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Subradiance shows promising applications in quantum information, yet its realization remains more
challenging than superradiance due to the need to suppress various decay channels. This study
introduces a state space within a single-excitation basis with perfect subradiance and genuine
multipartite quantum entanglement resources for the all-to-all case. Utilizing the quantum jump
operator method, we also provide an analytical derivation of the system’s steady final state for any
single-excitation initial state. Additionally, we determine the approximate final state in the quasi-all-to-
all coupling scenario. As an illustrative example, we evaluate the coupling and dynamical properties of
emitters in a photonic crystal slab possessing an ultra-high quality bound state in the continuum,
thereby validating the efficacy of our theoretical approach. This theoretical framework facilitates the
analytical prediction of dynamics for long-lived multipartite entanglement while elucidating a pathway
toward realizing autonomous subradiance in atomic systems.

Multipartite quantum entanglement is an important quantum resource for
quantum information processing in many-body systems'”. In a three-qubit
pure-state system, there are two inequivalent types of genuine tripartite
entanglement: the GHZ class and the W class’. The three-qubit GHZ state
(]000) + |111))/+/2 is considered the maximally entangled state of three
qubits, as all the single-qubit reduced states of the GHZ state are entirely
mixed. However, under particle losses, the entanglement properties of the
state GHZ are extremely fragile. In contrast, the entanglement of W state,
(1001) + |010) -+ |100))+/3, is maximally robust under loss of any one of
the three qubits. In addition, multipartite W-class states play important roles
in quantum memory and quantum communication®, quantum
measurement’, and quantum error correction®”’. In the framework of single-
excitation, the collective states are usually entangled as a W-class, in which a
single excitation is dispersed among multiple atoms.

In a collection of atoms, the collective emission rate can exceed y, (the
vacuum emission rate of single excited atom'’), resulting in a superradiant
state' ™, or be less than y,, leading to a subradiant state'"'*"'°. While
superradiance and subradiance have attracted significant research interest
and enabled various applications in recent years' ™, observing subradiance
is more challenging than superradiance due to the complex decay channels
in most atomic systems. Subradiance has nonetheless been experimentally
demonstrated in ultracold atomic™ ', molecular™*, and superconducting™
systems. For a perfect subradiant state, the initially excited quantum system
remains in its initial state indefinitely. These decoherence-free dark states
are essential for quantum information processing. The simplest perfect dark

state is an antisymmetric two-atom state(|01) — |10))/+/2, with maximum
incoherent interaction, where the spontaneous emission rate approaches
zero”. However, in the vacuum, the inter-atomic interaction decays expo-
nentially with distance. While strong, long-range interactions can be
achieved in plasmonic or photonic systems™ ™, they have strict require-
ments on the number and geometry of atoms, and inherent losses in these
systems limit their applications in quantum information.

The study of bound states in the continuum (BIC) has emerged as a
promising approach for controlling and confining optical resonant modes
with remarkably high-quality factors, enabling various applications*. Of
particular interest are nonradiating BIC modes that also exhibit an effective
zero refractive index"*™’. Such BIC-zero-index systems can provide high-
quality light confinement and facilitate long-range’ ™, even all-to-all
interactions™, owing to the infinite wavelengths inherent to these materials.
These unique properties make BIC-zero-index systems a potential candi-
date for realizing autonomous steady-state subradiance. However, for sys-
tems with long-range dissipative interactions, the dynamical evolution of
multiple particles often becomes complex, as it requires numerical inte-
gration in the exponentially growing Hilbert space, which greatly limits the
understanding of phenomena such as subradiance and related research.

In this work, we introduce a theoretical framework that addresses the
dynamics of single-excitation processes in complex systems and facilitates
the prediction of dynamics for long-lived multipartite entanglement, cir-
cumventing the need for intricate integral computations. While steady-state
subradiance has been widely studied in waveguide®** and cavity QED****
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systems, these platforms typically require external laser pumping. Our
framework enables autonomous subradiance without external driving or
precise initialization, as demonstrated through the quantum jump operator
method, where we analytically derive the steady-state final state for any
single-excitation initial state, including the approximate solution in the
quasi-all-to-all case. The steady states exhibit W-class entanglement, with a
maximally entangled state provided. As a demonstration, we compute the
coupling and dynamics of emitters embedded in a dielectric photonic crystal
slab with a BIC, confirming the validity of our approach. This theoretical
framework elucidates a pathway toward realizing autonomous steady-state
subradiance and multipartite entanglement.

This paper is organized as follows: In RESULTS, we introduce the
model, the quantum jump operator profiles, and the maximally entan-
gled and steady state in the all-to-all case. Next, we work out the analy-
tical final state of any single-excitation initial state. At the end of
RESULTS, we illustrate an example of emitters embedded in a high-
quality photonic crystal slab possessing the bound state in the continuum
to validate the efficacy of our theoretical approach. In DISCUSSION, we
have some discussions about the robustness of autonomous subradiance.
At the end of the work, we present the METHODS used in the
whole work.

