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The recent development of logical quantum processors marks a pivotal transition from the noisy
intermediate-scale quantum (NISQ) era to the fault-tolerant quantum computing (FTQC) era. These
devices have the potential to address classically challenging problems with polynomial computational
time using quantum properties. However, they remain susceptible to noise, necessitating noise
resilient algorithms. We introduce Quantum Zeno Monte Carlo (QZMC), a classical-quantum hybrid
algorithm that demonstrates resilience to device noise and Trotter errors while showing polynomial
computational cost for a gapped system. QZMC computes static and dynamic properties without
requiring initial state overlap or variational parameters, offering reduced quantum circuit depth.

The quantum computer'™ utilizes quantum algorithms to tackle compu-
tationally challenging problems, offering potential solutions to classically
hard problems. A significant challenge lies in finding Hamiltonian eigen-
states and their physical properties’, crucial for material design and quan-
tum machine learning implementation. By providing an initial state
sufficiently close to the target eigenstate, this problem can be solved within
polynomial quantum time™® with a fully fault-tolerant quantum computer
(FTQC)"*. However, the preceding decades have been marked by the noisy
intermediate-scale quantum (NISQ) era’ rather than the FTQC era. Due to
substantial device noise, quantum algorithms for NISQ systems prioritize
noise resilience, leading to the dominance of ansatz-based algorithms'*™"?
without provable polynomial complexity.

The emergence of quantum devices with 48 logical qubits" marks the
start of error-corrected quantum computing. These devices, along with their
future advancements, have the potential to showcase quantum advantage,
bridging the gap between NISQ and FTQC eras. Early error-corrected
quantum computers are expected to handle longer quantum circuits than
NISQ devices and execute quantum algorithms with polynomial com-
plexity. However, algorithms designed for the FTQC era may not be suitable
for early error-corrected quantum computers, as they still face device noise
due to limited error corrections. As a result, developing new quantum
algorithms that cost polynomial quantum time and are resilient to noise
shows promise for achieving quantum advantage in early error-corrected
quantum computers.

We introduce the quantum Zeno Monte Carlo (QZMC) algorithm.
This algorithm is robust against device noise as well as Trotter error. Fur-
thermore, this algorithm enables the computation of static as well as
dynamic physical properties for gapped quantum systems within poly-
nomial quantum time. Notably, QZMC does not necessitate overlap
between the initial state and the target state, nor does it require variational

parameters. We validate its resilience to device noise by implementing it on
IBM’s NISQ devices for systems with up to 12 qubits. We also demonstrate
its resilience to the Trotter error and the polynomial dependence of
its computational cost by numerical demonstration on a noiseless quantum
computer simulator. Our method’s resilience to Trotter errors allows us
to compute eigenstate properties with shallower circuits, as demonstrated in
comparisons with recent phase estimation techniques'*".

Results

The Quantum Zeno Monte Carlo algorithm draws inspiration from the
quantum Zeno effect'®. This is the phenomenon that repeated measure-
ments slow down state transitions. We briefly outline this effect: A system
varying with a continuous variable A is represented by the state |y,).
Increasing A to A + A yields the state |y, ,), which remains |y,) with a
probability of [{y, |y, A1) |2. Because its maximum is at AL = 0, this
probability becomes 1 — O((A1)?) for sufficiently small AL. By dividing AA
into N slices and measuring at each interval of AA/N, the probability of
measuring |y, ) is 1 — O((AL)*/N). Increasing the measurement frequency
N ensures the system remains in its initial state |y, ).

While the original article’ focused on state freezing through con-
tinuous measurements, the principle can also be applied to obtain an energy
eigenstate by varying the Hamiltonian for each measurement’". Let’s
denote our target Hamiltonian as H, with its eigenstate as |®). Suppose we
have an easily preparable eigenstate | ;) of Hy and the state is adiabatically
connected to |®). Due to the Van Vleck catastrophe™?, |®,) has very small
overlap with |®) in general, potentially requiring a large number of mea-
surements to obtain |®) directly from |®,). Instead, we consider measuring
H, = (1 — A)H, + A,H consecutively for A, = 1/N,, 2/N,,..., 1. Utilizing the
quantum Zeno principle, we can obtain |®) with very high probability as we
increase the number of consecutive measurements N,,.
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Quantum Zeno Monte Carlo
The quantum Zeno principle can be implemented using projections, which
are equivalent to measurements. Let’s consider H, = (1 — A,)Hy + A H with
Ay = 1/N,, 2/N,..., 1, and | D) is the eigenstate of Hy that can be readily
prepared. For the eigenstate |®,) of H,, the operator that projects onto |®D,,)
is represented as |®,) (D, |. Then, the consecutive projections P, applied to
[ D) is

|\sz) :PachO)? sz = |(Do¢><®a|"'|q)l><q)1|7 (1)
which is equal to |®,) apart from the normalization. The quantum Zeno
principle ensures that (¥,|¥,) approaches 1 as N, — oo. Direct imple-
mentation of |, ) (D, | is not straightforward, and approximating it requires
knowledge of the exact eigenstate, which is unknown. To address this, we
consider the projection onto the subspace with the energy E. This projection
is defined as Py(E) = }_ 1) (jll £=F> where €; and |j) are the energy
eigenvalues and eigenstates ' of the Hamiltonian H The function 1,_; is an
indicator function that equals 1 if a = b, and 0 otherwise. By approximating
the indicator function 1 g=E with the Gaussian function
exp(—f* & - E)?/2), we obtain the approximate projection function:

_ N1 ,—BAE—~EY/2 _ —B(H—E)?/2
P@(E)—ijlmneﬁ B = D @

which satisfieslimg_, Pg(E) = Py (E). This non-unitary operator can not
be directly implemented in the quantum computer, which only allows the
unitary operation. Instead, we use a Fourier expansion™™ of the
approximate projection,

Pi(E) =

Z[ﬁ_zz —i(H—E)t
\/;/ (4 e dt. (3)

Here, the integrand corresponds to Hamiltonian time evolution, which can
be simulated in polynomial time on a quantum computer’**”*’. Then, the
consecutive projection P, can be approximated as

