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Tailoring dynamical codes for biased
noise: the X*Z° Floquet code
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F. Setiawan'J & Campbell McLauchlan®?

We propose the X*Z°® Floquet code, a dynamical code with improved performance under biased noise
compared to other Floquet codes. The enhanced performance is attributed to a simplified decoding
problem resulting from a persistent stabiliser-product symmetry, which surprisingly exists in a code
without constant stabilisers. Even if such a symmetry is allowed, we prove that general dynamical
codes with two-qubit parity measurements cannot admit one-dimensional decoding graphs, a key
feature responsible for the high performance of bias-tailored stabiliser codes. Despite this, our
comprehensive simulations show that the symmetry of the X®Z® Floquet code renders its performance
under biased noise far better than several leading Floquet codes. To maintain high-performance
implementation in hardware without native two-qubit parity measurements, we introduce ancilla-
assisted bias-preserving parity measurement circuits. Our work establishes the X*Z* code as a prime
quantum error-correcting code, particularly for devices with reduced connectivity, such as the

honeycomb and heavy-hexagonal architectures.

Quantum error correction (QEC)' ™ should be understood as occurring both
in space and time’. Taking advantage of the temporal dimension, Floquet
codes”™, or more generally dynamical codes’ ™, form a large class of
quantum error-correcting codes, which can achieve competitive fault-
tolerant performance®*™"” while reducing the weights of check measure-
ments performed for the error correction. Several of these codes”'*'* also
benefit from being defined on alattice with sparser connectivity than that for
the surface code””: each qubit is only connected to three other qubits. In
architectures where two-qubit parity check measurements are native, Flo-
quet codes could achieve higher thresholds™'*" and lower space-time
overheads*"’ than the surface code. Without requiring additional con-
nectivity, such codes can be deformed around defective components caused
by highly noisy qubits or gates'>*. Moreover, dynamical codes allow for
implementations of arbitrary Clifford, and even some non-Clifford gates,
through low-weight parity check measurements™. In addition, dynamical
measurement schedules can result in certain errors being self-corrected in
the Floquet-Bacon-Shor code®—this code was recently demonstrated in
superconducting qubit experiments”’.

Although Floquet codes (in particular, the honeycomb code) have been
studied under various noise models’**, there have not been any Floquet codes
that are specifically tailored for an improved performance under biased noise.
A biased noise model is one in which a specific type of error, for example,
phase errors, occurs more frequently than other errors, such as bit flip errors.
This biased noise is typical to most quantum platforms, for example, bosonic
“cat” qubits™”, spin-optical "', neutral atoms™, quantum-dot spin qubits™**

and Majorana qubits™*. In these platforms, biased noise can arise due to
different predominant error mechanisms. For example, by increasing the
photon number of the resonators, the cat qubits™ can be made exponen-
tially protected against the bit-flip error at the expense of only a linear
increase in the phase-flip error. For the spin qubits in both spin-optical'” and
quantum dot architectures™*, the noise is predominantly dephasing due to
the short spin coherence time, T,. Moreover, the two-qubit gates of
quantum-dot spin qubits have also been experimentally shown to exhibit
phase-biased noise which is caused by the T, dephasing, non-Markovian
error sources, AC-Stark shift, and calibration errors®. In neutral-atom
qubits, detailed modelling of the experiment shows that the two-qubit gate
noise is predominantly phase-biased due to the short Rydberg state T%
lifetime caused by finite atomic temperature and light-shift fluctuations of
the lasers™. Lastly, for Majorana qubits, the noise is expected to be biased due
to residual coupling between the Majoranas and thermal fluctuations that
excite the qubit to an above-gap quasiparticle state”.

For enhanced performance, quantum-error-correcting codes need to
be designed such that they possess symmetries that can be utilised to sim-
plify the error-syndrome decoding problem given the noise
structure™ . While there have been a number of proposals for bias-tailored
static codes”*>*">, designing Floquet codes for high performance under
biased noise is still an open problem. Owing to the experimental relevance of
biased noise and given the ease of implementation of Floquet codes, which
require only two-qubit parity measurements that can be implemented even
in architectures with sparse connectivity, it is therefore imperative to tailor
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Floquet codes for biased noise and study how the performance of such
dynamical codes can be improved.

In this paper, we present the X*Z’ bias-tailored Floquet code, a Clifford-
deformed* version of the Calderbank-Shor-Steane (CSS) Floquet code'™".
Despite not having a fixed stabiliser group (as static codes have), remarkably
the X°Z’ Floquet code possesses a stabiliser-product symmetry under infi-
nitely phase-biased noise, simplifying decoding in biased noise regimes. We
perform an in-depth study of this code, along with the CSS Floquet code'*"*,
and two types of honeycomb codes: one introduced by Hastings and Haah®
and the other by Gidney et al.’. We simulate all codes under biased-noise
models, and find that the X’Z’ code has the best performance. Using a
matching decoder, we find that, as the noise changes from fully depolarising
to pure dephasing, the X’Z’ Floquet code threshold increases from 1.13% to
3.09% under a code-capacity noise model and increases from 0.76% to
1.08% under a circuit-level noise model mimicking hardware with noisy
direct entangling measurements. Furthermore, we show that its sub-
threshold performance is also substantially better under biased noise than
other Floquet codes.

Compared to its static counterparts, the X°Z’ Floquet code has an
advantage that it can be realised using only two-qubit parity check mea-
surements. This makes it particularly suitable for devices with constrained
connectivity, such as the honeycomb and heavy-hexagonal lattice (currently
IBM’s preferred superconducting-qubit architecture)’>’. Moreover, we
demonstrate that the two-qubit parity measurements of the Floquet code
can be performed in a bias-preserving way even in hardware without direct
entangling measurements, thus enabling high performance implementation
in such devices. Crucially, we show that even in the presence of mid-gate
errors which degrade noise bias in the target qubits of conventional CNOT
gates™, two of the three required parity-check circuits, built using these
conventional gates, can be made fully Z-bias preserving, i.e., sustain the Z
noise bias on both data qubits, while the other one is partially phase-bias
preserving, i.e., protects the Z noise bias in only one of the data qubits.

We argue that other dynamical codes defined on the same architecture,
and built from two-body measurements, would likely not have drastically
improved performance compared to the X*Z* Floquet code. To support this
argument, we prove that decoding graphs of such dynamical codes under
infinitely phase-biased noise have connectivities that are too high for the
decoding problem to be reduced to a simple decoding of repetition codes, as
is the case for static codes***“. This can be understood as resulting from the
fact that error syndromes of dynamical codes possess less symmetry than
their static code counterparts.

The paper is laid out as follows. In the Results section, we first review the
basics of Floquet codes together with two widely studied examples: honey-
comb and CSS Floquet codes. Readers who are already familiar with Floquet
codes can skip directly to the section in which we discuss our X*Z* Floquet
code. Crucially, we show that there exists a persistent symmetry in the code’s
error syndrome under pure dephasing noise that allows for a simplified
decoding. Subsequently, we introduce ancilla-assisted bias-preserving parity
measurement circuits that allow for high-performance code implementation
in devices without native entangling measurements. We then provide the
simulation results for memory experiments. We provide two theorems
showing that the decoding hypergraphs of dynamical codes cannot be
reduced to 1D graphs. Finally, we conclude and present future research
directions in the Discussion section. In the Methods section, we provide the
description of our noise models, details of numerical simulations and proofs
of the no-go theorems. In the Supplementary Information, we provide a more
thorough review of the basics of honeycomb and CSS Floquet codes, details of
our parity check circuits, plots for determining thresholds, details of hyper-
edges in the honeycomb codes, and results for Floquet codes with elongated
dimension and twisted periodic boundary conditions.

Results

Dynamical and Floquet codes

We begin by defining dynamical and Floquet codes. Here we consider the
Floquet codes to be defined on the lattice of a two-dimensional colour code,

which is trivalent and three-colourable. A trivalent lattice has each vertex
incident to three edges, and a three-colourable lattice has every face assigned
one of three colours in such a way that there are no two adjacent faces of the
same colour. Throughout this paper, we will use the honeycomb lattice as an
example of such a lattice (see Fig. 1).

We define qubits as residing on the vertices of the lattice and error-
correction is performed by measuring two-qubit operators defined on edges
of the lattice (i.e., acting on qubits incident to a given edge). Each edge is
coloured the same as the plaquettes it connects [see e.g., the coloured edges
in the middle right of the lattice in Fig. 1a]. We perform error-correction by
measuring edge operators in a particular sequence. After any given sub-
round of edge measurements, the system will be in the +1-eigenstate of the
operators in an “instantaneous stabiliser group” (ISG), which will change at
each time step. The ISG at time step t + 1 is defined as

ISGyyy = (S, *M|M e M,,,, SEISG,,

such that[S,M] =0, YM € M, ). @
In the above, M, is the set of “check” measurements performed at time
step £+ 1. The ISG,, ; also includes “plaquette stabiliser operators” S € ISG;
which commute withall M € M, . The check measurement operators are
chosen in such a way that those check operators at time ¢ that have over-
lapping qubit supports with check operators at ¢ + 1 anti-commute. For
Floquet codes, the measurement sequence is periodic, such that M, =
M, for some integer T. For such a code, we will be performing quantum
memory experiments with mT time steps, for some integer m. We will refer
to m as the number of “QEC rounds” in the experiment, while we will refer
to mT as the number of “measurement subrounds” in the experiment.

