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Characterizing quantum codes via the
coefficients in Knill-Laflamme conditions
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Quantum error correction (QEC) is essential for protecting quantum information against noise, yet
understanding the structure of the Knill-Laflamme (KL) coefficients {)LU} from the condition PEfE/-P =
AP rem_a)ins challenging, particularly for nonadditive codes. In this work, we introduce the signature
vector A (P), composed of the off-diagonal KL coefficients {)L,/} where each coefficient corresponds
to equivalence classes of errors counted only once. We define its Euclidean norm A'(P) as a scalar
measure representing the total strength of error correlations within the code subspace defined by the
projector P. We parameterize P on a Stiefel manifold and formulate an optimization problem based on
the KL conditions to systematically explore possible values of A. Moreover, we show that, for (n, K, d))
codes, A" is invariant under local unitary transformations. Applying our approach to the ((6, 2, 3))
quantum code, we find that A}, = +/0.6 and A%, = 1, with A" = 1 corresponding to a known
degenerate stabilizer code. We construct continuous families of new nonadditive codes
parameterized by vectors in R®, with A" varying over the interval [/0.6, 1]. For the (7, 2, 3)) code, we
identify 1% = 0 (corresponding to the non-degenerate Steane code) and 1%, = +/7 (corresponding
to the permutation-invariant code by Pollatsek and Ruskai), and we demonstrate continuous paths
connecting these extremes via cyclic codes characterized solely by A". Our findings provide new
insights into the structure of quantum codes, advance the theoretical foundations of QEC, and open

new avenues for investigating intricate relationships between code subspaces and error correlations.

Quantum error correction (QEC) is essential for protecting quantum

information from the noise and errors that inevitably arise in quantum

systems'™

. A deeper understanding of the structure of the set given by all
possible coefficients /lij , which arise from the Knill-Laflamme (KL)
conditions PEITEJ-P = A;;P’, can provide valuable insights into the perfor-
mance and underlying properties of quantum error-correcting codes.
However, achieving this understanding is challenging. Nonadditive codes,
which lie outside the stabilizer formalism, are particularly difficult to ana-
lyze, as relatively few examples have been systematically studied* . More-
over, degenerate codes-where multiple errors produce the same effect on
the code space—exhibit inherently quantum phenomena, such as over-
lapping error syndromes, that lack classical analogues and remain poorly

understood'"””. These complexities make it difficult to systematically
explore the structure of the set of all possible {A;;} values. As a result, there is
currently no comprehensive framework for understanding the distribution
of these coefficients, leaving important questions about their structure and
implications for quantum error correction unanswered.

We analyze the structure defined by the set of all possible values of {)Lij}
that satisfy the KL conditions, which govern how pairs of errors interact
within the code subspace defined by P. To encapsulate these interactions, we

—
introduce signature vector A (P), composed of the off-diagonal elements
{Aij} (with each coefficient corresponding to equivalent errors counted

only once), which capture the non-trivial correlations between errors. The
overall strength of these interactions is quantified by A"(P), the Euclidean
norm of the signature vector. This scalar value provides a measure of the
total strength of error interactions within the code subspace, offering a new
perspective on the role of these interactions in QEC. Crucially, for ((n, K, d))
codes, A" is a function of the purity of the local reduced density matrices
(RDMs) of the codewords, making it invariant under local unitary opera-
tions. This local unitary invariance allows A" to serve as a powerful tool for
distinguishing locally unitary inequivalent quantum codes and identifying
different codes based on their error interaction structures.

The focus of this paper is to study the range of 1": to understand the
minimum and maximum values of A" (denoted by ¥, and A*,_), and to
determine whether the range of 1" is connected between these extrema. As a
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baseline, in the stabilizer-code setting under a Pauli error model, the KL
coefficients satisfy A;; € {0, % 1} after fixing a consistent phase convention.
Identifying each off-diagonal equivalence class only once (i.e., whenever
EJE] and E;E] coincide up to phase), we obtain A*(P)* = >, j/\fj € N, s0
stabilizer codes admit a discrete spectrum of A". This stands in sharp and
interesting contrast to the continuous ranges of A" that we will establish for
nonadditive codes.

