Trotterization tests, first-order Trotterization was employed for
all methods. InQZMC, the Trotter stepsNT,α for eachαwere determined as

NT;α / ðtintraN intra þ tinterN interÞ; ð43Þ

and the totalTrotter stepsNTwere computedas2∑αNT,α. For calculations in
Fig. 6, we used a shot number Ns = 2048.

Data availability
The data generated and/or analyzed during this study are available from the
corresponding author upon reasonable request.

Code availability
The code developed during this study is available from the corresponding
author upon reasonable request.
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