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Concatenate codes, save qubits

®| Check for updates
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The essential requirement for fault-tolerant quantum computation (FTQC) is the total protocol design
to achieve a fair balance of all the critical factors relevant to its practical realization, such as the space
overhead, the threshold, and the modularity. A major obstacle in realizing FTQC with conventional
protocols, such as those based on the surface code and the concatenated Steane code, has been the
space overhead, i.e., the required number of physical qubits per logical qubit. Protocols based on
high-rate quantum low-density parity-check (LDPC) codes gather considerable attention as a way to
reduce the space overhead, but problematically, the existing fault-tolerant protocols for such quantum
LDPC codes sacrifice other factors. Here, we construct a new fault-tolerant protocol to meet these
requirements simultaneously based on more recent progress on the techniques for concatenated
codes rather than quantum LDPC codes, achieving a constant space overhead, a high threshold, and
flexibility in modular architecture designs. In particular, under a physical error rate of 0.1%, our
protocol reduces the space overhead to achieve the logical CNOT error rates 10~'° and 102* by more
than 90% and 96%, respectively, compared to the protocol for the surface code. Furthermore, our
protocol achieves the threshold of 2.5% under a conventional circuit-level error model, substantially
outperforming that of the surface code. The use of concatenated codes also naturally introduces
abstraction layers essential for the modularity of FTQC architectures. These results indicate that the
code-concatenation approach opens a way to significantly save qubits in realizing FTQC while fulfilling

the other essential requirements for the practical protocol design.

The realization of fault-tolerant quantum computation (FTQC)
requires the total protocol design to meet all the essential factors
relevant to its practical implementation, such as the space overhead,
the threshold, and the modularity. The recent development of
constant-overhead protocols'” substantially reduces the space over-
head, i.e., the required number of physical qubits per logical qubit,
compared to the conventional protocols such as those based on the
surface code®’ and the concatenated Steane code'’. In particular, the
most recent development* based on the concatenation of quantum
Hamming codes'”" is promising for the implementation of FTQC
since ref. 4 explicitly clarifies the full details of the protocol for
implementing logical gates and efficient decoders, making it possible to
realize universal quantum computation in a fault-tolerant way. Toward
the practical implementation, however, it is indispensable to optimize
the original protocol in ref. 4 to improve its threshold, which is, by
construction, at least as bad as the concatenated Steane code. Fur-
thermore, even a proper quantitative evaluation of the original pro-
tocol in ref. 4 was still missing due to the lack of the numerical study of
the protocols based on the quantum Hamming codes.

In this work, we construct an optimized fault-tolerant protocol
by substantially improving the protocol in ref. 4, achieving an
extremely low space overhead and a high threshold to simultaneously
outperform the surface code. The optimization is performed based on
our quantitative evaluation of the performance of the fault-tolerant
protocols for various choices of quantum error-correcting codes (see
Tables 1 and 2), which we carried out in a unified way under a circuit-
level depolarizing error model following the convention of ref. 12.
Our numerical study makes it possible to optimize the combination of
the quantum codes to be concatenated. Our numerical results show
that the threshold of the original protocol for quantum Hamming
codes in ref. 4 is ~107°. To improve the threshold, our protocol uses
the C,/Cs code”, which achieves the state-of-the-art high threshold
and is recently realized in experiments'?, at the physical level; on top
of the C4/Cs code, our protocol concatenates the quantum Hamming
codes at the larger concatenation levels to achieve the constant space
overhead. Under a physical error rate of 0.1%, compared to the
conventional protocol for the surface code, our protocol reduces the
space overhead to achieve the logical error rate 107'° and 107> by
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Table 1 | Construction of the proposed protocol

Quantum code N K N/K
level-1 Ca(=14, 2, 2])) 4 2 2
level-2 Ce(=1[6, 2, 2]]) 12 2 6
level-3 Ce(=1[6, 2, 2]]) 36 2 18
level-4 Ce(=1[6, 2, 2]) 108 2 54
level-5 Ce(=1[6, 2, 2]) 324 2 162
level-6 Os(=[[31,21,3]) 1.00 x 10* 42 239
level-7 Qg(= [[63,51,3]])) 6.33x10° 2.14x10° 295
level-8 Q,(=[[127,113,3]) 8.04 x 107 2.42x10° 332
level-9 Q,(=[[127,113,3]) 1.02 x 10" 2.74x107 373

Our quantum code uses the level-5 C4/Cs code as an underlying quantum code (Q), and on top of
this, we concatenate a series of quantum Hamming codes. The second column of this table shows a
quantum code to be concatenated at each level. The rightmost column of this table shows the space
overhead, which is the ratio of the number of physical qubits denoted by N and the number of logical
qubits denoted by K.