Results

The quantum jump operator profile

Following the tracing of the environment and the application of the Born-
Markov and rotating-wave approximations, the Lindblad master equation

of the n-emitter system in a weakly coupled environment can be expressed
35,43,65
as™"
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where the raising and lowering operators of the ith emitter are denoted by &f
and §;, respectively. The Hamiltonian shown in Eq. (1) is

H= hw020,0,+ Z g,JA:LAﬁ )

ij=1,i#j
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with g; being the coherent coupling between the ith and jth emitters and w,
being the transition frequency of emitters (here we assume that the two-level
emitters are identical).

When discussing collective emission dynamics, the spin operators of
single emitters can be conveniently recast into the collective jump operator
{O,}, and the Lindblad equation gives**”’

% —[p H]+- ZF <2(’),,p(’) pO (9 -0 O,,P) (3)

with {T, } being the eigenvalues of the decoherence matrix I, which takes
the form

Yu Yz 0 Vm
Ya Y2 0 VY

I'= . . . . S
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where the matrix element y;; is the dissipative coupling between the ith and
jth emitters, which can be calculated using electromagnetic Green’s tensor,
as shown in Egs. (30) and (31)r and correspondingly, we can find that the
collective operators O, and O, are

Z«xw 5, Za’;,“,’, )

T. . . .
where (a,,a,,, " *,a,,) is the normalized eigenvector of matrix T,
which corresponds to the eigenvalue I',. Consequently, we have

Z‘xuz ;u: v (6)

and the matrix elements of T as illustrated in Eq. (3) are

Zr,, i) @)

In the language of this collective operator, a generic form of a master
equation can be written as

[p H]+ Z L,p, )

v=1

where the v-jump Liouvillian superoperator £, is
- PR I S N 1 .-
£,)=1,10,)0, -5()0,0, =50,0,0)|. ©)
The notation (-) represents a placeholder for an arbitrary operator or state
on which the superoperator £, acts.
The solution of master equation

Itis convenient to convert the matrices, such as density matrix, p to flattened
vector p following a column-wise ordering

Pu

_ (Pu P12> = P (10)
Pu P2 P12
Px

This process is the flattening of a matrix. For a general matrix A, it can be
flattened as

ay 4 o G, a,
Ay Gp 0 Oy - a,
Ay Gyt Gy a,

where a; is the ith column of A with i € [1, n]. In this work, we call the vector
A the flattened form of matrix A.

In this context, we can transfer the superoperators, as illustrated in Eq. (8),
into the multiplication of p by a matrix for convenience. We denote the
multiplication operations A(-) and (-)B as pre(A) and post(B), respectively.
Here we assume the dimensions of matrix A, Band p are all 1, and we can easily
obtain that .

Ap = pre(A)p = (Ix ® A)p, (12)

and

pB = post(B)p = (B' @ L,)p, (13)

where pre(A) and post(A) are (2")?-dimensional matrices and T represents
the transpose of a matrix.

Therefore, the superoperator of the right-hand side of Eq. (8) can be
written as a (2)% X (2")* matrix

L = L[post(H) — pre(H)|]
+ 3T, [pre(O, )post(©]) — pre(©,0,)/2 — post(©,0,)/2].
v=1
(14)
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and thus the Lindblad master equation can be written in flattened form

op N
%P _ s 15
3 Lp (15)

The dimension of £ grows with (2”)2, so when nis large, the numerical
procedure will be very complicated. Subsequently, we will give a significantly
simplified analytical method for the all-to-all case to calculate the system’s
steady state over an extended period.

Actually, the flattened density matrix p(t) is a vector, so we rewrite this
vector as a traditional Dirac form |r(t)>. It is important to observe that the
vector presented here is not a conventional pure state but a vector form of a
flattened density matrix. The initial state is denoted as |r(0)>. In this case,
|r(0)> = ﬂatten{|1//0><u/0|}, where |u/0> represents the actual initial state.
After the diagonalization procedure, we can obtain the eigenvectors and the
eigenvalues of matrix £. Nevertheless, these eigenvectors are not orthogo-
nal. Subsequently, we orthogonalize these eigenvectors to obtain the
orthogonalized and normalized eigenvectors {|/s)} and their corresponding
eigenvalues {eg), namely £ = Zﬁeﬂllﬁ) (lﬁl. A diagonalization procedure
can be found in METHODS. Consequently, the state at time ¢ can be readily
obtained as

(1)) = e“1r(0))

=1

It is important to note that it is generally challenging to diagonalize and
orthogonalize a system with a large #, as the dimension of the matrix to be
diagonalized increases with (2")2. However, as we will see below, it is feasible
to identify an analytical solution in the all-to-all scenario.

Maximally entangled and steady state in the all-to-all case

In the all-to-all case, the elements of the decoherence matrix T are all 1,
namely the dissipative couplings between any two emitters are identical. This
mechanism mirrors the case in the Dicke model, where a subwavelength
ensemble of two-level atoms interacts uniformly with a quantized radiation
field. However, such all-to-all coupling in the Dicke model is typically an
idealized limit, assumed when atomic spacings approach zero. In this work,
we will show that this all-to-all scenario can be realized in extended space
using BIC-zero-index materials, enabling autonomous subradiance through
our theoretical framework. The only non-zero eigenvalue of T is I'; = 1, and
the corresponding eigenvector is ﬁ (1,1,---,1)". Therefore, the master
equation depicted in Eq. (8) can be written as

dp i O SEPC PR PR
o =7l HI+S <2(91p(’)1 —p0,0, — O, 01p> (17)
with
10 —izn:& @*—iiaf (18)
1 ﬁIZI i ~1 ﬁlZI 1°

The matrix £ is deterministic for a qubit system with a deterministic
Hamiltonian and dissipative couplings between any two qubits. A steady
state p, for such a dissipative system requires that £p, = 0. The primary
objective of this research is to identify non-trivial steady states that will
enable us to determine the quantum state of the system after an infinitely
long period. Then, we will provide a comprehensive explanation of how to
utilize non-trivial steady states to obtain the exact arbitrarily long-time
quantum state in the all-to-all case and the approximate long-time quantum
states in the nearly all-to-all cases.