Using our method, we find that for the ((6, 2, 3)) quantum code,
A =+/0.6and A% = 1. Thevalue A" = 1 corresponds to the degenerate
stabilizer code described in'"’. However, there were no known codes corre-
sponding to A* = +/0.6. We construct families of nonadditive codes,
parameterized by four mutually orthogonal real vectors a,b,c,d € R,
with 1" parameterized by a vector e € RS, orthogonal to a4, b, ¢, d, which
varies continuously over the interval [+/0.6, 1]. This confirms that the range
of A" for the ((6, 2, 3)) code is indeed [+/0.6, 1]. For each distinct value of
A* € [1/0.6,1], our construction yields locally inequivalent codes, para-
meterized by the vector e € R®.,

For the ((7, 2, 3)) code, we find that A%, = 0 and \* = /7, where
A" = 0 corresponds to the non-degenerate Steane code'*", and 1* = /7
corresponds to the permutation-invariant code proposed by Pollatsek and
Ruskai'®. We identify families of cyclic (7,2, 3)) codes that trace continuous
paths in the solution space. These paths, each characterized by a single
parameter, which is simply ', with A" varies continuously over the interval
[0, /7], directly connecting the Steane code and the permutation-invariant
code. This finding demonstrates that it is possible to smoothly connect these
two distinct codes while preserving cyclic symmetry, offering new insights
into the relationship between different locally inequivalent quantum codes
and their symmetry properties.

Our approach offers a systematic method to explore the range of A,
resulting in the construction of numerous new nonadditive codes for
((6,2,3)) and ((7,2, 3)), with A" varying continuously from A*,, toA* . The
ability to identify and quantify the range of A" provides novel insights into
the structure of quantum codes, particularly in nonadditive cases. This
framework opens new avenues for investigating the intricate relationships
between code subspaces and error interactions, offering a deeper under-
standing of the mathematical structure underlying quantum error
correction.

We organize our paper as follows. In Section II A, we discuss pre-
liminaries on quantum error correction and code parameters. In Section II
B, we define the signature vector and its norm A", show that A" is invariant
under local unitary operations by linking it to the purity of the RDMs of
codewords, and develop an algorithm to find the maximum and minimum
values of 1", In Sections II D and II E, we apply our method to the ((6, 2, 3))
and ((7, 2, 3)) quantum codes, respectively, demonstrating how A" varies and
constructing new nonadditive codes.

Results

Preliminary

In quantum error correction, it is our goal to protect quantum information
from errors caused by a noisy quantum channel. Quantum error-correcting
codes (QECCs) are constructed to correct a specified set of errors {E;}. The
Knill-Laflamme (KL) condition for quantum error correction can be
expressed as:

PE[EP = \;P, Vi], 1)

where P denotes the projector onto the code subspace, E; and E; represent the
Kraus operators corresponding to the possible errors, and {/1,-}- } are com-

plex scalars that characterize how the pair of errors E; and E; interact within
the code subspace. This condition ensures that errors are correctable, pro-
vided that they act within the designated subspace and satisfy this equation.

The dimension of the code subspace is denoted as K, and if the logical
information is encoded in a subspace of K-dimensional logical qubits within
an n-dimensional physical qubit system, then P is an n x n matrix, and its

rank equals K. The code subspace C can be written as the span of ortho-
normal basis vectors {|y, >, |1//2>, oy K>}, which span the logical space.
The projector onto the code subspace is given by

K

P=> ly){wil @)

i=1

The quantum error correction condition can then be expressed in terms of
the basis vectors spanning the code subspace:

(WlE[Ejlv)) = 4,04, Vilj ®)

where the scalars {Aij} describe how the errors E; and E; affect the code
subspace.

A non-degenerate QECC is characterized by the Hermitian matrix {)L,-j}
being non-singular (having full rank), which means that the determinant of
{)Lij} is non-zero and the matrix is invertible'. This implies that all errors
have distinct effects on the code space and can be uniquely identified and
corrected. In contrast, a degenerate QECC arises when the matrix {Aij} is
singular (not of full rank), indicating that there are linear dependencies
among the error operators when restricted to the code space®. Some errors or
combinations of errors may have the same effect on the code space, making
them indistinguishable. A completely degenerate code, or decoherence-free
subspace (DFS), represents an extreme case where all {)Lij} elements are
equal, resulting in a matrix of rank 1, meaning A; = A for all 4, j. In this
scenario, the code space remains invariant under certain noise processes'"’.

An ((n, K, d)) quantum error-correcting code is defined by three key
parameters: 7, the number of physical qubits used to encode the quantum
information; K, the dimension of the code space, which corresponds to the
number of logical qubits the code can protect (for example, if K = 2%, the code
protects k logical qubits); and d, the distance of the code, which determines
the minimum number of physical qubit errors required to cause a logical
error. The distance d indicates the code’s ability to detect and correct errors.
Specifically, an (1, K, d)) code can detect up to d — 1 qubit errors and correct
up to t = |451| qubit errors™’. A well-known example is the Steane code,
which is a ((7, 2, 3)) code. This code encodes one logical qubit into seven
physical qubits and can correct up to one qubit error and detect up to two
qubit errors’.

