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Quantum error correction (QEC) is essential for protecting quantum information against noise, yet
understanding the structure of the Knill-Laflamme (KL) coefficients λij

n o
from the condition PEy

i EjP ¼
λijP remains challenging, particularly for nonadditive codes. In this work, we introduce the signature
vector λ

!ðPÞ, composed of the off-diagonal KL coefficients λij

n o
, where each coefficient corresponds

to equivalence classes of errors counted only once. We define its Euclidean norm λ*(P) as a scalar
measure representing the total strength of error correlations within the code subspace defined by the
projector P. We parameterize P on a Stiefel manifold and formulate an optimization problem based on
the KL conditions to systematically explore possible values of λ*. Moreover, we show that, for ((n,K, d))
codes, λ* is invariant under local unitary transformations. Applying our approach to the ((6, 2, 3))
quantum code, we find that λ�min ¼

ffiffiffiffiffiffiffi
0:6

p
and λ�max ¼ 1, with λ* = 1 corresponding to a known

degenerate stabilizer code. We construct continuous families of new nonadditive codes
parameterized by vectors inR5, with λ* varying over the interval ½

ffiffiffiffiffiffiffi
0:6

p
; 1�. For the ((7, 2, 3)) code, we

identify λ�min ¼ 0 (corresponding to the non-degenerate Steane code) and λ�max ¼
ffiffiffi
7

p
(corresponding

to the permutation-invariant code by Pollatsek and Ruskai), and we demonstrate continuous paths
connecting these extremes via cyclic codes characterized solely by λ*. Our findings provide new
insights into the structure of quantum codes, advance the theoretical foundations of QEC, and open
new avenues for investigating intricate relationships between code subspaces and error correlations.

Quantum error correction (QEC) is essential for protecting quantum
information from the noise and errors that inevitably arise in quantum

systems1–6. A deeper understanding of the structure of the set given by all

possible coefficients λij

n o
, which arise from the Knill-Laflamme (KL)

conditions PEy
i EjP ¼ λijP

7, can provide valuable insights into the perfor-

mance and underlying properties of quantum error-correcting codes.

However, achieving this understanding is challenging. Nonadditive codes,

which lie outside the stabilizer formalism, are particularly difficult to ana-

lyze, as relatively few examples have been systematically studied8–10. More-

over, degenerate codes–where multiple errors produce the same effect on

the code space–exhibit inherently quantum phenomena, such as over-

lapping error syndromes, that lack classical analogues and remain poorly

understood11,12. These complexities make it difficult to systematically
explore the structure of the set of all possible fλijg values. As a result, there is
currently no comprehensive framework for understanding the distribution
of these coefficients, leaving important questions about their structure and
implications for quantum error correction unanswered.

We analyze the structure defined by the set of all possible values of fλijg
that satisfy the KL conditions, which govern how pairs of errors interact
within the code subspace defined byP. To encapsulate these interactions, we

introduce signature vector λ
!ðPÞ, composed of the off-diagonal elements

λij

n o
(with each coefficient corresponding to equivalent errors counted

only once), which capture the non-trivial correlations between errors. The
overall strength of these interactions is quantified by λ*(P), the Euclidean
norm of the signature vector. This scalar value provides a measure of the
total strength of error interactions within the code subspace, offering a new
perspective on the role of these interactions inQEC. Crucially, for ((n,K, d))
codes, λ* is a function of the purity of the local reduced density matrices
(RDMs) of the codewords, making it invariant under local unitary opera-
tions. This local unitary invariance allows λ* to serve as a powerful tool for
distinguishing locally unitary inequivalent quantum codes and identifying
different codes based on their error interaction structures.

The focus of this paper is to study the range of λ*: to understand the
minimum and maximum values of λ* (denoted by λ�min and λ�max), and to
determine whether the range of λ* is connected between these extrema. As a
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baseline, in the stabilizer-code setting under a Pauli error model, the KL
coefficients satisfy λij ∈ {0, ± 1} after fixing a consistent phase convention.
Identifying each off-diagonal equivalence class only once (i.e., whenever
Ey
i Ej and E

y
i0Ej0 coincide up to phase), we obtain λ

�ðPÞ2 ¼ P
i < jλ

2
ij 2 N, so

stabilizer codes admit a discrete spectrum of λ*. This stands in sharp and
interesting contrast to the continuous ranges of λ* that we will establish for
nonadditive codes.

Using our method, we find that for the ((6, 2, 3)) quantum code,
λ�min ¼ ffiffiffiffiffiffi

0:6
p

and λ�max ¼ 1. The value λ* = 1 corresponds to the degenerate
stabilizer code described in13. However, there were no known codes corre-
sponding to λ� ¼ ffiffiffiffiffiffi

0:6
p

. We construct families of nonadditive codes,
parameterized by four mutually orthogonal real vectors a; b; c; d 2 R5,
with λ* parameterized by a vector e 2 R5, orthogonal to a, b, c, d, which
varies continuously over the interval ½ ffiffiffiffiffiffi

0:6
p

; 1�. This confirms that the range
of λ* for the ((6, 2, 3)) code is indeed ½ ffiffiffiffiffiffi

0:6
p

; 1�. For each distinct value of
λ� 2 ½ ffiffiffiffiffiffi

0:6
p

; 1�, our construction yields locally inequivalent codes, para-
meterized by the vector e 2 R5.

For the ((7, 2, 3)) code, we find that λ�min ¼ 0 and λ�max ¼
ffiffiffi
7

p
, where

λ* = 0 corresponds to the non-degenerate Steane code14,15, and λ� ¼ ffiffiffi
7

p
corresponds to the permutation-invariant code proposed by Pollatsek and
Ruskai16.We identify families of cyclic ((7, 2, 3)) codes that trace continuous
paths in the solution space. These paths, each characterized by a single
parameter, which is simply λ*, with λ* varies continuously over the interval
½0; ffiffiffi

7
p �, directly connecting the Steane code and the permutation-invariant

code. Thisfinding demonstrates that it is possible to smoothly connect these
two distinct codes while preserving cyclic symmetry, offering new insights
into the relationship between different locally inequivalent quantum codes
and their symmetry properties.