We first define the single-excitation basis {|1) =]00---1),|2)
=100---10),---,|n) =|10---00)}. The number i in |i) corresponds to

the ith qubit is excited and the others are in their ground states, and |0) is the
vacuum state. The maximal multipartite entanglement state within the
single-excitation regime is the so-called W-state (or single-excitation Dicke
state), which has the form

1
Zﬁ(ll) +12) + -+ ).

Here, we use negativity, an easily computable bipartite entanglement
measure, to measure the bipartite and multipartite entanglement. For
bipartite mixed state psp, its negativity is defined as
N(pap) = llpaslly — 1= el — 1= 25, A7%], where As and A/%s
are the eigenvalues and negative eigenvalues of partial transposition matrix
p};g, respectively”. Bennett et al pointed out that a state has genuine n-partite
correlations if it is nonproduct in every bipartite cut”. Therefore, via the
bipartite entanglement negativity, we can define a measure for genuine
multipartite quantum entanglement

W) (19)

N,(p,) = IN(p, ;) Nip, ;) N(p, i )", (20)

where p,, is a n-qubit state, and the bipartite negativity N(p, ; ) char-
acterizes the quantum correlation between the kth qubit i, and the rest
of the system 7. Therefore, the multipartite quantum correlation
N,(p,,) equals zero when the multipartite mixed state is biseparable in
any partition. This measure has been extensively employed in
numerous many-body systems””".

The only negative eigenvalue of the partial transpose of the W state is
A" = —y/n — 1/n, therefore, the multipartite negativity N,, can be cal-
culated as N,, = 2+/n — 1/n. In reality, not only the normal W state with
identical coefficients, for a state of equal probability superposition of [i),
>l with |¢;| = 1/4/n, the multipartite quantum entanglement N,, is
equal to the W state. It can be determined that if the system is prepared at the
superposition of antisymmetric state |#) — |j) initially, the system will
always stay at this state, which means that |i) — |j) along with their
superpositions are steady states of the all-to-all system. Consequently, we
can conclude that, in the all-to-all n-qubit system, the maximally entangled
and perfectly subradiant state can be described as

lv) = 3 Ry(li) = 1j))
1,]7’:14#] (21)
s.t. |l//s> = Zci|i>7 Icil2 :%Vle {1,2,...,?’1},

i=1

where Rys are random complex numbers. Therefore, if the initial state is
prepared asin Eq. (21), it is a random superposition of antisymmetric steady
states | i) — | j>, and the modulus of the coefficients of each single-excitation
component [i) is equal, the system will remain in this #-qubit maximally
entangled state. For an even-qubit system, such as a four-qubit system, a
steady and maximally entangled state is given by

lve) = %(|1> —12) +13) — |4)). 22)

For an odd-qubit system, like a three-qubit system, a perfectly subradiant
and maximally entangled state takes the form

lv:) = 2%/5[(1 +V/30)(1) = [2) + (1 = V3i)(|1) = 13))]-

In the rest of this section and the next section, we take a six-qubit
system as an example to illustrate the coincidence between the
theoretical and numerical results. Panels (a)-(c) of Fig. 1 illustrate the
dynamics of multipartite entanglement Ny and bipartite entanglement

(23)
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Fig. 1 | Coincidence between the theoretical and 2 | Feassssssssssssssasaaasan] ) 1.0
numerical results in all-to-all case. Evolution of = LLL ammms E
multipartite quantum correlation N (red squares) *3 0.5 = 0.5
and bipartite entanglement Nj,,yr (blue triangles) oo "N Nyaiy S Aax .:::::::::::’:::
with six typical initial states, |r,) ~ |r¢) shown in Z 0.0 SN (h) Nyar(th)_(a) Z ()_0.“" - (d)
the main text correspond to panel (a—f), respectively. S [N e 2 1.0 a,
Gray dashed and dotted lines represent Ng(th) and = E .'...i.A. AAAAAAAAAAAAALAAAAAAA
Niaif(th) calculated by the final states that are pre- 'g 0.5 R R 2 0.5 --"""assssnsssnsnanannnn
dicted by our theory. g Relationship between the oy 5
multipartite entanglement of the totally random Z 0.0 (b) Z 0.0 ©
single-excitation states and their final-state result. 2 | .QpFasssasassssssssssssasas 2 1.0F
The color of the scattered points represents the = = m
fidelity between the initial and final states. h A <0.5 0.5
comparison of the calculation time between the g0 0 s
numerical and our approach with the same initial Z ().0kes ssEsEEEEEsamEEE ICI Z 0.0k Bosansas Py reern { aa
state |1). 0. 05 1.0 15 2.0 00 05 10 15 20
n Fide}ity N
1.0
(a) 600 —— integration
0.8 \O 0.8 500t <+ theory
g 06 ) (o) 0.6 ;;400
£, e =300
= 0.4 A 04" 200
0. 2.:;_'? /,,,,/ (2) 0.2 100 / (h)
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Nyai (the entanglement between one half of the system and the rest) for
three initial states