Furthermore, quantum error-correcting codes may either be non-
additive or additive. Non-additive codes are a generalization of stabilizer
(additive) codes and allow encoding of quantum information without
adhering to the 2% constraint for the dimension K. The code distance d,
which is the minimum weight of an undetectable error, remains critical in
both types of codes, as it determines how many errors can be detected and
corrected.

Two quantum error-correcting codes P; and P, are locally equivalent if
one can be transformed into the other by local unitary operations or local
Clifford operations applied to individual qubits. Formally, P; and P, are
locally equivalent if there exists a unitary transformation U=U,; @ U, ® -+
® U, where each Uj acts on a single qubit, such that P, = UP, U". This local
equivalence ensures that the overall structure of the code and parameters n,
K, d are preserved, even though individual states within the code space may
change under the transformation’.

In practice, to test whether two ((n, K, d)) codes P, and P, are local
unitary equivalent, we can use Quantum weight enumerators', which were
defined by
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B, = %% (0,) = jTr (0,P.01P,). ©

Here
O, € {X,Y,Z,1}*" (7)

are n-fold tensor product. Denote the number of X factors, Y factors and Z
factors in O, as wtx(O,), wty(O,), and wtz(O,). The weight of O, is

wt (Oa) = WtX(Ozx) + WtY(Ooc) + WtZ(Oa)' (8)

Signature vector
We motivate the idea of a “signature vector” via the joint rank-Knumerical
range for a set of operators {A;}1" |, defined as'**’

w@4,,...,A,) = {(/\i):';1 : 3 rank— K projector P

9
with PA;P = A,PVi}. ©

Thus, W® consists of all vectors T(P) = (A;) that arise from some K-
dimensional projector P satisfying PA;P = A;P.

The joint rank-1 numerical range is connected, and for m = 2 Her-
mitian operators it is convex by the Toeplitz-Hausdorff theorem'*"’; this
convexity extends to higher ranks as well”. For m > 2, however, the
geometry of joint higher-rank numerical ranges is much less
understood”". In particular, for K=2 the set is generally non-convex and
may have disconnected components. As an example, consider two qubits
withA, =X ® LA, =X®Z A, =Y®L A= Y®Z As=Z® L. One can
show that the joint rank-2 numerical range consists of exactly two points,

WA, ..., A5) = {(0,0,0,0,1),(0,0,0,0, —1)},
and is therefore disconnected.

To adapt A (P) to an ((n, K, d)) code, let

E.q4:=1{0, Pauli : 0<wt(0O,)<d}

denote the set of all Pauli operators of weight less than d including identity,
and define

Werror = W(K)(E<d)' (10)
—
We call A (P) € W, a signature vector if
PO,P=AP foral O, €& _,. (11)

In the Knill-Laflamme (KL) form,
PEJEP =);P Vij,

we take 1 to be the collection of all distinct off-diagonal coefficients
Ajj (i # j), identifying pairs (i, j) and (7', j') whenever E,TE]- and EITE] coincide
with the same Pauli (up to an overall phase).

We are particularly interested in the length of the signature vector,
denoted \"(P), defined by

Y@ =1 Tl =[S

This quantity provides a scalar measure of the aggregate strength of error
couplings on the code subspace determined by P*. Trivially, A"(P)>0, with
A’(P) = 0 achievable when all off-diagonal KL coefficients vanish (e.g., in a
non-degenerate stabilizer code). For a fixed noise model, a natural upper

(12)

bound is approached when the code forms a decoherence-free subspace
(DFS), where E;|y) = ¢;|y’) on the code so that PEjEjP = ¢;¢;P; under
appropriate normalization this yields the maximal possible value of ",

To clarify the physical content of A", we first establish that it is invariant
under local unitaries, and then relate it to the entropy of the code. These are
specific features of the error model adopted for the analysis of ((n, K, d))
codes. We then propose a numerical procedure to estimate the attainable

range of A", which also provides insight into the geometry of W' in general.

The physical meaning of A" for ((n, K, d)) codes
We now show the local unitary invariance (LUI) of A". Given a quantum
state |y), the RDM for the i-th subsystem is defined as:

PO = Trgelly) (wll, (13)

where Tr;c denotes the partial trace over all subsystems except the i-th one.
An n-RDM is defined as:

n

ik
plo =T gyl (vl (14)
M
The purity of this RDM is given by:
n n 2
= =

and since purity is invariant under local unitary transformations, the purity
for 1-RDM, 2-RDM, ..., and up to (d-1)-RDM is also LUL For an ((n, K, d))
code, the (d-1)-qubit RDM is the same for any state |y) within the code
subspace, hence all the lower order RDMs are also independent of the
state |1//>.