The logical operators at time ¢ are given by C(ISG,)/ISG,, where
C(ISG,) is the centraliser of ISG,, i.e., the group of Pauli operators com-
muting with all S € ISG,. A (potentially trivial) logical operator “repre-
sentative” is some member of C(ISG,). Each lowest-weight nontrivial logical
operator representative for the codes considered will be a string-like Pauli
operator at each time step [see Fig. 1¢c]. To avoid anti-commuting with the
next-subround edge measurements, certain check measurement results
along a logical operator’s path have to be multiplied into that logical
operator. Hence, the logical operators will evolve from one time step to the
next. As an illustration, take for example the vertical logical operator
immediately after the gB checks are applied, i.e., the operator on the yellow
string in the top-centre panel of Fig. 1(c). This operator is obtained by
multiplying the vertical green-B checks on the vertical logical operator’s
path [the two green edges on the yellow path shown in the top-centre panel
of Fig. 1] into the previous time-step vertical logical operator [the operator
shown by the yellow string in the top-left panel of Fig. 1(c)]. Note that after
the multiplication, the logical operator commutes with the next check
measurements, which are the blue-A edge measurements.

We can detect errors if we can find sets of measurements, called
detectors, that always multiply to the value +1 in the absence of noise, thus
registering no error. Over some number of QEC rounds we will have
extracted several detector outcomes. A detector (or decoding) hypergraph is
formed by first defining a node for each (independent) detector in the code’s
history. Subsequently, for each potential fault (e.g., Pauli or measurement
errors) that might have occured, a (hyper)edge is drawn between the
detectors whose signs are flipped by this fault. Each (hyper)edge is assigned a
weight based on the probability of the corresponding error occurring”. The
codes we will be examining are amenable to minimum-weight perfect
matching decoding®, upon decomposing hyperedges into edges. Given a
“syndrome” (a set of detectors whose measurements return —1 rather
than +1), the decoder attempts to pair up the triggered detectors to deter-
mine a highest-probability correction operation. The decoder succeeds if the
error combined with the correction is a trivial logical operator.

Having discussed the general idea of Floquet codes, we now briefly
review the commonly studied examples: two variants of the honeycomb
code* and the CSS Floquet code™"*. We will later modify the CSS Floquet
code to achieve the bias-tailored X’Z* Floquet code. More details of the
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Fig. 1| X’Z* and CSS Floquet codes on the hexagonal lattice with their stabilisers,
checks, and logical operators. a CSS and (b, ¢) X’Z’ Floquet codes. a, b Left:
Hexagonal lattice with qubits sitting on vertices and opposite boundaries identified.
Plaquettes and edges are assigned one of three colours [red, green, blue; examples are
shown in (a)] and one of two types (X- or Z-type for CSS and A- or B-type for X*Z°).
a Right: CSS Floquet code measurement schedule. b Left: The X*Z’ Floquet code is
obtained from the CSS code via Hadamard gates applied to shaded domains' qubits.
Right: Plaquette and edge (check) operators are A- or B-type, depending on their
support basis on the shaded/unshaded domains. ¢ The X°Z’ Floquet code mea-
surement schedule. Arrows indicate the type and colour of the edge operator

measured at each step, where the edges just measured (members of the ISG) are
highlighted in the lattice. Uncoloured plaquettes host only a single type of stabiliser,
either A or B, indicated by the letters in the plaquettes, while coloured plaquettes host
both A- and B-type stabilisers in the ISG. One set of anti-commuting logical
operators is shown by yellow and brown strings, where their qubit supports are
depicted using big circles and stars, respectively, with the X (Z) bases highlighted by
red (blue) colouring. The other set (not shown) is similar to the set shown but offset
by three measurement subrounds and with an X < Z interchange of the qubit
supports' bases.

honeycomb and CSS Floquet codes are presented in Supplementary Sec. I of
the Supplementary Information®'.

Honeycomb codes

We begin by first discussing the honeycomb codes. The first variant we
review is due to Gidney et al.®, which we call the P® Floquet code, since its
plaquette operators are six-body operators of the form P for P= X, Y, Z.
We define edge operators of three types: on red edges we define an XX
operator, on green edges a YY operator and on blue edges a ZZ operator. We
measure edge operators in the periodic sequence r — g — b. When this code
is defined with periodic boundary conditions it stores two logical qubits (it is
equivalent to the toric code concatenated with a two-qubit repetition code at
each time step®). The code’s logical operators evolve through the measure-
ment cycle (see Supplementary Sec. IA of the Supplementary
Information®'). While the measurement sequence has period 3, the logical
operators only return to their initial values (up to signs) with period 6.

We define one stabiliser operator for each plaquette, where red, green,
and blue plaquettes host the X®¢, Y®°, and Z®° operators, respectively. These
plaquette operator eigenvalues are inferred from edge measurements in two
consecutive subrounds. Detectors are formed from consecutive plaquette
operator measurements.

The second honeycomb code variant, which we call the XYZ’ honey-
comb code, is due to Hastings and Haah®. It differs from the P® code by
single-qubit Clifford rotations acting on the qubits. While the XYZ? code’s
edges are still coloured the same as the P® edges, the XYZ’ code’s edge
operators have their Pauli bases defined according to their orientations
within each T junction, i.e., horizontal edges are of Z type while the Xand Y
checks are respectively those edges which are 90° clockwise and counter-
clockwise rotated from the horizontal edges (see Supplementary Sec. IA of
the Supplementary Information®'). All plaquettes have the same stabiliser

operator, i.e., the XYZ* operator. While the logical operators of the XYZ’
code have the same qubit supports as those of the P° code, the qubit support
bases of the XYZ* logical operators are not uniform throughout, but involve
X, Y, and Z Paulis’. We note that even though these honeycomb code
variants have been studied by several works in the literature (e,g., refs. 6-9),
there have not been any studies comparing the performance of these two
codes under biased noise.

CSS Floquet code

Having discussed the honeycomb codes, we now give a brief review of
another type of Floquet code, the CSS Floquet code, which was first pre-
sented in refs. 13,18. We refer the readers to Supplementary Sec. IB of the
Supplementary Information®' for more details on the code. The CSS Floquet
code is defined on the same honeycomb lattice. We show the code’s mea-
surement cycle in Fig. 1(a). We measure operators defined on edges using
the r — g — b cycle, but alternate between measuring XX and ZZ operators
on these edges. Hence, this code has a period-6 measurement cycle, and its
logical operator evolutions also have period-6 (see Supplementary Fig. 2 of
the Supplementary Information” for an illustration). Even though the
honeycomb code’s measurement schedule has only a period of 3, for con-
sistency, we will define 1 QEC round to be 6 measurement subrounds for all
codes studied in this paper. The check operators, stabilisers and logicals all
are either X- or Z-type and, for this reason, the code is called the CSS
Floquet code.

Unlike the honeycomb codes, the CSS Floquet code has no persistent
stabiliser operators. Instead, each plaquette stabiliser is repeatedly reinitia-
lised and measured out, with subsequent measurement values compared to
form a detector. In contrast to the honeycomb codes where the values of the
plaquette stabilisers are inferred from measurements of check operators in
two consecutive subrounds, here the plaquette operator measurements take
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Fig. 2 | Persistent stabiliser-product symmetry of
the X*Z’ Floquet code leads to improved perfor-
mance under Z-biased noise. a An example of such ®
a symmetry along a single unshaded strip of the
lattice, together with a Pauli-Z error, is shown
throughout the measurement cycle. Arrows indicate

the type of check (cA or ¢B for some colour c) ¢
measured at each subround. A-type plaquette s
operators whose product forms the symmetry at that
subround are highlighted in darker colours. Pla- ®
quettes indicated by coloured dots are the locations
of syndromes that would be triggered if the Z error ®

shown were to occur at that measurement subround.
b An example of a stabiliser-product symmetry just
before gB checks are measured is the product of red
and blue A-type plaquettes shown. Since this pro-

duct is the identity along the vertical unshaded strip
and commutes with Z errors on all qubits, the syn-
dromes/anyons [coloured dots in (a)] must appear
in pairs along the vertical strips. ®

A 4
<&
i

only a single subround'*". Because of these single-step measurements, at
each measurement subround, there is always one type of plaquette operator
that anti-commutes with the check measurements, and hence their values
are undetermined (see Supplementary Sec. IB of the Supplementary
Information®). These “inactive” plaquettes, however, will be reinitialised at
the next measurement subround. As a result, at each time step, the ISG
contains X-type and Z-type stabiliser operators defined on two of the three
colours of plaquette and either an X-type or a Z-type operator defined on the
other colour. For instance, after measuring the red-X checks, the ISG con-
tains X®° and Z*° operators on both blue and green plaquettes, but only X®°
red plaquette operators, since Z*° red plaquette operators anti-commute
with the red-X checks (see Supplementary Sec. IB of the Supplementary
Information® for more details).

The CSS Floquet code is naturally suited to a minimum-weight perfect
matching (MWPM) decoding, since single-qubit (X or Z) Pauli and mea-
surement errors all lead to graph-like syndromes"’: they each trigger a pair of
detectors. There are two decoding graphs formed from the Z-type and X-
type detectors. Only Y errors form hyperedges that need to be decomposed
into edges in the two detector graphs.

X322 bias-tailored Floquet code
We now describe the X?Z’ bias-tailored Floquet code, which is shown in
Fig. 1b, lc. This code is related to the CSS Floquet code by Hadamard
gates applied to the qubits in alternating strips [i.e., the grey strips in Fig.
1b] along vertical non-trivial cycles of the lattice, and is a Floquetified
version of the domain wall colour code*. As in the CSS Floquet code, the
X7’ code also has two types of plaquettes and edges: one originates from
the Pauli X and the other from the Pauli Z plaquettes and edges in the
CSS code before the Hadamard deformation. We refer to these modified
operators as A-type and B-type, respectively; these are shown in Fig. 1b.
The measurement sequence is analogous to the CSS Floquet code
sequence: TA — gB — bA — rB — gA — bB, where cA represents the
measurement of A-type check operators along c-coloured edges, and
similarly for ¢B. Just as with the CSS Floquet code", this code can also be
defined on a planar lattice with boundary.