Ir)) =—=(1) — 2) + [3) — |4) + |5) — |6)),

|r2> =
|r3> =

respectively. The numerical calculation results (symbols) and theore-
tical predictions (dashed lines calculated using initial states) are con-
sistent, and the states remain unchanged despite having completely
different entanglement distributions. Obviously, all three states are
antisymmetric states or their linear superpositions, so they will always
stay at the initial states, that is, perfect subradiant states. However, only
r,) fully satisfies the conditions of Eq. (21), namely the maximally
entangled steady state; |r,) is a partially multipartite entangled state
and |r;) has only bipartite entanglement.

Sl
— O\

[8(11) — 12)) +13) — |4) + 8(I5) — 6))], 24

[\9)
wu
[el]

(1) — 14,

Nis

The analytical final state of any single-excitation initial state
Among the eigenvalues of the matrix £ for a #n-qubit single-excitation
system, only a few possess a zero real part (steady-state basis), while the
remaining eigenvalues are negative (exponentially decaying basis).
Consequently, once the eigenvector corresponding to the eigenvalues
with a zero part is identified, the long-term steady state can be
determined. The zero-eigenvalue basis of matrix £ is the flattened
vectors of

ifke[l,n—1],

1(1) = 19) ® (1] — (),
2
= { tkemmony 2

$(1) = 1) ® (1] = (D,

and the purely imaginary-eigenvalue basis (the eigenvalues are + iw,) is the
flattened vectors of

B {jg(liHOI =D, ifke[l,n—1], & = —iw, 26)

B0 oD, ifk e [n,200 = D), ¢ = iy,

where i, j € [2, n] and i # j, and ¢ is the corresponding eigenvalue of by.
Obviously, the flattened vectors {a;} are not orthogonal, and neither are
{b}. To obtain the final steady-state, we need to orthogonalize {@,} and {b, }
as {A,)} and {B,}, respectively. The detailed orthogonalization process is
shown in METHODS.

For a single-excitation initial state |(0)), its corresponding state at a
large time ¢ can be readily obtained as

(n—1y

. - n-1 _ R
|7’(t)> = 3 (Ak|7(0)>|Ak>+ Z(Bk|1’(0))e_w“t|3k>

k=1 k=1 (27)
2(n—1)

+ 3 (Belr(0))e ! |By) + ¢ol7),

=n

where the vector |V) represents the flattened form of the vacuum state
|0) (0], while the term ¢,|¥) is included to ensure that the trace of the
final state equals 1. Except for the eigenvectors A, and By corre-
sponding to Egs. (25) and (26), the eigenvalues of the remaining
eigenvectors of matrix £ all contain negative eigenvalues. Therefore,
the dynamical evolution terms corresponding to these eigenvalues
will decay exponentially as time increases, and thus will not be
included in the final quantum state with infinite time shown in
Eq. (27).
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Fig. 2 | Effects of incoherent couplings. a The
numerical calculation of probability P of the system

(a)
1.0

remains in the initial state |r(0)> = |1) (marks) and
our theoretical prediction (dashed lines) under dif-
ferent as. b The fidelity between the numerical and

0.8

theoretical states as a function of time and a. The

0.6/ 1%
R

0.4

0.2

0.0

color represents the difference of Ny between the
numerical and theoretical states.

‘N6_N6(th)‘
(b) 0.2
1
1 0.15
>08
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=
i 0.6
0.05
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Panels (d)-(f) of Fig. 1 are the multipartite and bipartite entanglement
dynamic Ng and Nj,q of three typical six-qubit initial states

|T’4> = |1>7
Irs) = J2(10) +12) + [3) — 14) = [3) + 16)), (28)
Ire) = [Ws).

The gray dashed and dotted lines in panels (d)-(f) of Fig. 1 represent N¢(th)
and Nj,q(th) calculated by the final states that are theoretically predicted by
Eq. (27). The coincidence of the theoretical and numerical results at a large
time verifies that, even if the initial state is not a steady state, our theory can
accurately predict its final state, whether it is the generation [panel (d)],
reduction [panel (e)] or disappearance [panel (f)] of entanglement. Speci-
fically, if the system is initially prepared in the maximally entangled W state
[see panel (f)], it will decay rapidly and evolve into a product state. Never-
theless, if the system is to be maintained in the maximally entangled state,
the initial state must be prepared in a form shown in panel (a).

Figure 1g shows the relationship between the multipartite entanglement
of totally random single-excitation states and their final-state result. The color
of the scattered points in the panel represents the fidelity”” between the initial
and final states. The points on the diagonal correspond to the steady-state
subradiance indicated by the first line of Eq. (21), where the three points
marked by solid red circles represent Fig. 1a—c, and their fidelity is 1. The other
three dotted black circles correspond to the three situations shown in Fig.
1d-f. Panel (h) compares the calculation time between the numerical and our
approach, demonstrating our theory’s efficiency. Therefore, we can imme-
diately get the exact form of any initial state’s final steady state. More
importantly, we can easily find out what initial state the system is prepared to
maintain its initial quantum state unchanged. This has a far-reaching sig-
nificance for the production and storage of quantum resources.