Our approach offers a systematic method to explore the range of λ*,
resulting in the construction of numerous new nonadditive codes for
((6, 2, 3)) and ((7, 2, 3)), with λ* varying continuously from λ�min to λ

�
max. The

ability to identify and quantify the range of λ* provides novel insights into
the structure of quantum codes, particularly in nonadditive cases. This
framework opens new avenues for investigating the intricate relationships
between code subspaces and error interactions, offering a deeper under-
standing of the mathematical structure underlying quantum error
correction.

We organize our paper as follows. In Section II A, we discuss pre-
liminaries on quantum error correction and code parameters. In Section II
B, we define the signature vector and its norm λ*, show that λ* is invariant
under local unitary operations by linking it to the purity of the RDMs of
codewords, and develop an algorithm to find the maximum andminimum
values of λ*. In Sections II D and II E, we apply our method to the ((6, 2, 3))
and ((7, 2, 3)) quantumcodes, respectively, demonstratinghowλ* varies and
constructing new nonadditive codes.

Results
Preliminary
In quantum error correction, it is our goal to protect quantum information
from errors caused by a noisy quantum channel. Quantum error-correcting
codes (QECCs) are constructed to correct a specified set of errors {Ei}. The
Knill-Laflamme (KL) condition for quantum error correction can be
expressed as:

PEy
i EjP ¼ λijP; 8i; j; ð1Þ

wherePdenotes theprojector onto the code subspace,Ei andEj represent the

Kraus operators corresponding to the possible errors, and λij

n o
are com-

plex scalars that characterize how the pair of errors Ei and Ej interact within
the code subspace. This condition ensures that errors are correctable, pro-
vided that they act within the designated subspace and satisfy this equation.

The dimension of the code subspace is denoted as K, and if the logical
information is encoded in a subspace ofK-dimensional logical qubits within
an n-dimensional physical qubit system, then P is an n × nmatrix, and its

rank equals K. The code subspace C can be written as the span of ortho-
normal basis vectors f∣ψ1

�
; ∣ψ2

�
; . . . ; ∣ψK

�g, which span the logical space.
The projector onto the code subspace is given by

P ¼
XK
i¼1

∣ψi

�
ψi

�
∣: ð2Þ

The quantum error correction condition can then be expressed in terms of
the basis vectors spanning the code subspace:

hψkjEy
i Ejjψli ¼ λijδkl; 8i; j ð3Þ

where the scalars λij

n o
describe how the errors Ei and Ej affect the code

subspace.
A non-degenerate QECC is characterized by theHermitianmatrix fλijg

being non-singular (having full rank), whichmeans that the determinant of
fλijg is non-zero and the matrix is invertible1. This implies that all errors
have distinct effects on the code space and can be uniquely identified and
corrected. In contrast, a degenerate QECC arises when the matrix fλijg is
singular (not of full rank), indicating that there are linear dependencies
among the error operatorswhen restricted to the code space4. Someerrors or
combinations of errors may have the same effect on the code space,making
them indistinguishable. A completely degenerate code, or decoherence-free
subspace (DFS), represents an extreme case where all fλijg elements are
equal, resulting in a matrix of rank 1, meaning λij = λ for all i, j. In this
scenario, the code space remains invariant under certain noise processes11,17.

An ((n, K, d)) quantum error-correcting code is defined by three key
parameters: n, the number of physical qubits used to encode the quantum
information; K, the dimension of the code space, which corresponds to the
numberof logical qubits the code canprotect (for example, ifK=2k, the code
protects k logical qubits); and d, the distance of the code, which determines
the minimum number of physical qubit errors required to cause a logical
error. The distance d indicates the code’s ability to detect and correct errors.
Specifically, an ((n,K,d)) code candetect up tod−1qubit errors and correct
up to t ¼ d�1

2

� �
qubit errors1,4. A well-known example is the Steane code,

which is a ((7, 2, 3)) code. This code encodes one logical qubit into seven
physical qubits and can correct up to one qubit error and detect up to two
qubit errors4.

Furthermore, quantum error-correcting codes may either be non-
additive or additive. Non-additive codes are a generalization of stabilizer
(additive) codes and allow encoding of quantum information without
adhering to the 2k constraint for the dimension K. The code distance d,
which is the minimum weight of an undetectable error, remains critical in
both types of codes, as it determines how many errors can be detected and
corrected.

Two quantum error-correcting codesP1 andP2 are locally equivalent if
one can be transformed into the other by local unitary operations or local
Clifford operations applied to individual qubits. Formally, P1 and P2 are
locally equivalent if there exists a unitary transformationU =U1⊗U2⊗⋯
⊗Un, where eachUi acts on a single qubit, such that P2 =UP1U

†. This local
equivalence ensures that the overall structure of the code and parameters n,
K, d are preserved, even though individual states within the code spacemay
change under the transformation3.

In practice, to test whether two ((n, K, d)) codes P1 and P2 are local
unitary equivalent, we can useQuantum weight enumerators18, which were
defined by

AðzÞ ¼
Xn
j¼0

Ajz
j; BðzÞ ¼

Xn
j¼0

Bjz
j ð4Þ

with coefficients

Aj ¼
1

K2

X
wt

ðOαÞ ¼ jTr ðOαPcÞTr ðOy
αPcÞ; ð5Þ
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Bj ¼
1
K

X
wt

ðOαÞ ¼ jTr ðOαPcO
y
αPcÞ: ð6Þ

Here

Oα 2 fX;Y;Z; Ig�n ð7Þ

are n-fold tensor product. Denote the number of X factors, Y factors and Z
factors in Oα as wtX(Oα), wtY(Oα), and wtZ(Oα). The weight of Oα is

wt ðOαÞ ¼ wtXðOαÞ þ wtYðOαÞ þ wtZðOαÞ: ð8Þ

Signature vector
Wemotivate the idea of a “signature vector” via the joint rank-Knumerical
range for a set of operators fAigmi¼1, defined as19,20

WðKÞðA1; . . . ;AmÞ :¼ ðλiÞmi¼1 : 9 rank�K projector P
�

with PAiP ¼ λiP8i
�
:

ð9Þ

Thus, W(K) consists of all vectors λ
!ðPÞ ¼ ðλiÞ that arise from some K-

dimensional projector P satisfying PAiP = λiP.
The joint rank-1 numerical range is connected, and for m = 2 Her-

mitian operators it is convex by the Toeplitz–Hausdorff theorem19,20; this
convexity extends to higher ranks as well21,22. For m > 2, however, the
geometry of joint higher-rank numerical ranges is much less
understood23–27. In particular, for K≥2 the set is generally non-convex and
may have disconnected components. As an example, consider two qubits
with A1 = X⊗ I, A2 = X⊗ Z, A3 = Y⊗ I, A4 = Y⊗ Z, A5 = Z⊗ I. One can
show that the joint rank-2 numerical range consists of exactly two points,