Next, consider the vector A? = (Tr[p®X,], Tr[p®Y ], Tr[p?Z,]),
which captures how the i-th subsystem interacts with the Pauli operators.
The length of this vector is LUI, and is expressed as:

I A2, = (16)

This can be rewritten in terms of the purity as || 20 |3 =2Tr [ (p(i))z] -1,
demonstrating that ||A?||, is LUL

Now, let A%’ be a vector with 9 components, corresponding to the two-
qubit interactions:

A6 — (Tr[p(ij)Xin], TrpPX, Y], - | Tr[p(ij)ZiZj]> . W)
The length of this vector is also LUI, and is given by:
AP0, = | > PP (18)
a=1
We can express this as:
| AP = 4Te[(47)°] = 1= 1A= 1A, 9)

where each term on the right-hand side has already been shown to be LUL
With invariance of weight-1 and weight-2 vectors, in a similar fashion,
the length of weight-(d-1) vectors ||A%||, can be proven to be LUL
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Consequently, the length of the signature vector is given by:

3 . 9 .
Wy > 2092 4 I AP
o= a=

(d — Dterm),

(20)
+ -+ + (weight —

which is also LUI, as all terms involved are LUL The LUI property can also
be observed from the connection with quantum weight enumerators in
Eq.(5). Eg,whend=3,1" = 37, | A25 + 32, 11713 = A, + 4,.

Since A" is LUI, it follows that if two quantum codes P, and P, corre-
spond to different values of A, ie, A (Py) # ) (P,), then the two codes must
be local unitary inequivalent. This means that the distinct values of A" reflect
different structures in the code subspaces that cannot be transformed into
one another via local unitary operations. This shows that 1” serves as a useful
tool for distinguishing some local unitary inequivalent codes. However, the
converse does not hold: two local unitary inequivalent codes may corre-
spond to the same value of 1".

Beside the connection between A" and the quantum weight enumera-
tors and purity of RDMs, we also establish how the quantity 1* connects to
the second-order Rényi entropy of the Knill-Laflamme (KL) matrix. The KL
matrix A has elements

Tr (PE/E, P)

=TT ey

where Pis the projector onto the code space, and {E;} are the error operators.
By construction, A captures the pairwise overlaps of errors within the
code space.

To interpret A as a density matrix, we normalize it as

- (22)
T Tr(A)’
The second-order Rényi entropy of the normalized matrix is
S,(A) = —log Tr (A?). (23)

Since Tr(A) = ,);
dimension), we have

Tr(A) =) WP =m+2) Inl

ij i<j

=>".1=m (often taken to be the code-space

(24)

By definition,

> =27 434, 25)
i<j

where A, is the first-order quantum error enumerator introduced in Eq. (5).

Since {Tr [P O;]} transforms as a vector under local unitary (LU) rotations,

A; remains invariant under LU transformations. Putting these observations

together, we get

m+ 2+ 34))

— (26)

Tr(A%) =

Consequently,

Sy(A) = —log[m +2(A* + 3A))] — 2logm. 27)
This shows that the second-order Rényi entropy of the KL matrix (once
normalized) depends directly on A', reinforcing the view that A" serves as a
measure of the off-diagonal correlation strength among the error operators.

The local-unitary invariance (LUI) of ", together with its connections

to several physical quantities, indicates that A" is a useful measure of

codeword properties and physical quantities invariant to choice of basis or
representation. The robustness, and the numerical efficiency working in the
Stiefel manifold in Section IV A, make A~ a useful tool for finding the code
with new error models. These properties, however, are specific to the error
model adopted for our analysis of (1, K, d)) codes. In particular, the LUI
statement for A" holds for any complete set of Hermitian error operators (P
+ UPU', E; > UE,U"), or arbitrary local changes of basis (E; = >« VyEp, A
— VAV"); extensions to non-Hermitian errors lie beyond the present
derivation. Nevertheless, the numerical procedure developed below is still
valid with minimal modification and remains useful for finding the code
with new error models.

((6, 2, 3)) codes

Itis well known that ((5, 2, 3)) code is unique up to local unitary equivalence,
with signature vector )L = 0, hence the range of 1" is a single point 0. Much
less is known about the range of A" for the case of ((6, 2, 3)). For stabilizer
codes, there are only degenerate ones, for example the stabilizer code given
in"?, with stabilizers given by

¢ Y I Z X X Y
& - Z X I I X Z
& I Z X X X X
G I I I 2z 1 Z
&  Z Z Z 1 Z I

For this code, all components of signature vector are zero except the term
(0,12,Z|0, ) = 1,hence)’ = 1. All the other ((6, 2, 3)) codes found in” also
have A" = 1.