= Pga(Ea)Pﬁ[w,l(Ea—l)"'Pfil(El)v (4)
where E, is the energy eigenvalue of H, corresponding to |®,). By sub-
stituting P, with PP, the consecutive projection transforms into a multi-

dimensional integral of consecutive time evolution. Using this expansion,
we focus on computing the expectation values (O) of observables similar to

which requires the computation of (¥,|O¥,) and (¥,|¥,). For an
operator A, (¥ |A|¥,) can be calculated by using approximating con-
secutive projection P, by Eq. (4). This leads to (¥, |A|Y,) =~ (‘I’ﬁlAl‘I’g),
where

Gt
(PPIAPE) = e ﬁ ) - [ dtydty - dtye P
(@ leKitaxgiKatucr ... =iKutus (6)
AeKalaegiKciticr . =Kty | ).
where K, is equal to H, — E,, for « = 1,2,...,«. This integral can be

evaluated using the Monte Carlo method’' by sampling t,, £, ...t5, from a
Gaussian distribution. More precisely,
(\I/ﬁlA|\I/§> = th q)o|e_iK1[1/.2ae_iKZt1/,2m—l . (7)
e Kalvart Ap~Kalva =Kottt ... p=iKityy |q) ),
where N, is the number of samples of t, = [t,, ,¢,,-- -1, 205] Each t,; is

drawn from a Gaussian distribution with a standard deviation of 8. We refer
to this approach as the quantum Zeno Monte Carlo (QZMC) method. From
its formulation, it is evident that QZMC can be used to compute various
static and dynamic properties of Hamiltonian eigenstates. Figure 1 provides
a summary of the method.

Among various eigenstate properties, the energy eigenvalue holds prime
importance, asit is essential for QZMC to perform the approximate projection
Pr(E). In this section, we describe the method for computing energy eigen-
values using Quantum Zeno Monte Carlo. QZMC employs eigenstates [¥,),
which satisfy (¥,|®,)(®,I(H, — H,_)I¥, ;) = (E, — E,_){¥,|¥,)
Using this, the energy eigenvalue is estimated from

(Yol (@ |(Hy — Hy )Y, )
(Yo l¥,y)

Etx = Eotfl + (8)

This equation can be computed using the same strategy we used in Eq. (7).
Compared to estimating entire energy from (H,), using Eq. (5), this
approach improves robustness against noise by limiting its impact to the
energy difference alone. Building on this insight, we propose the predictor-
corrector QZMC method for determining energy eigenvalues. Suppose we
know Ey, Ey, ..., E,_; and seek to compute E,. Inspired by the predictor-
corrector method commonly used for solving differential equations®, we
begin with an initial estimate of E,, referred to as the predictor. Various
approaches can be employed to determine the predictor. One frequently
used method in this manuscript is the first-order perturbation

recently proposed algorithms™”. Specifically, (O), = (®,|O|®,) is approximation”,givenbyE, = E,_; + (®,_;|(H, — H,_;)|®,_;). Here,
determined as (®,_,I(H, — H,_)|D,_,) is computed using Eq. (5). Using the predJctor
E,, we then compute a more accurate estimate of E, using Eq. (8). Further
(0), = (¥, |O0Y,) ) details of the QZMC method, including formulations for the computation of
ST Y, Green’s functions, are provided in the Supplementary Information Sec. I.
(O)o = % Classical Quantum
Z<®O|€_iK1tv,2a .. o HEatvat1 g iKatva | o—iKitu1 | Do)
ty
P leHrtv2a , gmiKaty,at1 gmiKatva | miEKIty g
W) =I0) (@] 2ol ‘ ‘ Co
- [@1)(P1]Po)

Fig. 1 | Overview of the Quantum Zeno Monte Carlo. The construction of the
unnormalized eigenstate |¥,) of H, from the eigenstate |®,) of Hy is depicted (left).
Each |®,) represents the normalized eigenstate of Hy. In the right, we present a
summary of our Quantum Zeno Monte Carlo for computing the expectation value of
an observable (O). First, classical computer generates a time vector

t,=1[t, t,, t,54]", where t,; follows Gaussian distribution. Next, quantum
computer measures the expectation value with the given time vector. Finally, the sum
over N, Monte Carlo sampling as well as the division is conducted by using classical

computer. Here, K, represents H, — E.
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In the formulation of the method, we began with Hj, which can be
easily solved on a classical computer, and whose eigenstate |®,) is readily
preparable as a quantum circuit. Notably, |®,) is not required to have a finite
overlap with the target eigenstate |®). However, the synthesis of arbitrary
unitary operations can incur exponential quantum time costs*, making the
preparation of |®,) challenging even when Hj is exactly solvable on a
classical computer. Our method can also be applied in such cases by fol-
lowing an alternative procedure. First, we prepare an easily accessible state
|<i>0) with a finite overlap with |®,) (e.g., | (D, I&DO) | >0.5). Then, we project
|®,) onto ) using Eq. (2) and perform QZMC in an equivalent way.
Consequently,

|\Ij,x> = Pa|®o>(®o|d)0)7 (9)

is used instead of Eq. (1). As |®,) is known and can be processed on a
classical computer, finding |®,) can be efficiently accomplished using
classical computing resources. Thus, applying QZMC is feasible even for
systems where |®,) is not easily preparable

Finally, we note that the transformation in Eq. (3) can be interpreted as
the Hubbard-Stratonovich transformation””, which underpins the
auxiliary-field quantum Monte Carlo (AFQMC) method™”. AFQMC is a
widely-used classical approach for computing ground state properties of
quantum many-body systems. In AFQMC, the Hubbard-Stratonovich
transformation is employed to transform two-body interactions term into
one-body term at the cost of introducing auxiliary fields. In contrast, QZMC
leverages a similar transformation to express non-unitary operators as
integrals over unitary operations, enabling its implementation on quantum
computers. Unlike AFQMC or diffusion Monte Carlo (DMC)*, which
iteratively adjust the trial energy as random walkers propagate in imaginary
time under a fixed Hamiltonian, QZMC calculates the ground-state energy
by integrating the energy difference formula (Eq. (8)) while gradually
changing the Hamiltonian toward the target Hamiltonian.