Suppose the incoherent coupling between any two qubits in an #-qubit
system is a value o that is close to 1, the steady basis shown in Egs. (25) and
(26) has the corresponding eigenvalues with near-zero real parts « — 1 and «
— 1 * iwy, respectively. In that case, the state at a large time as shown in Eq.
(27) can be approximately written as

(n=1)*

r(1) ~ col#) + Y (Aglr(0)e ' ~|Ay)
k=1

n—1 _ . -
+ 3 (B lr(0)) -1l B, ) (29)
k=1
2(n—1) _ ) -
+ X (Bilr(0))e -tk p, )
k=n

All the other eigenvalues have finite and negative real parts, so their cor-
responding dynamics will decay exponentially, thus they are not included in

the final states. In Fig. 2(a), we plot the probability P = <r(0)|p(t)|r(0)>
under different as (shown by different symbols), which is the probability of
the system remaining in the initial state |r(0)> = |1) of a six-qubit initial
state. The dotted lines are the corresponding theoretical results predicted by
Eq. (29). As time increases, theoretical and numerical populations with very
different initial values quickly approach, and they almost coincide in the
end, regardless of the value of «. To further demonstrate the efficacy of the
theory under different as, we plot the dependence of fidelity between the
theoretical and numerical results on & and time ¢ in Fig. 2(b). The colors in
the panel represent the difference between the theoretically and numerically
calculated multipartite entanglement Ng. When time is large, the numerical
value of entanglement and the quantum state predicted by our theory is very
close to the result of the numerical calculation. This result confirms the
validity of Eq. (29), which can accurately predict the evolution of quantum
states over a long time even if the system is not a perfect all-to-all situation.

In the above study, we did not consider the effect of coherent dipole-
dipole coupling in the system. In fact, the effect of coherent coupling on the
emission dynamics of the system is very limited, and the relevant discussions
can be found in the METHODS.

Subradiance in a bound state in the continuum
Here, we use the emitters embedded in an all-dielectric daisy photonic
crystal slab [as shown in the right inset of Fig. 3a] with zero-index mode
which is also symmetry-protected BIC" to realize the low-loss and all-to-all
interactions. As shown in the energy band around I' point that is presented
in the left inset of Fig. 3a, there is a clear Dirac cone and a flat band at T' point,
and the Q-factor of all three bands diverges to infinity. In Fig. 3b, we present
the effective index derived through the calculation and interpolation of
electric field in high-symmetry positions (dotted green line)
E,(r + my/3a) = E,(r)e"*mV3a % where ky = w/c and m takes integer
values, and the dashed line is derived directly from the energy band near T
point, #, = ck/wy. Both simulation results confirm an effective near-zero
index mode near the frequency wa/(27c) = 0.486 [as shown in Fig. 3b]. The
two insets in Fig. 3b show the normalized spatial field diagram of placing an
excited dipole emitter at a high-symmetry point (marked by yellow stars in
two insets) when the transition frequency of emitter is near the I' point [wa/
(2mc) = 0.486] or far away from the I' point [wa/(27rc) = 0.47], respectively.
As can be seen from two insets, at the I point, the near-zero index causes the
resonant emitter to produce a highly symmetric and almost non-attenuated
field extension in space. However, when the frequency deviates from the I
point, the spatial field distribution of the emitter is nonuniform. More details
about the photonic crystal slab as well as the field distribution diagrams can
be found in METHODS, where the BIC-zero-index effect can be observed
on a large spatial scale, which suggests that it may be possible to achieve
long-range, unattenuated interactions on a large spatial scale.

Figure 3c and d are the calculated normalized pairwise coherent and
incoherent couplings of two emitters, g1,/y and y;,/y, placed at high-
symmetry points for different slab sizes, where one emitter is fixed in the
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Fig. 3 | Vadilation of steady-state theory in a BIC Ez1
II))l-lotomc crystal slab. a Divergent quall.ty factors.of walimey=0486 interpolated » K 08

irac cone and flat band (energy band is shown in FRRAFRRAFE, ) 4 0.6
the left inset) of a daisy photonic crystal slab as SRRy . ’
shown in the right inset. b Effective index calculated Aot 27 ko g;
from the energy band (dashed purple line) and P G e _ ’
transmission g electromagnetic field (dotted green ﬁ‘?‘?ﬁfi“:‘g‘_ ad e a/Qne) 047 ?0 5
symbols). Two insets show the field distribution ./-/ _0: 4
emitted from a single excited emitter (yellow star) /0/ 06
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center of the slab sample that possesses the spontaneous decay rate y, and the
other has a distance r with it. The coherent coupling between two emitters
can be denoted by

2

w R -
8= 702Re[.“1k REUBPRORNTIN (30)
ghc
while the incoherent coupling is
20?2 ke o o o
Yo = g I G T, @) ] (1)

The Green tensor (i(7;, 7,, @) showed in Egs. (30) and (31) represents the
electric field at position 7, due to a source located at 7, with frequency w, and
the distance between them is r = |F; — 7,|. In this work, the dipole
moments are all directed along the z axis and have the same electric dipole
moment. Therefore, the Green’s function can be obtained by solving for the
electric field:

iy - G(Fy Ty w) - iy = _Ez(71)?27 (32)
where E_(7,);, is the zcomponent of the electric field at 7, emitted from the
emitter located at 7,. The detailed arrangement of emitters is shown in
METHODS.