Wð2ÞðA1; . . . ;A5Þ ¼ fð0; 0; 0; 0; 1Þ; ð0; 0; 0; 0;�1Þg;

and is therefore disconnected.
To adapt λ

!ðPÞ to an ((n, K, d)) code, let

E < d :¼ fOα Pauli : 0≤wt ðOαÞ < d g

denote the set of all Pauli operators of weight less than d including identity,
and define

Werror :¼ WðKÞðE < dÞ: ð10Þ

We call λ
!ðPÞ 2 Werror a signature vector if

POαP ¼ λαP forall Oα 2 E < d: ð11Þ

In the Knill–Laflamme (KL) form,

PEy
i EjP ¼ λijP 8 i; j;

we take λ
!

to be the collection of all distinct off-diagonal coefficients
λij (i≠ j), identifying pairs (i, j) and ði0; j0ÞwheneverEy

i Ej and E
y
i0Ej0 coincide

with the same Pauli (up to an overall phase).
We are particularly interested in the length of the signature vector,

denoted λ*(P), defined by

λ�ðPÞ ¼k λ
!ðPÞk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

jλij2
r

: ð12Þ

This quantity provides a scalar measure of the aggregate strength of error
couplings on the code subspace determined by P28. Trivially, λ*(P)≥0, with
λ*(P) = 0 achievable when all off-diagonal KL coefficients vanish (e.g., in a
non-degenerate stabilizer code). For a fixed noise model, a natural upper

bound is approached when the code forms a decoherence-free subspace
(DFS), where Ei∣ψ

� ¼ ci∣ψ
�
on the code so that PEy

i EjP ¼ c�i cjP; under
appropriate normalization this yields the maximal possible value of λ*.

To clarify the physical content of λ*, wefirst establish that it is invariant
under local unitaries, and then relate it to the entropy of the code. These are
specific features of the error model adopted for the analysis of ((n, K, d))
codes. We then propose a numerical procedure to estimate the attainable
range of λ*, which also provides insight into the geometry ofW(K) in general.

The physical meaning of λ* for ((n, K, d)) codes
We now show the local unitary invariance (LUI) of λ*. Given a quantum
state ∣ψ

�
, the RDM for the i-th subsystem is defined as:

ρðiÞ ¼ TrðiÞc ½∣ψ
�
ψ
�

∣�; ð13Þ

where TrðiÞc denotes the partial trace over all subsystems except the i-th one.
An n-RDM is defined as:

ρði . . . k
zffl}|ffl{n

Þ ¼ Trði . . . k|ffl{zffl}
n

Þc ½∣ψ
�
ψ
�

∣�; ð14Þ

The purity of this RDM is given by:

P ρði . . . k
zffl}|ffl{n

Þ

0
@

1
A ¼ Tr ρði . . . k

zffl}|ffl{n

Þ

0
@

1
A

22
64

3
75 ð15Þ

and since purity is invariant under local unitary transformations, the purity
for 1-RDM, 2-RDM, ..., and up to (d-1)-RDM is also LUI. For an ((n,K, d))
code, the (d-1)-qubit RDM is the same for any state ∣ψ

�
within the code

subspace, hence all the lower order RDMs are also independent of the
state ∣ψ

�
.

Next, consider the vector λðiÞ ¼ ðTr½ρðiÞXi�;Tr½ρðiÞYi�;Tr½ρðiÞZi�Þ,
which captures how the i-th subsystem interacts with the Pauli operators.
The length of this vector is LUI, and is expressed as:

k λðiÞk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
α¼1

jλðiÞα j2
vuut : ð16Þ

This can be rewritten in terms of the purity as k λðiÞk22 ¼ 2Tr ρðiÞ

 �2h i

� 1,
demonstrating that ∥λ(i)∥2 is LUI.

Now, let λ(ij) be a vector with 9 components, corresponding to the two-
qubit interactions:

λðijÞ ¼ Tr½ρðijÞXiXj�;Tr½ρðijÞXiYj�; � � � ;Tr½ρðijÞZiZj�
� 


: ð17Þ

The length of this vector is also LUI, and is given by:

k λðijÞk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX9
α¼1

jλðijÞα j2
vuut : ð18Þ

We can express this as:

k λðijÞk22 ¼ 4Tr ρðijÞ

 �2h i

� 1� k λðiÞk22� k λðjÞk22; ð19Þ

where each term on the right-hand side has already been shown to be LUI.
With invariance of weight-1 and weight-2 vectors, in a similar fashion,

the length of weight-(d-1) vectors ∥λ(ij⋯ )∥2 can be proven to be LUI.
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Consequently, the length of the signature vector is given by:

ðλ�Þ2 ¼ P3
α¼1

k λðiÞα k22 þ
P9
α¼1

k λðijÞα k22
þ� � � þ ðweight� ðd� 1Þterm Þ;

ð20Þ

which is also LUI, as all terms involved are LUI. The LUI property can also
be observed from the connection with quantum weight enumerators in
Eq.(5). E.g., when d = 3, λ�2 ¼ P

i k λðiÞk22 þ
P

ij k λðijÞk22 ¼ A1 þ A2.
Since λ* is LUI, it follows that if two quantum codes P1 and P2 corre-

spond to different values of λ*, i.e., λ*(P1) ≠ λ*(P2), then the two codes must
be local unitary inequivalent. Thismeans that the distinct values of λ* reflect
different structures in the code subspaces that cannot be transformed into
one another via local unitary operations. This shows that λ* serves as a useful
tool for distinguishing some local unitary inequivalent codes. However, the
converse does not hold: two local unitary inequivalent codes may corre-
spond to the same value of λ*.

Beside the connection between λ* and the quantum weight enumera-
tors and purity of RDMs, we also establish how the quantity λ* connects to
the second-order Rényi entropy of theKnill-Laflamme (KL)matrix. TheKL
matrix Λ has elements

λij ¼
Tr ðP Ey

i Ej PÞ
Tr ðPÞ ; ð21Þ

whereP is the projector onto the code space, and {Ei} are the error operators.
By construction, Λ captures the pairwise overlaps of errors within the
code space.