Table 2 | Comparison of the error threshold of the underlying
codes and the required space overhead to achieve the logical
error rate 10-2* of the overall quantum codes obtained by
concatenating the underlying codes with the optimized series
of the quantum Hamming codes

Underlying Threshold Overall space overhead
code

p=0.01% p=0.1% p=1%
C,4/Cg code 2.5% 1.0x10? 3.7 x10? 6.2x10°
Surface code 0.31% 4.3x102 45x10° -
Steane code 0.030% 6.1x10° - -
C,/Steanecode  0.14% 3.3x10% 9.3x 10* -

The table shows the error threshold of the underlying codes (the C4/Cs code, the surface code, the
concatenated Steane code, and the C,/Steane code) and the required space overhead to achieve
the logical error rate 10~2* under the physical error rates p = 0.01%, 0.1%, 1% for the overall
quantum codes obtained by concatenating the underlying codes with the optimized series of the
quantum Hamming codes. Bold values represent the minimum space overheads among the four
quantum codes under the same physical error rates. Note that for p = 1%, the C4/Cs code is the only
one among the four codes that can suppress the logical error rate; similarly, for p =0.1%, the
concatenated Steane code cannot suppress the logical error rate. We remark that the threshold
values for the C,/Cs code, the concatenated Steane code, and the surface codes are slightly lower
than those shown in refs. 22,32,36 due to the difference in the error model.

more than 90% and 96%, respectively (see Fig. 1). The threshold of
our protocol is 2.5%, which substantially outperforms that of the
surface code (see Table 2). These results establish a basis for the
practical fault-tolerant protocols, especially suited for the archi-
tectures with all-to-all two-qubit gate connectivity, which is partially
achieved experimentally in neutral atoms', trapped ions'®", and
theoretically proposed in optics"™.

Results

Setting

We construct a space-overhead-efficient fault-tolerant protocol by opti-
mizing the protocol presented in ref. 4. The original protocol in ref. 4 is based
on the concatenation of a series of quantum Hamming codes with
increasing code sizes. Quantum Hamming code is a family of quantum
codes Q, parameterized by r € {3, 4, ...}, consisting of N, = 2" — 1 physical
qubits and K, = N, — 2r logical qubits with code distance 3'", which is
written as an [[N,, K, 3]] code. By concatenating the quantum Hamming
code Q, for a sequence (r;=1+2)_,, of parameters at the con-
catenation level I € {1, ..., L}, we obtain a quantum code consisting of
N=[[_,N ,, Physical qubits and K = I, K , logical qubits. Its space
overhead, defined by the ratio of N and K, converges to a finite constant

factor 7., as
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n

K
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where .. is given by 7., = 36". However, the threshold of the protocol based
on this quantum code is given by ~107°, as shown in Supplementary
Information. As discussed in ref. 4, instead of r;= [ + 2, we can also take an

arbitrary sequence (r,)_, ,

satisfying 77, = [ 2, % <00 to achieve the
n

constant space overhead, and our choice of r; will be clarified below.

We optimize this original protocol by replacing the physical qubits of
the original protocol with logical qubits of a finite-size quantum code Q,
(called an underlying quantum code). With this replacement, we aim to
improve the threshold determined at the physical level while maintaining
the constant space overhead at the large concatenation levels. Here, the
logical error rate of the logical qubits of the underlying quantum code should
be lower than the threshold of the original protocol so that the original
protocol can further suppress the logical error rate. If the underlying
quantum code Q has N, physical qubits and K| logical qubits, the overall
space overhead is given by

N NO L NTz /
—=—||l="—>1,<0 asL— oo, 2)
K KOEK,Z 0

which remains a constant value given by 1, = Ilg—s #, as long as we use a
fixed code as the underlying quantum code.
For our protocol, we propose the following code construction:

* As an underlying quantum code, we use the C,/Cs code” as first L’
levels of the concatenated code, where the 4-qubit code denoted by
C4(=[4,2,2]) is concatenated with the 6-qubit code denoted by Ce(= [6,
2,2]) for L’ — 1 times.

* Ontop of the underlying quantum code, i.e., at the concatenation levels
L'+ 1,L'4+2,...,L, we concatenate quantum Hamming codes Q,
for an optimized choice of the sequence (r;),_, , of parameters, where
Qr: is used at the concatenation level L' + . -

The C,/Cs code is adopted as the underlying quantum code since it
achieves the state-of-the-art high threshold. To avoid the increase of over-
head, we use a non-post-selected protocol of the C,/Cg code in ref. 13 rather
than a post-selected one that excludes the error-detected events.