According to Fig. 3, the coherent couplings g1,/ decrease rapidly with
the emitter-emitter distance, and almost turns to zero when the distance
between two emitters are large. Nevertheless, the incoherent couplings y;,/y
are relatively uniform, which is also a consequence of the zero index. Figure
3e presents the population of the maximally entangled and steady state
|r(0)> = %(H) —|2) +[3) — |4) +|5) — |6)) under several scenarios.
The solid purple line represents the numerical result in the BIC system as
shown in Fig. 3a (the emitter arrangement is shown in METHODS), and the
dashed blue line is the result for emitters in a vacuum. It can be seen that
although the state evolution in the photonic crystal slab has not yet reached
the ideal situation (the all-to-all case, denoted by horizontal dash-dotted
green line), the rate of state decay is much lower than that in a vacuum,
which is definite evidence of subradiance.

The oscillation at the beginning of the evolution originates from the
coherent coupling of the nearest neighbors, and its influence on the evo-
lution of the entire state is very limited. This can be seen from the fact that
the curves of the dynamical evolution are very close when the coherent
coupling is taken as zero (the dotted purple line, denoted by BIC g = 0)
during the evolution in the BIC case. The dotted red line is the theoretical
result predicted by Eq. (29) with « = 0.9, which is very close to the calculated
dynamic evolution curve in the real BIC system, even over a longer period
(see inset). That confirms that our theory can predict the dynamical evo-
lution of quantum states on a longer time scale.

It can be verified that BIC-zero-index modes are uniquely suited to
achieving autonomous subradiance in our proposed setup, while W-class
states as shown in Eq. (21) emerge as a natural resource within this fra-
mework, combining maximal multipartite entanglement with autonomous
subradiant properties. These findings highlight the potential of BICs and
W-class states as versatile tools for quantum information applications,
particularly in the context of steady-state subradiance.

Discussion

Subradiance and entanglement preservation exhibit significant sensitivity to
decoherence and practical imperfections, such as strong coupling effects,
material losses, and fabrication errors in photonic crystals. To improve the
experimental feasibility of the scheme, we conduct the following discussions
and studies to verify the robustness of the autonomous subradiance against
the non-Markovian effects, fabrication disorder, and non-identical
couplings.

It is important to note that all dynamical analyses so far have been
performed under the Born-Markov approximation. However, non-
Markovian effects may significantly influence subradiance in strong-
coupling regimes, particularly in experimental setups where memory effects
play a crucial role’”””. The impact of non-Markovianity can be highly
complex, depending on system-specific factors such as bath properties,
environmental feedback, and the number of emitters involved””. For
instance, in a waveguide-QED system, non-Markovian effects can further
suppress the decay of subradiant states formed by two emitters’. This
reduction in decay rates stems from photon retardation-induced nonlocal
interactions between qubits, offering a potential mechanism to sustain long-
lived quantum entanglement in dissipative systems. Conversely, non-
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Markovianity also leads to pronounced and intricate quantum beats. While
the present theoretical framework focuses solely on weak-coupling regimes,
the influence of non-Markovian effects on autonomous subradiance in
strong-coupling systems warrants further investigation for a more com-
prehensive understanding.

Next, we present a detailed analysis of how fabrication imperfections
affect the all-to-all coupling condition in daisy photonic crystal slabs.
According to ref. 80, the fabrication disorder can be modeled as a triangular
sidewall disorder, where the degree of disorder is characterized by the ratio
of the triangular height [ to the unit cell pitch 4, as shown in Fig. 4a. This
degree is used to measure the fabrication disorder in the actual BIC photonic
crystal slab. Our analysis shows that under small fabrication disorder //a, the
quality factors of three degenerate modes at I point slightly decrease, as
shown in Fig. 4b; thus, the subradiance remains robust, maintaining its key
characteristics, as shown in the dash-dotted orange line in Fig. 4d. However,
as the fabrication disorder increases, the quality factor of the photonic
crystal decreases (Fig. 4c), leading to an increase in the decay rate of the
initial state, as shown in the dotted black line in Fig. 4d. Quantitative results
demonstrating the robustness of subradiance under small disorder condi-
tions. However, as the fabrication disorder increases, the quality factor of the
photonic crystal decreases, leading to an increase in the decay rate of the
initial state.

While this work primarily examines autonomous subradiance in
all-to-all or near-all-to-all coupling regimes, it is intriguing to inves-
tigate its robustness in more general scenarios with non-identical
emitter-emitter couplings. Here, we will conduct a comparative study
between our autonomous subradiant state |r(0)> and the W-state under
a non-identical coupling scenario in free space. In Fig. 5, we present a
study on the comparison between two maximally entangled states in a
free space under different inter-emitter distances. One state is the
autonomous subradiant state
|r(0)> = L6(|1) — |2) +[3) — |4) 4 |5) — |6)), and the other state is the
W-state ]/I:V6> = %(Il) +12) +[3) + |4) + |5) + |6)). The curves in
Fig. 5 reveal that at large inter-emitter distances, |r(0)) actually decays
faster than the W-state. However, as the distance decreases, |r(0)>
shows rapidly decreasing decay rates but W-state decay more rapidly.
In the zero-distance limit (all-to-all coupling), |r(0)> recovers its ideal
subradiant character, but W-state decays more rapidly. These results

demonstrate that our autonomous subradiance basis maintains its
advantages across a wide range of coupling conditions, not just in the
ideal all-to-all case.