To find the range of A, we sample A" € [0.5, 1.1], then calculate the
optimal value for £ (6; 4, 1) in eq. (67). The results are shown in Fig. 1. For
all optimizations, the violations of error-correcting conditions are less than
Ly <107, From the figure, a sharp transition from almost zero to non-
zero can be observed, which indicates || A||2 € [0.6, 1.0]. This two bound-
aries are also found via optimizing £ and £,.

To construct codes with +/0.6<A* <1, denote the six qubits by
1929394959 and choose the following five bases for qubits ¢»4394959s

IS;) = 25(100001) +[11110)),
15,) = 5(100010) + [11101)),
1) = 25100100} + [11011),
1S = 25101000} + [10111),
IS;) = J5(110000) + [01111).

Now choose logical states as:

|0L> = i'xi>|si>7 |1L> = ilyi>|si>' (28)

Here

Ix;) = 7i10) + y;y5l1), i =1,2,3,4,5

1y:) — Y, i=1,2,3,4,5

= Y;'k+5|0)

The KL condition reduces to the following conditions on |x;) and |y;) (see
Supplementary Information A for details):

D bl = (il DIyl = 0.

Notice that this is equivalent to require that the RDM of ¢, is %
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((6,2,3)) codes loss function vs. A™2

K

107!
10—4 ]
10—7 ]

10—10 ]

Loss

10—13 ]

10—16 ]

10719+~ , ,
05 06 07

T T

0.8 09 10 11
A2

Fig. 1 | 1'* range for ((6, 2, 3)) code. Penalty factor is chosen as y = 1. Clear

boundaries can be found on the edges of region 1 * € [0.6, 1.0]. Inside the region, the

loss function L:(O; U, )L*) is below 107",

Our code are then designed in the following 10-dimensional subspace

{|0>7 |1)} ® {|81>7 |S2>7 |S3>> |S4>7 |SS>}

We choose this subspace because our numerical results indicate that all
2-RDM of pure states the code space take the form:

1
RDM;; = I, + ay(XX + YY) + ,2Z. (29)

In Supplementary Information A, we list the explicit form of 2-RDM for any
pair of qubits 7, j.
Now let

Y, =a;+ iij)’5+j = ¢ +id;,

forj=1,2,3,4,5.Wherea;, b;, ¢c;,d; € R. Define the column vectors 4, b, c,

PA A |
and d to be:
a; by G d,
a, b, ) d,
a=|as |, b=|bs|, c=]|¢g |, d=|d;
ay b, C4 d,
as bs s ds

e (30)
=C .

This means that g, b, ¢, d are orthogonal vectors in RS,
We then choose e being the vector orthogonal to a, b, ¢, d, that is, the
unnormalized orthogonal matrix composed from (4, b, ¢, d, €) as A

a by ¢ d e
a b, o d, e
A:[a b ¢ d e]: a; by ¢ d; e
ay by ¢ dy e
as by cs ds e

1
—>AAT=ATA=ZI

which means each column (row) are orthogonal to each other. In other
words, 2A is a 5 x 5 orthogonal matrix.

It turns out that the nonzero element of the signature vector, denoted as
PE,TEJ-P = ;P of this code is given by the element of e (see Supplementary
Information A for details):

AX,XJ = AY,-YJ- = —2¢;_j¢;
Apz, =26 ;+26;, ije{2,3,4,56}

And

1
A*Z :E—}—SZe?
i

This means that A" is invariant with the rotation within the sub-
space spanned by (4, b, ¢, d). To further understand this invariance, we
can view |OL> and |1L> as bipartite states between g, (Party I) and
4293949596 (Party II). For Party I, an orthogonal transformation (i.e.
2A, change of basis in the subspace spanned by |S,~>) will correspond to
a unitary transformation on Party II, hence will not change the RDM of
Party I. This unitary in general cannot be realized by LU transforma-
tions on ¢,43449sqe> hence will lead to LU inequivalent codes.

