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The nature of dark matter is a fundamental puzzle in modern physics. A major approach of searching
for dark matter relies on detecting feeble noise in microwave cavities. However, the quantum
advantages of common quantum resources such as squeezing are intrinsically limited by the Rayleigh
curse—aconstantloss places a sensitivity upper bound on these quantum resources. In this paper, we
propose an in situ transient control to mitigate such Rayleigh limit. The protocol consists of three steps:
in-cavity quantum state preparation, axion accumulation with tunable time duration, and
measurement. For the quantum source, we focus on the single-mode squeezed state (SMSS), and the
entanglement-assisted case using signal-ancilla pairs in two-mode squeezed state (TMSS), where the
ancilladoes not interact with the axion. From quantum Fisher information rate evaluation, we derive the
requirement of cavity quality factor, thermal noise level and squeezing gain for quantum advantage.
When the squeezing gain becomes larger, the optimal axion accumulation time decreases, which
reduces loss and mitigates the Rayleigh curse—i.e., the quantum advantage increases with the
squeezing gain. Overall, we find that TMSS is more sensitive in the low-temperature limit. In the case of
SMSS, as large gain is required for an advantage over vacuum, homodyne detection is sufficient to
achieve optimality. Whereas, for TMSS, anti-squeezing and photon counting is optimal. Thanks to
recent advances in magnetic field-resilient in-cavity squeezing and rapidly coupling out for photon

counting, the proposed protocol is compatible with axion detection scenario.

Microwave quantum engineering offers unprecedented quantum control”,
facilitating broad applications in quantum computing and quantum sen-
sing. This capability enables high-fidelity state preparation, such as the
creation of squeezed states, Fock states, and Gottesman-Kitaev—Preskill
state**, and nontrivial detection strategies, such as the counting of individual
microwave photons. Microwave photon counting, which can be imple-
mented in situ' or for traveling photons®”, is crucial for quantum sensing
and has gained recent prominence as a vital technology for precision
measurements in high energy and particle physics®’.

A notable example where quantum techniques are expected to
markedly impact fundamental physics'’ is the search for new particles
beyond the standard model, such as the axion, a promising dark matter
(DM) candidate'' ™. Photon counting has been considered for quantum-

enhanced DM searches with cooled microwave cavity receivers'>'. In axion
DM searches, a cavity is immersed in a strong magnetic field (thus pre-
cluding the use of in-cavity Josephson-junction-based superconducting
devices), inducing axion-to-photon conversion at an extremely feeble rate.
The goal is to detect a faint excess of photons amidst the weak thermal
background of the cooled cavity.

Photon counting is advantageous as it allows for bypassing the vacuum
noise inherent to linear detectors'>”'*. Recently, photon counting was
performed in situ for a dark photon DM search by ref. 19 and on traveling
microwaves for an axion DM search by ref. 20. The quantum-enhanced
sensitivity is remarkable in these setups, with Fisher information
enhancements over linear detection strategies scaling as 1/Nr, where N is
the residual thermal background. (For reference, Ny ~10~* for a 6 GHz
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cavity at 40 mK.) Nevertheless, the systems of refs. 19,20 operate as passive
receivers with measurement bandwidths that are ultimately limited by the
linewidth of the microwave cavity, thus restricting the search speed for DM
candidates.

The ability to engineer quantum probes for active sensing—i.e., sti-
mulating the cavity—provides an extra degree of utility. Squeezing is known
to improve the detection bandwidth for linear (homodyne) detectors
without sacrificing sensitivity“’21 B, a concept that can be further extended
to a quantum sensor network’’. However, the performance of linear
detectors is very limited even when enhanced with squeezing: it requires
larger than 30 dB of squeezing for a homodyne scheme to match a passive
scheme based on photon counting”. Fortunately, replacing homodyne with
photon-counting, squeezing is also capable of improving the measurement
bandwidth of photon-counting schemes without sacrificing sensitivity.
Indeed, in the absence of loss, a squeezed state photon-counting receiver was
proven optimal for noise sensing, when the phase-sensitive amplification is
applied before photon-counting™”’. However, it was subsequently shown
that the squeezed state receiver can be quite sensitive to cavity loss”>”, and
therefore limited by practical constraints.

To mitigate the vulnerability to loss, ref. 25 proposed an entanglement-
assisted receiver based on two-mode squeezing and photon counting. In that
setup, a signal mode is entangled with an idler mode, the idler is stored in a
separate high-Q cavity, and photon counting is implemented on the signal
(see Fig. 1b). With perfect idler storage, this configuration was shown to be
quantum optimal, predicting a quantum-enhanced scan rate beyond all
passive sensing configurations. However, there spectral photon counter
(capable of counting the photons in each frequency bin) is assumed, which is
beyond the capability of near-term devices. Moreover, when taking the idler
storage cavity loss into consideration, the performance is still cursed by the
Rayleigh limit—ref. 27 shows that such Gaussian sources are all subject to a
limit set by loss, lowering the performance below the diverging 1/Nr
advantage from passive receivers with photon counting when noise Nr is
low. We note that the conventional Rayleigh curse states that the mean
square error MSE(0) of estimating the standard deviation o goes to infinity
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Fig. 1 | Conceptual schematic and performance advantage of the in-cavity pro-
tocol. a Squeezing-enhanced protocol using single-mode squeezed state (SMSS);

b Entanglement-assisted protocol using two-mode squeezed state (TMSS). The
quantum source states are generated from thermal background states of mean
photon number Ny by single-mode squeezer S(G) (or two-mode squeezer S,(G)) of
quadrature squeezing gain G. Then the dark matter of per-mode mean photon
number N, couples into the cavity (homogeneously to each quadrature) and
accumulates for waiting time T, while the in-cavity mode suffers intrinsic loss at rate
I and gets mixed with an environment mode of thermal background photon number
Nr. After the accumulation, the optimal quantum measurement, which is known to
be the nulling receiver”, is made over the in-cavity mode, which composes first anti-

e

when ¢ — 0%, while here we consider estimating the variance o of which the
mean square error MSE(¢®) is lower bounded by a constant when ¢* — 0.
This asymptotic behavior is consistent because MSE(¢?) = (9,
0?)*MSE(0) = 46*MSE(0). Therefore, the way towards large quantum
advantage seems to rely on non-Gaussian-state engineering, which gen-
erally requires Josephson-junction-based superconducting microwave
cavities that are incompatible with magnetic field in axion haloscopes™.

In this paper, we propose an axion DM search protocol with in situ
transient control to mitigate the effect of Rayleigh curse” in DM detection,
without relying on any non-Gaussian source. In particular, the proposed
protocol completely circumvents the Rayleigh curse when the axion signal is
fully incoherent. Our proposal prepares the quantum probe in a cavity,
accumulates the axion signal in a cavity, and detects the accumulated signal,
e.g., by rapidly coupling out the cavity field to a transmission line and
counting itinerant photons by, e.g., fast tuning of the base frequency”, as
shown in Fig. 1. The in-cavity probe preparation avoids injection losses from
coupling traveling-wave microwave quantum states with the signal and idler
cavities. Furthermore, we formulate the transient cavity dynamics, which
allows us to optimize the accumulation time. We find the optimal accu-
mulation time decreases with increasing squeezing strength of the quantum
probe, and eventually diminishes if the axion coherence time is negligible.
Therefore, the overall cavity loss, which is proportional to the accumulation
time, can be reduced by increasing the squeezing strength, thereby the
Rayleigh curse is mitigated.