The decoding of the X*Z’ Floquet code under Z-biased noise is sim-
plified by the presence of a symmetry in the decoding graphs, which we will
explain below. This is a space-time analogue of the symmetries present in

bias-tailored static codes such as the XZZX code® and the domain wall
colour code*. In such codes, under the infinitely phase-biased code-capacity
noise model (with only single-qubit Z errors, for example), syndromes are
forced to come in pairs along one-dimensional (1D) strips of the lattice. This
results from strips of stabilisers multiplying together to the identity along
one domain and commuting with all Z errors on all qubits: these are 1D
symmetries of the stabiliser code under infinitely phase-biased noise. We
will refer to (plaquette) stabilisers in the ISG that are flipped by an error as
anyons. In bias-tailored static codes, anyons can propagate within strips but
cannot move outside the strip without changing their Pauli type. We will
show that there also exists a similar symmetry in the bias-tailored
Floquet code.

As in the CSS Floquet code, there are two disjoint decoding graphs for
the X’Z’ Floquet code: the A-type and B-type graphs, whose edges corre-
spond to single-qubit Pauli errors. In even measurement subrounds, we
perform B-type measurements and form detectors for the B-type graph
while in odd measurement subrounds, we only form detectors for the
A-type graph. Note that under a more complicated noise model, such as one
that includes measurement or two-qubit errors, edges can exist between the
A- and B-type graphs and they are no longer disjoint.

Persistent stabiliser-product symmetry and two-dimensional
decoding of the X°Z® Floquet code under biased noise
There is no constant stabiliser group when viewing the X’Z’ Floquet code as
a subsystem code (in a subsystem code, the stabiliser group is defined as the
centre of the gauge group, which, in our case, is generated by all edge
operators)"'*. Surprisingly, despite this fact, at every time step, there do exist
operators that form a symmetry under pure dephasing noise (without
measurement errors). An example of such a symmetry is shown in Fig. 2. It
is a symmetry on one of the unshaded domains and it is formed by the
product of A-type plaquettes. A similar symmetry can also be found on the
shaded strips which are formed by the product of B-type plaquettes.

To see why such symmetries exist, consider one particular time step,
e.g., just before the green B-type measurements, and one vertical unshaded
domain in the lattice. This is shown in Fig. 2b. As depicted, the product of
red and blue A-type plaquettes in the ISG is the identity on all qubits in the
domain, and yields Pauli Z operators on some qubits in the neighbouring
shaded vertical domains. To be more concrete, consider the plaquettes that
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Fig. 3 | The 2D A-type detector graph of the X*Z*
Floquet code under pure dephasing noise. Only a
single vertical strip [e.g., that supporting the

bV

stabiliser-product symmetry in Fig. 2b] is shown.
The illustrated part of the graph is disconnected
from those of neighbouring strips. Arrows represent

only the A-type measurements. The B-type sub- A
rounds are not shown, since they do not influence

the detectors in this graph. Each node (representing
a detector) is placed in the centre of a plaquette and
at the subround in which the corresponding detector
is formed. For example, the bottom layer corre-

sponds to the blue A-check measurements, at which

time the red A-type plaquettes are measured.

) ﬁ Em‘d
\ti ))gxx
I\

can detect Z errors along the unshaded vertical domain D at time step .
These are the A-type plaquette operators with support in D. For a plaquette
stabiliser operator S, which is measured in a time step ' >, to form a
detector (i.e., a node in the detector graph), it has to be in ISG; and ISG,, 1,
since it must commute with at least the next measurement subround. We
can define ISGﬁ‘ﬁl) as the subgroup of ISG; N ISG,, ; formed from A-type
plaquettes with non-trivial supports on domain D. We then have

Xz Q1 @)

j€Dz,  j€Dy,

I s- (@)

AD
SEISGU,LM) keD

where D, , and D, , are some subsets of qubits in the domains adjacent to
domain D on which the product of the A-type plaquette stabilisers yields
Pauli Z and the identity, respectively [for the example given in Fig. 2b, the
domain D is the unshaded vertical strip, the domains D,, and D,
comprise the qubits in the neighbouring shaded vertical strips with Z-circled
label and no label, respectively]. We use a subscript ¢ in the notations D, ,
and D}, to indicate that the qubits belonging to these two subsets depend on
the time step £. Note that we suppress the identity factors outside of D and its
adjacent domains. In particular, by restricting this operator to domain D, we
have the following persistent stabiliser-product symmetry:

11 sio =& 3

AD
SeIsGyp keD

which implies that the error syndrome obeys a conservation law in the
domain D: the syndrome comes in pairs along this strip. At each subround,
there also exists a similar symmetry on the shaded domains, which is formed
by the product of B-type plaquettes. Therefore, for the pure Z Pauli noise
model, we can perform minimum-weight perfect matching decoding within
each domain.

To explain this more concretely, we use the anyon picture. These
anyons, shown in Fig. 2a, are interpreted as having locations given by the
detectors that would be flipped if the corresponding error were to occur at
that time step. For example, if the Z error shown in Fig. 2a occurs just before
the green B-check measurements (top-left panel of the figure), it will trigger
ared A detector after two measurement subrounds and a blue A detector
after a further two subrounds. As a result of each of the symmetries, Pauli-Z
errors create anyons in pairs along each vertical strip. An example of such
anyons, which are formed due to a Pauli Z error at a particular measurement
subround, is shown in Fig. 2a. While the plaquette locations of the anyons,
triggered by the Z error occurring on the same qubit, change every other

subround, they always respect the symmetry, i.e., are aligned along the
domain (see Fig. 2).

Unlike the symmetry in static stabiliser codes, this stabiliser-product
symmetry does not allow for 1D decoding even when measurement errors
are absent. While in static codes, only measurement errors produce “time-
like” edges, in Floquet codes, even Pauli errors produce time-like edges
(between detectors formed at different times). To demonstrate this, we
display in Fig. 3 a portion of the A-type detector graph under infinitely
phase-biased single-qubit noise with no measurement errors. As can be
seen, there is a disconnected subgraph defined along one unshaded domain
of the code lattice. Even considering this simple noise model, the decoding
graph in the infinite bias regime is two-dimensional (i.e., the graph is pla-
nar). This results from the fact that neighbouring plaquettes are measured at
different times. We emphasise that although the above discussion is based
on Z errors, the same analysis also holds for X errors because X and Z
operators are interchangeable for the X*Z’ code. As a result, the performance
of the X*Z* code under X-biased noise is expected to be the same as that
under the Z-biased noise model.

Bias-preserving parity-check circuits

While two-body measurements are native to certain architectures, for
example, Majorana'***’ and photonic'”** platforms, most architectures
require quantum circuits to carry out such measurements. To maintain the
high-performance of bias-tailored codes in these hardware, the parity-check
measurement circuits need to be constructed in a phase-bias preserving
manner, such that they do not propagate frequently-occurring errors to
rarely-occurring errors. To this end, we design two-qubit parity check cir-
cuits that preserve the Z bias on data qubits. That is, the probability of X and
Y errors on data qubits after these circuits remains small (proportional to
single-qubit X or Y error probabilities). Our bias-preserving parity check
measurement circuits are constructed by using an ancilla circuit connecting
two data qubits, which can be realised even in devices with minimal con-
nectivity, such as the heavy-hexagonal layout™"".

For a circuit to be bias preserving, it can be constructed using only gates
that do not change the error type under conjugation. For example, one way
to construct bias-preserving circuits is to use only CNOT gates in the
measurement circuits as they only propagate errors to others with the same
Pauli type. For the X*Z’ code, we need to construct bias-preserving circuits
for three different kinds of parity checks: ZZ, XX and ZX. All these three
circuits can be constructed using only CNOT gates as shown in Fig. 4. As
depicted, these circuits also include resets and measurements of the ancilla
qubit in the three Pauli bases, i.e., Z, X and Y bases for ZZ, XX and ZX checks,
respectively. Note that the circuits are still phase-bias-preserving even if the
resets/measurements in the X and Y bases are compiled in terms of resets/
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Fig. 4 | Depth-2 parity check measurement cir- (a) 77 (b) XX <L) 71X

cuits. For the circuits to be bias-preserving, the

CNOT gates in the circuits need to be also bias- Data; —e——— Data, P Data;

preserving. Shown are the circuits for (a) Z,Z,, (b)

X, X5, and (c) Z, X5 checks circuits, where the ancilla |0> o—P VA ) |+> X ) ‘+> v v Y )

qubit is reset and later measured in the Z, X and Y
bases, respectively.

Datag ————

Fig. 5 | Parity-check measurement circuits built (a) 77 (b) XX
from conventional two-qubit gates and con-
structed in ways that the Z-noise bias on the data Data, ° Datay X ) X
qubits is preserved under mid-gate errors. Shown
are (a) ZZ, (b) XX, and (c) Z,X, check circuits. The ‘ +> @
circuits in (a) and (c) preserve the Z noise bias on ‘0> S—P S—P Z
data qubits even in the presence of mid-gate errors.
The circuit in (b) includes a classically controlled X Datay Data '7(\
gate targeting one of the data qubits, which is non-Z a2 L=/
bias preserving. Data qubits are labelled by Data;
and Data,, while the middle qubit in each circuitis a
measurement ancilla. In (c), the first equality can be (C) Zl X2
checked by noting that the depth-3 circuit before
and after the mid-circuit measurement performs a Data, Datay
next-nearest-neighbour CZ gate, if the measure- =
ment ancilla is initially in the |+) state. The second Ancilla _ +) 7 X) 7 X)
equality can be checked by commuting all gates past
the measurement. The grey measurements can be Datas _"_ Dat: |7(\
optionally included to provide flag information. atag 2/
Datay
_ 10— S 7)
Datag 1 X))

measurements in the Z basis with additional single-qubit Clifford gates. This
isbecause a Z error on any qubit at any time step in the compiled circuits still
propagates to data qubits as a Z error, or as a check operator about to be
measured.