To estimate the space overhead and the threshold, we evaluate the logical
CNOT error rate of the fault-tolerant protocols based on the C,/Cs code and
the quantum Hamming codes. The logical CNOT error rate is evaluated at
each concatenation level using the Monte Carlo sampling method in
refs. 21,22, which is based on the reference entanglement method"*”. By
convention, we describe the noise on physical qubits by a circuit-level
depolarizing error model (see “Methods” for the details of the simulation
method and the error model). In the simulation, we assume no geometrical
constraints on manipulating quantum gates, which is applicable to neutral
atoms", trapped ions'*", and optics'**. Our numerical results show that by
using the C,/Cs code as the underlying quantum code, our protocol achieves a
high threshold 2.5% (see Table 2), where we use the non-post-selected pro-
tocol of the C,/Cq code rather than the post-selected one in ref. 13. We
optimize the combination of the quantum codes, i.e., the choice of parameters
L', L, and 7, based on our simulation results so as to reduce the space
overhead. In particular, the optimized parameters that we found are L’ = 5,
L=9,andr, =5,r,=6,r;3=r,=7 (see Table 1). Note that the quantum codes
Q,, 9, in the original protocol of ref. 4 are skipped to improve the space
overhead of our protocol. The quantum code Q is used twice since the
quantum code Qy inlevel-9 is not expected to reduce the logical error to 107
To avoid the combinatorial explosion arising from the combinations of these
parameters, we performed a level-by-level numerical simulation at each
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Fig. 1 | Comparison of space overhead of the proposed protocol with that for the
surface code. The figure plots the space overheads and logical error rates of the
proposed protocol (A) and the surface code (+). The logical error rate is calculated
under a circuit-level depolarizing error model at a physical error rate 0.1%. The
dash-dotted lines represent the logical error rate 10~'* and the corresponding space

overhead, i.e., 162 physical qubits per logical qubit for our protocol. The dashed lines
represent the logical error rate 10~** and the corresponding space overhead, i.e., 373
physical qubits per logical qubit for our protocol. Our protocol reduces the space
overhead to achieve the logical error rates 10™'* and 10~ by more than 90% and
96%, respectively, compared to the protocol for the surface code.

concatenation level (see “Methods” for the details). With this technique, our
simulation makes it possible to flexibly optimize the combination of the
quantum codes to be concatenated for designing our protocol.

Large-scale resource estimation

Under a physical error rate of 0.1%, we compare the space overhead of our
proposed protocol to achieve the logical CNOT error rates 10~ and 10~
with a conventional protocol for the surface code. Note that another con-
ventional protocol using the concatenated Steane code cannot suppress the
logical error rate under the physical error rate 0.1% since the threshold is
larger than 0.1% (see Table 2). Factoring of a 2048-bit integer using Shor’s
algorithm™ requires the logical error rate 107*° (ref. 25), which is relevant to
the currently used cryptosystem RSA-2048°%"". The logical error rate ~10~**
is a rough estimate of the logical error rate of classical computation (see
Methods for the details of these estimations).

As shown in Fig. 1, the surface code requires the space overhead
~1.7 %10 and ~10.2 x 10 to achieve the logical error rates ~107'° and
~10"*, respectively. On the other hand, our protocol only requires the space
overheads ~162 and ~373 to achieve the same logical error rates, saving the
space overheads by more than 90% and 96%, respectively, compared to the
surface code. Note that our protocol achieves constant space overhead while
the protocol for the surface code (as well as that for the concatenated Steane
code) has growing space overhead; thus, in principle, the advantage of our
protocol can be arbitrarily large as the target logical error rate becomes small.
However, our contribution here is to clarify that our protocol indeed offers a
space-overhead advantage by orders of magnitude in the practical regimes.

Comparison on underlying quantum codes

The quantum code for our protocol, shown in Table 1 is obtained by
optimizing the underlying quantum code, and under the physical error rate
0.1%, our optimized choice of the underlying quantum code turns out to be
the level-5 C,4/Cs code. Here, we show this optimization procedure in more
detail. For this optimization, we compare four candidate quantum codes: the
C4/C¢ code®, the surface code®, the concatenated Steane code®, and the C,/
Steane code. The C,/Steane code is newly constructed in this work by
concatenating the [4, 2, 2] code (i.e., the C, code) with the Steane code (see
Supplementary Information for details). For each underlying code, we
optimize the concatenation level or the distance of the underlying code and
the series of the quantum Hamming codes, and compare the required
overall space overhead to achieve the logical error rate 107>,

In Fig. 2 and Table 2, we compare the thresholds of these four underlying
quantum codes and the space overheads of the overall quantum codes
obtained by concatenating the underlying codes with the series of quantum
Hamming codes to achieve the logical error rate 107** at the physical error
rates p € [0.01%, 1%]. In Fig. 2, we call the concatenated code of X and the
series of quantum Hamming codes as X/Hamming for X € {C,/Cs, surface,
Steane, C,/Steane}. For a fair comparison, we performed the numerical
simulation of implementing logical CNOT gates for all four codes under the
aforementioned circuit-level depolarizing error model. For the decoding of
the surface code, we use the minimum-weight perfect matching decoder”,
and for the other concatenated codes, we use a hard-decision decoder to cover
practical situations where the efficiency of implementing the decoder matters
(see Supplementary Information for more details). Conventionally, the
threshold for the surface code is evaluated by implementing a quantum
memory (i.e., the logical identity gate)', but for a fair comparison, we here
evaluate that by the logical CNOT gate, which is implemented by lattice
surgery’>” and is simulated using the method in ref. 33 (see Supplementary
Information for details). Similarly, ref. 28 evaluates the threshold for the
concatenated Steane code by implementing the logical identity gate, but we
evaluate that by the transversal implementation of the logical CNOT gate.
Note that the thresholds evaluated by the logical CNOT gate may be worse
than those by the logical identity gate”, but our setting of the numerical
simulation is motivated by the fact that the realization of quantum memory
by just implementing the logical identity gate is insufficient for universal
quantum computation. We also remark that various numerical simulations
have been performed in the literature under different error models from ours,
e.g., for the surface code in refs. 34,35, for the concatenated Steane code in
refs. 22,34, and for the C,/C¢ code in refs. 13,36, but our contribution here is to
perform the numerical simulation of all the codes under the same circuit-level
error model in a unified way to make a direct, systematic comparison.