We find neat qualitative benchmarks for next-generation axion DM
searches that are capable of leveraging a swath of quantum resources
(including inter-cavity entangling operations, bandpass-limited photon
counters, and high-Q cavities) in unison. To quantify the advantage, we
derive quantum precision limits of the single-mode squeezed state (SMSS)
source and the entanglement-assisted two-mode squeezed state (TMSS)
source, which are easily accessible Gaussian-state sources’”, and show that
they are achievable by the nulling receiver (anti-squeezing followed by
photon counting) in the low-temperature limit Ny — 0. The entanglement-
assisted TMSS protocol enjoys better robustness than the SMSS protocol. In

— TMSS,T optimized .-- TMSS,T fixed
— SMSS,T optimized =« SMSS,T fixed

squeezing S~ (G*) (or two-mode anti-squeezing S, ' (G*)) of optimized gain G* and
then rapidly coupling-out for photon counting. The information carried in the
ancilla is extremely weak; thus, the idler photon detector (colored in gray) is optional.
PD: number-resolving photon detector. ¢ Mitigation of Rayleigh curse at Ny < 1.
The quantum advantages over the vacuum-state T-optimized quantum Fisher
information rate RVA* of T-optimized cases (solid lines) are compared with the T-
fixed cases (dot-dashed lines) where T 'is fixed to vacuum optimum T"A%*, for SMSS
(blue) and TMSS (red), respectively. Asymptotic predictions Egs. (10, 16) assuming
G — oo, Ny < 1,14 <« 1 are provided in dashed lines for SMSS (purple) and TMSS
(orange). Squeezing gain G is numerically optimized. Cavity parameters: I, = 10™%,
FidlerTa = 10°%
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the case of SMSS, as a quantum advantage over vacuum requires a large gain
GNr 2 1, homodyne can, in fact, already achieve close-to-optimal perfor-
mance, not requiring photon counting. It is noteworthy that such robustness
against loss rate circumvents (but does not violate) the Gaussian-state
Rayleigh curse predicted in ref. 27, because the transient cavity dynamics
here is no longer a fixed quantum channel in ref. 27, and the overall loss here
can be suppressed by optimizing waiting time. Our protocol requires the
generation of squeezing in large magnetic fields, which can be done using a
kinetic inductance parametric amplifier (KIPA)*™* with single-mode
squeezing gain up to 8 dB in current experimental conditions. For practical
application, we demonstrate significant advantages at feasible parameter
setups for near-term devices. In contrast, non-Gaussian-state preparation
typically requires Josephson-junction-based superconducting elements
within the signal cavity, which are forbidden in an axion search due to the
strong magnetic field.

Results

Overview

To detect axion DM, a microwave haloscope (a microwave cavity in a strong
magnetic field"”) converts the DM field signals to feeble excess microwave
power in the cavities. Therefore, DM search in such haloscopes becomes a
noise-sensing problem in the weak signal limit. In this regard, the Rayleigh
limit curses the performance of DM search””” in the presence of loss: for any
active detector with a Gaussian source subject to loss on all modes, the
sensitivity measured by quantum Fisher information (QFI) demonstrates
saturation to a constant value. For example, given a thermal loss channel
with loss 1 — # and additive noise N, an infinitely squeezed single-mode
squeezed state (SMSS) generated from a thermal state of photon number Nr,
has the QFI of noise parameter Ny saturated to (See the Supplementary
Information of ref. [25] for Gaussian-state statistics and ref. [36] for
Gaussian-state QFI calculation.)

2

T = AP+ 28y

¢y

when Ng=(1—#)Nr is at the same temperature as the input, which is
limited to 2/(1—#)* in the weak noise limit. From quantum Cramer-Rao
bound, this limits the estimation precision of any additional noise—the
means-square error A*’Np>1/J,. While for a passive detector with
vacuum source, the performance in terms of QFI is divergent,
Jv1 ~ 1/Ny> Ty, when the noise Ny is small. This casts a shadow
on the promise of any quantum advantage. One way out of the dilemma
seems to be reducing loss: consider a short duration of detection such that
the microwave cavities do not induce much loss. However, a shorter
duration of detection also limits the signal accumulation from axion DM
conversion and it is not clear if any quantum advantage can be achieved. In
addition, the finite coherence time of axion DM becomes important in such
a scenario and requires a systematic treatment.

In this work, we perform a complete analyses of such a strategy and
show that indeed by optimally tuning the accumulation time in a cavity, the
Rayleigh curse can be largely mitigated. To consider a finite signal accu-
mulation, we first refine the physical model of the dark matter field. We
investigate the continuous-time model of random-phase dark matter field,
and derive the time evolution of its coupling into the cavity mode in the
Heisenberg picture: after interaction time T, contributed from a virtual in-
cavity dark matter mode a,(T), a thermal bath mode ag(T), and the initial
cavity mode A(0), the final cavity mode A(T) is

A(T) = \/I(TA©) + /T = n(T)ag(T) o
2 P, (1),

where #(T) = exp —I'T is the transmissivity of the cavity mode, I is the loss
rate of the cavity, and y4 < T is the coupling rate of the axion field. The full
derivation is in Methods. The photon number of a4 (T) is proportional to the

axion occupancy number N, as (aXaA) =N, -g(T,T,w,,7,),wheregisa
dimensionless coupling gain from the physical axion mode outside cavity to
the in-cavity mode, which depends on the axion frequency detuning and
coherence time wy, 74 (for full formula see Supplementary Note 1). Here, a
phase jump in the axion mode happens probabilistically, which yields a
Lorentzian lineshape in the steady-state limit”’, instead of a simple additive
noise model as in refs. 25,27. The phase jump leads to a finite coherence time
7,4 (bandwidth 1/74) for the axion and modulates the axion coupling gain g.
Such a quantitative model of temporal dynamics allows us to consider the
optimization of signal accumulation time rigorously.

With the theoretical model refined, we consider possible improve-
ments to the squeezing-based detection protocol. As the coupling loss is the
major obstacle that degrades the squeezing advantage, we consider the in-
cavity protocol with the state generation conducted in the cavity, instead of
an input-output protocol that injects external quantum resources through a
transmission line as proposed in ref. 25. The conceptual schematic is shown
in Fig. 1. We consider two choices of quantum sources: (a) squeezing-
enhanced protocol using SMSS and (b) entanglement-assisted protocol
using TMSS. The entangled ancilla does not interact with the dark matter,
but it benefits the detection by increasing the purity of the final state of the
signal mode. In both cases, the quantum sources are generated in cavity,
then interact with the dark matter field for an optimized accumulation (or
waiting) time 7. Finally, the cavity mode is processed by anti-squeezing,
then rapidly coupled out for detection. Such arrangement allows for axion
search where the detection cavity is bathed in a strong magnetic field, for
which we provide a detailed explanation at the end of this section.

In this paper we consider the occupancy number Ny of the axion dark
matter as the parameter of interest. We first focus on narrowband perfor-
mance, assuming the frequency of the dark matter signal is known. At the
end of this paper, we discuss broadband performance assuming the fre-
quency of the dark matter signal is a priori unknown, and the signal must be
searched for. As the total QFI (T increases with the signal accumulation
time T, in both cases, we consider the QFI rate R = IC(T)/T as the figure of
merit. The requirement of quantum advantage for the in-cavity detection
protocol considered in this work can be formulated as the following.