The parity-check circuits shown in Fig. 4, however, may not preserve
the noise bias if errors happen during the CNOT gates. This is because a Z
error occurring on the target qubit during the application of a conventional
(non-bias preserving) CNOT gate may result in a combination of Z and X
errors on the target qubit after the CNOT gate™. One way to remedy this
problem is to use bias-preserving CNOT gates™. These gates, however, are
available only in specific platforms such as cat qubits. Here, we propose a
more general approach to constructing Z-bias preserving parity check cir-
cuits without requiring the bias-preserving gates. While our proposed cir-
cuits can preserve only a specific type of noise bias, i.e., the Z bias, these
circuits are built using conventional (which may not be phase-bias preser-
ving) two-qubit gates and thus can be implemented in many different
architectures.

Our proposed phase-bias preserving parity-check circuits are depicted
in Fig. 5. For the ZZ and ZX check measurement circuits, they are con-
structed using either CZ gates or CNOT gates targeting ancilla qubits, which
propagate Pauli errors on the ancilla qubits only as Z errors on the data
qubits. In other words, these circuits do not leave any residual Pauli X or Y
errors occurring with probability O(p,,) and therefore do not degrade the Z
noise bias on the data qubits. This is true even if we consider mid-gate Pauli
errors (see Supplementary Sec. II in the Supplementary Information® for
details). The XX measurement circuit shown in Fig. 5b, however, is not fully

Z-bias preserving in the presence of mid-gate errors. This circuit degrades
the Zbias on one of the data qubits, i.e., the data qubit that is the target of the
classically-controlled X gate. (Note that instead of implementing the clas-
sically controlled X gate, we may alternatively perform a CNOT gate, with
the control being the ancilla qubit and target being data qubit 1, immediately
preceding the ancilla measurement). However, since the XX parity-check
circuit shown in Fig. 5b degrades the Z-bias on only one data qubit, it has a
better Z-bias-preserving performance compared to the XX check circuit in
Fig. 4b, which degrades the Z-bias on both data qubits due to the fact that
both data qubits are used as target qubits of the CNOT gates in the circuit.

We now elaborate on how the parity-check circuits work. We begin by
noting that while the ZZ parity check measurements [Fig. 5a] are performed
by reading out the ancilla qubits like in standard syndrome extraction cir-
cuits, the XX and ZX parity values [Fig. 5b, c] are obtained by measuring the
data qubits after some two-qubit gates are applied on them. These two-qubit
gates are required for the parity measurements so as not to reveal each
individual data qubit’s state. For the XX parity-check circuit, the two mid-
circuit X-measurements in Fig. 5b, are equivalent to reading out the X; X,
and X,X,, parity values, where the Pauli operator X, acts on the ancilla qubit
which is prepared in the |0) state. Hence, the product of these two mea-
surement outcomes is the required X;X, parity check outcome. We can
disentangle the ancilla qubit by performing a final Z, measurement (which
requires correcting a potential bit flip on one of the data qubits with the
classically controlled X gate), or by using a CNOT gate (not shown) before
the Z, measurement (see Supplementary Sec. II of the Supplementary
Information®' for details).
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Fig. 6 | Thresholds (py,) of different Floquet codes as a function of noise bias #.
Codes studied are X*Z* (blue), CSS (green), P® (red) and XYZ (orange). Results are
computed for two different noise models: (a) code-capacity and (b) SDEM3. a Inset:
Zoom-in threshold plots for the P® (red) and XYZ’ (orange) codes. For better
visualisation, we fit all curves with quadratic splines.

The mixed-type Z, X, parity circuit can be constructed using CZ gates
between the data qubits, as shown in Fig. 5c. If the connections between the
data qubits are not available in the device such as in hardware with a heavy-
hexagonal lattice, these CZ gates have to be implemented using ancilla
qubits in-between the data qubits. We show such an implementation of
next-nearest-neighbour CZ gates in the first equality of Fig. 5c (this is
adapted from ref. 56). This circuit also includes optional measurements,
coloured in grey, which provide “flag information” for detecting Z errors on
the ancilla qubit that may have propagated to the data qubits. Such flag
measurements can assist in decoding”’. In the second equality of Fig. 5¢, we
reset the ancilla qubit in the |0) state instead of the |+) state, allowing for a
shorter-depth circuit to implement the Z; X, measurement. This comes at
the cost of removing one flag measurement. To see that this circuit works as
intended, we can commute the two-qubit gates past the X, measurement,
resulting in a Z,Z,X, parity measurement. From the result of this mea-
surement, together with the fact that Z, value is set to be +1 at the ancilla
reset, we can then infer the value of Z,X,.

We emphasise that, even if the X measurements in the parity-check
circuits above are implemented using Z measurements sandwiched by
Hadamard gates, this does not degrade the bias, since a Z error occurring
between those Hadamard gates is harmless. Specifically, a Z error happening
before the measurement is immediately absorbed by the Z measurement
without flipping its outcome, and a Z error after the measurement is a
stabiliser of the state (up to a sign), so does nothing. Moreover, the circuit
will not change the noise bias significantly even if the Hadamard gates are
noisy, since in many architectures, the single-qubit gate errors are not the
predominant error source and are usually much smaller than the two-qubit
gate errors”*.

In Supplementary Sec. IT of the Supplementary Information®', we show
in more detail how the parity check circuits preserve the noise bias. We also
show that the phase-bias preserving parity-check circuits presented in this
paper have optimal circuit depth.

Memory experiment simulation

To study the performance of our proposed X*Z’ code, we perform quantum
memory experiment simulations under two biased noise models. These
noise models are the generalisations of the standard code-capacity and
standard depolarising entangling measurement (SDEM3) noise models (see
the Methods section for details of the noise models). We simulate the X*Z?
code along with three other codes: CSS, P® and XYZ’ Floquet codes, with
varying degrees of noise bias # (see the Methods section for details of our
numerical simulations). The noise bias # = p,/(px + py) is defined as the
ratio of the Z-error py to other errors where the total physical error rate is
p=px + py + pz As the noise asymmetry increases, the noise bias #
increases from # = 0.5, which corresponds to fully depolarising noise (px =
Py =pz=p/3),to 1= oo, corresponding to a pure Z-biased noise (p = p, and
px=py=0).

Thresholds

Figure 6 shows the thresholds of all codes for various levels of noise bias #
calculated for (a) code-capacity and (b) SDEM3 noise models. Each
threshold is obtained from the intersection of the logical failure probabilities
p1 Vs physical error rate p curves of different code distances deg=d/2 =6, 8,
10, and 12. Here, the effective distance d. is defined as the minimum
number of faults under SDEM3 depolarising noise that produce a logical
error. This is half of the distance d of the code-capacity noise model. For the
methods and plots used to determine the thresholds, see the Methods sec-
tion and Supplementary Figs. 5-8 of the Supplementary Information®. We
also provide the threshold data in ref. 69.

Since the code-capacity noise model, which considers only single-qubit
noise, is a more benign model than the SDEM3 noise model, which also
includes two-qubit and measurement errors, the code performance calculated
under the code-capacity noise is better than that of the SDEM3 noise. For
both noise models, as shown in Fig. 6a, b, the performance of the X’Z’ code
becomes increasingly better than those of all other tested codes as the noise
bias increases. In particular, as the noise changes from fully depolarising to a
pure dephasing type, the X*Z° Floquet code’s threshold increases from =
1.13% to = 3.09% for the code-capacity noise and from = 0.76% to =~ 1.08% for
the SDEM3 noise model. The threshold therefore increases by a factor of 2.7
and 1.4 for the code capacity and SDEM3 noise models, respectively.

It is interesting to note that for the fully depolarising code-capacity
noise, all codes have the same threshold. This is because at every mea-
surement subround under this noise model, all the above codes have two
types of errors at each fault location (occurring with a total probability 2p/3)
that give rise to edges in the detector graph and one type (occurring with
probability p/3) that produces hyperedges. For the CSS and X*Z’ codes, these
hyperedges result from Y Pauli errors. On the other hand, the hyperedge
errors in the P° and XYZ’ codes are those that anti-commute with the check
measurements that occur just before and immediately after the errors'>*.
Therefore, the Pauli type of the hyperedge errors for the honeycomb codes
varies between measurement subrounds. For example, Z errors create
hyperedges only when they occur between the XX and YY checks of the
honeycomb codes. In summary, all the above codes have the same perfor-
mance for fully depolarising code-capacity noise because their (weighted)
detector hypergraphs are all equivalent.

As shown in Fig. 6a, b, while the CSS Floquet code has the same
threshold as the X*Z’ code when the noise is fully depolarising, its threshold
decreases with increasing noise bias, where its value is 0.752% and 0.668% at
infinite bias for the code-capacity and SDEM3 noise, respectively. This
decrease is due to the fact that the CSS Floquet code has pure X and pure Z
detectors where in the presence of biased noise, half of the detectors, i.e.,
those with the same type of the dominant error, will become less useful in
detecting the biased errors.
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Fig. 7 | Sub-threshold logical failure probability p; of different Floquet codes as a
function of noise bias 5. Codes studied are X’Z’ (blue), CSS (green), P° (red) and
XYZ’ (orange). Results are computed for two different noise models: (a) code-
capacity and (b) SDEM3. Inset: Zoom-in subthreshold performance plots of the P°®
(red) and XYZ? (orange) codes. Results are calculated using (a) lattice size 20 x 30 (d
=20) for 30 QEC rounds with p = 0.72% and (b) lattice size 24 X 36 (d.g= 12) for 36
QEC rounds with p = 0.5%. Each data point is averaged over 10° — 10* Monte Carlo
shots. For better visualisation, we fit all curves with quadratic splines. For each of the
noise models, we choose the largest code distance and the smallest subthreshold
physical error rate that can be simulated given our computational resources.

