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Nonlinear phase gates as Airy transforms
of the Wigner function
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Low-order nonlinear phase gates allow the construction of versatile higher-order nonlinearities for
bosonic systems and grant access to continuous variable quantum simulations of many unexplored
aspects of nonlinear quantum dynamics. The resulting nonlinear transformations produce, even with
small strength, multiple regions of negativity in the Wigner function and thus show an immediate
departure from classical phase space. Towards the development of realistic, bounded versions of
these gates we show that the action of a quartic-bounded cubic gate on an arbitrary multimode
quantum state in phase space can be understood as an Airy transform of the Wigner function. This
toolbox generalises the symplectic transformations associated with Gaussian operations and allows
for the practical calculation, analysis and interpretation of explicit Wigner functions and the quantum
non-Gaussian phenomena resulting from bounded nonlinear potentials.

Versatile quantum simulation with bosonic systems requires a universal set
of gates incorporating at least one, often experimentally demanding, non-
linear operation. One such gate set is composed of linear phase gates
(alongside the Fourier transform) and at least one nonlinear phase gate,
which together are central components of universal quantum information
processing with continuous variables'”. The lowest order nonlinear phase
gate’s effect on the Wigner function is highly nontrivial, contrasting with the
simple and analytically expressible transformation of the phase space
operators associated with linear phase gates. Whereas linear phase gates
merely displace and shear the Wigner function, even preserving Gaus-
sianity, a nonlinear phase gate introduces complex oscillations, sub-Planck
structures and negativity’. Such features appear as the outcome of quantum
interference between the larger positive phase space structures associated
with the classical approximation to the dynamics. This quantum inter-
ference, also associated with the nonlinear dynamics of fully continuous
variable systems, creates Wigner functions fundamentally different from
those generated by finite polynomials modulated by a Gaussian envelope
such as Fock states or finite superpositions of them®, or the discrete and
localised quantum interference of Gaussian states represented by the cat
states’, compass states’ or even GKP states’. These states are typically
inaccessible via unitary processes acting on localised (e.g. Gaussian) states.
The quantum non-Gaussian states resulting from continuously nonlinear
dynamics qualitatively show shallower interference fringes that are more
broadly spread throughout phase space.

The classification of such states faces a further complication once non-
pure states are involved. While pure states possess positive Gaussian Wigner
functions, and are otherwise negative®, the classification breaks down for
mixed states'®"". Instead, the set of Wigner positive states is found to be a
proper superset of the convex hull of the Gaussian states, so that there are

mixed non-Gaussian states with positive Wigner functions'”. Therefore,
understanding nonlinear gate operations on mixed states in terms of the
Wigner function is essential. The method we describe below is independent
of the purity of the initial state and thus facilitates investigations into such
operations.

The prototypical nonlinear phase gate is the cubic phase gate,
which comes with an associated set of cubic phase states resulting from
its application to Gaussian states. It was recognised fairly early that the
Wigner function of the cubic phase gate acting on the unphysical
momentum eigenstate is in fact an Airy function of the canonical
variables’. This continues to be the case when the unphysical
momentum state is replaced by the physical harmonic oscillator
ground state" or even by an arbitrary Gaussian state'’. However the
cubic nonlinearity is unbounded from below, which provides another
possible source of unphysicality'>'® or may provide resources inac-
cessible to lower-bounded Hamiltonians. In order to compensate for
this the Hamiltonian must be bounded by a higher-order nonlinearity'
>!°, In this article we provide an analytic description of the effect of
cubic or quartic phase gates acting on an arbitrary density operator in
phase space in terms of Airy transforms of the Wigner function. This
more general result allows universal gate sets for quantum computa-
tion to be in principle implemented fully analytically. Additionally,
towards a deeper understanding of continuous nonlinear dynamics in
the large mass regime (or, equivalently, in the short time regime), the
combined effect of these gates allows examination of the quartic-
bounded cubic phase gates and their critical comparison to unbounded
cubic gates and tilted double-well gates. This opens a new road to
investigate and simulate highly nonclassical phenomena through the
Wigner function.
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Results