Error analysis and cost estimation

This section provides an error analysis and cost estimation for our method.
A detailed analysis is available in Sec. II of the Supplementary Information.
For simplicity, we assume a linear interpolation between Hy and H, defined
asH, = Hy+ A H',where H = H — Hj and A, = 1/N,, 2/N,,, ..., 1. We
also assume the target state is gapped from other states, with a lower bound
Ag on the energy gap. Here, we consider only the leading-order contribution
from the perturbative analysis in terms of || H'|| /N . If N,, is not sufficiently
large, the estimated bounds and computational cost become inaccurate,
necessitating a higher-order analysis for a more precise estimate.

The computational cost is evaluated in terms of circuit depth and the
number of circuits (N,) required. Circuit depth depends on N, and sys-
tematic errors from f3, while the number of circuits accounts for statistical
errors arising from Gaussian sampling of ¢,. The goal is to estimate the
energy eigenvalue within an error e. From the formulation (e.g., Egs. (5),
(8)), it is essential to maintain a finite value of <‘I’§ |‘I’g> for a feasible
computation. We first analyze error of (¥ |¥#) and address the condition

under which <‘I’§|‘I’§> >(1 —n) forn € (0, 1).

Error analysis of (¥ |¥#)

Our analysis begins with the assumption of exact projection. We then
incorporate the effects of finite f3, trotterization, and N,. We decompose 7 as
Ho + Ong + Onr + Ofme Where 7y corresponds to exact projection, drg
represents the error due to finite f3, 847 arises from trotterization, and 6%,
reflects the finite number of samplings.

First, under the assumption of exact projection, we estimate the
number of projections N, required to satisfy (¥,|¥,) =1 — 7,. Applying
perturbation theory™, we obtain

(@ P )P 2 1 — |HIPA’N,? (10)

a+1

up to the leading order in N_'. Consequently, (¥,|¥,) =
(D)) (D, @)+ [(D,_,[®,)* s bounded  below by
1—|H)? /A;Zijl. By setting N, >|H’ ||2A;21151, we ensure that
(¥,|¥,) =1 = n,. For the ground state, a smaller N, can be used due to the
ground state property, yielding
N = [H 1A, (11)

Please see Sec. I A 1 of Supplementary Information for derivations of Eq.
(10) and Eq. (11).

Next, we examine the effect of finite . The error in the projected state
due to finite § can be written as |8‘I’g> = |‘I’g> — ¥, > Perturbative analysis
shows that

I8WE) || < (a/NJe P52 H 1A, (12)

up to the leading order in 1/N,. Asaresult, 615 <2 exp(—/)’zAg/Z) |H ||Ag_1 .
By choosing

B=A; 'V 2log P I H A, (1 — 1)), (13)

we ensure that 1o + dng <.

For time evolution, we primarily use trotterization. The circuit depth
required for our method is determined by the total number of trotterization
steps. The error in the projected state due to trotterization is expressed as
|6‘I’§‘T> = |‘P§=T) — |\I’£), where |6‘I’£"T) rises from trotterized time evo-
lutions. The trotterization error for each a-th time evolution with evolution
time ¢ is bounded by Copltl PN ;{;, where Nr, is the number of trotter-
ization steps for each , p is the trotterization order and C,, is the coefficient
which is proportional to the sum of the norms of the commutators*'. Then,
we can show

o
NOPETYI <> Co My (BN, (14)
a'=1
and 01 <2 ij‘;l Ca/,pM1+p(ﬁ)N;fw up to the leading order of Ny..
Here M;_,(f) is the expectation value of |]"** for a Gaussian distribution
with a standard deviation of 8. To ensure the trotterization error is smaller

than dny, the total number of trotter steps N, = 2 ij;l Np, can be
chosen as

(15)

2Na 1/p N
NTEZ((s ) > o clmit®),
Nt a=1

with each N, proportional to C;{f MIE ®B).

1
Finally, we consider the stati:tpical error 0%, which arises
arises from the finite number of samples N,. Defining
x(t) = (q)olg*"Kﬁz(xe*iKztmfl oo e Katarr ApmiKata p=iKaoitanr ... g—iK T |(D0)’
g(t) = (2np?) e (iHiH-+50/@) Eq. (6) can be seen as finding the
expectation value E[x] of x(t) with the probability of g(t). The case of A = I
corresponds to (W#|¥#). The variance of x, 02, is given by E[+*] — (E[x])%
Since ||x(t)|| <1, 02<1 — (E[x])*. So, the standard error of (‘Pgl\l’g) using
N, samples is bounded by N, ~'/2(257 — #?). Therefore, getting (¥*|WF)
with desired precision 0%y, will requires
N, >(2n— n)*on2. (16)
In the sampling procedure, an additional source of statistical error, known as
shot noise, arises. On currently accessible quantum computers, each circuit
is measured with N repeated measurements, referred to as “shots". The
finite number of shots introduces a standard error of 1/,/N; for each
measurement. This modified the statistical error dependence from N, ~!/2
to N, 7V2(1 + N,71/2),
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Error analysis of E,
The error € of E,, is analyzed similarly to (‘Pﬁ | ‘{’5 ). Like 7, € is decomposed as
€g+ €+ €mc Here, egarises from the finite f, e1is due to trotterization, and
€mc results from the finite number of samples.
First, we consider the energy estimation error arises from finite f3, €p.In

our method, the energy difference is computed based on Eq. (8).
Each energy difference estimator introduces an error of order

SHIHN |8‘I’ DI/(1 = #). Detailed calculations in Sec. II B 1 of the
Supplementary Informatlon show that the proportionality constant is 4.
Thus €5 < Z < 4N 1|||5‘I’ MHIH'I /(1 — n). From Eq. (12), we have

eg<2exp(—F2AL/2)IHIPA; /(1 = 1) (17)
To ensure the projection error is smaller than eg, we use f3 that satisfy
B=A; ' V2log P @IH |PA; (1 — ) eg?). (18)

The discussion of the trotterization error follows a similar

approach to that of B. The error er is bounded as
er< Yt ANl |8‘I’ DIMH'/(1 = 1). Using Eq. (14) and assum-
ing NTa is determine to be proportional to CI/PM}Q;([?), theerror can be

expressed as

ersan, (%) (Zc”PMii‘;(ﬁ)> et

To achieve a desired €7, the total number of trotter steps can be chosen as

(19)

(20)

E |H ) NZ UM s

(er(1— )P & o

In practice, Trotter errors are considerably smaller than the theoretical
bounds*"*. Additionally, as discussed in Noise resilience of QZMC section,
error cancellation occurs between the numerator and the denominator.
Consequently, the number of Trotter steps required is substantially lower
than the theoretical estimate.