To interpret Λ as a density matrix, we normalize it as

~Λ ¼ Λ

Tr ðΛÞ : ð22Þ

The second-order Rényi entropy of the normalized matrix is

S2ð~ΛÞ ¼ � log Tr ð~Λ2Þ: ð23Þ

Since Tr ðΛÞ ¼ P
iλii ¼

P
i1 ¼ m (often taken to be the code-space

dimension), we have

Tr ðΛ2Þ ¼
X
i;j

∣λij∣
2 ¼ mþ 2

X
i < j

∣λij∣
2: ð24Þ

By definition, X
i < j

∣λij∣
2 ¼ λ�2 þ 3A1; ð25Þ

whereA1 is the first-order quantumerror enumerator introduced in Eq. (5).
Since fTr ½POi�g transforms as a vector under local unitary (LU) rotations,
A1 remains invariant under LU transformations. Putting these observations
together, we get

Tr ð~Λ2Þ ¼ mþ 2 ðλ�2 þ 3A1Þ
m2

; ð26Þ

Consequently,

S2ð~ΛÞ ¼ � log mþ 2ðλ�2 þ 3A1Þ
� � � 2 logm: ð27Þ

This shows that the second-order Rényi entropy of the KL matrix (once
normalized) depends directly on λ*, reinforcing the view that λ* serves as a
measure of the off-diagonal correlation strength among the error operators.

The local-unitary invariance (LUI) of λ*, together with its connections
to several physical quantities, indicates that λ* is a useful measure of

codeword properties and physical quantities invariant to choice of basis or
representation. The robustness, and the numerical efficiencyworking in the
Stiefel manifold in Section IV A, make λ* a useful tool for finding the code
with new error models. These properties, however, are specific to the error
model adopted for our analysis of ((n, K, d)) codes. In particular, the LUI
statement for λ* holds for any complete set of Hermitian error operators (P
↦UPU†, Ei↦UEiU

†), or arbitrary local changes of basis (Ei↦∑kVikEk, Λ
↦ VΛV†); extensions to non-Hermitian errors lie beyond the present
derivation. Nevertheless, the numerical procedure developed below is still
valid with minimal modification and remains useful for finding the code
with new error models.

((6, 2, 3)) codes
It iswell known that ((5, 2, 3)) code is uniqueup to local unitary equivalence,
with signature vector λ

!¼ 0, hence the range of λ* is a single point 0.Much
less is known about the range of λ* for the case of ((6, 2, 3)). For stabilizer
codes, there are only degenerate ones, for example the stabilizer code given
in13, with stabilizers given by

g1 : Y I Z X X Y

g2 : Z X I I X Z

g3 : I Z X X X X

g4 : I I I Z I Z

g5 : Z Z Z I Z I

For this code, all components of signature vector are zero except the term
0L
�

∣Z4Z6∣0L
� ¼ 1, henceλ*=1.All the other ((6, 2, 3)) codes found in29 also

have λ* = 1.
To find the range of λ*, we sample λ* ∈ [0.5, 1.1], then calculate the

optimal value forL θ; μ; λ�

 �

in eq. (67). The results are shown in Fig. 1. For
all optimizations, the violations of error-correcting conditions are less than
LKL ≤ 10

�14. From the figure, a sharp transition from almost zero to non-
zero can be observed, which indicates k λk22 2 ½0:6; 1:0�. This two bound-
aries are also found via optimizing Lλ and Lλ.

To construct codes with
ffiffiffiffiffiffi
0:6

p
≤ λ� ≤ 1, denote the six qubits by

q1q2q3q4q5q6, and choose the following five bases for qubits q2q3q4q5q6

∣S1
� ¼ 1ffiffi

2
p ∣00001i þ ∣11110ið Þ;

∣S2
� ¼ 1ffiffi

2
p ∣00010i þ ∣11101ið Þ;

∣S3
� ¼ 1ffiffi

2
p ∣00100i þ ∣11011ið Þ;

∣S4
� ¼ 1ffiffi

2
p ∣01000i þ ∣10111ið Þ;

∣S5
� ¼ 1ffiffi

2
p ∣10000i þ ∣01111ið Þ:

Now choose logical states as:

∣0L
� ¼ X5

i¼1

∣xi
�
∣Si
�
; ∣1L

� ¼ X5
i¼1

∣yi
�
∣Si
�
: ð28Þ

Here

∣xi
� ¼ γi∣0i þ γiþ5∣1i; i ¼ 1; 2; 3; 4; 5

∣yi
� ¼ γ�iþ5∣0i � γ�i ∣1i; i ¼ 1; 2; 3; 4; 5

The KL condition reduces to the following conditions on ∣xi
�
and ∣yi

�
(see

Supplementary Information A for details):X
i

∣xi
�
xi
�

∣ ¼
X
i

∣yi
�
yi
�

∣;
X
i

∣yi
�
xi
�

∣ ¼ 0:

Notice that this is equivalent to require that the RDM of q1 is I
2.
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Our code are then designed in the following 10-dimensional subspace

∣0i; ∣1if g � ∣S1
�
; ∣S2

�
; ∣S3

�
; ∣S4

�
; ∣S5

�� �
Wechoose this subspace because our numerical results indicate that all

2-RDM of pure states the code space take the form:

RDMij ¼
1
4
I4 þ αij XX þ YYð Þ þ βijZZ: ð29Þ

In Supplementary InformationA,we list the explicit formof 2-RDMfor any
pair of qubits i, j.

Now let

γj ¼ aj þ ibj; γ5þj ¼ cj þ idj;

for j= 1, 2, 3, 4, 5.Where aj; bj; cj; dj 2 R. Define the column vectors a, b, c,
and d to be:

a ¼

a1
a2
a3
a4
a5

0
BBBBBB@

1
CCCCCCA; b ¼

b1
b2
b3
b4
b5

0
BBBBBB@

1
CCCCCCA; c ¼

c1
c2
c3
c4
c5

0
BBBBBB@

1
CCCCCCA; d ¼

d1
d2
d3
d4
d5

0
BBBBBB@

1
CCCCCCA:

Then the KL condition will give the following conditions on a, b, c, d:

a � a ¼ b � b ¼ c � c ¼ d � d ¼ 1
4 ;

a � b ¼ a � c ¼ a � d ¼ b � c ¼ b � d ¼ c � d ¼ 0:
ð30Þ

This means that a, b, c, d are orthogonal vectors inR5.
We then choose e being the vector orthogonal to a, b, c, d, that is, the

unnormalized orthogonal matrix composed from (a, b, c, d, e) as A

A ¼ a b c d e
� � ¼

a1 b1 c1 d1 e1
a2 b2 c2 d2 e2
a3 b3 c3 d3 e3
a4 b4 c4 d4 e4
a5 b5 c5 d5 e5

2
6666664

3
7777775

! AAT ¼ ATA ¼ 1
4
I

which means each column (row) are orthogonal to each other. In other
words, 2A is a 5 × 5 orthogonal matrix.