Airy transforms of the Wigner function

The Wigner function in phase space is the best candidate to represent the
nonclassical and quantum non-Gaussian aspects of states resulting from
nonlinear dynamics in systems of bosonic continuous variables. Sig-
nificantly,  individual = points of the  Wigner function
W(q, p) = - Tr(D(q, p)TID' (g, p)p), of the quantum state p, are directly
measurable  via  interferometry = via  the  parity  operator
0= [dx|—x){x| = (—1)‘;“, where a is the bosonic annihilation
operator'”'®. The displacement D(q, p) = evnl@tiPa~@=Da) San over
the phase space, similar to other interference experiments, to extract
information on phase space superpositions. The Wigner function can be
reformulated" as the Fourier transform of the anti-diagonal of the density
operator

1 2ipt
Wig.p) = [ eFlg—tplg + . m

expressed in the coordinate basis corresponding to 4. Note that this defines
a convention for the Fourier transform, which will be adopted later in the
discussion of Airy transforms. It follows that the inverse transform produces
the anti-diagonal as a function of t from the Wigner function, that is

- tholg +1) = / e W(g.p)dp @

As is well known, the Wigner function forms a quasi-probability
distribution for the phase space variables g and p, corresponding to the
canonical operators satisfying the commutation relation [g, p] = i%.
Unitary transformations of p, whether representing dynamics or
quantum gates, can then be interpreted directly as transformations of the
Wigner function. Unitary transformations that are bilinear in the operators
q and p, called Gaussian unitaries, correspond to linear symplectic maps S of
the phase space variables for the Wigner function”'. The Wigner function is
transformed by the applying the corresponding symplectic matrix S to these

variables. Collecting the phase space variables into a vector x = (Z), we

write
W(x) —> W(Sx). (3

In particular, the phase gates take the operator form U, = e %" and
implement the following unitary transformations on the quadrature
operators

U,qUs =4 )
UpU, = p+y0"" = S,(). 5)

Note that for later notational simplicity the ordering of the unitary operators
is reversed compared to normal time evolution. By applying these phase
gates directly to p in Eq. (1) the Wigner function is transformed into

1 2ipt
W(g,p) = E/ e7p<q —t|U,pU}|q + t) dt (6)

1 R
= %/ er e @0~ (g _ tlplq 4 t) dt . )

This amounts to the addition of an extra phase term in the Wigner function
integral. For n = 1,2 the new exponential term is linear in £, and this amounts
to a relabelling p — p + yq"~", corresponding to the symplectic map S,,.
Then the integral is still interpreted as a Wigner function, with a linear
transformation S, (p) of the momentum variable with respect to the

original. That is, W(q, p) kil W(q, S,(p)) for n = 1, 2. However, for non-
linear phase gates (1 > 2) the transformation of the Wigner function does
not correspond to the nonlinear transformation S,,(p) for the phase space
variables of the Wigner function. Furthermore attempting to apply the
transformation in this way does not recover the Liouvillian density in the
classical limit’.

To illustrate this difference concretely, consider the case # = 3 where an
extra exponential term appears which is not linear in the integration variable
t. That is,

2ip+yg)t

W( )E;i/ e’%t3e g
q;p h

(q—tlplg +t) dtz=W(q,S5(p)).  (8)

The extra phase et prevents the interpretation of the integral as a
Wigner function with a simple transformation of the phase space
variables, unlike the case of Gaussian unitaries. Remarkably even in
the case n = 4 the extra exponential term involves only the cube of
the integration variable.

Indeed, for both 1 = 3,4 it is possible to interpret this integral as the Airy
transform of the original Wigner function, along with the nonlinear
transformation of the momentum variable S, (p). Let us first introduce the
Airy transform.

The Airy transform

function f{x) with the family of Airy functions Ai (x; &) = 57 [ el dg,

*>* is defined as the convolution product of a

For our purpose it is useful to let a — %cx so that Ai(x;a) =
1

(22 2 . . ..
I ¢!+ dz and we may write the convolution product explicitly as

nh|a|
Af1(x) = f * Al (x; ) )
1 i é Z(x;;‘r)z
ol [

L[ als)p(2
=z | <) ay
where f is the inverse Fourier transform of f using the aforementioned
Wigner function convention.