As shown in Fig. 2 and Table 2, the C,/Cs/Hamming code has the
minimum space overhead for physical error rates p € [0.01%, 1%]. At the
same time, the space overheads of the Surface/Hamming and C,/Steane/
Hamming codes are of the same magnitude as that of the C,/Cs/Hamming
code for a low physical error rate p ~0.01%.

Comparison with the quantum low-density parity-check

(LDPC) codes

We have so far offered a quantitative analysis of our protocol based on the
code-concatenation approach. We here compare this approach with
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Fig. 2 | Comparison on space overheads of the 10°
underlying code (the C4/Cg code, the surface code,
the concatenated Steane code, and the C,/Steane
code) concatenated with the optimal series of the
quantum Hamming codes. The horizontal axis
shows the physical error rate, and the vertical axis
shows the space overhead to achieve the logical error
rate 10 **. The simulation is performed under the
circuit-level depolarizing error model.
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another existing approach toward low-overhead FTQC based on the high-
rate quantum LDPC codes originally proposed in refs. 1-3.

The crucial difference between our approach, based on concatenated
codes, and the approach based on quantum LDPC codes is modularity. In
the approach of quantum LDPC code, one needs to realize a single large-
sized code block. To suppress the logical error rate more and more, each
code block may become arbitrarily large, yet an essential assumption for the
fault tolerance of the quantum LDPC codes is to keep the physical error rates
constant™. In experiments, problematically, it is in principle challenging to
arbitrarily increase the number of qubits in a single quantum device without
increasing physical error rates””*". By contrast, in the code-concatenation
approach, we can realize a fixed-size code at each level of the code con-
catenation by putting finite efforts into improving a quantum device; that is,
each fixed-size code serves as a fixed-size abstraction layer in the imple-
mentation that is stored in a single module. As shown in ref. 4, as we increase
the concatenation levels, the logical error rates are suppressed doubly
exponentially, whereas the required number of gates for implementing each
gadget grows much more slowly. Once the error rates are suppressed by a
concatenated code at some concatenation level, the low error rate of each
logical gate provides a margin for using more logical gates (i.e., tolerating
more architectural overhead) to implement FTQC at the higher con-
catenation levels, which provides flexibility for scalable architecture design.
For example, once we develop finite-size devices implementing the fixed-
size code, we can further scale up FTQC by combining these error-
suppressed devices by using quantum channels to connect these devices and
implement another fixed-size code to be concatenated at the next con-
catenation level. These quantum channels can be noisier than the physical
gates in each device since the quantum states that will go through the
channels are already encoded. In this way, our code-concatenation
approach offers modularity, an essential requirement for the FTQC
architectures.

Apart from the modularity, another advantage is that our protocol,
based on concatenated codes, can implement logical gates faster than the
existing protocols for quantum LDPC codes. In the protocol for quantum
LDPC codes in refs. 2,3, almost all gates, including most of the Clifford gates,
are implemented by gate teleportation using auxiliary code blocks; to
maintain constant space overhead, gates must be applied sequentially, which
incurs the polynomial time overhead. Other Clifford gate schemes are
proposed based on code deformation’ and lattice surgery’, but they also
introduce additional overheads. In particular, the code deformation scheme
may introduce an additional time overhead that may be worse than the gate
teleportation method’. The lattice surgery scheme requires a large patch of
the surface code, which makes the space overhead of the overall protocol
non-constant if we want to attain low time overhead®. Apart from these

schemes for logical gate implementations, a stabilizer measurement scheme
for a constant-space-overhead quantum LDPC code in thin planar con-
nectivity is presented in ref. 7. This protocol implements a quantum
memory (i.e., the logical identity gate), but to implement universal quantum
computation in a fault-tolerant way, we need to add the components to
implement state preparation and logical gates, which incur the overhead
issues in the same way as the above. More recent protocols in refs. 39,40 aim
to improve the implementability of quantum LDPC codes, but in the same
way, these protocols can only be used as the quantum memory; pro-
blematically, it is currently unknown how to realize logical gates with these
protocols, and it is also unknown how to achieve constant-space-overhead
FTQC based on these protocols without sacrificing their implementability.
In contrast with these protocols, our protocol can implement universal
quantum computation within constant space overhead and quasi-
polylogarithmic time overhead, by using the concatenated code rather
than quantum LDPC codes, as shown in ref. 4.