To estimate the statistical error e, in the energy calculation, we
examine Eq. (8). The numerator in this equation is computed through a
Monte Carlo summation of (®g|e Kilvane=Katvawr ... g=Kalyar

—Katva AVH e~ Kot tvam1 g7 Kot e~Kilu1|@,). Because time evolu-
tions are unitary, each term in the summation is bounded by AA||H'||. This
results in a Monte Carlo error of the numerator bounded by AA|H' ||/ /N,
Taking into account the effect of the denominator and summing over & from
1 to N, we find that the total error is bounded by

Va=2 o« ..

2
e < IH /YN, A=) 1+ 1 =) 1)
The statistical precision of ¢, can be achieved by using N, such that
N, 2 e IH A= m) (4 (1= 1)7), (22)

Computational cost

Based on the error analysis discussed, we estimate the computational cost of
determining the ground state energy using QZMC and summarize the
results in Table 1.

First, we discuss the circuit depth required to estimate ground state
energy using QZMC. Excluding the cost of preparing the initial state, the
circuit depth required for our method is determined by the total time
evolution length, which is proportional to SN,. From the previous dis-
N, x Ag_1 IH'|, so N,= O(A‘lpoly(n)) Similarly,

B o A log2IIH A1 (1 — my~'e= ), p= O, log (8] e ).

cussion,

Table 1 | Computational cost of QZMC and other quantum
algorithms

Total number of
samples

Maximum time evolution length

Qzme O(ag(log(a"e~"'n)'"*poly(n)) Ofe™A5poly(n)
QPE2S A p3") O(p, 'polylog(c™")
QEEA® O(e~"polylog(pg 1)) O *pg?)

Ref. 14 O(e"polylog(py ™) O(pg2polylog(e™")
Ref. 26 O(a;"polylog(c~"pg " Ag)) O(py?e2A3)

This table summarize the cost of QZMC to compute the ground state energy and compares it with
several other quantum algorithms that compute the ground state energy within a single ancilla qubit.
Complexity analysis of QPE and QEEA imported fromref. 14. Here, po the probability of getting exact
eigenstate from the initial states, ¢ is a desired precision in the energy, n is the number of qubits, and
A is the lower bound of the energy gap between the ground and other states. Optimized algorithms
for highly overlapped initial states'>*° show similar dependence with algorithm of ref. 14, only
constant factor is different.

Therefore, the total time evolution length required for our method
is O(A; 2logl/z(A Le~ln)poly(n)).

The practical implementation of our method requires trotteriza-
tion, so the circuit depth for QZMC is determined by the total
number of Trotter steps Ny From the previous discussion,

N; 6‘1/1’||H/||1/1’N1/1’Z Cl/PM}Q;(ﬁ), where p is the order of trot-
terization. Since C,, = O(poly(n))" and M}Q;([)’) = O(I+/P),
Ny = O(e~/Ppoly(n)(BN,)'"'/?). Substituting f and N,, we have

N, = O(efil’A Plog2+2P(A Le~ n)poly(n)). (23)

Second, we discuss the total number of samples required to estimate
ground state energy within a precision of €. From Eq. (22), the number of
samples N, required to achieve a precision ¢ is O(¢ ~2poly(n)). Since QZMC
should be performed for & = 1, 2, ..., N,, the total number of samples
required is O(e*poly(n)N,) = O(A 1 e~ 2poly(n)).

Remarks

A key characteristic of our method is that the approximate projection
depends on the energy estimate ¢, meaning the calculational precision can
affect subsequent calculations. If € comparable to or larger than A, the
approximate projection fails to target the desired states, making the calcu-
lations infeasible. For € much smaller than A, the projected state becomes
exp(—afie?/ 2)|‘I’ﬁ>, inducing attenuation of r, = exp(—N_fB%€?) of
<‘I’g|‘l’€> for « = N,. To ensure r, > r for some finite 7, 5 should satisfy
B<e N,V 2log™"/2(1/r). Thus the energy estimate precision ¢ imposes a
limit on f.

Another aspect worth addressing is the potential for a sign problem.
The error analysis and computational cost estimation indicate that our
method is, in principle, free from the sign problem for gapped systems. For
such systems, for any # € (0, 1), there exist sufficiently large parameters f3,
N,, and N,, scaling polynomially with the number of qubits #, such that
<‘I’§|‘I’§> is lower-bounded by 1 — #. In practice, error sources such as
Trotter errors and device noise reduce (5% ), resulting in noise ampli-
fication in Eq. (5) and Eq. (8), analogous to the conventional sign problem in
Monte Carlo methods.

The realization of our method requires computing the overlap between
the initial and time-evolved states on a quantum computer. In the most
general setting, this involves controlled time evolution®, which demands
attaching control lines to every gate, making it resource-intensive. However,
if H, shares a common eigenstate, controlled time evolution can be avoided,
as shown in other methods". Since chemical and physical Hamiltonians
often share a common eigenstate, such as the vacuum, this feature makes our
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Fig. 2 | A one-qubit system. The energy eigenvalues
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ground state. In (a-d), dotted lines represent the R 00 R i
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method practical for applications in chemistry and physics. For the specific
form of the quantum circuit used in our method, see Sec. II D 2 of the
Supplementary Information.

Applications of QZMC
Here, we verify our method by applying it to solve various quantum many
body systems.

First, we used our method to compute physical properties with NISQ
devices. The first system we consider (Fig. 2) is the one-qubit system with the
Hamiltonian. H(A) = X/2 + (21 — 1)Z. Next, we simulate the H, molecule
(Fig. 3a) in the STO-3G basis*, a typical testbed for quantum algorithms****.
By constraining the electron number to be 2 and the total spin to be 0***/, the
system can be represented by a 2-qubit Hamiltonian. We calculate the
energy spectrum of 4 low-lying eigenstates of H, as a function of interatomic
distance (R). Then, we consider the 2-site Hubbard model*, the Hubbard
dimer. The Hubbard dimer (Fig. 3bf) at its half filling and singlet spin
configuration can also be mapped to a two-qubit Hamiltonian. 4 low-lying
Energy eigenvalues of the Hubbard dimer are computed by increasing onsite
Coulomb interaction(U) from 0. For these calculations, we create a discrete
path with N,, = 10 and apply the predictor-corrector QZMC for H, = H(A,).
Lastly, we applied our method to the XXZ model (Fig. 4) in one-dimension,
which has the Hamiltonian

n—1

H= _]Z(stfﬂ

i=1

+ S!S/, +ASES (24)

).