We now return to the effect of the nonlinear phase gates Us and Uy in
phase space [see Eq. (6)]. It will be useful for what follows to make the
substitution ¢t = Z with a20 € IR, where we now write explicitly

1 28300 ;21 3 z z
e o esadn < - — + 7> dz
hlal / q-lpla+

W(g, p) 3
(12)

2iS4(p)z 219 3

U, 1 24, z z
_—— a a3 R —
W(q,p) nhlaI/e "e e <q alp|q+“>dz,

and we have used the symplectic map S,, notation introduced earlier. Note
that if a < 0 then the integration limits swap in the sense [* _— [~ *.To
return to the standard order a minus sign is factored out, resulting in the
absolute value |«.

To interpret these transformations as Airy transforms, consider the
Airy transform of the Wigner function W(g, p) with respect to S, (p). We
may write this as

[ ) [ g e

AW, o) = [ {5 [ etwign 20t (13)
I B R I 0 AP
—ﬂma'/ e " <q+alp|q a>dz7 (14)

where we have used the inverse Fourier transform to retrieve the anti-
diagonal of the density operator from the Wigner function. It is immediate
that an appropriate choice of & in the Wigner functions of Egs. (12) results in
identity with the Airy transform. Explicitly, we have a« = (%) for n=3 and
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1
a= (232)° for n = 4. That is, if p is a density operator and W(q, p) its
corresponding Wigner function then the transformation of the density
operator p — U, pU’, n=3,4, corresponds to an Airy transform of W(g, p)
with respect to p in the form

W(%P) g 'A%zx[w]('sn(p)) ) (15)

where we have written the Airy transform such that standard transform
pairs can be immediately used”. This shows that the action of cubic and
quartic phase gates can be explicitly calculated in phase space. In the case
that an impure p is explicitly decomposed into a convex mixture of states, the
linearity of the Wigner function still allows for the direct calculation of the
effect of the cubic and quartic phase gates. For comparison with direct
integration of the Wigner function see Appendix II. Note that for n > 4 the
nonlinear phase gate exits the Airy form. This can be seen by considering the
case n = 5. The new exponential terms in the Wigner integral (c.f. Eq. (8))
can then be expressed as

s e 2yat HSip)

(16)

The rightmost term is linear in the integration variable ¢ and corresponds to
a transformation of the phase space variables. The middle term, cubic in ¢, is
an extra phase that prevents interpretation as a Wigner function, but that
may be interpreted as an Airy transform, as for the cubic and quartic phase
gates. However the leftmost term contains £ which prevents any inter-
pretation as an Airy transform. Despite this difficulty, many higher order
operations can be decomposed into a universal gate set containing either
cubic or quartic gates, each member of which corresponds either to the Airy
transforms we have described or the well-known symplectic transforma-
tions associated with Gaussian operations™. Therefore the Wigner functions
resulting from higher order operations can still be obtained, given that both
the Airy transform exists and the decomposition into the cubic or quartic
gates can be found.

The Wigner functions after the application of the nonlinear phase gates
for some specific initial states now follow directly from standard Airy
transforms™. Firstly, if the initial state is the ideal momentum eigenstate,
then we have the Wigner function W(gq, p) = 8(p). Using A,[6](x) =
Ai (x; ) the Wigner function after the nonlinear phase gate is

W(q,p) = Ai (S,(p);a), (17)

which compares favourably with a direct calculation when « is selected as

detailed above. The Airy transform of the Gaussian function f(x)=

. _ew?

202 i
oo e 1S

A1) = = 2 () A (ﬂ L1 (z)‘*) _

(18)

|ex| a 4 \a

That is, the Wigner function of any initial Gaussian state must be trans-
formed by the cubic or quartic gates into an Airy function of the phase space
variables. A full decomposition of any pure or mixed Gaussian state in terms
of the mean values and covariance matrix elements is given in the methods
section below (see also ref. 14).