Figure 6a, b shows that the thresholds for the honeycomb codes have
only minor improvements as the noise bias increases, where the thresholds
for both honeycomb codes increase only by <6 x 10™* Specifically, the
thresholds of the honeycomb codes at 77 = co are only about 1.03 — 1.08 times
larger than their thresholds at 77 = 0.5 (where their fully-depolarising noise
thresholds are 1.13% and 0.585% for the code-capacity and SDEM3 models,
respectively). We note that for the SDEM3 noise, the thresholds of both
honeycomb codes are lower than those of the X*Z* and CSS Floquet codes at
all noise biases. This is partly explained by noting that the SDEM3 noise
model contains measurement errors which give rise to hyperedges in the
decoding hypergraphs of the honeycomb codes" but only graph-like edges
for the CSS and X*Z’ Floquet codes". As we explain below, these hyperedges
degrade the MWPM decoder performance.

We find that there are differences, albeit modest ones, between the
performance of the XYZ* and P* honeycomb codes under biased noise; these
differences have not been pointed out before in the literature. While the
XYZ* honeycomb code has a better performance than the P* honeycomb
code for the code-capacity noise model, we find that its performance is
inferior to that of the P° Floquet code for the SDEM3 noise model. This is
surprising, considering the similarity of the former to the bias-tailored XYZ’
static code’. However, owing to stabilisers being measured in two mea-
surement subrounds, the XYZ’ Floquet code no longer possesses all the

symmetries of the static version making the dynamical code not able to
inherit all the benefits of its static counterpart.

The performance difference between the XYZ* and P® honeycomb
codes can be understood from the distribution of hyperedge-like syndromes
(namely, those with four triggered detectors) in the detector hypergraphs
under the biased SDEM3 noise model. These hyperedges generally degrade
the code’s performance when using a matching decoder since they must be
decomposed into edges (see ref. 12 for a detailed description of the decoding
in a hyperbolic version of the honeycomb code). An infinitely phase-biased
SDEMS3 noise model that includes Pauli noise but no measurement errors
can already form hyperedges in the honeycomb codes™ detector hyper-
graphs. In particular, the P® code can have hyperedges resulting from Z
errors occurring only after the red check measurement subrounds, while the
hyperedges in XYZ’ code can result from certain Z errors happening in any
subround. While there is no difference in the overall number of hyperedges
resulting from single-qubit Z errors in the two hypergraphs, the different
arrangement of the hyperedges due to the single-qubit errors in these two
codes gives rise to different kinds of syndromes for the two-qubit ZZ errors.
Specifically, ZZ errors can lead to hyperedge syndromes in the XYZ* Floquet
code but only edge-like syndromes for the P° code (see Supplementary Sec.
IV of the Supplementary Information®' for details). As a result, in an infi-
nitely phase-biased regime, where Pauli errors after MPP gates are evenly
distributed between Z;, Z, and Z,Z,, there are more hyperedge syndromes
triggered in the XYZ’ code than in the P° code. This is the reason underlying
the difference in the thresholds, as shown in Fig. 6b, of the two honeycomb
codes under the SDEM3 noise. Since honeycomb codes are prone to
hyperedge errors, better performance of the honeycomb codes might be
expected using a correlated MWPM decoder such as the one used in ref. 8.

Subthreshold performance

As aresult of the shift of the thresholds with the noise bias, the subthreshold
performance of the codes changes accordingly. As shown in Fig. 7a, b, the
subthreshold logical failure probability improves significantly for the X’Z’
code, while it becomes only slightly better for the honeycomb codes and
deteriorates for the CSS code. In general, one expects the subthreshold
performance of the codes to improve by increasing the code distance along
the direction where the biased errors most likely form logical strings. For
example, for the Z biased noise considered here, it would be by increasing
the vertical code distance dy. To this end, we study the subthreshold per-
formance of elongated CSS and X*Z’ Floquet codes with dy > dy;, where dy,
and dy are the vertical and horizontal code distances, respectively. The
details are given in Supplementary Sec. V of the Supplementary
Information®".

Besides thresholds, another quantity of importance is the scaling of the
code sub-threshold performance with the code distance. We plot the sub-
threshold logical failure probability as a function of d or deg for varying levels
of noise bias in Fig. 8. As shown, the logical failure probabilities for all codes
decrease exponentially with the code distance, ie., p;, o exp(—yd) or
p, o exp(—yd.g). Among all codes presented, the X’Z’ code has the largest
logical error suppression rate y. At higher noise bias, this error suppression
rate becomes significantly larger for the X’Z’ code, moderately increases for
the two honeycomb codes and decreases for the CSS Floquet code. The
reason is that as the noise bias increases, a fixed subthreshold physical error
rate moves relatively with respect to the shifting threshold, so that it becomes
much further below the threshold for the X*Z? Floquet code, moves mod-
erately away from the threshold for the two honeycomb codes and becomes
closer to the threshold for the CSS code [see Fig. 6a, b].

We also numerically simulate the performance of the X*Z® Floquet
code with a twisted periodic boundary condition. This twisted code has a
pure Z-type logical operator with a length that scales quadratically with the
code distance of the untwisted code. As a result, we find better thresholds
and more favourable subthreshold performance for the twisted code over
the untwisted one. While these performance benefits hold for the infinite-
bias code-capacity noise, they do not apply to other noise biases and models
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Fig. 8 | Exponential suppression of the sub-threshold logical failure probabilities
1 with respect to code distance. We use code distances d or dg depending on the
noise model and compare different Floquet codes: CSS (green), XYZ’ (orange), P°
(red), and X*Z? (blue). Results are calculated for different noise models: (a, b) code-
capacity and (¢, d) SDEM3 noise models, with a subthreshold physical error rate p =

0.55%, which is small enough, yet can still be simulated using our computational
resources up to code distance d = 24 or d.g = 12, for all the different codes and
parameters corresponding to different curves in the plots. The same physical error
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rates are chosen for all curves such that the subthreshold performance under dif-
ferent noise bias strengths and noise models can be compared. Plots are computed
using two different bias strengths; one representing noise near the depolarizing
regime: (a,c) 77 = 1 and the other representing noise in the strongly dephasing regime:
(b, d) 7=99. All curves can be fitted to an exponential decay function f o< exp(—yd)
or f o exp(—yd,q) where y depends on the bias strength # and is an increasing
function of (py, — p). Each data point is averaged over 10° — 10° shots.

Table 1 | Error suppression factors A for different
Floquet codes

Code-capacity SDEM3

n=1 n=99 n=1 n=99
Css 1.94 1.39 1.74 1.37
Xyz? 227 2.28 1.11 1.15
Pe 2.31 2.37 1.12 1.24
p Al 2.49 4.26 1.94 3.42

These are calculated using two different noise models, code-capacity and SDEM3, with varying
levels of noise bias . Results are calculated with a physical error rate p = 0.55%. The lambda factor
is related to the error suppression rate y shown in Fig. 8.

tested (See Supplementary Sec. VI of the Supplementary Information® for
details).

While in this paper, we focus on Floquet codes with periodic boundary
conditions, we expect similar qualitative performance of the Floquet codes
under open boundary conditions. As shown in ref. ° for the honeycomb code
with depolarizing noise, the boundary conditions (whether periodic or
open) do not significantly impact the threshold and subthreshold perfor-
mance of the code. This should be expected even more so for the CSS and
X*Z’ Floquet codes, because the boundary condition does not affect the
measurement schedule for the codes. We leave the simulations of the codes
under open boundary conditions to future works.

The error suppression rate y is related to the error suppression factor A
introduced in ref. 70 which is defined as the reduction factor in the logical
failure probability as the code distance increases by 2. Mathematically, it is
given by

A

d
LU — % (4)
pi(d+2)
for the code-capacity noise and similarly for the SDEM3 noise model, but
with d replaced by d.g. For a noise model where the error is characterised by

a single error rate p and threshold value py,, when p < py,, QEC suppresses
the logical error exponentially as the code distance increases, i.e.,
b1~ (p/py)?. Since A = py(d)/pr(d + 2), we then have A = py/p. At
the thresholds, we have A(py,) = 1. The value of A increases as the physical
error rate p moves further below the threshold py,. For physical error rate
below the threshold, A > 1 and larger A means greater error correction.
Since the threshold depends on the noise bias #, A depends on both 7 and p.
In Table 1, we list the values of A corresponding to the y values shown in
Fig. 8.

Performance optimality of X°Z° Floquet code and no-go
theorems

As seen above, although the performance of the X’Z* Floquet code is sig-
nificantly better compared to other Floquet codes, its threshold under
infinitely phase-biased code-capacity noise does not reach the 50%
threshold of its bias-tailored static version™. To explain this, we show that
there are fewer symmetries in the decoding graphs of dynamical codes,
which restricts the code performance. The key feature resulting in the high
performance of bias-tailored static codes (ie., their decoding can be
understood as decoding a series of repetition codes™*****’) is not possible for
dynamical codes built from two-qubit parity measurements, as we will
show below.