We computed systems with n=4ton =12, using/=1and A= — 1. Fora
quantum circuit implementation of trotterization for XXZ model, we used
recently suggested optimized circuit”’, with two trotter steps.

The one-qubit system results are displayed in Fig. 2. Figure 2a shows
the ground and the excited state energy eigenvalues, while Fig. 2b shows
ground state expectation value of X, Y'and Z operators. Despite device noises
in ibmgq_lima, measured observables match well with exact values (dashed
lines). ~ Moreover, computed ground state fidelity F,=

(D) */ (¥, |¥,) (Fig. 2c) is almost 1, which demonstrates accurate
projection to the desired state by QZMC.

Figure 3 presents computational results for two-qubit systems: H, and
the Hubbard dimer. We determined the energy eigenvalues of H, within an
error of 0.02Ha using ibm_lagos. Energy eigenvalues for the Hubbard
dimer are calculated within an error of 0.06 t on ibm_perth, where ¢ is
electron hopping between two hubbard atoms. And we compute the elec-
tronic spectral function A(w)™ of the Hubbard dimer with the NISQ device.
Figure 3(e, f) displays A(w) at k = 0 and k = 7, showing good agreements
between exact values and measured values.

The additional computations for these one- and two-qubit systems,
specifically the parameter dependence of QZMC for the one-qubit system
and the ground state energy calculation of the Hubbard dimer with Trot-
terized time evolution, are provided in Sec. III of the Supplementary
Information.

Figure 4 presents the computational results for the XXZ model with 4
to 12 qubits. The energy eigenvalues are well reproduced, even for 12 qubits,
despite severe degradation of (¥|¥) due to device noise and trotterization
errors. Specifically, we obtained ground state energy errors of 0.015 for 4
qubits, 0.0275 for 6 qubits, 0.016 for 8 qubits, 0.041 for 10 qubits, and 0.051
for 12 qubits on ibm_torino. These values are significantly lower than the
errors in (¥|¥) (represented by the differences between the squares and
crosses) shown in the right panel of the figure. Thus, we conclude that our
method provides reasonable results even in the presence of both device noise
and trotterization errors. All calculations were performed with dynamical
decoupling (DD)*" and readout error mitigation™, without employing
advanced techniques such as zero-noise extrapolation (ZNE)*™ or prob-
abilistic error cancellation (PEC)*>*. We anticipate that larger-scale simu-
lations will become feasible soon with these methods or with advancements
in hardware.

Next, we demonstrate our method for a large system by applying
QZMC on the Hubbard model at the half-filling in various sizes with
noiseless gsim-cirq (https://quantumai.google/qsim) quantum compu-
ter simulator. As Hy, we choose dimer array, featuring easily imple-
mentable non-degenerate ground state. We gradually increased the
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Fig. 3 | H, and the Hubbard dimer. a plots energy eigenvalues of H, in a STO-3G
basis as a function of the bond length. Here, we used 8 = 5 and NISQ device
calculation is conducted with ibm_lagos. In (b—f), we considered the Hubbard
dimer. b shows energy eigenvalues as a function of the Coulomb interaction U. In (a)
and (b), different states are distinguished by different colors. In (c), we compared
(W|¥) of the ground state calculated with the NISQ device with exact values and

noiseless QZMC results. d compares two energy estimators <H 0¢>a = (d)a\H u \CD‘X>
and Eq. (8). The spectral functions for two different crystal momentum (e) k = 0 and
(f) k = mare plotted. For the Hubbard dimer, we used 8 = 0.5 and ibm_perth is used.
In this figure, we used N, = 100 Monte Carlo samples for each « and the spectral
function is calculated with 300 Monte Carlo samples.

Fig. 4 | NISQ simulation of XXZ model. a The (@ o (b) 10F
energy eigenvalues and (b) (¥|¥) of XXZ model for RS : S~ S
various sizes from 4 to 12 qubits are plotted. In this \\x i SS ~
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inter-dimer hopping ti,; from 0 to the desired value f as « increased. We
explored two geometries, chains and ladders, with periodic boundary
conditions, as illustrated in Fig. 5a. For each geometry, we computed
systems with 6, 8, and 10 sites when U/t = 5. For QZMC, we used f3 = 3,
with N, equal to the number of sites and N, increases as || H'||* increases.
For the time evolution, we used the first order Trotterization®**"”’,
adjusting the Trotter steps as system changes. More specifically, we used
amaximum of 528 Trotter steps for the 6 x 1 system and up to 1960 steps
for the 2 x 5 Hubbard model.

Figure 5c shows that QZMC accurately reproduces the exact ground
state energy across various configurations, from 6 to 10 sites, in both chain
and ladder geometries. And our method also accurately computes local
spectral functions for Hubbard models as shown in in Fig. 5d-g, which
reproduces the exact positions and widths of every peak in the spectral
functions. Further data not included in Fig. 5(c), such as (¥[¥) for all
geometries and spectral functions for the 6-site Hubbard models, can be
found in Sec. V of the Supplementary Information.

In Fig. 5, the ground state energies are determined within an error of
0.01¢ by setting N, as the number of sites and N, o |[H'||?. Using this
parameter rule, we estimate the required number of samples for large-scale
Hubbard model simulations. For each &, we compute <‘If oYy >, the predictor,
and the corrector for the energy difference, using N, Monte Carlo samples for
each quantity. Thus, the total number of required samples is approximately
3N,N,. Since ||[H'|| scales linearly with the number of sites, N, scales quad-
ratically, and the total number of required samples scales cubically. For a 10-
site Hubbard chain (ladder), we set N, = 10 and N, = 1600 (2594) in Fig. 5,
resulting in approximately 4.8 x 10* (7.78 x 10*) samples. By applying the
cubic scaling derived above, we estimate that a 30-site calculation requires
1.3 x 10° (2.1 x 10°) samples, a 50-site calculation requires 6 x 10° (9.73 x 10°)
samples, and a 100-site calculation requires 4.8 x 107 (7.78 x 107) samples.