Observation: It follows directly from the analytical form of the post-gate
Gaussian states that the cubic or quartic phase gates produce negativity in
the Wigner function regardless of the impurity of the initial Gaussian state,
even if the negative volume is vanishingly small. This can be seen from the
fact that the factors multiplying the Airy function are always positive,
whereas the Airy function itself must always be negative at some point. This
analytical result is striking as such extraordinary robustness is difficult to see

numerically because negative values become close to zero quickly (see
Appendix I), exemplifying the power of the analytical method. Note the
contrast with the semiclassical squeezing effect of the Gaussian quadratic
phase gate, which vanishes for some thermal distribution.

We now turn to the nonlinear phase gate acting on a multimode state.
Suppose that we have an N-mode state ¢ and we wish to evaluate the action
of U,, on mode i. The Wigner function is expressed as

ﬁpt ) ., .,
w(q,p):/ e ikt @+ (q — tiglq + t)dt  (19)

rY ()N

where we have upgraded the phase space quantities to vectors in RY. For
ve RVletvi=v)\ {v;} € RN, Then we may write

1 I . . 1 iy .
- aliti o=@ — )" —(q;+1)") APt g — i )
W(q,p) = ﬂh/ erbilie™"n <(nh)N—l /R‘ e®"'(q — tlolq + t)dt >df1

(20)

= AJ[WIS,(p) 21

where o must be chosen appropriately. That is, the action of the nonlinear
phase gate corresponds to an Airy transform of the multimode Wigner
function with respect to the target momentum variable. The only explicit
example we know of is the cubic-phase entangled (CPE) state™, which we
recalculate in Appendix IV using this method. Decomposition of the quartic
phase gate U, (involving an ancilla mode, and therefore requiring
multimode analysis) and the continuous variable Toffoli gate e#i1%:4> may
be given in terms of a universal gate set involving the cubic phase gate, as well
as many others™.

The universal gate set for continuous variable quantum computa-
tion can in principle now be implemented entirely in phase space, with
the linear phase gates and the Fourier transform corresponding to linear
symplectic transformations of the phase space variables and the cubic or
quartic phase gates corresponding to Airy transforms of the Wigner
function with respect to the nonlinear symplectic transformation of the
phase space variables. We also note the connection that linear trans-
formations can be implemented via convolution of the Wigner function
with a Gaussian function, whereas for cubic and quartic phase gates the
correct transformation is achieved via convolution with an Airy
function.

Application: quartic-bounded cubic gates

Since the cubic and quartic phase gates commute it is possible to repeat this
calculation for their combination, and find the transformation in phase
space corresponding to the physical, lower-bounded, unitary transforma-
tion U, , = i +5d"), representing a realistic unitary cubic gate. In this
case, we find that the Wigner function, in the form congruent with Eqgs. (12),
may be written

Uss 1
h|a|

9 2iS3 4(p)z 2i (V3 3 z z
W(.p) / e = 6"3"(33+y4q)z <q + 2 lplg — E>d27

(22)

where we identify S ,(p) = p + y;4* + y,4° as the transformation of p
associated with Us,. This is indeed another Airy transform with
a=[(32) L+ 74’1)]%‘ For y, < y; we obtain a quartic-bounded cubic
phase gate, which represents a transformation in a physical lower-bounded
potential >'°. That is, the transformation for a quartic-bounded cubic phase
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Fig. 1 | Application of Airy transforms to analyse physical bounded nonlinear
phase gates. The upper row shows the cubic phase gate U; with y; = 2, and the
quartic-bounded cubic phase gate Us; 4 with y; = 2 and y, = 0.2. The bottom row
shows the TDW gate generated by the unitary operator U,y = exp[— 4 (—18 +
154 — 24 + %2 4*)] with the same y,, approximating the quartic bounded cubic
potential. The effect of lower bounding the cubic gate is to limit the dynamics for
negative position and momentum. The TDW is a poor substitute for the cubic phase
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gate at the level of phase space representation, also reflected in the nonlinear
squeezing. All gates take the harmonic oscillator ground state as the initial state with
h =1and the insets are the equivalent cubic, quartic and tilted double well potentials
V(g) forming the gates. For the nonlinear squeezing the black dashed line is the
threshold for quantum non-Gaussianity, solid black is the harmonic oscillator
ground state, blue (orange) is the (quartic-bounded) cubic phase state and green is
the TDW state.

gate, including any lower order imperfections, for any input Wigner
function can be obtained.