It turns out (see Supplementary Information A for details), how-
ever, when e is chosen, the freedom in the choice of (a, b, ¢, d) will lead to
locally equivalent codes. This is due to the fact that, all such choices,
given by

[a b ¢ d}O7

where O is any 4 x 4 orthogonal matrix, can be generated by
1. local unitary transformations on party I (i.e. the first qubit) (leading to
LU equivalent code), and
2. unitary transformations in the logical space spanned by [0, ) and |1, )
(leading to the same code).
In other words, the choice of e will in general lead to local inequivalent
codes. Furthermore, combined with the fact there is a single parameter
family of codes that connect A*3 = 0.6 to A*2 = 1in Section II D, we
found that the signature vector space is connected when choosing the
logical states as in Eq. (28), which is the subspace of the whole signature
vector space W,
Specifically, the vector e for A*2 = 0.6 is

‘min

and for 2 =1

To have a single-parameter family of codes that connect A%, to A2 =1,
since A" is only dependent on e, let us choose a single parameter family for e

1 1 1 1
e =—[=sin6,=sin O, =sin O, =sin O, cos 6],
272 2 2 2

for cos 0 € [ﬁ7 1].
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Now we can choose the matrix A as

% % % %cos(@) %sin(@)

. % - % — % % cos(0) % sin(0)

A= 5| i1 -1 lcos(B) isin(6)
-1 -1 1cos(0) 1sin(6)

1
2
0 0 0 —sin(f) cos(9)

So the matrix {A; ¢ will be full rank for cosf € [ﬁ, 1), ie.
*e [«/0.67 1). For cos 0= 1,i.e. A" = 1, we have Ags = 0.
The enumerator is found to be:

A623) — 1 4 (— cos(26) + 2 cos(46) —I— )z
+(— 2 cos(26) — Z cos(40) + )23
+(— £ cos(26) — 2 cos(40) + Zhz*
+(E cos(20) + 2 a cos(49) + %(F)z +32°

;o (33)

This gives a single parameter family of codes with the corresponding

*2_1 l l~4 4
A _2+2(4s1n (6) + cos (9))

runs continuously from 0.6 to 1.

B®23) — 1 4 (16 cos(20) + —cos(49) +4 )z
+ (2 cos(26) + 3 cos(46) + 751)z
+ (—2cos(20) — 2 cos(46) + 2H)z* . (34)
+ (— 3 cos(20) — 3 cos(46) + 1Z7)z°

For this family of codes, the matrix illij will be block diagonal, and + (cos(20) + 2 cos(46) + 1677),6

each block corresponding to XX, YiY, Z;
only need to consider i,j € {2, 3,4, 5, 6}:

7

1 r r r r

r 1 s s s

B=|r s 1 s s
r s s 1 s
r s s s 1

The eigenvalues of the matrix are:

App =Ap =gy =1—5,

2 + 35+ /952 + 1672
/\B4 == 2 )
2+ 3s — /952 + 1672
Ags = 5 .
Notice that
/\xzx] = AYZY] = —2ese;_;

= —2(cosfisinf), je{2,3,4,56}

/\X‘XJ = Ayiyj =—2¢;_je; ;
= —2(Lsin6)’, ije(3,4,5,6).
So the X;Xj, Y;Y; blocks are the same and correspond to
1 A
r=——sinfcosf,s=—2(-sinf | .
4 4
And

/\ZZZ = 2¢% + 2¢2 _j

= z(isine) +2(2 cosG) j€{2,3,4,5,6}
/\ZZ = 2¢2_ i+287_j

= 4( sme) i,j €{3,4,5,6}.

The Z;Z; block corresponds to

1 2 2 1 2
r:2(—sin9> +2(—c059) :4(—sin0) .
4 4

correlations, with the form (we

When cos(f) = 1, we have A*2 = 1, and
1
=-[0 0 0 0 1].
2

The code subspace, spanned by (|0, ), |1, }), resides within the ground state
space of the Hamiltonian

H=-27, Z Z+ > > zz,

€(3,4,5,6) ie3456) j € {3,4,5,6)
J#i

which is 16-dimensional degenerate, and is spanned by

|000001), |000010), |000100), [001000),
[011110), [011101), [011011), [010111),
[100001), |100010), |100100), |101000),

[111110),|111101),]111011),|110111).

(31) This implies that the signature vector T’) lies on the boundary of W({O,}),
where wt(O,) = 1, 2.
((7, 2, 3)) codes
For the ((7, 2, 3)) case, consider the Steane code with stabilizers
g X I X I X I X
& I X X I I X X
g I I I X X X X
' zZ 1 zZz I Z I Z
gs I 2z 2z I I Z Z
(32) g6 I 11 Z zZ 72 Z

This code has a signature vector p= 0, corresponding to A" = 0. To
find the maximum value of 1", we run our algorithm and observe a sharp
transition at \* = /7, as shown in Fig. 2.