Result 1. For any small but fixed thermal noise Nr, fixed cavity loss rate T,
the detection of the axion signal can be quantum enhanced over the vacuum
limit by a single-mode squeezed state (SMSS) source of quadrature
squeezing gain G when

QNL;)H chaw GNTZL (3)
where Q, 0, & T4, Qg o 1/T are the quality factors of axion signal and
the cavity.

For the two-mode squeezed state (TMSS), of EPR quadrature
squeezing gain G, which is defined for quadrature variances analogous to the
SMSS, the quantum advantage requirement is

anion Q
—Z% S Qiers  GNp 2 =, 4
NT idler T Qidler ( )

for lossy idler storage Q,y.;/ Qv <K1/Np where Q.. is the idler storage
cavity quality factor. With an ideal idler Q,y,./ 9., — 00, the quantum
advantage requirement reduces to

cav

anion s Qcaw GZ L (5)

In the limit of incoherent signal Q, ., — 0 (ie, 74 — 0) and large
squeezing G > 1, quantum advantage can always be achieved by tuning a
proper signal accumulation time, therefore circumventing the Rayleigh
limit. In fact, the advantage is infinite & Q,,/Q,yion — ©© With unlimited
G — oo, This is because a smaller accumulation time reduces the overall loss
1 — y(T) = I'T (at small T < 1/T), and indeed we find the optimal
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accumulation time T* — 7, — 0 at the limit of G — oo, 74 — 0 as shown
later in Asymptotic Regimes of Squeezing Gain G. For finite-value of
parameters, the Rayleigh limit is mitigated, as we show in Fig. 1c. We plot the
G-optimized quantum advantages over vacuum-state QFI rate using SMSS
(blue solid) and TMSS (red solid) respectively. With a small signal coherence
time Tty = 10™*, by optimizing T we achieve an advantage ~ 1/T74. In
contrast, with fixed T, ie., fixed loss, we observe the Rayleigh curse (dashed
lines): for any G, the squeezed-state QFI rate never surpasses the vacuum-
state QFI rate for small Ny. Here, the TMSS demonstrates a much larger
quantum advantage than SMSS, almost independent of Ny, while the finite
idler loss Tigier = 10T begins to limit such advantage as N decreases below
107* It is remarkable that, when squeezing G and the relative quality of idler
memory Qyy../ 9. are fixed, the quantum advantage decays with
decreasing N7, which is consistent with the Rayleigh curse predicted
in ref. 27.

In terms of experimental requirements, while cavity quantum elec-
trodynamics (QED) techniques for state preparation requires Josephson-
junction-based superconducting conditions that is incompatible with
magnetic field, recent experimental efforts have demonstrated magnetic
field-resilient in-cavity squeezing based on kinetic inductance parametric
amplifier (KIPA)”**, which paves the way for in-cavity squeezing and anti-
squeezing in the presence of strong magnetic field. In comparison, non-
Gaussian states such as Fock state™ or GKP states*” generally requires
Josephson-junction-based superconducting cavity that is incompatible with
magnetic field. By rapidly coupling the signal out at the overcoupling limit,
the photon counting can be implemented outside the cavity using Josephson
photon-number amplifier”® without loss of information. It is noteworthy to
point out that in the case of SMSS, as quantum advantage over vacuum
requires a large gain GNt 2 1 in Ineq. (3), homodyne can, in fact, already
achieve close-to-optimal performance, not requiring photon counting.

Current axion DM searches (wherein the spectral scan rate is the figure
of merit”) typically operate in the regime Q,/Q,,S1"% with
Q.xion ~ 10°. This constrains discovery potential and, crucially, precludes
further enhancements to be gained from photon-counting schemes via
quantum probes, in accordance with Ineq. (5). However, this paradigm is
beginning to change’**’ (i.e., Q. ~ Quion) Setting the stage for quantum-
enhanced stimulated axion DM searches.

In the TMSS protocol, the assumption of a good quantum memory
for idler storage is plausible for an axion DM search because the signal
cavity is typically copper (or, more generally, non-superconducting),
and the idler storage cavity—which need not be bathed in a strong
magnetic field—can be superconducting. Indeed, recent progress on
coupling two cavities, e.g., in refs. 41,42, demonstrates similar cap-
abilities necessary for an entanglement-assisted scheme dedicated to
axion DM searches.

Due to the advantage requiring Q2 Quions the scan-rate is
approximately the same as the on-resonance axion signal case, and therefore
all the results generalize to the scan-rate as well, which we will elaborate in
broadband performance in scan-rate.

We formulate the transient in-cavity dynamics and detection in
Methods. A summary of notations and parameters is provided in
Table 1.

Quantifying measurement sensitivity

Our goal is to estimate the per-mode axion mean occupation number Ny,
based on measurement on the final state A(T). To enhance the performance,
we propose to engineer the input state as SMSS and TMSS (joint with
ancilla), which are compatible with the strong magnetic field”. In this
section, we analyze the performance of the protocols in terms of sensitivity.
We begin with the evaluation of the QFI K given SMSS and TMSS input,
which provide an asymptotically achievable performance for all possible
measurements on the final state, and then address the measurement scheme
to achieve the bound. As axion signals are accumulated within a finite time
T, we further convert the QFI results into the QFI rate R = /C(T)/T as the
figure of merit in choosing the optimal system setup. Furthermore, for each

Table 1 | Description of physical parameters and notations

Physical Parameters Description

Nt Background thermal occupation

VB Bath coupling rate

Qaxion X Ta Axion quality factor

Ta Axion coherence time

Ya Axion-cavity coupling rate

WA Axion center frequency (detuned from cavity
resonance)

lal? Axion flux

nj" Effective axion occupation mixed in the cavity mode

N,y = TA<|‘X|2> Average axion occupation

We Sensing cavity resonance frequency

Qeay x 1/T Sensing cavity quality factor

F=ya+vye Sensing cavity linewidth

nity=e ™" transmissivity of the cavity mode

Qidler Idler cavity quality factor

T Signal accumulation time

Ky aAc_Hom QFI for vacuum homodyne

Ky ac QFI vacuum limit

Ksmss QFI for SMSS

Kimss QFI for TMSS

R.=K/T Corresponding QFl rate

Annihilation operator Description

A(t) Cavity mode

ag,n(t) and ag Bath field and its temporal-matched mode

aan(t) and an Axion field and its temporal-matched mode

QFI quantum Fisher information, SMSS single-mode squeezed state, TMSS two-mode
squeezed state.

choice of quantum state, we optimize the waiting time T and define the T-
optimized QFI rate as R* = max R(T), with the corresponding optimal
waiting time T* = argmaxTR(T").