In Fig. 1 we examine the effect of this quartic bounding on the creation
of the cubic phase state. We show that the parabolic shape induced by the
cubic semi-classical dynamics, as well as the quantum interference and
negative regions are preserved, while the diverging negative momentum and
position due to the cubic nonlinearity are suppressed by the quartic one. In
contrast, a tilted double well (TDW) gate (with the same y,) designed to
mimic the quartic-bounded cubic gate fails to generate anything like these
features. This can be observed directly by the nonlinear squeezing™, which
shows that the quartic-bounded cubic gate is a good approximation to the
cubic gate, while the TDW is far above the quantum non-Gaussianity
threshold.

While the major features of the cubic phase state are preserved
when using the quartic-bounded cubic gate, errors due to the bounding

can accumulate. A fixed unbounded cubic phase gate can be reversed
(using our universal gate set) by applying a second gate sandwiched
between a double Fourier transform, effectively generating the inverse
cubic phase gate by changing the sign of y. However the bounding
quartic term does not change sign, and thus accumulates. The most
natural way to solve this is to engineer the more difficult inverted
quartic potential which itself must be bounded by higher order
potentials. These will themselves accumulate, defining the principal
limit of such gates and simulations in phase space.

An illustrative example is provided by considering a gate decomposi-
tion with the cubic phase gate realistically bounded by a weak quartic
potential. One of the simplest such gate decompositions™ is the multimode
gate

Aata) — Fie?s F]Teiy%q} o2, (23)
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Fig. 2 | Application of Airy transform to analyse nonlinearity accumulation with
physical bounded gates. Action of the quartic bound cubic gate (U, ¥ (top) for k=
1, 2, 3 left to right. Iteration of the gate increases the cubic effects, as seen by the re-
emergence of the suppressed negative position and momentum region. This occurs
even though at all stages the system is bounded from below by the quartic gate. The
pure cubic phase states (bottom) have diverging momentum for both positive and
negative momentum symmetrically. Initial states and parameters are as in Fig. 1.

The effective potentials corresponding to the applied gates are shown below the
Wigner functions (left) where quartic-bounded cubic potentials are solid, cubic
potentials are dashed. Increasing k (blue, orange, green) leads to quartic-bounded
cubic potentials that more closely approximate the cubic potential around the
inflection point. However the increasing significance of the quartic term more
strongly attenuates the nonlinear squeezing in absolute value in comparison with a
cubic phase state (bottom right).

The bounding quartic term in the Airy transform introduces extra terms
that depend on g through both the parameter & and the nonlinear
transformation of p. Then, subsequent linear gates act nontrivially on
these extra terms. We will use ideal states to suppress unwieldy calcu-
lations and demonstrate the principle. Concretely, applying this gate to
a pair of zero-mean ideal momentum eigenstates produces the Wigner
function

We = A (pj =15+ 290" + 245 oc)<3 (pk +2(2q;, +4q;— p,-)) :
(24)

In evaluating the effect of the quartic bounded cubic phase gate we write o =
a(g) in order keep track of the nontrivial q variable added by the quartic

term. This then produces the Wigner function

Wagpe = Al <Pj — 73 Qu + 74 Qi + 24 “(ij))

X 6(Pk +2(Qy — Pj)> ; )

where Qi = gj + 2.