It turns out that thenonzero elementof the signature vector, denotedas
PEy

i EjP ¼ λijP of this code is given by the element of e (see Supplementary
Information A for details):

λXiXj
¼ λYiYj

¼ �2e7�ie7�j;

λZiZj
¼ 2e27�i þ 2e27�j; i; j 2 2; 3; 4; 5; 6f g:

And

λ�2 ¼ 1
2
þ 8

X
i

e4i :

This means that λ* is invariant with the rotation within the sub-
space spanned by (a, b, c, d). To further understand this invariance, we
can view ∣0L

�
and ∣1L

�
as bipartite states between q1 (Party I) and

q2q3q4q5q6 (Party II). For Party I, an orthogonal transformation (i.e.
2A, change of basis in the subspace spanned by ∣Si

�
) will correspond to

a unitary transformation on Party II, hence will not change the RDMof
Party I. This unitary in general cannot be realized by LU transforma-
tions on q2q3q4q5q6, hence will lead to LU inequivalent codes.

It turns out (see Supplementary Information A for details), how-
ever, when e is chosen, the freedom in the choice of (a, b, c, d) will lead to
locally equivalent codes. This is due to the fact that, all such choices,
given by

a b c d
� �

O;

where O is any 4 × 4 orthogonal matrix, can be generated by
1. local unitary transformations on party I (i.e. the first qubit) (leading to

LU equivalent code), and
2. unitary transformations in the logical space spanned by ∣0L

�
and ∣1L

�
(leading to the same code).

In other words, the choice of e will in general lead to local inequivalent
codes. Furthermore, combined with the fact there is a single parameter
family of codes that connect λ�2min ¼ 0:6 to λ�2max ¼ 1 in Section II D, we
found that the signature vector space is connected when choosing the
logical states as in Eq. (28), which is the subspace of the whole signature
vector space Werror.

Specifically, the vector e for λ�2min ¼ 0:6 is

e ¼ 1

2
ffiffiffi
5

p 1 1 1 1 1
� �

;

and for λ�2max ¼ 1

e ¼ 1
2

0 0 0 0 1
� �

:

To have a single-parameter family of codes that connect λ�min to λ
�2
max ¼ 1,

since λ* is only dependent on e, let us choose a single parameter family for e

e ¼ 1
2
½1
2
sin θ;

1
2
sin θ;

1
2
sin θ;

1
2
sin θ; cos θ�;

for cos θ 2 ½ 1ffiffi
5

p ; 1�.

Fig. 1 | λ*2 range for ((6, 2, 3)) code. Penalty factor is chosen as μ = 1. Clear
boundaries can be found on the edges of region λ*2∈ [0.6, 1.0]. Inside the region, the
loss function L θ; μ; λ�


 �
is below 10−14.
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Now we can choose the matrix A as

A ¼ 1
2

1
2

1
2

1
2

1
2 cosðθÞ 1

2 sinðθÞ
1
2 � 1

2 � 1
2

1
2 cosðθÞ 1

2 sinðθÞ
� 1

2
1
2 � 1

2
1
2 cosðθÞ 1

2 sinðθÞ
� 1

2 � 1
2

1
2

1
2 cosðθÞ 1

2 sinðθÞ
0 0 0 � sinðθÞ cosðθÞ

2
6666664

3
7777775

This gives a single parameter family of codes with the corresponding

λ�2 ¼ 1
2
þ 1
2

1
4
sin4ðθÞ þ cos4ðθÞ

� �

runs continuously from 0.6 to 1.
For this family of codes, the matrix λij

n o
will be block diagonal, and

each block corresponding toXiXj, YiYj, ZiZj correlations, with the form (we
only need to consider i; j 2 2; 3; 4; 5; 6f g:

B ¼

1 r r r r

r 1 s s s

r s 1 s s

r s s 1 s

r s s s 1

2
6666664

3
7777775:

The eigenvalues of the matrix are:

λB1 ¼ λB2 ¼ λB3 ¼ 1� s;

λB4 ¼
2þ 3sþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9s2 þ 16r2
p

2
;

λB5 ¼
2þ 3s� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9s2 þ 16r2
p

2
:

Notice that

λX2Xj
¼ λY2Yj

¼ �2e5e7�j

¼ �2 1
2 cos θ

1
4 sin θ


 �
; j 2 2; 3; 4; 5; 6f g

λXiXj
¼ λYiYj

¼ �2e7�ie7�j

¼ �2 1
4 sin θ

 �2

; i; j 2 3; 4; 5; 6f g:

ð31Þ

So the XiXj, YiYj blocks are the same and correspond to

r ¼ � 1
4
sin θ cos θ; s ¼ �2

1
4
sin θ

� �2

:

And

λZ2Zj
¼ 2e25 þ 2e27�j

¼ 2 1
4 sin θ

 �2 þ 2 1

2 cos θ

 �2

; j 2 2; 3; 4; 5; 6f g
λZiZj

¼ 2e27�i þ 2e27�j

¼ 4 1
4 sin θ

 �2

; i; j 2 3; 4; 5; 6f g:

ð32Þ

The ZiZj block corresponds to

r ¼ 2
1
4
sin θ

� �2

þ 2
1
2
cos θ

� �2

; s ¼ 4
1
4
sin θ

� �2

:

So the matrix λij

n o
will be full rank for cos θ 2 1ffiffi

5
p ; 1
h 


, i.e.
λ� 2 ffiffiffiffiffiffi

0:6
p

; 1
� �

. For cos θ ¼ 1, i.e. λ* = 1, we have λB5 = 0.
The enumerator is found to be:

Aðð6;2;3ÞÞ ¼ 1þ ð 316 cosð2θÞ þ 5
64 cosð4θÞ þ 47

64Þz2
þð� 3

16 cosð2θÞ � 5
64 cosð4θÞ þ 17

64Þz3
þð� 3

16 cosð2θÞ � 5
64 cosð4θÞ þ 721

64 Þz4
þð 316 cosð2θÞ þ 5

64 cosð4θÞ þ 1007
64 Þz5 þ 3z6

; ð33Þ

Bðð6;2;3ÞÞ ¼ 1þ ð 316 cosð2θÞ þ 5
64 cosð4θÞ þ 47

64Þz2
þ ð38 cosð2θÞ þ 5

32 cosð4θÞ þ 751
32 Þz3

þ ð� 3
4 cosð2θÞ � 5

16 cosð4θÞ þ 577
16 Þz4

þ ð� 3
8 cosð2θÞ � 5

32 cosð4θÞ þ 1297
32 Þz5

þ ð 916 cosð2θÞ þ 15
64 cosð4θÞ þ 1677

64 Þz6

: ð34Þ

When cosðθÞ ¼ 1, we have λ�2max ¼ 1, and

e ¼ 1
2

0 0 0 0 1
� �

:

The code subspace, spanned by ð∣0L
�
; ∣1L

�Þ, resides within the ground state
space of the Hamiltonian

H ¼ �2Z2

X
i2f3;4;5;6g

Zi þ
1
2

X
i2f3;4;5;6g

X
j 2 f3; 4; 5; 6g

j≠i

ZiZj;

which is 16-dimensional degenerate, and is spanned by

∣000001i; ∣000010i; ∣000100i; ∣001000i;

∣011110i; ∣011101i; ∣011011i; ∣010111i;

∣100001i; ∣100010i; ∣100100i; ∣101000i;

∣111110i; ∣111101i; ∣111011i; ∣110111i:

This implies that the signature vector P
!

lies on the boundary ofW(1)({Oα}),
where wt(Oα) = 1, 2.

((7, 2, 3)) codes
For the ((7, 2, 3)) case, consider the Steane code with stabilizers

g1 : X I X I X I X

g2 : I X X I I X X

g3 : I I I X X X X

g4 : Z I Z I Z I Z

g5 : I Z Z I I Z Z

g6 : I I I Z Z Z Z

This code has a signature vector λ
!¼ 0, corresponding to λ* = 0. To

find the maximum value of λ*, we run our algorithm and observe a sharp
transition at λ� ¼ ffiffiffi

7
p

, as shown in Fig. 2.
It turns out that this maximum value λ� ¼ ffiffiffi

7
p

corresponds to the
permutation invariant code, which is constructed from the Dicke basis:

Dn;k ¼
n

k

� ��1=2 X
σ2Symn

σ∣0i�n�k � ∣1i�k
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Two permutation invariant codes are given in16 as:

8∣0L
� ¼ ffiffiffiffiffi

15
p

D7;0 �
ffiffiffi
7

p
D7;2 þ

ffiffiffiffiffi
21

p
D7;4 þ

ffiffiffiffiffi
21

p
D7;6

∣1L
� ¼ X�7∣0L

� ð35Þ

and

8∣0L
� ¼ ffiffiffiffiffi

15
p

D7;0 þ
ffiffiffi
7

p
D7;2 þ

ffiffiffiffiffi
21

p
D7;4 �

ffiffiffiffiffi
21

p
D7;6

∣1L
� ¼ X�7∣0L

� ð36Þ

Notice that these two codes are local-unitary equivalent.
Now the key question is again, whether the set of all λ*s is connected,

i.e., whether the range of λ* is indeed ½0; ffiffiffi
7

p �. Notice that by permuting the
qubits, Steane code can have cyclic symmetry, with logical 0 and logical 1
given by

∣0L
� ¼ 1ffiffi

8
p ∣0000000i þ ∣1100101i þ ∣0101110i þ ∣0010111ið
þ∣1001011i þ ∣1110010i þ ∣0111001i þ ∣1011100iÞ

¼ 1ffiffi
8

p ∣0000000i þ
ffiffi
7
8

q
∣0010111i þ cyc:

 � ð37Þ

and ∣1L
� ¼ X�7∣0L

�
: Here cyc. denotes all the other computational basis

states with cyclic shift. Now we will explicitly construct families of cyclic
codes with λ� 2 ½0; ffiffiffi

7
p �.

Let us choose the cyclic basis with even weights:

∣ 0000000f gi ¼ ∣0000000i

∣ 0000011f gi ¼ 1ffiffiffi
7

p ∣0000011i þ cyc:

 �

∣ 0000101f gi ¼ 1ffiffiffi
7

p ∣0000101i þ cyc:

 �

∣ 0001001f gi ¼ 1ffiffiffi
7

p ∣0001001i þ cyc:

 �

∣ 0001111f gi ¼ 1ffiffiffi
7

p ∣0001111i þ cyc:

 �

∣ 0011011f gi ¼ 1ffiffiffi
7

p ∣0011011i þ cyc:

 �

∣ 0011101f gi ¼ 1ffiffiffi
7

p ∣0011101i þ cyc:

 �

∣ 0101011f gi ¼ 1ffiffiffi
7

p ∣0101011i þ cyc:

 �

∣ 0010111f gi ¼ 1ffiffiffi
7

p ∣0010111i þ cyc:

 �

∣ 0111111f gi ¼ 1ffiffiffi
7

p ∣0111111i þ cyc:

 �

Using this basis, we parametrize ∣0L
�
and ∣1L

�
as follows:

∣0L
� ¼ c0∣f0000000gi

þ c1ffiffi
3

p ∣f0000011gi þ ∣f0000101gi þ ∣f0001001gið Þ
þ c2∣f0010111gi þ c3

2 ∣f0001111gi þ ∣f0011011gið
þ ∣f0011101gi þ ∣f0101011giÞ þ c4∣f0111111gi;

∣1L
� ¼ X�7∣0L

�
ð38Þ

Within the five-dimensional subspace given in Eq. (38), KL conditions
will lead to three independent equations. Combined with normalization
condition, the coefficients (c0, c1, c2, c3, c4) should satisfy the following four
equations:

c20 þ c21 þ c22 þ c23 þ c24 ¼ 1 ð39Þ

h0LjZij0Li ¼ 0 !
7c20 þ 3c21 � c22 � c23 � 5c24 ¼ 0

ð40Þ

h0LjXiX
�7j0Li ¼ 0 !