We remark that, due to this difference, it is not straightforward to
obtain numerical results on the existing protocols for the high-rate quantum
LDPC codes in the same setting as our protocol; however, if one develops
more efficient protocols achieving universal quantum computation using
the high-rate quantum LDPC codes, the current numerical results on
comparing our protocol with those of the surface code and the concatenated
Steane code also serve as a useful baseline for further comparison, which we
leave for future work. We also point out that in the current status, even if one
wants to implement constant-space-overhead FTQC using quantum LDPC
codes, one eventually needs to use concatenated codes in combination. In
particular, as shown in refs. 2,3, the existing constant-space-overhead fault-
tolerant protocols for such quantum LDPC codes rely on concatenated
codes for preparation of logical |0) states, e.g., by using the encoding pro-
cedure implemented by the concatenated Steane code*'. Thus, even thougha
part of the protocol using the high-rate quantum LDPC codes may be
efficient, the part relying on the concatenated codes may become a bottle-
neck in practice, which should be taken into account in future work for a fair
comparison of the overall protocols.

Discussion

In this work, we have constructed a low-overhead, high-threshold, modular
protocol for FTQC based on the recent progress on the code-concatenation
approach in ref. 4. To design our protocol, we have performed thorough
numerical simulations of the performance of fault-tolerant protocols for
various quantum codes, under the same circuit-level error model in a unified
way, as shown in Figs. 1 and 2 and Tables 1 and 2. Based on these numerical
results, we have proposed an optimized protocol, which we have designed by
seeking an optimized combination of the underlying quantum code at the
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Fig. 3 | Comparison of Knill’s error correction
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physical level and the series of quantum Hamming codes at higher con-
catenation levels. The proposed protocol (Table 1) uses a fixed-size C,/Cy
code at the physical level to attain a high threshold and, on top of this
underlying quantum code, concatenates the quantum Hamming codes to
achieve the constant space overhead. This proposed protocol achieves a
substantial saving of the space overhead compared to that of the surface code
(Fig. 1), has a higher threshold of 2.5% than those of the surface code and the
concatenated Steane code (Table 2), and offers modularity owing to the
code-concatenation approach.

At the same time, as shown in Fig. 2, our results show that other choices
of the underlying quantum code can achieve a similar space overhead to the
C4/Cs code depending on the physical error rate; in particular, we find that
the surface code and the C,/Steane code that we have developed in this work
can achieve a similar space overhead compared to the C,/C4 code at the
physical error rate 0.01%. This result implies that the underlying code can be
further optimized by considering other factors of the fault-tolerant quantum
computation, such as the connectivity. Since our protocol is based on
concatenated codes, the proposed protocol has flexibility in the choice of the
underlying quantum code and the sequence of quantum Hamming codes to
be concatenated, which will also be useful for further optimization of fault-
tolerant protocols depending on the advances of experimental technologies
in the future.

We have constructed our fault-tolerant protocol without assuming
geometrical constraints on quantum gates. Non-local interactions are
indispensable to avoid the growing space overhead of FTQC on large scales,
which has been a major obstacle to implementing FTQC. By combining the
swapping technique in ref. 42 with the protocol shown in ref. 4, we can
implement the constant space overhead protocol with two-dimensional
nearest-neighbor gates or one-dimensional next-nearest-neighbor gates
(reference” shows that polylogarithmic space overhead is required for d-
dimensional implementation of protocols with quantum LDPC codes for
any d, but this limitation does not apply to protocols with concatenated
codes™). However, it is unclear whether the constant space overhead pro-
tocol can be implemented using one-dimensional nearest-neighbor gates
without sacrificing the distance of codes at each concatenation level (see also
footnote d in ref. 44). By contrast, all-to-all connectivity of physical gates is
indeed becoming possible in various experimental platforms, such as neutral

atoms'®, trapped ions'®"”, and optics'®™; in such cases, the proposed

protocol substantially reduces the space overhead compared to the surface
code, as shown in Fig. 1. Consequently, our protocol lends increased
importance to such physical platforms with all-to-all connectivity; at the
same time, the technological progress on the experimental side may also lead
to extra factors to be considered for practical FTQC protocols, and our
results and techniques constitute a basis for further optimization of the fault-
tolerant protocols in these platforms.