First, we provide analyses for the classical benchmark of passive
detectors, where vacuum input (subject to thermal photon Ny) and
homodyne detection are adopted (resulting in the “standard quantum limit”
for noise estimation’'). For the axion signal at detuning w, and waiting time
T, we can solve the QFI Ky xc_pom(w,, T) analytically. However, as the full
formula is lengthy (see Supplementary Note 1), we present the simplified
on-resonance (w4 = 0) Fisher information

Kyac—nom(ws =0,T) = 32(YATA)2

iT
e T 2Tz e
X

22 2Ny + 1)* (1% — 4)°

2
(r_%> + T (T, —2) +T1, + 2) (6)

As homodyne is not the optimal measurement for vacuum input, we
also evaluate the QFI of the in-cavity protocol using vacuum state as
Ky ac(wy, T) in Supplementary Note 1, which is known to be achievable by
photon counting measurement’” (see Fig. 6). We use the vacuum-state QFI
as a benchmark for the classical sources and demonstrate quantum
advantages over it with squeezed sources. Given detuning w,, the vacuum
QFI is

1

o 2
Konclwn T) = By, (DN -

@)
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where n<ff(T) is the effective in-cavity axion photon number Eq. (28).
Plugging in Eq. (28), the on-resonance vacuum QFI is

Kyaclwy =0,T) = 16(YATA)2
2

-2
e AT <TAF —27,Te “) 4+ (Try —2)e'T + 2) €))
X

2Ny (Ng + 1)1 (1273 — 4)°

Atthe asymptotic limit of incoherent axion signal I't, — 0, we can show that
the on-resonance vacuum-state QFI rate Ry ,c(wy, = 0, T) = Kypc(w, =
0, T)/T is optimized at Ty, =~ [-W_,(— 2%/5) —1]/T ~ 1.256/T, where
W_1(x) is the Lambert W function, which gives the -1th solution of w for
equation x = we". Such an asymptotic solution of T3, , can be understood
as the following. Starting from time zero, the axion signal first coherent
accumulates, and due to the coherence, one prefers to increase T2 74.
Afterward, axion signals can be modeled as incoherent additive noise with
mean occupation number in Eq. (29), which increases with T linearly, o
TN, when T 2 7. However, due to the weak coupling y, < 1, nT < N,
and the overall noise is still dominated by the thermal noise Ny. Therefore,
the QFI for estimating N, is o T*/Np(Ny + 1), where T* comes from change
of variable. This leads to a linear increase of QFI rate with T until the cavity
loss comes into play when T ~ 1/T and stops increasing thereafter.

For the quantum squeezed sources, we denote the QFIs using SMSS
and TMSS as Kgyss(wy 5 T), Kpyss(w 4, T). We derive and put the formulas
of Kgyiss(w 4, T) and Kryss(w 4, T) in Supplementary Note 1 as they are too
lengthy. Below we provide asymptotic analyses and numerical evaluations
to support Result 1.

Asymptotic regimes of squeezing gain G
We expect the performance to be enhanced by squeezing, while at low
squeezing gain G — 1, the squeezed state can perform even worse than the
vacuum state in noise sensing since the loss destroys the purity of the
squeezed states and induces extra noise, as predicted in refs. 25,27. Thus, we
are interested in the break-even threshold Gry; where R§ys /russ(Gra) =
Ry, ac overcomes the optimal passive detector of vacuum photon counting.
Prior results indicate that GS}=°° may be much larger than unity while
GIMSS may be close to unity. On the other hand, we expect the advantage
from squeezing bounded at the limit of G — oo, due to imperfections of the
system and finite axion coherence time. Thus we are also interested in the
saturation point Gsar. In sum, there are two asymptotic regimes of interest
for both SMSS and TMSS:

« sufficiently large gain G but not saturated, i.e. Gry < G < Ggats

* saturated gain G — oo,

The optimal waiting time T*(G) decreases as G increases, because the
quantum advantage is vulnerable to loss 1 — #(T)  T. For the same reason,
T* also depends on I, N, while we focus on its dependence on G here as G is
tunable. In the strong squeezing regime (G 2 Ggar), the waiting time
converges to the axion coherence time, T*(G — 00) — TX, because the
axion coherence is concentrated within 7,4 thus T* > 7, is required to
sufficiently extract the axion coherence by coherent accumulation of
duration T (see Supplementary Note 2).

Single-mode squeezing. In Fig. 2, we explore the on-resonance
advantage of the SMSS source over the vacuum under various squeezing
gain, G, and background thermal noise, Ny. When G < G%SS is small, we
see the performance of SMSS is worse than vacuum limit, until the
condition G G318 is satisfied, as shown in subplot (a). After crossing

the threshold, the advantage of SMSS grows linearly with gain G till

Fig. 2 | SMSS performance. Performance (a, b) 80

versus squeezing gain G with Np = 107 fixed;

¢, d versus thermal background photon number Ny
with G =40 dB fixed. a, ¢ Advantage (in dB unit) of
T-optimized quantum Fisher information rate

R* = max J(T)/T over vacuum state input;

b,d optignal waiting time T* normalized by axion
coherence time 7,4 (in logl0 scale). Solid lines: T
numerically optimized; Dot-dashed lines: asymp-
totic prediction with T = 2,/2N;7, /T'1,G. Purple
dashed lines: asymptotic prediction of linear
advantage Eq. (9) assuming non-saturated strong
squeezing Gsar > G > Gy, Ny < 1,14 < 1. In
subplot (a, b) we mark Gry (=20 dB here) and Gsar
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saturation at Gi\sS. We can obtain the analytic results of GS1%° ~ 1 /N
and GIMS ~ 2,/2N;/T'7, from asymptotics (see below), which agree
well with the numerical results as indicated by the two triangle points in
Fig. 2a.

To understand the above behavior, we first perform asymptotic ana-
lyses to obtain the asymptotic optimal waiting time for GI1i*° < G < Goxp®
where there is a quantum advantage. Assuming the above asymptotic for-
mula of G and Giys®, we find that the on-resonance SMSS QFI rate
Remss(wq =0, T) = Kgyss(wy =0,T)/T is optimized at
Timss = 24/2N1 /TG, in the incoherent axion and low noise limits, 'ty —
0, Nt — 0. The asymptotic optimal waiting time is verified in the numerical
evaluations in Fig. 2b, d. Compared with the vacuum result, we see that
larger squeezing requires a shorter optimal waiting time, as squeezing is
more sensitive to loss. This decrease of optimal waiting time saturates
towards 7, when G2 G255, By solving Tyes = T4 = 24/2N7 /TGS,
we can obtain GIYSS ~ 2,/2Ny/I't,, which is confirmed by the triangle
point in Fig. 2a. On the other hand, a larger thermal background increases
the optimal waiting time, as a thermal background makes the performance
more tolerant to anti-squeezing noise. Note that the discontinuity in the
waiting time is due to the competition between two local maximums, as we
detail in Supplementary Note 3.

Under the asymptotic optimal waiting time, we can perform further
asymptotics to confirm the numerical observations in Fig. 2a. First, when
G5 3 G > G5, we obtain the advantage over the vacuum state

Rsuss(wq =0, T = 2/2N;/TG)
Ryaclwy =0,T =1/T)

G?XI%S >G> G%I\I{[ISS — 2.455G1VT7

Iy, Ny — 0
©)

which linearly grows with G. At the same time, Eq. (9) also confirms the
threshold of advantage Gv>° ~ 1/Ny. In Fig. 2c, we verify the scaling of
advantage versus Nt. Equation (9) indicates that in order for SMSS to
provide a quantum advantage, we need GNt 2 1, which confirms the second
part of Ineq. (3) in Result 1.

With G2G3S and optimal waiting time T* =14, the ultimate
advantage of the on-resonance SMSS QFI rate over the vacuum QFI rate can
be well approximated by

Remss(ws =0, T =17,)

Ryaclwy =0,T = 1/T)
_ 0.665N
T Ty,

G—00;I'74 ,Ny—0

+ O(N;?).