Finally, we computed Hubbard chains under open boundary condi-
tions to compare our method with other methods for ground state energy
estimation. We compare our method with two state-of-the-art approaches:
the Heisenberg-limited method developed by Lin and Tong", and the
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Fig. 5 | The Hubbard model in various sizes. a shows two geometries we con-
sidered. Here, colored circles denote sites, solid lines indicate intra-dimer hopping
tinwra» and dotted lines represent inter-dimer hopping #,e,. b displays (¥|¥) for the
2 x 5 Hubbard model as a function of f;,¢,, while (c) presents ground state energy
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energies for 6 x 1, 8 x 1, and 10 x 1 models with QZMC, with red dotted lines
indicating corresponding exact values. Blue squares and lines represent the same
values for 2 x 3,2 x 4, and 2 x 5 cases. d-g depict the local spectral function for the
Hubbard models.

quantum complex exponential least squares (QCELS) method developed by
Dingand Lin'". We considered three cases: 4 x 1, U=4;4 x 1, U= 10;and 8 x
1, U = 10. The initial state |d~)0) was chosen such that |((I)|Ci>0)|2 = 0.4,
matched the conditions in the references'*"”. Both methods were imple-
mented as described in the respective references.

The top panels of Fig. 6 compare the energy estimation error ¢ as a
function of the maximum time evolution length T. In most of cases, QZMC
requires a shorter T than Lin and Tong’s method and is comparable to
QCELS for a precision range of 107 to 1072,

The middle panels show € as a function of the total Trotterization steps
Nr, which is directly proportional to the circuit depth. In these and the
bottom panels, the maximum time evolution length T for each method was
set to achieve a similar accuracy of about 0.003 for the exact time evolution.
QZMC demonstrates higher precision with fewer Trotterization steps. For
example, in the 4 x 1, U/t = 10 case with Ny = 412, the error for QZMC is
0.0046, compared to 0.043 for QCELS and 0.015 for Lin and Tong’s method.

The bottom panels plot the total number of samples required for each
method. Lin and Tong’s method converges quickly, while QCELS and
QZMC converge more slowly, with QZMC requiring the most samples,
eventually reaching approximately 10°.

In conclusion, overall our method achieves higher precision with
shorter circuit depth compared to other state-of-the-art methods, at the cost
of requiring more samples. Therefore, QZMC is particularly useful when
quantum circuit depth is a limiting factor, but the number of accessible
samples is not severely constrained.

In addition to the methods discussed above, our approach can also be
compared to adiabatic state preparation (ASP), as both methods follow an
adiabatic path. However, QZMC offers two notable advantages over ASP.
First, QZMC is resilient to errors such as Trotter errors and device noise,
making it more practical in scenarios where such errors are significant.
Second, as highlighted in Quantum Zeno Monte Carlo section, QZMC does
not require the initial state | D) to be exact, whereas ASP must begin with an
exact | D). This distinction is important because preparing an arbitrary state
on a quantum computer can be exponentially hard™, and the flexibility to
start with an approximate initial state enhances the practicality of QZZMC. A

comparison of ASP and QZMC under the influence of Trotter errors is
presented in Sec. V of the Supplementary Information.

Noise resilience of QZMC

Interestingly, our calculational results for observables accurately reproduce
exact values even with the device noises (Figs. 2 and 3) and the Trotter errors
(Fig. 5). The effect of these noises induces significant deviations of calculated
(¥Y|¥) (Fig. 2d, 3¢, and 5b) from exact values. However, the observable
expectation values, which is computed by using the ratio of (¥|O|¥) and
(Y|¥) (Eq. (5)) are robust against device noises and Trotter errors. To
understand this, we tested the dependence of the calculated observables on
the device noise magnitude using the gqiskit (https://www.ibm.com/
quantum/qiskit) aer simulator. We considered (¥|¥), (¥|Z|¥), and (Z)
of the ground state of the one-qubit system. Figure 7 shows calculational
results. As the noise level increases, (¥|¥) decreases and the absolute value
of (¥|Z|¥) also decreases (Fig. 7a). Surprisingly, these noise-induced errors
cancel each other through the ratio of (¥|¥) and (¥|Z|¥), so that (Z) =
(V|Z|¥)/(¥Y|¥) (Fig. 7b) remains robust against noise. Since quantum
circuits for computing the numerator and denominator are nearly identical,
division cancels out common noise effects, making the expectation value
resilient. The same argument can be applied to Trotterization (thus, the
method is resilient to Trotter error too). Because we use same Trotterization
rule for both the numerator and the denominator, common Trotterization
errors are canceled out by division. This has been demonstrated numerically
in Fig. 8(a, b). In this figure, we computed same quantities considered in Fig.
7 using trotterized time evolutions varying the total trotterization steps Nr.
We can see that the low-trotterization steps makes (¥|¥) small, but (Z)
does not change a lot because the magnitude of (¥|Z|¥) also decreased by
the trotterization.

Figures 7 and 8a, b demonstrates that error cancellation through
division occurs in practice for both device noise and Trotter errors. How-
ever, since these errors arise from fundamentally different sources, the
mechanisms behind their cancellation differ. In following, we provide a
detailed analysis of how error cancellation occurs for each type of error and
additional notes.
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Fig. 6 | Hubbard chains with various methods. Ground energy estimation errors
are shown for: a-c U/t = 4, 4 sites; d—f U/t = 10, 4 sites; and (g-i) U/t = 10, 8 sites. The
figures plot the energy estimation error € as a function of (a, d, g) the maximum time
evolution length, b, e, h the total number of Trotter steps, and (c, f, i) the total

number of samples. In all panels, blue points represent results from the method of
Lin and Tong", black points represent results from QCELS", and red points
represent results from QZMC.