We argue that due to the above limiting constraint, the symmetry of
the X’Z’ Floquet code has likely rendered its performance close to
optimal under a matching decoder, despite the fact that even for the most
favourable case of infinitely phase-biased code-capacity noise, its
decoding can only be reduced to at most a series of disjoint 2D (planar)
graphs. We formalise this by proving two no-go theorems for the
decoding graphs of dynamical codes. We begin with the following
informal statement of our first theorem:

Theorem 1. (Informal) A dynamical code (not necessarily a Floquet
code) on the honeycomb lattice operated over a sufficiently large
number of time steps cannot have a 1D decoding graph under an
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Fig. 9 | Illustrations of the no-go theorems. We
display examples of the decoding graphs (under an
infinitely biased code-capacity noise model; edges
correspond to Z errors and vertices to detectors) that
are forbidden by (a) Theorem 1 for dynamical codes
on the honeycomb lattice and (b) Theorem 2 for
general dynamical codes.
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infinitely biased code-capacity noise model, so long as it obeys the
following properties:

(a) Ateach time step, two-body Pauli operators on edges of a given colour
are measured. Measurements in consecutive time steps occur on edges
of different colours and anti-commute.

(b) Detectors are supported on plaquettes.

(c) All non-trivial errors are detectable and produce syndromes of
weight > 1.

In principle, a 1D graph [such as the one shown in Fig. 9a] could still
result in better code performance than a general planar decoding graph. The
fact that this type of graph is not possible suggests that planar graph
decoding is already optimal for dynamical codes on the honeycomb lattice.

To generalise this result beyond codes defined on the honeycomb
lattice, we provide the following theorem for general dynamical codes built
from two-qubit parity measurements.

Theorem 2. (Informal) A dynamical code (not necessarily a Floquet code)
operated over a sufficiently long time scale cannot have a decoding graph,
under an infinitely biased code-capacity noise model, equivalent to that of a
collection of repetition codes [see Fig. 9b], so long as: all measurements are
two-qubit parity measurements, each qubit is in the support of one mea-
surement in each time step, overlapping measurements in consecutive time
steps anti-commute, and errors produce syndromes of weight > 1.

This theorem shows that (given reasonable and typical assumptions)
the decoding graphs of general dynamical codes cannot be decomposed into
a collection of 1D repetition-code decoding graphs, which could otherwise
allow them to achieve higher thresholds.

We provide the formal statements of the above two theorems and their
proofs in the Methods section. We display the decoding graphs prohibited
by the above two theorems in Fig. 9.

Discussion

In this paper, we introduce the X’Z’ Floquet code, the first bias-tailored
dynamical code based on two-qubit parity check measurements. We show
that, despite having no constant stabilisers, the code possesses a persistent
stabiliser-product symmetry under pure dephasing (or pure bit-flip) noise
which allows for a simplified decoding. This results in a substantially
improved threshold and sub-threshold performance under biased noise,
when compared to other Floquet codes. We demonstrate the enhanced
performance through our simulation results obtained from using a fast
matching decoder and two error models: a simplistic code-capacity noise
model and a noise model approaching realistic circuit-level errors. Besides
the superior performance of the X*Z’ Floquet code, our results also show
that there are differences, albeit modest ones, in the threshold and sub-
threshold performance between the XYZ* and P® honeycomb codes under
biased noise.

To explain why the X*Z’ Floquet code does not reach the same high
performance as the bias-tailored static codes, we prove that a dynamical
code on the honeycomb lattice (obeying certain assumptions common to
standard Floquet codes) cannot have a 1D decoding graph, the crucial
requirement for the high performance of static codes. Despite this limita-
tion, the bias-tailored X*Z’ Floquet code has the advantage over its static
counterpart in that it requires only lower-weight measurements. Specifically
for devices without native two-qubit parity measurements, we devise phase-

bias preserving parity check measurement circuits for any qubit archi-
tecture, which allow for high-performance implementation of the code. Our
work therefore demonstrates that the X’Z’ Floquet code is a leading
quantum error correction code especially for devices with limited con-
nectivity such as the hexagonal and heavy-hexagonal architectures.

We now give several directions for future work. Since the decoding of
any general Floquet codes with two-qubit parity measurements can be
reduced, at most, to a 2D decoding problem, it would be interesting to
investigate the performance improvements of the X’Z’ Floquet code using a
more accurate decoder (such as a tensor network decoder) and to consider
ways to analytically derive the best achievable thresholds for the X’Z’ Floquet
code. Future studies may also investigate fault-tolerant logic in the X’Z’ code,
via lattice surgery’, aperiodic measurement sequences”, twist braiding”", or
transversal gates”. Finally, it will be of interest to study the performance of
memory experiments and fault-tolerant logical gate implementations in
hardware where parity checks are implemented using bias-preserving circuits
such as the circuits presented in this paper and compare them to the per-
formance in hardware with native direct multi-Pauli product measurements.

Methods
Noise models
In this paper, we consider two noise models: code-capacity and entangling
measurement (SDEM3) noise models. In the code-capacity noise model, we
apply single-qubit Pauli noise on all the data qubits independently at every
measurement subround. The single-qubit Pauli noise channel is given by
E4(p) = (1 = p)p+ pxXpX + py YpY + p, ZpZ. )

Here, p = px + py + pz is the total error probability. As in the literature, we
define the noise bias as n7 = p,/(px + py) and assume px = py. Several values
of 77 are worth listing:

1. n=0— pz=0,and px = py=p/2,

2. =05 — px=py=pz=p/3,

3. =00 — py=p,and px=py=0.

We note that, since for Floquet codes one QEC round consists of
several measurement subrounds, the single-qubit noise channel in the code-
capacity model is applied several times in one QEC round instead of just
once as is the case with static codes. The code-capacity noise model is often
used as a preferred initial noise model to study before going to a more
involved model as its simplicity often offers insight into understanding the
code performance.

On the other hand, the SDEM3 model is a more elaborate error model
involving single-qubit noise channels after every single-qubit gate, mea-
surement and reset, a two-qubit noise channel after every multi-Pauli
product (MPP) parity measurement gate, and a classical flip after each
measurement. As in ref. 9, we assume that each of these error channels
occurs with a total probability p. The SDEM3 noise model is therefore close
to standard circuit-level noise and would be a more accurate description of a
realistic noise channel, particularly in hardware with native two-qubit
measurements, for example, Majorana'***** and photonic'”** architectures.

To take into account biased noise, we generalise the SDEM3 model for
depolarising noise used in refs. 9,15. Here, the single-qubit noise channel has
the same form as given in Eq. (5) for the code-capacity noise model. On top
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Table 2 | Description of the generalised SDEM3 noise model

Noise model Generalised SDEM3
Noisy gate set Mpp (P, )
Init(o,n)
M p)
Measurement ancilla None
Measurement subrounds per one QEC round 6

The definition of the noisy gates is given in Table 3.

Table 3 | Description of noisy gates in Table 2

Noisy
gate set

Mpe (o, n)

Description

Measurement of Pauli Product PP on a pair of qubits:

¢ independently register incorrect measurement result with
probability p,

¢ apply a two-qubit Z-biased noise channel with total error
probability p and noise bias n after measurement, i.e., apply:

- the trivial identity operator (/) with a probability 1 — p,
-Zl,1Z, and ZZ operators, each with probability {p/3,

- the remaining Pauli operators, each with probability (1 — )
2
p/12, where { = 2 (%1) 42 (%1)
Qubit initialization in some Pauli basis, followed by applying a

single-qubit Z-biased noise channel with total error probability p
and noise bias n after the reset, i.e., apply:

Init(o,n)

o the trivial identity operator (/) with a probability 1 — p,

 Pauli Z operator with probability pn/(n + 1),

e Pauli X and Y operators, each with probability p/[2(n + 1)].

M(p)

Measure the qubit in some Pauli basis and register the incorrect
measurement result with probability p.

of the single-qubit errors, this model also has a two-qubit noise channel
applied after each of the MPP gates, which is given by

>

O€e{I,X,Y,Z}3\ (IR}

Eyp) =00 —plp+ Po0pO. (©6)

To conform with how the bias is defined for the single-qubit noise channel,
we also use 7 to characterize the bias of the two-qubit noise channel.
Specifically, we define the bias # for the two-qubit noise channel such that
1. 1=0— pzz = prz=pz =0 and each of the other probabilities is p/12,
2. = 0.5 — each of the Pauli errors occurs with p/15, and
3. =00 = pyy = piz = pz = p/3, and the other probabilities are 0.
Just as for the single-qubit noise, the above definition of # ensures that
the two-qubit noise at the three special points, # =0, =0.5and # = oo,
are Z-error free, depolarising, and pure dephasing, respectively. Given
that the two-qubit error probabilities at these # values must satisfy the
conditions above, we define { € [0, 1] and write the two-qubit Pauli
error probabilities as

Pz =Pu =P =p/3,
pO = (1 - C)p/lzv (7)
forO e {I,X,Y,Z)®*\{II, ZI,1Z, ZZ),

with # and ( related via:

3 N2
=:(ih) i) ®

Note that Eq. (7) is defined such that the total probability of all the Pauli
eITOrS Y o1 x.v. 2\ 1enPo = P for all noise biases 1. Apart from the
single- and two-qubit Pauli noise channels, we also apply a classical flip of
the measurement results with probability p after each of the single and two-
qubit measurements. These measurement flips are uncorrelated with the
single and two-qubit noise channels. We summarise the description of the
SDEMS3 noise model and its noisy gate set in Tables 2 and 3, respectively.

Stabiliser circuits

We simulate the circuits and generate the error syndromes using Stim’;
example Stim circuits are provided at ref. 69. We construct Stim circuits
from various quantum operations (resets, measurement gates, etc.) with
noise channels associated with each quantum operation (i.e., with error
probabilities set by the noise models introduced above), detectors and logical
observable updates. From these circuits, Stim can generate the detector error
models which list the error mechanisms, the associated syndromes, and the
logical observables flipped by the errors. A detector error model is fed to the
decoder which then predicts the most likely error based on a given syn-
drome. We refer the reader to ref. 73 for more details on Stim.