(10)

The result above then places a requirement for quantum advantage as Ny/
I'z4 2 1. Considering the cavity quality factor Q,, o« 1/T and axion quality
factor, we obtain Q,; . /Nt S Q> which is the first part of Ineq. (3) in
Result 1. Combining Eq. (9), we have obtained the condition of Ineq. (3) in
Result 1.

Note that our physical model differs from the loss-fixed channel in
ref. 27. As shown in Eq. (2) and Eq. (27), the interaction time T deter-
mines both the loss and the axion coupling gain into the cavity, thus the
optimization of T is nontrivial and heterogeneous for different probe
quantum state. Hence, each quantum advantage shown in this paper is a
ratio of QFI rates optimized at different time, e.g., T = 74 for SMSS and
T=1/T for vacuum in Eq. (10), and thus under different bosonic loss
channels. In contrast, each ratio in ref. 27 is calculated under the same
loss channel.

Two-mode squeezing. We first derive results for imperfect idler storage
Figier/T > Np. For sufficiently large but not saturated G, ie,

GIMSS « G GIMSS, we find that the on-resonance TMSS QFI rate
Rormss(wy = 0, T) is optimized at

\/—N; 1+ I‘zidler/ FZ

Thares = 11
MSS T TG 14 Tge/T (1)

when I'ty, — 0 and Nt — 0, as verified in Fig. 3b, d. Setting the waiting time
saturating to the axion coherence time, T} ss(Ggar) = T4, We can solve the
saturation gain

1+ 1—‘Zidler/l—‘2 .

GTMSS ~ 2
1+ 1—‘idler/ r

SAT —

(12)

I'r,

Similar to SMSS, the TMSS advantage over the vacuum state linearly grows
with G as

Romss(@a = 0, T = Tryes)
Ryaclwy =0,T =1/T)

GanSG>GIMSS
Iy, Ny = 0;Tiger/T>Ny
— 1.283GN; (1 + ﬁ) .

(13)

We plot the predictions of linear growing advantage in dashed lines in Fig.
3a, ¢, which agree with the numerical evaluation well within
GIMSS « G GINSS. When T = T'giey, as both cavities has the same loss,
TMSS can be reduced to SMSS under balanced beamsplitter, and indeed we
find the rate advantage for TMSS ~2.566GNr in Eq. (13), which is almost
equal to that of SMSS in Eq. (9). From equation Ryys(G = GIMSS) =
Ry ac e solve the threshold gain GIMSS ~ [N (1 4 T/T,g.)] ' When G
approaches the saturation gain Gar®, the QFI rate is no longer represented
by Eq. (13). Instead, asymptotic analyses at G — oo leads to

Rrmss(wa =0, T =1,) 0.347Ny
Ryaclw, =0,T)

(14)

1—‘idler Ta

We plot the saturated advantage in the gray dashed line in Fig. 3a, which
agrees with the numerical evaluations at large G. The results above enforce
constraints for TMSS to be advantageous as Np/Tige7a 2 1. Note that
Q. X 1/T, Q in X T4, we obtain Q, /N1 < Q> Which is the first
part of Ineq. (4) in Result 1. Combining it with Eq. (13), we obtain the
condition of Ineq. (4) in Result 1.

For ideal idler storage Tige /I << N, the optimal waiting time is
Thnss = 2/GT, the advantage is

Romss(wq =0, T = 7,4)] GIMSS 35, G GIMSS

I'7y, Diger/T, Ny — 0
— 0.321G 4 O(Ny).

(15)

In this case, both the optimal waiting time and the advantage do not depend
on Nratall. By setting Rpss(G = Gryy) = Ry ac and Thyss(Gsar) = Ty
we solve the threshold gain Gry >~ 1/0.321 and the saturation gain Ggar 2 2/
I'ty. This explains the saturation at G ~80dB in Fig. 4a. The saturated
advantage is independent on Nr:

0.347
I,

Romss(wa =0, T =14)
Ryaclwy =0,T)

—
G—00;'7 liger /T,N7—0

(16)

The results above enforce constraints for TMSS to be advantageous as N/
NigerTa 2 1. Note that 9., x1/T, Q. X T, We obtain
Qion/ N1 < Oidier> Which is the first part of Ineq. (4) in Result 1. Combining
it with Eq. (13), we obtain the condition of Ineq. (4) in Result 1.
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Fig. 3 | TMSS performance. Performance with lossy
idler storage: a, b versus squeezing gain G, with
Np=10""fixed; ¢, d versus thermal background
photon number N, with G = 40 dB fixed.

a, ¢ Advantage (in dB unit) of T-optimized quantum
Fisher information rate R* = max J(T)/T over
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vacuum state input; b, d optimal waiting time T*
normalized by axion coherence time 74 (in

log10 scale). Dashed lines: asymptotic predictions
Eq. (13) assuming non-saturated strong squeezing
Gsar > G> Gry, Ny < 1, T'14 < 1 (Here
1.283(1 + ﬁ) = 2.566). Dot-dashed lines:

Asymptotic predictions on waiting time
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Result 1 and mitigating the Rayleigh curse

While our asymptotic analyses have confirmed Result 1, here we provide a
direct contour plot to show case how these conditions limit the region of
quantum advantage for resonant detection, i.e., w4 = 0.

In Fig. 5, we plot the contours of advantage versus the dimensionless loss
rate I't4 and pre-squeezing thermal background N for G = 20dB. In subplot
(a), we consider the SMSS source, the advantage is limited to the good cavity
regime I't, < 1, and the advantage significantly degrades as the environment
thermal noise decreases Nt — 0. Indeed, we can see the conditions in Inegs.
(3) (red dashed) precisely captures the region of quantum advantage (red
solid). By contrast, in subplot (c), the TMSS source shows an advantage
extending to noiseless case Ny < 1, which is the regime of our interest in
typical microwave haloscopes cooled to low temperatures. At the bottom left
corner in subplot (c), we observe a rapid degradation of advantage, this is
because the idler loss rate T4 = 107° begins to be comparable to the signal
loss rate I't4 at this disadvantageous corner. To keep the advantage, we see
that Ige/T' S GNr is required. Indeed, the boundary of quantum advantage
(red solid) is well captured by the Inegs. (4) as indicated by the red dashed
curves. The additional condition in Ineq. (5) also shows up on the top of
subplot (c) as in this region, the idler storage cavity is close to ideal, compared
to the sensing cavity. The optimal waiting time for both SMSS and TMSS are
shown in subplots (b) and (d) correspondingly.

Remarkably, in the limit of incoherent axion 7, — 0, the SMSS
advantage < G4/N7 in Eq. (9) circumvents the Rayleigh curse in ref. 27, as
we have stated in Result 1. The reason is that here the overall cavitylossis 1 —
#(T) =1 — e ™", which is always negligible for any finite cavity loss rate T at
the large gain G limit such that T’ 1/G — 0. This conclusion also holds for
TMSS with the advantage in Eq. (13) not even affected by noise Nt. For
strong squeezing limit G — oo, similarly both SMSS and TMSS advantages
in Egs. (10, 16) can be significant even at Ny <« 1 with I't4 — 0.