Despite this, repeated application of the quartic bounded cubic gate
results in Wigner functions that are dominated by cubic rather than quartic
effects. The gate (U3‘4)k simply accumulates cubic and quartic terms, so that
3.4 — kys 4. Figure 2 shows the progression from k = 1 to k = 3. Even though
at each step the cubic potential is bounded from below by the quartic
potential, the cubic effects are enhanced by repeated application with
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Fig. 3 | Application of Airy transform to analyse a realistic cubic nonlinearity
softening. The bare cubic gate compared with the cubic gate softened for g > 0 by a
weak inverted quartic nonlinearity. The diverging negative position and momen-
tum due to the cubic gate are present in both examples. The effect of a weak inverted
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quartic gate is to suppress the positive position and negative momentum. The
divergence is then faster in the region where both cubic and quartic potentials go to
negative infinity together. Initial states and parameters are as in Fig. 1 of the
main text.

diverging negative momentum and position reasserting themselves as k
increases.

Unbounded dynamics

We note that our methodology can also be used to probe fully unbounded
nonlinear dynamics such as the inverted quartic potential in the large mass
limit. In the case where y; =2 (as before) and y, = —0.2 the divergence into
negative momentum and position from the cubic potential is no longer
constrained by the hardening wall of the quartic potential. Instead, since this
region of the potential now softens faster than the region including the
hardening wall of the cubic potential, this divergence returns and the
divergence on hard cubic side is suppressed. The corresponding Wigner
functions are shown in Fig. 3.

Discussion

We have presented a general method for evaluating the effect of nonlinear
phase gates in phase space. We add that the effect of the cubic phase gate on
the momentum probability distribution can be directly evaluated without
dealing with the rather troublesome marginal integrals of the Wigner
function, and some details of this are provided in Appendix III. We intend to
explore this connection in further work. The method focuses on phase gates
built out of position operators, however as the Wigner function can be
written in terms of momentum eigenstates, phase gates built out of
momentum operators can also be accommodated by simply switching to
this picture.

Some elementary extensions of this method may become possible
in the future. As noted, the higher order phase gates (n > 4) result in the
integrand of the Wigner function possessing an exponential of poly-
nomials of order greater than 3, which no longer conforms to the Airy
transform structure. Higher order generalisations of Airy functions do
exist but do not deal with the retention of the lower order terms in the
polynomial”’, and anyway would require a theory of generalised Airy
transforms to be constructed. For multimode extensions similar
challenges arise. A true multimode extension of the cubic or quartic
phase gates involves a nondegenerate cubic or quartic interaction
among multiple modes. For cubic gates the two possibilities are
represented by the operators Ug, = ¢?4% and U, = e?41%4%, with the
latter being the generator of the lowest order continuous variable
quantum hypergraph states”® or the continuous variable Toffoli gate.

The Wigner integrals involved in such calculations contain inhomo-
geneous forms of order 3. Such non-Gaussian integrals are notoriously
difficult to solve, and yet progress has been made even in recent years
for non-Gaussian integrals involving homogeneous forms**’. Another
major roadblock using these methods is the non-commutativity of the
g and p operators, with one of the most important applications being
nonlinear motion. The introduction of such noncommutative opera-
tors even at the level of phase rotation can bring significant complexity
to the Airy transform, particular after gate sequences involving mul-
tiple nonlinear phase gates.

Recent experimental achievements demonstrate the importance of the
theoretical advance presented here. Cubic phase states have been produced
in optical” and superconducting circuit' settings. Alongside these
achievements much effort has gone into theoretical proposals for the cubic
phase states” ™ and detailed theoretical studies assess the properties and
suitability of cubic phase states for various applications'***”"~". Clarifying
the Wigner function for such states will help explore such properties and
open paths to understand the unique forms of quantum interference they
generate. Similarly, the quartic potential is an important and paradigmatic
example of a nonlinear bounded potential, often appearing as a double well
potential**, and can be used for quantum information tasks*’. Remarkably,
the aforementioned superconducting microwave circuit experiment'® pro-
ducing cubic phase states also allows for the simultaneous presence of tri-
linear and Kerr-like nonlinearities, underlining the importance of
understanding the simultaneous presence of cubic and quartic non-
linearities. While we have focused on nonlinear gates acting on Gaussian
states, our method applies equally well to Fock states or finite superpositions
thereof. Hence there is also an opportunity to investigate the interaction of
two opposing forms of nonlinearity in bosonic systems.