Lastly, we remark that the fault-tolerant protocol requires auxiliary
qubits to extract the syndrome of the quantum code and prepare the magic
states. Since ref. 4 shows the full fault-tolerant protocol, which leaves the
space overhead constant even including the auxiliary qubits, our proposed
protocol also achieves the constant space overhead, including the auxiliary
qubits, in the asymptotic regime. However, the original protocol in ref. 4 is
not optimized to reduce the number of auxiliary qubits, so it still remains
unclear if the space overhead, including auxiliary qubits, may be sig-
nificantly better than the conventional protocols based on the surface code
at a finite regime. One way to circumvent this problem is to reduce the
number of auxiliary qubits by using the flag qubits®***™. The fault-tolerant
protocol constructed in ref. 4 uses a variant of Knill’s error correction gadget,
which uses a copy of the code block for the fault-tolerant syndrome
extraction (see Fig. 3a). On the other hand, the flag-qubit protocol shown in
ref. 46 requires two auxiliary qubits for the fault-tolerant syndrome
extraction of the quantum Hamming codes (see Fig. 3b). The idea of flag
qubits is extended to the error correction of arbitrary stabilizer codes””** and
the fault-tolerant gate operations’*>”". Based on these ideas, it is essential to
optimize the entire fault-tolerant protocol, as has been recently done for
many-hypercube codes in ref. 51. We leave it as future work to optimize the
full fault-tolerant protocol using the idea of the flag qubits to reduce the
number of auxiliary qubits and evaluate its performance.

Methods

In Methods, after summarizing the notations, we first describe the error
model used in the numerical simulation and the Monte Carlo simulation
method to evaluate the logical CNOT error rate. Then, we provide the details
of our estimation of the required logical error rate of quantum computation,
based on the evaluation of the CNOT gate counts of the quantum circuit
implementing Shor’s algorithm for 2048-bit RSA integer factoring and the
required error rates for the classical computation. Finally, we present our
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Fig. 4 | Comparison of space overhead of the
proposed protocol with that for the surface code
under three error models (y = p, y = p/2 and

y = p/10). The figure plots the space overheads and
logical error rates of the proposed protocol shown in
Table 1 (a for y = p, v for y = p/2 and «for y = p/10)
and the surface code (s for y = p, s for y = p/2 and ¢
for y = p/10). The plots for the error model y = p are
the same as shown in Fig. 1. The logical error rate is
calculated under a circuit-level depolarizing error
model at a physical error rate 0.1%. The dash-dotted
and lines represent the logical error rate 10" and
107, respectively. Our protocol reduces the space
overhead compared to the protocol for the surface

10%

103 4

102 -

Space overhead

101 4

—4— Proposed protocol (y =p)
—e— Surface code (y=p)
Proposed protocol (y = p/2)
Surface code (y = p/2)

-« Proposed protocol (y =p/10)
-4+ Surface code (y=p/10)

- -

code in a similar magnitude as in the error model 100 105
used in Fig. 1.

10‘15 10‘20 10‘25 10‘30 10‘35

1/(Logical CNOT error rate)

method for estimating the logical CNOT error rate of the large-scale con-
catenated codes using the small-scale level-by-level simulation results at
each concatenation level.

Notation

The computational basis (also called the Z basis) of a qubit C? is denoted by
{|0), |1)}, and the complementary basis (also called the X basis) {|+), |—)} is

defined by | £) := %(|0) +|1)). By the convention of ref. 52, we use the
following notation on 1-qubit and 2-qubit unitaries:

I= 1o 3
X = 01 4
—(1 0)7 @)
0 —i 5
; 0)7 (5)

), ©)

H= 1 1 1 ;
_ﬁ(l —1)’ @

0
.>, ®)
1

CNOT = , ©9)

- o o o

0 0
1 0
0 1
0 0

(=l

where the 1-qubit and 2-qubit unitaries are shown in the matrix
representations in the computational bases {|0),[1)} C C? and
{10) ®10),10) ® [1),]1) ® |0), 1) ® [1)} € C* ® C?, respectively. See
also ref. 53 for terminology on FTQC.

Error model

In this work, the stabilizer circuits for describing the fault-tolerant protocols
are composed of state preparations of [0) and |+), measurements in the Z
and X bases, single-qubit gates I, X, Y, Z, H, S, and a two-qubit CNOT gate.
Each of these preparation, measurement, and gate operations in a circuit is
called a location in the circuit. By the convention of ref. 12, we use a circuit-
level depolarizing error model. In this model, independent and ideally

Error-free Repeat ten times Error-free
n “ n

*| |+ & error correction
o) X oK XOK [ ZO

XK Herror correction
XK XK
Fig. 5 | A quantum circuit for the reference entanglement method'**'~* to esti-

mate a logical CNOT error rate. In this simulation, starting from two error-free
logical Bell states, we apply a gate gadget of the logical CNOT®* gate, followed by the
error correction gadget ten times, using a noisy circuit. For the surface code, we use
the lattice surgery””” to implement logical CNOT gates, which includes the error
correction. For the other codes, we implement logical CNOT gates transversally and
use Knill’s error correction gadget' for error correction. Finally, we apply the error-
free logical Bell measurement on the output quantum state to estimate the logical
error rate. The symbol with Xy (Z) denotes the measurements in X (Z) basis for all
the K logical qubits in a code block.

distributed (IID) Pauli errors randomly occur at each location, i.e., after state
preparations and gates, and before measurements. By convention, we ignore
the error and the runtime of polynomial-time classical computation used for
decoding in the fault-tolerant protocols.