2
ffiffiffi
7

p
c0c4 þ 2

ffiffiffi
3

p
c1c2 þ 4

ffiffiffi
3

p
c1c3

þ4
ffiffiffi
3

p
c1c4 þ 4c2c3 þ 3c23 ¼ 0

ð41Þ

h0LjYiX
�7j0Li ¼ 0 !

2
ffiffiffi
7

p
c0c4 þ 2

ffiffiffi
3

p
c1c2 þ 4

ffiffiffi
3

p
c1c3

�4
ffiffiffi
3

p
c1c4 � 4c2c3 � 3c23 ¼ 0

ð42Þ

And for the signature vector, the following components are nonzero,
satisfying (for i ≠ j):

21h0LjXiXjj0Li ¼ 2
ffiffiffiffiffi
21

p
c0c1 þ 10c21 þ 4

ffiffiffi
3

p
c1c2

þ8
ffiffiffi
3

p
c1c3 þ 12c2c3 þ 6c2c4 þ 9c23 þ 12c3c4 þ 6c24

ð43Þ

21h0LjYiYjj0Li ¼ �2
ffiffiffiffiffi
21

p
c0c1 þ 10c21 � 4

ffiffiffi
3

p
c1c2

�8
ffiffiffi
3

p
c1c3 þ 12c2c3 � 6c2c4 þ 9c23 � 12c3c4 þ 6c24

ð44Þ

21h0LjZiZjj0Li ¼ 21c20 þ c21 � 3c22 � 3c23 þ 9c24 ð45Þ

From Eq. (41) and Eq. (42) we obtain:

ffiffiffi
7

p
c0c4 þ 2

ffiffiffi
3

p
c1c2 þ 2

ffiffiffi
3

p
c1c3 ¼ 0 ð46Þ

4
ffiffiffi
3

p
c1c4 þ 4c2c3 þ 3c23 ¼ 0 ð47Þ

Fig. 2 | λ*2 range for ((7, 2, 3)) code. Penalty factor is chosen as μ = 1. The boundary
λ*2 = 7 corresponds to permutation invariant code, while at λ*2 = 0 it is Steane code.
Inside the region all loss functions are below 10−15.
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To solve these equations, we first find one solution for c4 (see Sup-
plementary Information B for details):

c4 ¼ �
ffiffiffi
3

p
c1 ð48Þ

Then Eq. (48) and Eq. (46) derive another linear relation:

c2 ¼ �2c3 þ
ffiffiffi
7

p
c0 ð49Þ

Plug Eq. (48) and Eq. (49) into Eq. (39), (40), (43), (44), (45), (46) and
(47), one finds f (for i ≠ j):

Normalization : 8c20 � 4
ffiffiffi
7

p
c0c3 þ 4c21 þ 5c23 ¼ 1 ð50Þ

0L∣Zi∣0L
� � ¼ 0 ! 4

ffiffiffi
7

p
c0c3 � 12c21 � 5c23 ¼ 0 ð51Þ

0L∣XiX
�7∣0L

� � ¼ 0 ! 4
ffiffiffi
7

p
c0c3 � 12c21 � 5c23 ¼ 0 ð52Þ

0L∣YiX
�7∣0L

� � ¼ 0 ! �4
ffiffiffi
7

p
c0c3 þ 12c21 þ 5c23 ¼ 0 ð53Þ

21 0L∣XiXj∣0L
D E

¼ 12
ffiffiffi
7

p
c0c3 þ 28c21 � 15c23 ð54Þ

21 0L∣YiYj∣0L
D E

¼ 12
ffiffiffi
7

p
c0c3 þ 28c21 � 15c23 ð55Þ

21 0L∣ZiZj∣0L
D E

¼ 12
ffiffiffi
7

p
c0c3 þ 28c21 � 15c23 ð56Þ

Since the signature vector components ((54), (55) and (56)) are equal, it is
convenient to introduce λ* as a parameter (for i ≠ j):

21 0L∣XiXj∣0L
D E

¼
ffiffiffi
7

p
λ� ð57Þ

21 0L∣YiYj∣0L
D E

¼
ffiffiffi
7

p
λ� ð58Þ

21 0L∣ZiZj∣0L
D E

¼
ffiffiffi
7

p
λ� ð59Þ

By eliminating c0 and c3 through Eq. (51) and Eq. (54), we find

c1 ¼ ±
ffiffiffiffiffiffiffiffiffiffi
7

p
λ�

p
8 . With parameter λ� 2 ½0; ffiffiffi

7
p �, they become Steane code

when λ* = 0, and parametric code at λ� ¼ ffiffiffi
7

p
. The following two QECCs

are related to QECC in eq. (35):

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

p
λ�þ8

p
8 ;

c1 ¼ �
ffiffiffiffiffiffiffiffiffiffi
7

p
λ�

p
8 ;

c4 ¼ � ffiffiffi
3

p
c1;

c3 ¼ 2
5

ffiffiffi
7

p
c0 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7c20 � 15

ffiffi
7

p
λ�

64

q� �
;

c2 ¼ �2c3 þ
ffiffiffi
7

p
c0

ð60Þ

The following two correspond to QECC in Eq. (36)

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

p
λ�þ8

p
8 ;

c1 ¼
ffiffiffiffiffiffiffiffiffiffi
7

p
λ�

p
8 ;

c4 ¼ � ffiffiffi
3

p
c1;

c3 ¼ 2
5

ffiffiffi
7

p
c0 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7c20 � 15

ffiffi
7

p
λ�

64

q� �
;

c2 ¼ �2c3 þ
ffiffiffi
7

p
c0

ð61Þ

For the quantity inside the square root non-negative, it requires λ� ≤
ffiffiffi
7

p
.