MWPM decoder

To decode the error syndromes, we apply a minimum-weight perfect
matching (MWPM) decoder”*, which is implemented using PyMatching®.
The syndrome decoding is mapped by the MWPM decoder onto a graph
problem, which is subsequently solved by utilizing Edmonds’ algorithm™”®
for finding a perfect matching which has minimal weight, i.e., finding a
minimum-total-weight set of edges, for which every vertex is incident to
exactly one edge””.

Details of numerical simulations

Our simulations are performed for four different Floquet codes using dif-
ferent values of physical error rates p and various strengths of noise bias #.
Moreover, we consider two different noise models: code-capacity and
SDEM3 noise models. For each code, the simulations are run with effective
distances d.=d/2 =4, 6, 8, 10, 12, where the effective distance d.is defined
as the minimum number of faults under SDEM3 depolarising noise that
produce a logical error. This is half of the distance d of the code-capacity
noise model. The calculated effective distance differs between noise models
since in the SDEM3 noise model, two-qubit errors occurring after an MPP
parity gate count as a single fault, while under the code-capacity noise model
they would count as two faults.

We choose lattices with periodic boundary conditions. For most
simulations, we choose lattice sizes L x 3L/2, where L = d = 2d1is the lattice
length which varies with respect to the code distance. We choose lattice sizes
L x 3L/2 such that the horizontal and vertical code distances are the same, as
can be inferred from the minimum weight of the horizontal and vertical
logical operators (see e.g., Fig. 1(c) for lattice length L = 4). We simulate the
memory experiments for 3d.g QEC rounds or 18d.¢ measurement sub-
rounds (1 QEC round consists of 6 measurement subrounds). For Sup-
plementary Sec. V of the Supplementary Information®" where we study
elongated codes, we use lattice sizes of dyy x 3dy/2 where dy > dy. Here, dy
and dy are the minimum weights of the logical operators in the horizontal
and vertical directions, respectively. We simulate the horizontal and vertical
logical memory experiments for 3dp/2 and 3dy/2 rounds, respectively.

We select a single logical qubit for each Floquet code (they all encode
two logical qubits on a lattice with periodic boundary conditions) to test for
the logical failure probability. Depending on the codes and parameter
regimes, we run different numbers of Monte Carlo shots ranging from 10° —
10" (larger number of shots for longer code distances and smaller physical
error rates) for each of the horizontal and vertical logical observables, which
give us the horizontal py; and vertical py logical failure probabilities. We then
report the combined logical error probability:

b= 1- (1 —PH)(I _Pv): (9)
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which is an estimate of the probability that either a vertical or a horizontal
logical error occurs. Equation (9) assumes that the horizontal and vertical
logical errors occur independently. For the infinitely phase-biased code-
capacity noise model, one of the logical errors which is of pure Z-type or
pure X-type has zero logical error probability, because the pure biased noise
cannot form the other logical operator which is of mixed-type and hence
cannot flip the pure-type logical operator. As a result, for the infinitely
phase-biased code-capacity noise, the maximum combined logical error
probability is p; = 0.5 [Eq. (9)]. This is in contrast to other noise biases and
models where the maximum combined logical error probability is p; =
0.75 since py, py < 0.5.

Determining the thresholds

To extract thresholds of the codes, we perform a finite-size collapse’®” of the
logical failure probability p; data taken for various physical error rates p and
code distances. This is done by fitting the data to the curve A + Bx + Cx*
where x = (p — py)d"” or x = (p — py )"’ for the code-capacity and
SDEM3 noise models, respectively. Here, v is the critical exponent, py, is the
Pauli threshold, A, B, C are the fit parameters, d and d.g are code distances
under the code-capacity and SDEM3 noise models, respectively. This data is
presented in Supplementary Figs. 5-8 of the Supplementary Information®.

No-go theorems for 1D decoding graphs of dynamical codes
Here, we provide formal statements and proofs for the two no-go theorems
presented in the Results section. To this end, we begin by providing several
definitions.

Definition 1. Let V be a set of detectors for a dynamical code. For every
qubit and every time step (g, ©), i.e., every fault location in the code, define a
hyperedge e(;, » = (v1, V>, ...), where the v; € V are detectors that return — 1
outcomes if a single Z error occurs at the fault location (g, £). The Z-detector
hypergraph (ZDH) is defined as G = (V, E), where E = | &, 1 is the set of
all hyperedges. A Z-detector graph (ZDG) is a Z-detector hypergraph in
which all hyperedges are edges (their size is 2).

Definition 2. A 1D-decodable Z-detector graph is one in which all vertices
have neighbourhoods of size no greater than 2.

Finally, we define dynamical codes on the honeycomb lattice in the
following way:

Definition 3. A honeycomb dynamical code (HDC), with “duration” T'and
constant “initial(final)-time boundary offsets” ¢; (¢, is a finite-depth mea-
surement circuit acting on qubits of the honeycomb lattice (without
boundary). The sets of measurements in the circuit, M, (t €11, ..., T}), are
composed of two-body Pauli measurements along coloured edges (either ,
g or b, for each time step) of the lattice, performed sequentially on a state
stabilised by some group S. The HDC obeys the following properties:

(a) Overlapping measurements in consecutive time steps anti-commute
and are supported on different edges.

(b) Detectors (for time steps ¢ > t;) are associated with plaquettes in the
lattice (they have support only on qubits around their associated
plaquette).

(c) Ifasingle-qubit or two-qubit error occurring in time steps t; <t < T — t;
anti-commutes with future measurements, it is detectable, unless the
two-qubit error is the same as an edge operator just measured or to be
measured in the next time step.

(d) All single-qubit errors in time steps ¢; < t < T — trhave syndromes of
weight > 1.

Let us first comment on our definition of an HDC. The chosen
properties are very natural. The anti-commutation of consecutive mea-
surement subrounds ensures “local reversibility” of the code, so as to pre-
serve the quantum information and its locality™ (although note that we do
not require the code to have logical qubits in our definition). The require-
ment that consecutive sets of measurements are supported on different
edges is not very restrictive: if two (anti-commuting) measurements act on

the same edge in consecutive time steps, we can replace the second with a
Clifford gate and commute that to the end of the circuit. This merely
changes the bases of subsequent measurements without changing their
(anti-)commutation. Since the Clifford gates are unimportant, we can
ignore them and hence we end up with a shorter duration T. We restrict our
attention to errors occurring in the temporal “bulk” of the code, ; <t < T — t¢
This avoids complications due to errors occurring close to the initial and
final-time boundaries where detectors here may be formed in different ways
than the bulk detectors. Specifically, the detectors associated with errors at
the initial and final time boundaries are obtained by comparing the edge or
plaquette measurement values with the initial state and final read-out of the
physical qubits, respectively. The exclusion of these final time boundary
detectors is also required here since we do not include final read-out mea-
surements in our definition of an HDC. In summary, we consider errors
occurring in all “detection cells”" that are completed before time step T'and
begin at time step ¢ > 1, where a detection cell consists of all the spacetime
points at which a detector can identify errors.

We will show that an HDC cannot even have a 1D-decodable ZDG,
which implies that its decoding graph cannot be equivalent to a collection of
the much simpler repetition code’s graphs. Note that a repetition code graph
is not only 1D-decodable but also has a maximum degree of 2, which means
there are no double edges between neighbouring vertices. Here, however, we
allow for these double edges in our definition of 1D-decodability, and show
that this more general property is also impossible. Such double edges
naturally arise in Floquet codes, where they correspond to two-qubit
undetectable errors (ie., edge operators just measured or about to be
measured).

We begin by first proving the following lemma which is going to be
used in the proof of Theorem 1.

Lemma 1. In a honeycomb dynamical code, at each time step ¢ > 1, no
detectors can be formed on neighbouring plaquettes.

Proof. Without loss of generality, suppose neighbouring plaquettes F; and
F, are coloured red and blue, respectively. Suppose, for the sake of contra-
diction, that they both host detectors at a time step t > 1. Let D, D, C M,
be the sets of check measurements from M, whose products around the
plaquettes F; and F,, respectively, form the detectors at the corresponding
plaquettes at time f. That is, the measurements in D; act only on qubits
around F;. Since at every time step, only edges of one particular colour are
being measured and green edges are shared by blue and red plaquettes, the
measurement set M, at time f can contain only measurements on green
edges. Otherwise, either D, or D, would have to be empty or they would
include measurements on qubits not adjacent to F; or F,, respectively, which
is not allowed by the definition of D, and D,.

To form detectors at both plaquettes, we require that, for all
MeM,,, M, HD@}D] =0, for j = 1, 2. Otherwise the plaquette

operator outcomes would be indeterministic. However, from property (a) of

Definition 3 of an HDC, for each D € D, , there is a measurement in M,_;

that anti-commutes with it. Therefore, | [,.,, D must have even overlap
]

with all edge measurements in M, _,, for j = 1, 2. This condition can only be
satisfied for both j= 1,2 ifall M € M,_, are also on green edges (if they are
supported on red edges, there will be one measurement with odd overlap
with each D € D;, and similarly for D € D, if they are supported on blue
edges). Butnowboth M,_; and M, are made up of measurements on green
edges, contradicting property (a) of Definition 3. O

Using the properties of the HDC as defined above, we now present the
first main theorem of our paper:

Theorem 1. A honeycomb dynamical code with duration more than 3¢+
t; + 3 cannot have a 1D-decodable Z-detector graph, where #; and tare the
initial and final time-boundary offsets.