Our analysis reveals that the subradiant states engineered in this
photonic crystal platform exhibit remarkable robustness against
fabrication-induced disorder. Notably, even in free-space coupling
schemes where emitter-emitter interactions decay rapidly with emitter
separation, the subradiant basis maintains significant advantages over
conventional quantum resources (e.g., W-states) in both state and
entanglement persistence. These findings significantly expand the
scheme’s experimental relevance, confirming that autonomous sub-
radiance remains effective in realistic conditions beyond idealized
theoretical constructs.

A theoretical framework has been developed successfully, which is able
to reveal quite efficiently the dynamics of single-excitation processes in all-
to-all systems, facilitating the prediction of long-lived multipartite entan-
glement dynamics without intricate integral computations. Utilizing the
quantum jump operator method, we have analytically derived the steady-
state final state for any single-excitation initial state, including an approx-
imate solution for the quasi-all-to-all coupling scenario. Our results
demonstrate unambiguously that the system’s multipartite entanglement,
characterized by the negativity measure, remains robust over time, with the
steady states exhibiting W-class entanglement. As an illustrative example,
we have computed the coupling and dynamics of emitters within a photonic
crystal slab possessing an ultra-high quality BIC, thereby validating the
efficacy of our theoretical approach. This work not only elucidates a path-
way toward realizing autonomous steady-state subradiance and multipartite
entanglement in atomic systems but also has significant implications for the
production and storage of quantum resources, potentially enabling more
efficient quantum information processing and quantum communication
protocols.

Methods

Orthogonalization procedure of steady basis

We first present a general orthogonalization procedure on the steady basis,
and then we will present an example in the three-qubit case. Here, we take
the Gram-Schmidt process® to orthogonalize the zero-eigenvalue eigen-

vectors. The Gram-Schmidt process is as follows: given k vectors vy, -+, v,
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their orthogonalized vectors can be calculated as

u =",

Uy = Vv, — prOjul(Vz),

uy = v3 — proj, (v3) — proj, (vs),

U, = vy — projul(v4) - projuz(v4) - proju3(v4), (33)
k=1

u = v — Zl prO]u](Vk).
=

Among the above vectors, proj,(b) represents the orthogonal projection of a
vector b onto a vector a.

(b, a)
(a,a)

proj,(b) = a, (34)

and (b, a) is the inner product of vectors a and b.

For a three-qubit case, the steady-state basis of zero-eigenvalue can be
found in Eq. (25) of the main text. Normalizing these vectors and following
the orthogonalization procedure above, we can obtain the orthogonalized
and normalized vectors, and their corresponding matrix form A; ~ A4 can
be written as

Av=1(1 — B @ (1] - @),
4, = %[(m 13D ® (1] — (3]) +2(2) (3] — [2) 1],

-y - _ (35)
A =20 = 3@ (A1 + (3D + 203)2 — )]

A= 00 + BN ® (1] + (31) -+ 4221 - 202001
H2)631+ 112 +13) D]

Similarly, the purely imaginary-eigenvalue basis can be readily found in Eq.
(26) of the main text. Following the same orthogonalization procedure, we
can obtain the orthogonalized matrix form B; ~ B,

B, :\/%(|2><0| — [1){0]),
1
B, = —(=|1){0] — [2){0] + 2|3){0]),
2 ?(I)(IH(I 13)(0) 6
B, :%(|o>(2| —10)(1]),
B, = \%(—IO)(II — 10)(2] + 210)(3)),

where A, to A, are the eigenstates correspond to the eigenvalue 0, B, and B,
correspond to the eigenvalue — iwp, and B, and B, correspond to the
eigenvalue iw,.

For systems with more qubits, the orthogonalized steady-state basis
vectors can also be easily obtained according to the above process as well as
Egs. (25) and (26) in the main text. Based on these orthogonalized basis
vectors, we can easily obtain the approximate final state of the system.

Role of coherent coupling in emission dynamics
Here, we will verify the dependence of coherent coupling on the emission
dynamics under the simplest two-qubit case. The Hamiltonian of the two-
qubit system has the form
_ Sfa L ata Sta ot 37

H = hwy(6,0, + 0,0,) + £(0,0, + 0,0,), (37)
with g being the coherent coupling between two qubits, and the master
equation can be written as

% _

ot Lp.

(38)
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Fig. 6 | The evolution of concurrence over time for
the |eg> state under different coherent couplings,
analytical results (black solid line), and results
given by our theory (blue scattered points). Panels
(a) and (b) correspond to coherent couplings g=0.6
and g=5, respectively.