First, we discuss the mechanism for the device's noise resilience. In our
method, we measure consecutive time evolution using a single ancilla qubit
(See Sec. II D 2 of the Supplementary Information for quantum circuits).
With this in mind, let’s examine the following simple example. Consider a
qubit with the density matrix p. Then, exact outcome of a Z measurement on
this qubit is given by Tr(pZ). The effect of noise the qubit can be described as
E(p)’. With this noise, the outcome of the Z measurement becomes
Tr(E(p)Z). Consider the depolarizing channel as a specific type of noise,
which alters the state p to E(p) = pI/2 + (1 — p)p. Here, p represents the
probability of depolarization. With this model, Tr(£(p)Z) becomes
(1 — p)Tr(pZ). Now, imagine another qubit with the density matrix p’
subjected to the same noise channel. The Z measurement of this qubit yields
(1 — p)Tr(p’'Z). Then, the ratio of the measurement outcomes of two qubits
with noise channel is

THER)Z) _ (1= pTrp'Z) _Tr(p'2)
THE(P)Z) (1= pTr(pZ)  Tr(pZ)’

(25)

which is same with the exact value. This demonstrates that the effect noise
can be effectively canceled out by the division. Though we only showed the
case with the depolarizing channel, same cancellation occurs for bit and
phase flip channels. Similar discussion can also be found in the literature on
the quantum-classical hybrid Quantum Monte Carlo algorithm (QC-
QMC)*, which estimates the wave function overlap efficiently using shadow
tomography.

To analyze the resilience of QZMC to Trotter errors, we consider the
state

[WET) = |PF) + |0WET) (26)

as defined in Error analysis of <\P§ |‘Y§) section. The error term |8‘I’§’T) can
be decomposed into two components: one parallel to |\1’§) and the other
orthogonal to it. Suppose the error consists only of the parallel component.
In this case, we can express the state as

BTy = (1 — i, /I1¥E) e [¥E). 27)

Here, ) represents the norm of the parallel error, and ¢ is the asso-
ciated phase shift. In such a scenario, the expectation value of an
observable O is

(1 — 1,/ I¥E) D’ (¥E O WE)
(1 — 1 /IN¥EY ) (W8 | w6
(W |Ofwh)

K2

(¥ETI0194T)
(VT IPET)

(28)

Thus, the parallel component of the error cancels out through division,
demonstrating that QZMC is inherently resilient to this type of
Trotter error.
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In practice, however, the error also contains an orthogonal component
n, |‘I’5A | ), resulting in

NET) = (1 — 1, /1) )€ [¥E) + ¥ ). (29)

Here, 7, denotes the norm of the orthogonal component and |‘I’€ |)isa
normalized vector orthogonal to |‘~P€). Unlike the parallel componént, the
orthogonal error does not cancel out through division. Therefore, the key to
Trotter error resilience lies in the relative magnitudes of #; and #,.
Numerical tests in Fig. 8(c) demonstrate that 7, < # in practice. This
dominance of the parallel component ensures that error cancellation
through division remains effective, making the method robust against
Trotter errors.

One notable point regarding noise resilience is that, in addition to the
noise cancellation effect demonstrated in Figs. 7, 8, the use of the estimator
in Eq. (8) enhances robustness against noise. This is because it computes
only energy differences, limiting the influence of noise to the energy dif-
ference E, — E,,_;. Figure 3(d) shows this. In this figure, we can see that the

energy computed by Eq. (8) is more precise and stable compared to the
energy computed by <Ha>a = (®,|H,|®,) using Eq. (5).

Another important note is that our discussion on noise resilience does
not imply resilience to statistical noise. In fact, as the noise level increases, the
impact of statistical error on the results is amplified, requiring a larger
number of samples. More specifically, device and Trotter errors reduce
(¥,|¥,), which appears in the denominator of our observable estimators.
Because the statistical error of the energy estimator is proportional to (see
Eq. (5.48) of the Supplementary Information for the explicit form)

<\Pa|\1”a>_l(1 + <\IJ0(|\I/0‘>—2)1/27

if (W, |V, ) isreduced to (1 — p)(¥,|¥,, ), the statistical error amplification
factor is

(30)

1 <\Pa|\ya>2 + (1 _P)_Z.

31
1-p (¥, I¥,)" +1 Gy
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For example, if device or Trotter errors reduce (¥, |¥,,) from its exact value
of 0.8 to half of that value, the statistical error is amplified by a factor of
approximately 3.36.

Discussion

In this work, we introduced the quantum Zeno Monte Carlo (QZMC) for
the emerging stepping stone era of quantum computing"”. This method
computes static and dynamical observables of gapped quantum systems
within a polynomial quantum time, without the need for variational para-
meters. Leveraging the Quantum Zeno effect, we progressively approach the
unknown eigenstate from the readily solvable Hamiltonian’s eigenstate.
This aspect distinguishes our method from other methods for phase esti-
mations, which necessitate an initial state with significant overlap with the
desired eigenstate™'*'>****_ Preparing a state with substantial overlap with
an eigenstate of an easily solvable Hamiltonian is much simpler than pre-
paring an initial state with non-trivial overlap with the unknown eigenstate,
making our algorithm highly practical compared to other methods. The
next characteristic of the algorithm is its computation of eigenstate prop-
erties by dividing the properties of the unnormalized eigenstate by its norm
squared (Eq. (5)). We demonstrated that this approach effectively cancels
out noise effects in the denominator and the numerator, rendering the
method resilient to device noise as well as Trotter error. This resilience arises
from the similar noise levels experienced by both the denominator and
the numerator of observable expectation value, leading us to conclude
that our approach is well-suited for homogeneous parallel quantum
computing.

Methods

NISQ simulation

Here, we provide the details of the NISQ simulations in Figs. 2-4.
Throughout the simulations, we used N, = 4000 shots for one- and two-
qubit systems, and N, = 2048 shots for the XXZ model. Since any 1- or
2-qubit unitary operation can be represented with a small number of gates®,
the consecutive time evolutions encountered in QZMC can be implemented
within a shallow circuit with a few parameters. For the 1-qubit system, the
parameters 6,, 05, 05, 6, for the unitary matrix U are obtained from®"

cos(6,/2)
sin(6, /2)e®

— sin(6, /2)e™%
cos(8, /2)el®:+0:)

— i

(32)

For the 2-qubit system, we applied the two-qubit Weyl decomposition®, as
implemented in Qiskit.

For the XXZ model, we set § = +/2 and combined (Pﬂ ) inEq. (8) into
a single integral. For Trotterization, we employed second-order Trotter-
ization based on the efficient implementation of Trotterized quantum
circuits", using two Trotter steps. We begin with XXZ dimers, described by
the Hamiltonian
S; Sy +ASISE ).