Since the proof of the theorem is quite long, here we begin by providing
the sketch of the proof. We first show that the Z-detector graph of an HDC
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contains many more edges than vertices. This means the graph must contain
many cycles. We will then find a subgraph of the ZDG in which no two
vertices are connected by more than one edge, where for such a subgraph,
the size of the neighbourhood of each vertex is equal to the number of edges
incident to it. In particular, we will show that there exists at least one such
subgraph that still possesses many more edges than vertices, meaning it is
not possible for all vertices in the subgraph to have neighbourhoods of size <

— if that were the case, then there would be at least as many vertices as
edges. This, in turn, implies that the full ZDG must contain some vertices
with neighbourhoods of size > 2.

The full proof of Theorem 1 is as follows.

Proof. We take an error occurring in time step ¢ to mean that it occurs
immediately after the measurements in M,. Suppose there are T time steps
and n qubits in the HDC. Let us consider part of the ZDG that contains
vertices corresponding to all detectors formed in time steps ¢ > t;, but only
those edges corresponding to detectable errors, i.e., those occurring in time
steps t; <t < T — tz. We will call this subgraph ZDG. The number of vertices
in this subgraph, corresponding to the number of detectors formed, is at
most n(T — t;)/6, since at each time step no detectors can be formed on
neighbouring plaquettes (see Lemma 1), and there are n/6 such non-
neighbouring plaquettes, which correspond to all plaquettes of a single
colour, in the honeycomb lattice without boundary. Meanwhile, Z errors
generate n edges between each time step, resultingina total of n(T— 1 — t; —
t) edges in the ZDG.

Let us now create a bipartition of the qubsits into sets C and D such that
no qubits in Care adjacent to one another, and similarly for qubits in D. This
is possible since the honeycomb lattice is bipartite. Let us consider the
subgraph of ZDG, denoted by ZDG, that contains only edges corre-
sponding to Z errors on qubits in C. The subgraph ZDG¢. therefore contains
n(T — 1 — t; — t)/2 edges. Suppose two vertices are connected in this graph
by more than one edge. In such a scenario, we can choose any two from the
collection of edges between these vertices. These two edges correspond to a
weight-2 error, i.e, an error with support only on two qubits, in C, which is
undetectable. This error is undetectable because the combination of the two
errors, where each flips the values of the same two detectors, triggers no
detector.

Consider one such undetectable weight-2 error, Z;,Z; ,, where Z;;
denotes an error that acts on qubit i at time step t and smnlarly forZ;,. We
will show that for Z; , Z; , not to be detectable, the two errors must act on the
same qubit (i = j) but at adjacent time steps (+ = ¢’ +1). To this end, we
begin by ruling out other possibilities. First, we show that if the qubits i,j € C
are different then the error Z;,Z; , will anti-commute with some future
measurements. This, along with the fact that Z; tZJ, is not an operator just
measured or about to be measured (since i and j are not connected by an
edge), means that the error is detectable by property (c) of Definition 3 of an
HDC. We begin by analysing the case where the two errors occur at the same
time step (¢t = t'). Suppose that this error commutes with all M € M, ;.
Since every measurement in M, ; must have support only on one qubit in
C, then the two check measurements in M, |, one with support on qubit i
and the other on qubit j, must have Pauli Z operator supports on those
respective qubits. Now consider the measurement M’ € M, ., with sup-
port on qubit i. By property (a) of Definition 3, one measurement from the
set M, , that has a support on qubit i cannot act as a Pauli Z operator on
that qubit, since it has to anti-commute with the previous edge measure-
ment from M, | thatalso has a Z support on the same qubit. Therefore, M’
will anti-commute with Z;,Z; , which, according to property (c) of Definition
3, means that the error Z;,Z;, is detectable. Similarly, if the errors occur on
different qubits but at different time steps, they must also be detectable. To
show this, we can argue using the reasons mentioned above that Z;, must
anti-commute with a future measurement in set M, or M, ,. Since
qubits i and j are not connected by an edge in the honeycomb lattice, the
same measurement, however, cannot anti-commute with Z; ,.

Using the above reasonings, we can infer that the only possibility for the
weight-2 error to be undetectable is for the two errors to occur on the same

qubit, but at different time steps, i.e., Z; ,Z; , (note that if the two errors on
qubit i occur at the same time step then they cancel each other out, which is
equivalent to there being no error at all). Suppose, without loss of generality,
that ¢ < t'. For the weight-2 error to be undetectable, the measurements in
between them must commute with Z;. Since consecutive measurements
with support on the same qubit anti-commute, the two errors acting on
qubit i must be separated only by one measurement time step where the in-
between measurement commutes with the two errors.

The above analysis implies that vertices in ZDG,. can be connected by
only at most two edges. All such edges would have to correspond to errors on
the same qubit and if there were more than two, we could find a pair of edges
that correspond to an undetectable error Z; ,Z; , with ¢’ > t 4- 1, which we
have shown above to be impossible. Therefore, at most half of the edges in
ZDG, can be removed without changing which vertices are connected. This
means that there is a spanning subgraph of ZDG,, with atleast [n(T —1 —t;
— t9/4] edges with no vertices in the subgraph connected by more than
one edge.

All things considered, this implies that the full ZDG has a subgraph
with [n(T — 1 —t;— t)/4] edges and a number of vertices < n(T — t;)/6, such
that no two vertices are connected by more than one edge. For T'> 3t,+ f; +
3, there are more edges than vertices in this subgraph, which means that it
cannot have all vertices with neighbourhoods of size < 2. Therefore, some
vertices in the full ZDG also must have neighbourhoods with size greater
than 2. O

The above theorem implies that no matter how an HDC is bias-tai-
lored, it likely can never achieve as high a threshold as the repetition code or
the bias-tailored stabiliser codes. Indeed, for large T (T">> t;, ty), there will be
at least approximately 6 times as many edges as vertices in the ZDG, and
there is a subgraph with 3/2 as many edges as vertices without any pair of
vertices sharing more than one edge. This means the graph must have many
cycles with length at least three edges.

It is clear that the codes examined in this paper obey the properties of
an HDC. In particular, any Floquet codes related to the CSS Floquet code by
Hadamard gates applied to a subset of the qubits (as is the case for the X*Z
Floquet code) do not have 1D-decodable ZDGs. The reason we have focused
on dynamical codes that have ZDGs, e.g., Hadamard-deformed CSS codes,
instead of codes with hyperedges in their Z-detector hypergraphs, is because
their decoding graphs are immediate generalisations of that of the CSS code.
The fact that 1D-decodable ZDGs are not possible for an HDC suggests that
there are not enough independent symmetries to reduce its decoding graph
to the extent possible for stabiliser codes. It is interesting to note that even
with hyperedges in the Z-detector hypergraph, a stabiliser code can still be
bias-tailored™ such that it possesses large enough symmetries to render its
thresholds close to the hashing bound®"*>. While such high-thresholds are
possible for static codes, we do not believe this would be the case for HDCs.

Finally, we consider more general codes defined on an arbitrary
graph G.

Definition 4. A general dynamical code (GDC) is a finite-depth mea-
surement circuit acting on qubits associated with vertices of a graph G. It has
a duration T'and initial (final) time boundary offsets #; (), as defined above.
The sets of measurements M, are two-body Pauli measurements associated
with edges of G (each qubit is in the support of one measurement in each
time step), performed sequentially on a state stabilised by some group S. A
GDC obeys properties (a) and (d) of an HDC.

Having defined GDCs, we now provide the second main theorem of
our paper:

Theorem 2. A GDC with a duration at least 2¢ + ¢; + 2 (i.e., a constant),
where ; and ¢, are the initial and final time-boundary offsets, respectively,
cannot have a Z-detector graph equivalent to a collection of disjoint
repetition codes.

Proof. Since there are n/2 measurements in a given time step, there can be at
most n/2 independent detectors formed from such measurements.
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However, there will in fact be far fewer for a GDC, because each
individual measurement anti-commutes with a measurement from the
previous time step resulting in a random value for each edge measurement.
Therefore, a detector with a deterministic outcome must be formed from at
least a product of two non-deterministic measurements within a time step.
Suppose the GDC has a Z-detector graph (edges in the ZDG correspond to
particular Z errors). Again, we consider the subgraph corresponding to Z
errors occurring in time steps t; < t < T — t; where T'is the GDC’s duration,
and detectors formed in time steps ¢ > t;. There are < n(T — t;)/2 vertices and
n(T — 1 — t; — t) edges in this subgraph. Since the number of vertices of a
collection of repetition code decoding graphs cannot be less than the
number of edges, this means that the ZDG of a GDC cannot be a collection
of repetition code graphs for T'> 2t + t; + 2. O

Owing to this theorem, we do not expect to see thresholds in dynamical
codes as high as 50%. The reason that static codes perform better than
dynamical codes under biased noise is that they obey two separate sym-
metries under an infinitely phase-biased code-capacity noise model. There is
a spatial symmetry that forces syndromes to appear in pairs along 1D strips
of the lattice, but there is also a temporal symmetry: syndromes must appear
in pairs within a given time slice. These two symmetries simplify the detector
graph into a collection of disjoint repetition code decoding graphs, leading
to a high performance (up to 50% threshold) of the static codes under biased
noise. On the other hand, even for the case where measurement errors are
not considered, GDCs necessarily break the temporal symmetry (for HDCs,
this is a consequence of Lemma 1), leading to edges between vertices in
different time slices of the detector graph (see Fig. 3). We thus expect that
such codes can only possess a single symmetry under an infinitely phase-
biased code-capacity noise model, as the X’Z’* Floquet code does.

Data availability

The threshold data is available in https://doi.org/10.5281/zenodo.14258878
(ref. 69). Other numerical data generated in this work is available from the
authors upon reasonable request. The video talk on this manuscript is
available in https://www.youtube.com/watch?v=nqQT-5IRC9w.
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