(b)

a=0.8 g=5

20

The eigenvalues with zero real part of matrix £ of such a two-qubit
system can be easily obtained as

€, =0,6,=0,6; = —i(wy — g), ¢4 = i(wy — g), 39)
and the corresponding normalized eigenvectors are
) = 1(0,0,0,0,0,1,-1,0,0,-1,1,0,0,0,0,0),
(40)

IL,) = (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ",
) = 43(0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)",

= 45(0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0) .

In this part we consider a general case where the coupling between two
distant qubits is close to 1 but not exactly 1, we can also use the theory in the
main text to give the quasi-steady state. For the two-qubit case investigated
in this part, the decoherence matrix can be written as

(0

with a being the incoherent coupling between two qubits. The eigenvalues of
this matrix are I'y = 1 + «, and the corresponding normalized eigenvectors
are%(l7 1)

(41)

Here we will take two typical states as the initial states to clarify the
dependence of the coherent coupling on our theory and the exact dynamics.
"lihe first state is the _maximally (_entangled state, % (leg) — Ige))- We have
(I,17(0)) =1 and (l;]r(0)) = (I,|r(0)) = 0, thus the final state can be
obtained as

220 0 0
1 0 el —elat

Pr = ) 0 el ekt (42)
0 0 0 0

It can be verified that this state is the exact solution of the Lindblad
master equation. Two-qubit entanglement can be measured with

entanglement concurrence®, C(p) = max{0, \/A; — /A, — /A3 —

/A4} with A;s being the square roots of the eigenvalues of matrix pp,
in decreasing order, and p = (0, ® 0,)p"(0,, ® 0,). Therefore, the two-
qubit concurrence of the theoretical final state shown in Eq. (42) can be
calculated as Cy, = e“ ", which is slowly decaying over time when « is
close to 1. Consequently, we know that under the maximally entangled
and steady state of the two-qubit system, coherent has no influence on
the final state.

For another typical state |eg), the analytical form of its density matrix
over time can be expressed as"’

4—2F 0 0 0
1 E' —2E. E'—2iE, 0
p(t) =~ R R (43)
4 0 E\ +2iE, E'+2E, 0
0 0 0 0

where B! = @D 4 g(-e=Dt Et — o(ma=Dt _ gla=Dt Bl — 9 cog(2gt)e ™",
and E} = 2sin(2gt)e™", and the exact two-qubit concurrence of the state
can be calculated as

1
C, = 3 \/ez(“*l)t + e~ 2@t Dt — 2e=2t cos(4gt). (44)
The theoretical final state can be calculated as
4—2¢kt 0 0 0
1 0 el el 0 45)
= I A
0 0 0 0
and it’s concurrence can be calculated as
th 1 (a—1)t
Ch=xe . (46)

2

Comparing these two results, we find that the exact concurrence shown in
Eq. (44) will turn to the theoretical one shown in Eq. (46) at a large time ¢.
However, the large coherent coupling g can lead to the wild oscillation at the
beginning of the dynamic. This can be clearly observed in Fig. 6.

Details of the bound state in the continuum
In the main text, we selected a photonic crystal slab with BIC characteristics
to verify our theory, as shown in Fig. 7(a). The photonic crystal slab is made
up of a silicon slab of thickness d = 0.54, with a dielectric permittivity e=12,
that has air holes arranged in a triangular lattice with a lattice constant a, and
in actual calculations, we used a triangular sample slab. The shape of the air
holes [as shown in the right inset of Fig. 5a] is given as r(6) = 1 (r, + r;) +
1(r, — ) cos(66) in polar coordinates, where r; = 0.27a and r, = 0.43a™.
Figure 7b depicts the schematic of the emitter arrangement for pairwise
coherent and incoherent coupling on the BIC photonic crystal slab, as
shown in Fig. 3¢ and d of the main text. In this diagram, the yellow star
denotes the position of the fixed emitter, while the remaining blue dots
represent the locations of the other emitters. The red dots in Fig. 7c present
the emitter arrangement of six emitters referred in Fig. 3e of the main text.
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Fig. 7 | Details of BIC photonic crystal slabs. Panel (a) is a schematic diagram of the
BIC photonic crystal slab model, with the right figure showing a detailed diagram of
the structure within a single unit cell. Panel (b) illustrates the schematic of the
calculation positions for coherent and incoherent coupling, with yellow stars indi-
cating the positions of the emitters and blue dots representing the calculation
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positions. Panel (c) represents the positions of the emitters (red dots) for the cal-
culation of steady-state evolution in the BIC photonic crystal slab. Panels (d) and (e)
show the electric field distribution diagrams in the central cross section of the slab at
the BIC and non-BIC frequencies respectively.

Figure 7d and e present our simulated electric field distributions in the
central cross section of the slab, excited by embedded emitters (yellow stars)
operating at different frequencies. These plots show the normalized E,
component for a lattice constant a = 800 nm. Specifically, Fig. 7d and e
correspond to the BIC frequency wa/(27c) = 0.486 and non-BIC frequency
wal(2mc) = 0.47, respectively. Comparing the field distributions under BIC
and non-BIC cases, it can be seen that the field distribution in the slab under
BIC is very uniform at high symmetry positions, even at the edge of the slab
sample, while the field distribution decreases slightly under non-BIC fre-
quencies. The simulations of the couplings and the field patterns in this work
are implemented through the software COMSOL multiphysics.
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