It turns out that this maximum value A* = /7 corresponds to the
permutation invariant code, which is constructed from the Dicke basis:

—-1/2
_(n On—k ®k
D, = (k> > a0 F e

o€Sym,,
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((7,2,3)) codes loss function vs. A™2

10—1 ]

10—5 ]

10—9 ]

Loss

10—13 J

107174

A2
Fig. 2 | 1" range for ((7, 2, 3)) code. Penalty factor is chosen as y = 1. The boundary

A" =7 corresponds to permutation invariant code, while at " = 0 it is Steane code.
Inside the region all loss functions are below 107",

Two permutation invariant codes are given in'® as:

80,) = ~/15D;y — /7D, , + ~/21D; , + /21D, 35)
1) = X¥|0,) |
and
810,) = </15D,,++7D;, + /21D, — /21D, 4 36)
|1L> = X®7|0L>

Notice that these two codes are local-unitary equivalent.

Now the key question is again, whether the set of all 1's is connected,
i.e., whether the range of 1" is indeed [0, +/7]. Notice that by permuting the
qubits, Steane code can have cyclic symmetry, with logical 0 and logical 1
given by

0,) = 5(10000000) +]1100101) + [0101110) + 0010111)

+]1001011) + |1110010) + [0111001) + |1011100))
= ﬁ|0000000> + \/§(|0010111> + cyc.)

(37)

and |1;) = X®7|0, ). Here cyc. denotes all the other computational basis
states with cyclic shift. Now we will explicitly construct families of cyclic
codes with 1* € [0, /7).

Let us choose the cyclic basis with even weights:

[{0011011}) = 7(|0011011) + cyc.)
[{0011101}) = 7(|0011101> + cye.)
[{0101011}) = 7_(|0101011> + cyc.)
[{0010111}) = 7_(|0010111> + cyc.)
[{0111111}) = \/i_(|0111111> + cyc.)

Using this basis, we parametrize |0, ) and |1} ) as follows:

10,) = ¢,l{0000000})
+ 7 (1{0000011}) + [{0000101}) + {0001001}))
+¢,1{0010111}) 4 2 (I{0001111}) + [{0011011})
+1{0011101}) 4 [{0101011})) + ¢,|{0111111}),
|1L> = X®7|0L>

(38)

Within the five-dimensional subspace given in Eq. (38), KL conditions
will lead to three independent equations. Combined with normalization
condition, the coefficients (cy, ¢1, ¢2, ¢3, ¢4) should satisfy the following four
equations:

Gta+a+a+ag=1 (39)
0.1Z;10;) =0 —
( L2| il 2L> i (40)
7d+33 -3 - —53=0
(0,1X;X®7]0,) =0 —
24/7¢oc, + 24/3¢,¢, + 44/3¢,c4 (41)
+4+/3c1cy + 4y, + 32 =0
(0,17, X®710,) =0 —
24/7¢4¢4 + 24/3¢1¢, + 44/3¢1¢4 (42)

—4/3¢c1¢, — 4cy05 — 32 =0

And for the signature vector, the following components are nonzero,

[{0000000}) = |0000000) satisfying (for i # f):

210, 1X,X;10;) = 2+/21co¢, 4 106} + 44/3¢,c, @)

[{0000011}) = 7 (10000011) + cyc. ) +84/3¢;¢5 + 126,65 + 6¢,¢4 + 9 + 12¢5¢, + 62
21(0,|Y,Y;10;) = —2+/21c4¢, 4 106 — 44/3¢,c, "

[{0000101}) = 7 (10000101) + cyc. ) —8+/3¢;¢; + 12¢,¢5 — 6¢,¢4 + 962 — 12¢5¢, + 6¢2
21(0,1Z,Z;10;) = 21c5 + ¢ — 3¢5 — 363 + 9¢; (45)

[{0001001}) = 7 (10001001) + cyc.) From Eq. (41) and Eq. (42) we obtain:
V7cocs 4+ 23/3¢,6, + 24/3¢,6, = 0 (46)
1

[{0001111}) ZWOOOOHID + cyc.) 43,6, +deyes +3E = 0 47)
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To solve these equations, we first find one solution for ¢, (see Sup-
plementary Information B for details):

¢, = —\/gcl (48)
Then Eq. (48) and Eq. (46) derive another linear relation:
¢, = —2¢; + V/7¢, (49)

Plug Eq. (48) and Eq. (49) into Eq. (39), (40), (43), (44), (45), (46) and
(47), one finds f (for i # j):