The probabilities of the errors are given using a single parameter p
(called the physical error rate) as follows. State preparations of |0) and |+)
are followed by X and Z gates, respectively, with probability p. Measure-
ments in Z and X bases follow X and Z gates, respectively, with probability p.
One-qubit gates I, X, Y, Z, H, S are followed by one of the 3 possible non-
identity Pauli operators {X, Y, Z}, each with probability p/3. A two-qubit gate
CNOT is followed by one of the 15 possible non-identity Pauli products
acting on 2 qubits {0, ® 05} 5, 4 )e1.x,v.2zp \ {I ® I}, each with probability
p/15. We also investigate different error models, where the Pauli error rate
on the identity gate I is changed from p/3 to y/3, where y is taken to be y = p/2
and y = p/10. As shown in Fig. 4, our protocol, shown in Table I significantly
reduces the space overhead compared to that for the surface code in these
error models (see Supplementary Information for more details).

Simulation to evaluate logical CNOT error rates

In our numerical simulation, we evaluate the logical CNOT error rate using
the Monte Carlo sampling method presented in refs. 21,22, which is based
on the reference entanglement method'*”. For a quantum code consisting
of N physical qubits and K logical qubits, the circuit that we use for the
Monte Carlo sampling method is illustrated in Fig. 5, where we assume that
random Pauli errors occur at each location of the circuit according to the
error model described above. In particular, starting from two error-free
logical Bell states, we repeatedly apply a gate gadget of the logical CNOT®*
gate, followed by an error correction gadget, which is repeated ten times. For
all the quantum codes (which are Calderbank-Shor-Steane (CSS) codes in
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this work) except for the surface code, we implement the logical CNOT gates
transversally and use Knill’s error correction gadget" for error correction.
Note that Steane’s error correction gadget™* may also have a similar per-
formance to Knill’s, but in practice, Knill’s error correction gadget is more
robust to leakage errors than Steane’s” and thus is preferable to use if
possible. We also note that the addressable CNOT gate can be performed via
gate teleportation using a certain stabilizer state’, and the threshold of the
distillation of a logical stabilizer state is much larger than that of the logical
CNOT gate. Therefore, we expect the threshold of the addressable CNOT
gate is comparable with that of the transversal CNOT gate. For the surface
code, by convention, we use the lattice surgery’* to implement the logical
CNOT gates, which includes the error correction. Note that the transversal
implementation of the logical CNOT gate is also possible for the surface
code”, but we performed our numerical simulation based on the lattice
surgery since the lattice surgery is more widely used in the literature on
resource estimation for FTQC, such as refs. 58,59, and the threshold of the
lattice surgery CNOT is better than the transversal CNOT, as shown in
ref. 57. Then, we apply the error-free logical Bell measurement on the output
quantum state. Any measurement outcomes that do not result in all zeros
for the kth logical qubits in four code blocks are counted as logical errors on
the kth logical qubit for k € {1, ..., K}. We evaluate the logical CNOT error
rate by dividing the empirical logical error probability in the simulation by
ten and averaging over the K logical qubits. Since the quantum circuit in Fig.
5, including Pauli errors, is composed of Clifford gates, the sampling of
measurement outcomes is efficiently simulated by a stabilizer circuit
simulator; in particular, our simulation is conducted with STIM®.

Logical error rate required for 2048-bit RSA integer factoring
The security of the RSA cryptosystem is ensured by the classical hardness of
integer factoring, and factoring 2048-bit integers given as the product of two
similar-sized prime numbers, which is called RSA integers in ref. 25 leads to
breaking RSA-2048. Previous works have investigated efficient algorithms for
RSA integer factoring based on Shor’s algorithm™. In particular, ref. 25
proposes an n-bit RSA integer factoring algorithm using 0.3 + 0.0005#°lg n
Toffoli gates. Since a Toffoli gate can be decomposed into 6 CNOT gates and
single-qubit gates™, this algorithm can be implemented by 1.8%° + 0.003r’lg
n CNOT gates. For n = 2048, it requires ~10'° CNOT gates. Thus, we require a
logical error rate ~10™" to run this algorithm.

Required error rate for classical computation

The required error rate for classical computation is estimated by taking an
inverse of the number of elementary gates in a large-scale classical com-
putation that is currently available. In particular, we consider a situation
where the supercomputer Fugaku® is run for a month. The peak perfor-
mance at double precision of Fugaku in the normal mode is given as
488 petaflops ~5x 10" s7" °'. If we run it for 1 month ~2.6 x 10°s, then the
number of elementary gates is roughly estimated as ~10*. Thus, an upper
bound of the logical error rate of classical computation is roughly estimated
as ~107%

Estimation of logical error rates of large-scale quantum codes
from small-scale level-by-level simulations

In this work, we use an underlying quantum code Q, concatenated with a
series of quantum Hamming codes Q, , Q, , ..., Q, . Thelogical error rate
of the overall quantum code under the physical error rate p is evaluated from
the level-by-level numerical simulation as