Measurement designs

With the input states and QFI rates in hand, we now proceed to analyze the
measurement protocols. As shown in Fig. 6, we consider the linear homo-
dyne measurement and the photon number counting measurement for the
three inputs: vacuum, SMSS, and TMSS, respectively. For vacuum, we also
consider heterodyne measurement as it has been found to yield a 3 dB
advantage over homodyne when the environment is noisy. For SMSS and
TMSS, we apply anti-squeezing S', Sg respectively before photon counting to
extract the quantum advantage from quantum coherence, which is known
as nulling receiver”. As a benchmark, we also consider the homodyne
measurement for SMSS and the Bell measurement (a balanced beamsplitter
followed by two homodyne detectors) for the TMSS input**** Similarly, for
each specific measurement, we adopt the same notation to denote the
achievable classical Fisher information as /C and the Fisher information
rate R.

In Fig. 7, we plot the performance of each measurement and the cor-
responding numerically optimized waiting time. In subplot (a), we consider
the low noise limit of Ny =0.01 and plot the QFI rate normalized by the
vacuum homodyne QFI rate, versus different squeezing strength G. For the
vacuum input, as no squeezing is involved, the QFI rate (black solid) has a
constant advantage over the vacuum homodyne. At the same time, it is
known that photon counting achieves this QFI rate. As we see in subplots (a)
and (b), for the SMSS source, when G is small and Ny is low, the SMSS-
NULL detection (blue points) shows advantage over homodyne detection
(blue dot-dash). However, SMSS only enjoy advantage over vacuum
photon-counting when G is large, where we see homodyne detection pro-
vides the same QFI-achieving performance, similar to SMSS-NULL. This
can be confirmed by asymptotic analyses in large G, and also agrees with the
intuition that homodyne is optimal for states with large occupation number
(as indicated by Ineq. (3) where GNy 2 1). Therefore, homodyne and
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Fig. 4| TMSS performance with ideal idler storage.
The layout is identical to Fig. 3: a, b versus squeezing
gain G, with Nyt = 107 fixed; ¢, d versus thermal
background photon number N, with G = 40 dB
fixed. a, ¢ Advantage (in dB unit) of T-optimized
quantum Fisher information rate over vacuum state
input; b, d optimal waiting time T* normalized by
axion coherence time 74 (in logl0 scale). Here the
asymptotic predictions of advantage (dashed lines)
and T (dot-dashed lines) are evaluated from Eq. (15)
and T = % respectively. Cavity parameters:
[74=10" Tigerta =102

RTI\'ISS*/RVAC* (dB)

(c)

(b)

g (d)

50 40 80 -6, —3 0.

G(dB) 1Og10 NT
— T optimized = T =2/T'G

60

SMSS™"* provide a route to achieve quantum advantage without relying on
photon counting in the large gain limit. On the other hand, the QFI of TMSS
(red solid) can only be achieved by the TMSS-NULL (red points), while the
homodyne-based TMSS-Bell measurement (red dot-dash) shows sub-
optimal performance. In fact, TMSS-Bell has a similar performance
to SMSS.

Broadband performance in scan-rate

In the section, we compare the in-cavity protocol proposed in this paper,
with the input-output protocol analyzed in ref. 25. In ref. 25, the probe is first
coupled into the cavity, then the in-cavity probe is driven by the axion signal;
finally, the probe is coupled out of the cavity for measurement. In the input-
output model, one has access to a continuous temporal output, which
consists of TAw/2r modes for observation T within a frequency bin of width
Aw>>1/T.In contrast, for the in situ transient model proposed in this paper,
only one output, i.e., the total accumulated in-cavity field A(T), is measured
after a time T. Below, we introduce the spectral scan rate as the figure of
merit of various dark matter search protocols.

Defining the spectral scan rate. In this section, we begin with a general
derivation of the scan-rate, not assuming specific detection approaches;
Then, we connect to the in-cavity detection approach. Consider the
axion photons located in a lineshape N'*“(w) centered at an unknown
specific frequency ws, € [—B/2, B/2]. We use the notation w,, to dis-
tinguish from the previous notation w4 = ws, — w,, which is relative to
cavity resonance frequency w,. Also note that for in-cavity protocol, this
is a delta function as the random-phase-induced linewidth has been
already included in the calculation of QFI. To scan the spectrum for the
axion, the cavity resonance frequency w, is shifted at a constant interval
after each detection, as a sequence [— B/2: e: B/2]. To cover the whole
bandwidth B, B/e rounds of detection is needed. For each detection, we

denote the general QFI rate as J(w,, — w,, T)/T, to distinguish from
the in-cavity approach notation of XC. In each round, we assume that one
can obtain information for various different frequencies jAw. Note that
in the in-cavity protocol, a delta-function Ny*(w) dictates that infor-
mation is only for a single frequency. For N = B/e rounds, the average
QFI rate in the N measurements is

N/2 : i
Y S g N aa e
n=—N/2 j
N/2 % do
= DI — J(w — ne, T)|E91\,AN(/‘;’“((4))|2
n=—N/2 —00 2m

B/2 0 dw )
5 / do, / o= T (@ — ., DIdy, Ni* (@)
—B/2 —oo 27 *

17)
®° do B/2 0
=i ) ded@- e D N @
—o0 2T —B/2 4
(o] geel d ®
=p | [ e n]-| [T St N
00 J _oo2m
o 1 J
:%/ﬂcdwj(w,T)-aEE,
where J is the spectral scan rate defined in ref. 25:
1 (o]
== [ T (18)
T —00

which has the unit of Hz/sec, where J(w) = J(w, T — 00). In the first
“~”0of Eq. (17), we have taken the Aw — 0 limit; in the second “ ~”, we
have taken the € — 0 limit. The last “ ~” is taking the B — oo limit. Here,
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Fig. 5 | SMSS and TMSS performances. a, b SMSS
performance advantage in comparison with the

asymptotic quantum advantage requirement Result
1. a Quantum advantage (in dB unit, x (dB) = 10
log, ,x) of T-optimized quantum Fisher information
rate R* over vacuum state input versus various
cavity linewidth I (normalized by axion linewidth 1/
74) and thermal background noise Nt. The break-
even thresholds of 0dB quantum advantage are
marked in red solid curves, while the asymptotic
predictions on them in Ineq. (3) are indicated in red
dashed curves. b Optimal normalized waiting time
T*/(1/T). ¢, d TMSS performance in comparison
with Result 1, with a similar layout with subplot

(a, b), where the asymptotic predictions on break-

even thresholds are from Inegs. (4, 5). For all four

10%10(FTA)

subplots G =20 dB. For TMSS, T,74 = 10°°.

10!

—6
—6 —14 -2 0
logyo Nt
we define the coherent time of axion to be 7, = wherewe have defined the spectral scan rate K as the average spectral QFI

1/ [, %9y, Ny*(w)|* in a general sense, consistent with the steady-
state limit of the phase jump model which yields a Lorenztian
lineshape®. Here, we have assumed a fixed axion resonant frequency
w4 and obtained the scan rate formula. If one assumes a prior on w,,
and takes a Bayesian approach, the same scan-rate formula can also be
obtained due to the frequency translational symmetry of the problem,
as we detail in Supplementary Note 5.

The per-measurement QFI in Eq. (17) general. In the input-output
model of ref. 25, we have taken the steady-state limit T — oo, because the
per-measurement QFI J - TAw is proportional to T; while the in-cavity
QFI K(w, T) saturates for large T and we choose T that maximizes the QFI
rate K(w, T)/T. Note that, in general one needs frequency-resolved spectral
detection to achieve Eq. (18), different from current input-output
experiments®’.