= _JZ stfﬂ

i;odd (33)
For systems with up to 8 qubits, we used the first-order perturbation
energy as a predictor for the energy. For the 10-qubit system, we employed
E, + Es as the predictor, where E, is the energy of a single XXZ dimer, and
Eg is the energy of an 8-site XXZ model computed using ibm_torino.
Subsequently, using the computed E;, we used E, + E as the predictor
for the 12-site XXZ model. We used an initialization circuit that prepares
the vacuum state |0”) when the ancilla qubit is in |0), and the ground state
of Hy when the ancilla qubit is in |1). The specific initialization circuit for
the 10-site XXZ model is provided in the Supplementary Information. The
number of gates used in this simulation, in terms of the basis gates of

Noiseless simulation

Here, we discuss more detailed information about noiseless simulations
(Figs. 5, 6). In these calculations, we consider the Hubbard model which is
described by the Hamiltonian

Z tiiCisCio Z#(”n + )+ Z Ungynyy,
i i

(34)

with the chemical potential i = U/2, corresponding to the half-filling. The
first two terms represent the kinetic energy and are denoted as Hy, while the
last term represents electron-electron interaction and is referred to as Hy.
The ground state of the Hubbard dimer can be expressed as

|, dimer) = €05(6,/2)|0011) + sin(6,/2)0110)

35
— sin(6,/2)[1001) + cos(6,/2)[1100). (35)
Here, the angle 6, is given by
0, = —2arct 1 g+ 22+4t2 (36)
¢ = e o\ 2TV

The ground state of Hy, composed of a collection of dimers, is formed by
the direct product of Eq. (35) for each dimer. The following describes the
details specific to the calculations in Fig. 5, performed using the cirg
quantum computer simulator. In the simulations, we used N, and
Trotter steps (N7) that varied with the system size, while fixing the
number of shots at N, = 10, 000. Based on Eq. (22), N, was set propor-
tional to ||[H'||?, where

|H'|| = t % (number of sites)

(forachain), (37)

and

4t
H| = — X (number of sites)  (for aladder) . (38)

The proportionality constant was determined by testing the 6 x 1 system
numerically. The first-order Trotterized time evolution Uj(r) for the
Hubbard model with n; Trotter steps introduces a Trotter error' given by

le™™ = U@l < o — ||[H”HU]||7 (39)
where
I[H,, Hylll < Z tyU Cj;'icjw Z”m”u} ’ (40)
(ij)o i

Since all orbital indices are equivalent, || [z:;cja., Zinm n;, ]|l remain constant
for any i and j. Consequently,

” [Ht7 HU] ” < CU(timraNintra + timerNinter)7 (41)
where Ni, denotes the number of intra-dimer hoppings and Nijer
represents the number of inter-dimer hoppings, and C is a proportionality

constant.
Based on this, N7, was determined as

N

(tintraNintra + tinter‘oc inter)

ibm_torino, is 237 for 4 sites, 384 for 6 sites, 534 for 8 sites, 696 for 10 sites, N Ta = int | 75X s ) (42)
and 857 for 12 sites.
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with a minimum value of 20. Specific values of N, and total Trotter steps
Nrp=2 ij;l N, for each model are summarized in Supplementary
information. '

Next, we provide detailed information on the comparative study for the
Hubbard models in Fig. 6. In this case, we considered open boundary
conditions, and the initial state is prepared from direct product of Eq. (35),
with 6, adjusted to achieve |<<D|¢~>0>|2 =0.4.

For all data in Fig. 6, each calculation is repeated 30 times, and the
absolute values of energy errors were averaged over repetitions. To measure
the maximum time length T, we used the 99th percentile of the distribution
of time evolution lengths, as all three methods are stochastic. This means
that 99% of the time evolution lengths are smaller than T.

The computational parameters are set according to the references for
the compared methods. For Lin and Tong’s method', we set the para-
meter § = 4/d as in the reference and varied d, which determines the time
length. We used 1800 samples, consistent with the original paper. For
QCELS", we followed the relative gap D estimation and parameter set-
tings in the original article, using d = |[15/D] and N = 5. The sample
number for each nt; was set to 2048, higher than the values used in the
original paper.

For QZMC, we used N, = 16,384 for calculations with ¢ >0.001 and
N, = 1,638,400 for calculations with € < 0.001. For precise calculation, after
obtaining the energy difference using Eq. (8), we recomputed it with the
obtained E, value at each a.

For the middle and bottom panels of Fig. 6, we noted that the max-
imum time evolution length T'is set for each method to achieve a precision e
of about 0.003 under exact time evolution. In practice, the following para-
meters were used in our calculations.

For the 4-site Hubbard model with U/t = 4, we used d = 4000 for Lin
and Tong’s method, resulting in T'=398.56 and ¢ = 2.46 x 10~>. For QCELS,
we used ] = 5 and 77 = 40, yielding T = 23.09 and € = 2.45 x 10>, In QZMC,
we used f8 = 1.6, which gave T=20.53 and € = 2.23 x 10™°.

For the 4-site Hubbard model with U/t = 10, we used d = 6000 for Lin
and Tong’s method, leading to T=323.26 and € = 2.79 x 107>, In QCELS, we
usedJ=7and 7;=108, resultingin T=32.32and € =3.16 x 10%. For QZMC,
we used f3 = 2.6, yielding T'=33.36 and ¢ = 3.24 x 10",

For the 8-site Hubbard model with U/t = 10, we used d = 12000 for Lin
and Tong’s method, producing T = 316.13 and ¢ = 2.84 x 10~°. In QCELS,
we used J = 9 and 77 = 372, resulting in T = 54.65 and € = 2.42 x 1073, For
QZMC, we used 8 = 4.2, giving T = 53.88 and € = 2.96 x 10"

In the Trotterization tests, first-order Trotterization was employed for
all methods. In QZMG, the Trotter steps N7, for each o were determined as

NT.zx & (tintraNintra + tinterNinter)7 (43)
and the total Trotter steps N-were computed as 25, N:,. For calculations in
Fig. 6, we used a shot number N; = 2048.

Data availability
The data generated and/or analyzed during this study are available from the
corresponding author upon reasonable request.

Code availability
The code developed during this study is available from the corresponding
author upon reasonable request.
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