The signature vector for these four codes are the same with the following
nonzero components (for i ≠ j:

0L
�

∣XiXj∣0L
� ¼ 0L

�
∣YiYj∣0L

� ¼ 0L
�

∣ZiZj∣0L
� ¼ λ�

3
ffiffiffi
7

p

This means that all the 2-particle reduced density matrix of the code
have the form

ρðijÞ ¼ 1
4
I þ λ�

3
ffiffiffi
7

p ðXiXj þ YiYj þ ZiZjÞ:

Consequently, the matrix λij

n o
will be block diagonal, and each block

corresponding to XiXj, YiYj, ZiZj correlations, with the form

ð1� sÞI þ sJ; s ¼ λ�

3
ffiffiffi
7

p 2 ½0; 1
3
�:

where:
• I is the 7 × 7 identity matrix.
• J is the 7 × 7matrix with all entries equal to 1.This matrix (1− s)I+ sJ

has full rank andwith one eigenvalues 6x+ 1 and six eigenvalues 1− s.
For the family given in Eq. (60), weight enumerators is given by

Aðð7;2;3ÞÞ ¼ 1þ λ�2z2 þ ð21� 2λ�2Þz4 þ ð42þ λ�2Þz6
Bðð7;2;3ÞÞ ¼ 1þ λ�2z2 þ 3ð7þ λ�2Þz3 þ ð21� 2λ�2Þz4

þ6ð21� λ�2Þz5 þ ð42þ λ�2Þz6 þ 3ð15þ λ�2Þz7:
ð62Þ

We have also explored all the local Clifford inequivalent ((7, 2, 3))
stabilizer codes, and found that the only possible values of λ* are
f0; ffiffiffi

1
p

;
ffiffiffi
2

p
;

ffiffiffi
3

p
;

ffiffiffi
5

p g (see30 for details). For instance, the Bare code31 cor-
responds to λ� ¼ ffiffiffi

5
p

.
When λ� ¼ λ�max ¼

ffiffiffi
7

p
, the code subspace, spanned by ð∣0L

�
; ∣1L

�Þ,
resides within the ground state space of the Hamiltonian

H ¼ �
X
i≠j

XiXj þ YiYj þ ZiZj

� 

:

This ground state space is 8-dimensional and corresponds to the symmetric
subspace spanned by the Dicke basis. This implies that the signature vector
P
!

lies on the boundary ofW(1)({Oα}), where wt(Oα) = 1, 2.

Discussion
We introduce a local-unitary invariant λ*(P), built from the off-diagonal
Knill-Laflamme coefficients, and characterize its attainable range via opti-
mization over the Stiefel manifold. For ((6, 2, 3)) and ((7, 2, 3)) codes, we
identify continuous families of nonadditive codes that interpolate between
extremal values of λ*. These numerical observations are corroborated by
explicit analytic constructions of the same families, thereby certifying that λ*

varies continuously in the exact KL regime.
Our analysis is set in the exact Knill-Laflamme (KL) regime, where

both the optimal recovery and the Petz (transpose) recovery achieve
entanglementfidelityFe=1 for thedesigned error set. In this regime,λ* is not
a performance proxy; rather, it characterizes the internal pattern of error
correlations within exact codes. For approximate error correction, Fe is
governed instead by the size of the KL residuals PFαP− λαP, not by λ

* itself.
Although a direct comparison therefore lies outside our present scope, the
numerical framework extends naturally to the approximate setting (by
incorporating a penalty term for KL residuals) and can report λ* alongside a
residual norm that correlates with, and is expected to control, Fe (for both
optimal and Petz recovery). A systematic study of this joint landscape is a
promising direction for future work.
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The continuity observed in λ* for distance-3 codes suggests an
organizing principle for nonadditive constructions. Clarifying, in
greater generality, when the λ* range is connected, and developing
explicit fidelity bounds conditioned on small KL residuals while stra-
tified by λ*, are natural next steps. Furthermore, the present framework
served as the methodological foundation for our subsequent study on
transversal gates32. By adapting the Stiefel-manifold optimization
approach developed here, we were able to enforce both the Knill-
Laflamme conditions and target transversal-group constraints, ulti-
mately discovering new codes with non-Clifford transversal gates. This
continuity highlights the broader applicability of the λ*-based approach
to code discovery problems.

Finally, because λ* depends on the behavior of RDMs, exploring its
connection to quantum entanglement measures, such as con-
centratable entanglement33, may yield new insights into the structure
and effectiveness of quantum codes. A deeper grasp of how λ*, entropy,
and entanglement measures interrelate could provide a stronger the-
oretical foundation for designing and improving quantum error-
correcting codes.

Methods
Algorithm for calculating range of λ*

To parameterize the code space P, we use Stiefel manifold:

St m; nð Þ ¼ x 2 Cm× n : m≥ n; xyx ¼ In
� �

:

Parametrization for Stiefel manifold is given by:

f : Cm× n ! Stðm; nÞ
: θ 7 �!θðθyθÞ�1=2 ð63Þ

Above is the polar decomposition which maps (full rank) complex
matrix θ 2 Cm× n to a Stiefelmatrix and all Stiefelmatrices can be generated
in such a way34. We embed the code subspace into Stiefel manifold:

Ψ ¼ ∣ψi

�
: i ¼ 1; � � � ;K� � 2 St 2n;Kð Þ � C2n ×K :

For theparametrized statesΨ (not a valid codeyet),we can calculate the
tensor ~λα;i;j ¼ hψijOαjψji. For the subspace to be a valid code, the following
loss term LKL should be optimized to zero:

LKL θð Þ ¼
X
α;i≠j

∣~λα;i;j∣
2 þ

X
α;i

~λα;i;i � ~λα;i;i

D E
i

� 
2

ð64Þ

where ~λα;i;i

D E
i
¼ 1

K

X
i

~λα;i;i

The two loss terms in LKL are introduced to ensure the validity of the code
and penalize the deviation from the KL conditions. To find the minimum
length of λ vector, we can optimize the following loss

Lλ θ; μ

 � ¼ μLKL þ ~λ

�� ��2
2;

~λ
�� ��

2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
α

~λα;i;i

D E2

i

s
ð65Þ

with LKL added as penalty and the hyper-parameter μ control the penalty
strength. For a large enough μ, the optimal value ofLλ should correspond to
λ with minimum length.

Similarly, to find the maximal length of λ, we optimize the following
loss function:

Lλ θ; μ

 � ¼ μLKL � ~λ

�� ��2
2: ð66Þ

To findwhether a code existswith length of λ equal to λ*, we can define
such a loss function:

L θ; μ; λ�

 � ¼ μLKL þ ~λ

�� ��2
2
� λ�2

� 
2
: ð67Þ

Notice that similarly one can alsofind the codewithapredefinedvector
λ
!

, just choose the loss function as:

L θ; μ; λ
!� 


¼ μLKL þ ~λ� λ
!��� ���2

2
: ð68Þ

Data availability
All results presented are reproducible using the code available in our public
repository36.

Code availability
The code used in this work is available in our public repository36.
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