For the in-cavity protocol, the first line of Eq. (17) (before the con-
tinuous limit) can be further simplified by taking a single mode TAw/2m =1
and N3*(w) = N 404, (where 8, is the Kronecker delta with discrete
values variables x, y), because we have included the lineshape due to phase
jump in the calculation of K. Thus, the average QFI rate for the in-cavity
protocol is

N/2

rate-bandwidth product

o0

K= / dw —IC(a]): D (20)
—00
which has the unit Hz/sec. We integrate the QFI rate over the bandwidth,
because in the spectral scanning, both the spectral scanning speed and the
precision (QFI) of each detection are desired to be maximized. As a figure of
merit, the scan rate is the precision-bandwidth product per second.

To achieve the same precision requirement in terms of the square of
signal-to-noise ratio (SNR?)*, the minimum scanning time is

2 2

SNR ~B7SNR -B7 1)
J K

for the input-output protocol and in-cavity protocol, respectively. Now, it is

clear that .JJ, K characterizes the rate of achieving a precision-bandwidth

product.

Bandpass-limited detection versus spectral receivers. Now we
compare a transient in-cavity scan rate versus the input-output scan rate,
assuming spectral resolution for the latter. For simplicity, we consider

1 Z Klwy — ne, T) vacuum input, as the relative advantages of SMSS and TMSS over the
N n=—N/2 T vacuum limit is understood in previous sections. Using Eq.(42) in ref. 25,
N/2 we obtain the optimal scan rate of the input-output protocol with photon
- Z gM (19)  counting on each spectral mode,
Ne T
n=—N/2
“BJ) o ¢ T - B’ 27Ng(Np+1) (y4 + 7))
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(a) Vacuum + homodyne
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(b) Vacuum + heterodyne
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(c) Vacuum + photon counting
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Fig. 6 | Schematic of the measurement protocols being considered. Specifically, we
plot the linear homodyne measurement (a, d, f), heterodyne measurement (b), and
the photon number counting measurement (c, e, g), for the three inputs: vacuum
(a-c), SMSS (d, e), and TMSS (£, g), respectively. All modes S and A are initially in
vacuum (up to inevitable thermal noise due to limited cooling).

In Fig. 8, we find that in-cavity detection K and input-output detection . are
comparable at the good cavity limit of I' < 1/74. Indeed, K beats .J by a
constant factor of 3dB.

On the other hand, at the bad cavity limit I' > 1/7,, spectral photon
counting in the input-output protocol (J) beats in-cavity detection (K) by a
factor of I/(1/7,4). This is because for the input-output protocol, one obtains
the output signal over along integration time window T>> 1/T, 1/74, and can
presumably count photons in the Fourier domain, which effectively collects
all temporal signal bins over a time duration of 7,4 coherently. By contrast,
the waiting time T in the in-cavity protocol is limited to 1/T' < 7,4, which
effectively operates the parallel bin measurement strategy into N =~ 7,4/(1/T)
bins. As predicted by our comparison between the coherent accumulation
strategy and the parallel bin measurement strategy (see Supplementary Note
2), coherent collection via spectral photon counting achieves an advantage
by a factor 7,T = Q, 00/ Oy When Q2O ... Hence, one desires a

cav*
spectral photon counter or high-quality signal cavity (Q,;,, SQ.,,) in order
to maximize discovery reach for axion DM searches.
While an enhancement via quantum probes are achievable for high-
quality signal cavities (ie., O, /Quion>1), there exists a threshold
squeezing (or, more generally, a threshold occupation, N, of the input

quantum probe), above which no further enhancement can be gained. This

is not an intrinsic limitation but, rather, an artifact of the detection methods
currently used (and also considered in this paper). In particular, our
detection scheme consists of counting the photons of the cavity mode A(T)
within a time T, thus effectively counting photons within a single bandpass
~1/T (cf. refs. 15,19,20). Consequentially, the sensitivity of such bandpass-
limited measurements depends on the ratio of the axion bandwidth and the
signal cavity bandwidth, respectively". This stimulated bandpass effect, in
turn, constrains the advantage to be gained from stimulated DM scanning
protocols using bandpass-limited photon counters.

To bypass the bandpass limitation, a spectral photon counter, capable
of counting photons in individual frequency bins, is warranted®. Such a
device necessitates, e.g., coupling the signal to an array of narrowband single
photon counters (each centered at different frequencies) or requires an
advanced light-matter interface functioning as a multiplexed quantum
memory (see, e.g., Section VLA of ref. 27 for further discussion of the latter).
A spectral microwave photon counter would be a powerful quantum
technology but currently seems out of reach. We have therefore opted to
investigate what can be achieved with minimal quantum resources (e.g.,
bandpass-limited photon counting, as well as Gaussian-state probes),
demonstrating regimes of quantum enhancement even under such limita-
tions. In contrast, note that linear detection schemes (e.g, HAYSTAC™*)
measure output fields continuously and, thus, can operate as spectral
receivers” (i.e., measure power spectral densities). However, as is well
known, such linear detectors are limited by vacuum fluctuations and require
large squeezing values to compete with optimal photon counting methods
(cf. ref. 47).

Discussion

For entanglement-assisted protocols, a good idler storage cavity may be
achieved by superconducting ones since that cavity does not need to be in
the presence of the magnetic field. In addition, in the distributed sensor
network™, where multiple sensors are deployed to search for axion,
entanglement ancilla becomes even more practical as a single ancilla storage
cavity is sufficient to enhance the entire sensor network’s performance.

Typical stimulated axion DM search experiments, primarily HAYS-
TAC’s squeezed state receiver’”, engineer probe states in a different
manner than that proposed here. In particular, HAYSTAC’s squeezed-state
receiver’” engineers the quantum state of extra-cavity fields—i.e., input
and output fields that impinge on and exit from the cavity, respectively—
rather than in situ engineering of the intra-cavity field considered here (see
also refs. 41,42) In principle, there is no difference between extra-cavity state
engineering protocols versus in situ state engineering protocols. However, in
practice, the former may introduce finite “injection” losses (e.g., transmis-
sion line losses, extra coupling losses, etc.) when reflecting itinerant probe
states off the cavity. These injection losses will severely limit the performance
of Gaussian probe states, in accordance with the Rayleigh curse”. Thus,
in situ state engineering (analogous to the recent CEASEFIRE protocol*"*?)
is crucial for Gaussian-state probes when photon counting is implemented
at the measurement stage.