P(p)="rP

5;L+1) o o p(éa) o P(YTZ) o Py(p), (10)
where Py(p) is the logical error rate of Q, under the physical error rate p, and

P,V (p) is that of the quantum Hamming code Q, .- Note that the protocol
depends on the quantum code concatenated above (ie., Q, - ), thus the
logical error rate of the level-I protocol depends on r;and ;. ; (see ref. 4 for
the details). For the top code Q, , we implement the protocol such that we

can concatenate the quantum code Q,,+1 if needed. Thus, the logical error

rate on the top code Q, is evaluated as P(’L+1) This estimation gives the
upper bound of the loglcal error rate in the cases where the logical CNOT
gates (rather than initial-state preparation of |0) and |+), single-qubit Pauli
and Clifford gates, and measurements in Z and X bases) have the largest
error rate in the set of elementary operations for the stabilizer circuits, which
usually holds true since the gadget for the CNOT gate is the largest. The
logical error rates Py(p) and p, (p) foreach e {1, ..., L} are estimated by the
numerical simulation using the circuit described in Fig. 5. See Supplemen-
tary Information for more details.

With our numerical simulation, we obtain the parameters of the fol-
lowing fitting curves of the logical error rates (see Supplementary Information
for more details). For the quantum Hamming code Q, with parameter r, due
to distance 3, P(p) is approximated for r, € {3,4,5,6,7},r,, € {r; +
1,...,max(r; + 1,7)} by the following fitting curve

P(rl'lﬂ)(p) — QZIH)PZ- (11)

The logical error rate of the level-I C,/Cy code, denoted by P(cll /Ce (p), is

approximated by a fitting curve

P, () = Acjc,Be, e, ), (12)

where F; is the Fibonacci number deﬁned by F;=1, F,=2, and F;=F,_,
+ F._, for [>2". The threshold Pc /C for the C,/Cs code is estimated by

(th)

P (13)

= (Bc“/cﬁ)f1

The logical error rate of the surface code with code distance d, denoted by
(p), is approximated by a fitting curve

surface

d+1

surfacel7 )7

surface

d
P (p) = (14)

Based on the critical exponent method in ref. 62, the threshold p(th), of the

surface
surface code is estimated as a fitting parameter of another fitting curve given

by

(d
Psul)”/face(p) = Csurface +D surfaceX + Esurfacex27 (15 )
th
x = (p = Plope)d". (16)

The logical error rate of the level-I concatenated Steane code, denoted by
(p), is approximated for I € {1, 2} by a fitting curve

Steane

Steane(p) Steanep ( 1 7)
For [ > 3, due to the limitation of computational resources, we did not
directly perform the numerical simulation to determine a(s’t)eane in (17), but

using the results for ] € {1, 2} in (17), we recursively evaluate the logical error

rates P(St)eane (p) of level-I concatenated Steane code as
(1) (I—1) ;
(l) P Steane © oP Steane(p ) (l 18 Odd) 1
Steane(p) (2) (1—2) . . ( 8)
P Steane ° o P Steane(p ) (l Is even)
The threshold p(stttlne of the concatenated Steane code is estimated by that

s ofi (2) (th) \ __ (th)
satleylng P Steane (pSteane) p Steane” ie,

= [ (19)

p Steane — [aSteane

The logical error rates of the level-I C,/Steane codes for / € {1, 2}, denoted by

(é: /steane(P)> are approximated by fitting curves

(20)

(1) _ D
PC4/Steane(p ) - aC4/Steane,p ’
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(2) _ @ 3
PC4/Stea.ne(p) - aC4/Stea.ne ’

1)
where a(c) Steane 18 given by ac steane = Ac,/c,Be, /c, from thelogical error
rate of the level-1 C,4/Cg since ‘the level-1 C,/Steane code coincides with the
level-1 C,/ C6 code For I > 3, similar to the concatenated Steane code, logical
error rates Pc /Steane(p) of the level-I C,/Steane code are evaluated by

pi-2 , p@

p®
C 4/ Steane (P) Steane ° C4 /Steane (P)

Since the C4/Steane code at concatenation levels 2 and higher becomes the

(22)

same as the concatenated Steane code, the threshold pC /St eane of the C,/

Steane code is determined by the physical error rate that can be suppressed
(th)

below  pgene at  level 2, estimated as that satisfying
p®@ (th) (th)y .
C4/Steane(pC4/Steane = PSieane> 1€
~1/9 1/3
(th)y _ | () 2
pStea.ne - [aSteane} { C4/Steane] . (23)

Using the fitting parameters of these fitting curves obtained from the level-
by-level numerical simulations, we evaluate the overall logical error rate
according to (10).

Data availability

The datasets generated and/or analyzed during the current study are available
in the GitHub repository, https://github.com/sy3104/concatenated_code_
threshold.

Code availability

The source codes for the simulation of the underlying codes (except for the
surface code) and the quantum Hamming codes are available in GitHub and
can be accessed via this link https://github.com/sy3104/concatenated_
code_threshold.
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