Note: During the last stage of manuscript preparation an independent
manuscript'* addressed a different problem of position delocalisation in
open mechanical dynamics that complements our analytical results on cubic
and quartic unitary gates.

Methods

Our application to quartic bounded cubic phase gates and our observation
of the resilience of negativity to initial thermal noise rely on performing the
required Airy transform on Gaussian states. Here we fully outline this
method.
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Wigner function of the cubic and quartic phase states

For ease of reference we will refer to the set of states generated by the
nonlinear phase gates Us, U, or Us 4 acting on an arbitrary Gaussian state pg
as the cubic, quartic or cubic and quartic phase states. Additionally, it will be
useful to introduce the Fock basis through the annihilation operator a where

q= \/g(a +a') and p= \/%(oﬁ —a). This may be understood as
establishing a reference oscillator with mass and frequency set to unity.
Formally, these nonlinear phase states may be expressed as the sets of
density operators

G, = {UapcUily € R A pg = DRSS DA’ |, (26)
where A = 3, 4 or the pair (3, 4), D(f) = ePa"=Ba g the displacement
operator where 8 = '?;r-—zf contains the mean values of ¢ and p, S(z) =

1 V2 2 . . . i
ez(z(“) @) is the squeezing operator with z = ré%, and v=

1
1+n

occupation 7™,

Nk
Sk (ﬁnﬁ) |k) (k| is a Gaussian thermal state, characterised by a mean

The Wigner function of p € G, is the Airy transform of the Gaussian
state pg

WIpl(g, p) = An[Wl(S4(p) - 27)

From here, one may take the Wigner function of the thermal state
@+

Wi (g,p) = %:
associated with displacement and squeezing, then perform the relevant Airy
transform, bearing in mind the scaling and translation rules which state that
state that if ¢,(x) is the Airy transform of f{x) then ¢(kx) is the Airy
transform of f{kx) and ¢,(x + s) is the Airy transform of f{x + s).

To rapidly gain access to a general expression for the phase states, it is
useful to note that since W; is Gaussian it can be expressed in the matrix
form

perform the relevant symplectic transformations

1

I
27/ Det (%)

Wex) = (28)

where the covariance matrix ¥ and the mean values y take the generic forms
Iep  Op
)
p=1-)-
p

W can be expanded in terms of these generic forms and the terms
depending on p factored, so that we have

(29)

(30)

%oy +pog—2%pogp
2Det(X)

e
Welg,p) = W‘?

In order to perform the Airy transform with respect to p, it is useful to
complete the square for p, resulting in the expression

_ 0p > +2(pogp—¥apq)

aqu +2(xogp—(pog+ogpa)lp
2Det(z) e .

2Det()

(31)

2
[ _ ()’caqpf(ﬁuquaqpq)) _ (J’w,ﬂ,f([quraqpq))z (32)
2Det(2)l9 \/Zanet(Z) 20, Det(X)
Iff(x)= % is the normalised Gaussian function then
1 ;( ;) (X 1
A fl(x) = — ewd ¥ ) Aj (2 . 33
L0 = T (33

The scaling and translation rules for Airy transforms state that if ¢,(x) is the
Airy transform of f{x) then ¢ (kx) is the Airy transform of f(kx) and ¢,(x +
s) is the Airy transform of f{xx + s), and thus combined @n(kx + s) is the Airy
transform of f{kx + s). Therefore selecting

k= (1 (34)
~ \V2Det(2)
(J?O’qp - (I_)Uq + qu‘I))
- (35)

\/ 20, Det 2

and performing the Airy transform with respect to S,(p) retrieves the
Wigner function of the nonlinear phase states. The full expression for the
Wigner function of an arbitrary Gaussian state following the nonlinear
phase gate is

_(g=%?

e 1 n(ksaprestie) A (kSA(p)+s 1 )
2,/nDet(2) o] o l6a4 )’

WgA(%P) =

(36)

where o/ = ¥4 Appropriate selections of A and a recover the various
nonlinear phase states.
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