Finally, we note that there exists other strategies for the quantum
advantage that can bypass Rayleigh’s curse. For instance, a Fock state
receiver was recently implemented for a dark photon DM search® (for
theoretical analyses, see refs. 26,27), which is more robust to loss 1 — # with
optimized photon number at the asymptotic limit of weak signal and ideal
cooling Nt — 0 given fixed loss, due to the non-Gaussian nature of a Fock
state”. However, in this paper, we point out that loss can also be optimized to
1 — #(T) — 0 to maintain the quantum advantage. Besides, with current
technology, it requires Josephson-junction-based superconducting ele-
ments (e.g., a superconducting control qubit) within the signal cavity to
generate the Fock state, thus presenting a hurdle for axion DM searches
where the signal cavity is immersed in a strong magnetic field. One could
instead prepare propagating microwave photons in a Fock state and count
the photons reflected off the signal cavity. In principle, this flying Fock state
technique is feasible with an external Josephson-junction-based super-
conducting device. Though, to the best of our knowledge, such has not been
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Fig. 7 | Quantum advantage comparisons.

a, b Quantum advantage in Fisher information rate (a)
over the classical protocol using a vacuum-state
source with homodyne measurement (VAC-HOM),
with waiting time T optimized; ¢, d Optimal waiting
time T™. a, c Plotted versus squeezing gain G in
decibel unit, N = 0.01; b, d Plotted versus noise N
in logarithmic scale, G = 10 dB. For all four cases,
Ity =10" Tigierta = 107° Solid lines are indepen-
dent of measurement. Dot-dashed lines are for

w
o

conventional quantum measurements: SMSS-
HOM, SMSS source with homodyne measurement;
TMSS-Bell, TMSS source with Bell homodyne

R*/RVAC—HOM*(dB)

measurement”**; VAC-HET, vacuum source with

heterodyne measurement. Dots are for our mea-
surement proposal: TMSS/SMSS-NULL, TMSS/

SMSS source with nulling receiver measurement.
For the nulling receiver, we choose the anti-

squeezing gain G* such that the support of the
output state is the photon-number basis, which is
asymptotically optimal at the limit Ny — 0%. For
large G SMSS-HOM always achieves SMSS-QFI,
verified by aymptotic analysis at G — oo.

-1 M ____________________

55 5023, 0 3.

G/dB

— TMSS --- TMSS-Bell — SMSS - SMSS-HOM — VAC .-.. VAC-HET

e TMSS-NULL

e SMSS-NULL

developed that demonstrates both high fidelity and low propagation (or
injection) losses for the purpose of quantum sensing. Finally, when these
technology barriers are resolved, one can also consider applying loss opti-
mization in this work to the case of other quantum probe states (e.g., Fock
states), to obtain the best quantum advantage.

Methods
Formulation of cavity dynamics and detection
Our overall protocol involves preparing the cavity mode A(0) in a certain
quantum state, evolve for time T, and then perform measurement on the
cavity field A(T) to infer information about axion. To begin our analyses, we
solve the dynamics for the intra-cavity field, A(T). As T is finite, previous
models based on long-time analyses™** does not apply.

We consider a resonator in a bath with thermal population
Ny = (eM/ksTs — 1)71, where w, is the resonator frequency and T} is the
bath effective temperature. The resonator has a non-linear element able to
operate in a large magnetic field. In addition, we assume that it is possible to
generate high squeezing in a short time. This is the case, for instance, of
KIPA™™,

The cavity mode A(f) interacts with an axion field, governed by the
Langevin equation

QAW = S AW+ T+ ran (2D

where ag;,(f) and a, ;,,(f) are respectively the bath field and the axion field,
yB, Y4, and I' =y, + yp are the coupling rates, and the equation is written in
the rotating frame of frequency w,. For a summary of notations and para-
meters, please refer to Table 1. We assume ag,(t) to be a white thermal

noise, satisfying the commutation relation [ag ;,(), a;in(t’)] =48(t—1)
and having the autocorrelation (“;.in(t,)“B,m(t)) = N0(t — t'). The
observable effect of the axion field is to displace the cavity mode with a
random phase in time. This is modeled by choosing a, ;,(f) in a coherent
state with amplitude o(t) = |a|e®a’+4®), where w, is the detuning
between the axion and the resonator frequencies. |a|* gives the photon flux
of the axion field, which is determined by the axion mass and local DM
density”. In this paper, we consider the estimation of the occupation
number per axion mode, N, = |a|’74, where 74 is the axion coherence time.
When the impinging direction of dark matter is unknown, the effective ||’
in phase with the detector spatial mode can be a random variable, we define
N, = < ax]? > 7, as the mean occupation number in general. The phase 04(f)
is a classical random variable. We heuristically model 0 subject to a random
phase jump as follows: If a jump has occurred at time ¢, the next jump will
occur at time ¢ 4 ¢ with probability p(t') = e=*/%a /7, where 7, is the
coherence time of the axion. At each jump, the phase is sampled uniformly
at random in [0, 27). Since the initial phase is also unknown and sampled
uniform at random, the amplitude « is randomly distributed over the circle
of radius « in the phase space. The state of a 4 ;,, is thereby fully dephased and
diagonal in the photon-number basis, which is defined by the central
moments. We derive the two-time correlation of a(t) as

Ela (D)a(r)] = (Jaf)en Dl rl/m e

The solution to Eq. (23) is the linear relation (also shown in Eq. (2))

A(T) =~ /n(T)A(0) + /1 — n(T)ag(T)

(25)
+ )’A(I}W(T))aA(T).
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Fig. 8 | Scan rate for vacuum. The scan rate ratio of (in-cavity) bandpass-limited
photon counting K over (input-output) spectral photon counting .J in logarithmic
scale, versus the cavity loss rate T, using a vacuum state input. Ny = 10™*. For the
input-output method, intrinsic loss rate y, =I'is chosen to be equal to the in-cavity
method, coupling out rate y, is optimized to be 2y,.

where #(t) = e™". Here, we have assumed a very weak coupling of the
resonator with the axion field, i.e.,, y4 < y5. Also, we have introduced the

temporal-matched modes  a, p)(T) = ,/% . g V(T = 1)a gy

(7)d7. The mode ag is in a thermal state with an average photon number
Nr. The state of mode ay is fully dephased and defined by the central
moments, due to the aforementioned random phase jump. The second
moment of a, can be obtained via

T T
<aZaA>=1rL’;)T) / / S 2R o (Da(T)drdr. (26)
- 0 0

Computing Eq. (26) using Eq. (24) we obtain

(@has) = Ny - g(T.T.ay,7,), 27)
where g is a lengthy dimensionless expression (see Supplementary Note 1).
Finally, the effective axion occupation number mixed in the cavity mode A
at time T'is

iy = 201D g ) @8)

At the good cavity limit of I' — 0, we have

eff 2 *,l
ny — 2« yATA[TA<e A—l)—i—T] 29)

We see that the photon flux n< / T is maximized at T — co. Indeed, for T —
0, niff o T2, while for T — oo, nfff xT.

In principle, all central moments are needed to define the state of a.
However, we note that the axion coupling is extremely weak such that
/Vala|<1, thus the moments of , /y, « beyond second order are negligible.
Thus we adopt the Gaussian approximation that ignores the higher order
terms, which significantly simplifies the calculation workload as the
resulting states are Gaussian and formulas of Gaussian-state QFIs are well
known™. Specifically, we assume that the per-mode axion occupation
number |a|*z, is a random variable subject to an exponential distribution
with mean Nj. Indeed, we assume that Pr(|a|*r, = x) = e */Na/N,,
which means that a, is in a Gaussian thermal state with mean photon
number Nag(T, T, wa, 74). To justify such approximation, in Supplementary
Note 4 we show that the quantum advantage curves of the exact non-
Gaussian model with || fixed are approximately the same as in the case of
Gaussian in ref. 25. With such approximation, Eq. (25) represents a bosonic
thermal loss channel® from the initial field, A(0), to the final field, A(T).

Data availability
The data supporting the findings of this study are available from the first
author upon reasonable request.

Code availability

The theoretical results of the manuscript are reproducible from the analy-
tical formulas and derivations presented therein. Additional code is available
from the first author upon reasonable request.
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