Normalization : 8¢ — 4+/7cyc; + 42 + 5¢ = 1 (50)
(0,1Z,10,) =0 —  4v7cyc; — 126 — 563 = 0 (51)
(01X,X%710,) =0 —  43/Tcoe; — 12 =5 =0 (52)
(01Y,X¥70,) =0 —>  —4v7coe; + 1261 +55 =0  (53)
21<0L|X,-Xj|OL> = 12v7¢yc, + 288 — 158 (54)
21<0L|Yin|OL> = 1247¢yc, + 286 — 150 (55)
21<0L|zizj|oL> = 1247¢,c, + 288 — 152 (56)

Since the signature vector components ((54), (55) and (56)) are equal, it is
convenient to introduce A" as a parameter (for i = 7):

21<0L|Xin|0L> = V7N (57)
21<0L|Yin|0L> = V7" (58)
z1<oL|z,.zj|oL> = VA" (59)

By eliminating ¢, and c¢; through Eq. (51) and Eq. (54), we find
#. With parameter A* € [0, /7], they become Steane code
when A" = 0, and parametric code at A* = /7. The following two QECCs
are related to QECC in eq. (35):

o=t

o = NIN48
0 — 8 ’
NZN

G = - 8 )

¢ = =3¢, (60)
3 = % (ﬁcoi \/ 7(% - _15\6/4?/1*)7

6 = —2¢,+/7¢,

The following two correspond to QECC in Eq. (36)
o= V7N +8
0 — 8 ?
NZs

o =5,
¢, = =3¢, (61)
¢ = %(ﬁcoiyﬂcg —156#),

¢ = —2¢,++/7¢,

For the quantity inside the square root non-negative, it requires A* < +/7.
The signature vector for these four codes are the same with the following
nonzero components (for i # j:

*
3J7

This means that all the 2-particle reduced density matrix of the code
have the form

<OL|Xin|OL> = <0L|Yin|0L> = <OL|ZiZj|OL> =

| A
p = yl 3—ﬁ(Xin +YiY;+2,2)).

Consequently, the matrix {Aij will be block diagonal, and each block

corresponding to X;X;, Y;Y}, Z;Z; correlations, with the form

*

A 1
(1 —s)I+s],s:—7€ [0,5].

37

where:
o [Iis the 7 x 7 identity matrix.
* Jis the 7 x 7 matrix with all entries equal to 1.This matrix (1 — s)I + sJ
has full rank and with one eigenvalues 6x + 1 and six eigenvalues 1 — s.
For the family given in Eq. (60), weight enumerators is given by

A2 — 1 4 1222 4 (21 — 24P)2* + (42 + 1*2)2°
BU2Y = 142722 4 3(7 + 1)z + (21 — 24%)2!
+6(21 — N*)2° + (42 + A*2)28 + 3(15 + 17
(62)

We have also explored all the local Clifford inequivalent ((7, 2, 3))
stabilizer codes, and found that the only possible values of 1™ are
{0, v/1,4/2,4/3,+/5} (see” for details). For instance, the Bare code’ cor-
responds to A* = /5.

When 1* = A}, = +/7, the code subspace, spanned by (|0, ), |1, )),
resides within the ground state space of the Hamiltonian

H==Y (XX +YY,+27).

i#j

This ground state space is 8-dimensional and corresponds to the symmetric
subspace spanned by the Dicke basis. This implies that the signature vector
P lies on the boundary of W({0,}), where wt(O,) = 1, 2.

Discussion

We introduce a local-unitary invariant A'(P), built from the off-diagonal
Knill-Laflamme coefficients, and characterize its attainable range via opti-
mization over the Stiefel manifold. For ((6, 2, 3)) and ((7, 2, 3)) codes, we
identify continuous families of nonadditive codes that interpolate between
extremal values of A". These numerical observations are corroborated by
explicit analytic constructions of the same families, thereby certifying that 1"
varies continuously in the exact KL regime.

Our analysis is set in the exact Knill-Laflamme (KL) regime, where
both the optimal recovery and the Petz (transpose) recovery achieve
entanglement fidelity F, = 1 for the designed error set. In this regime, A" is not
a performance proxy; rather, it characterizes the internal pattern of error
correlations within exact codes. For approximate error correction, F, is
governed instead by the size of the KL residuals PF,P — A,P, not by A" itself.
Although a direct comparison therefore lies outside our present scope, the
numerical framework extends naturally to the approximate setting (by
incorporating a penalty term for KL residuals) and can report A" alongside a
residual norm that correlates with, and is expected to control, F, (for both
optimal and Petz recovery). A systematic study of this joint landscape is a
promising direction for future work.
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The continuity observed in A" for distance-3 codes suggests an
organizing principle for nonadditive constructions. Clarifying, in
greater generality, when the 1" range is connected, and developing
explicit fidelity bounds conditioned on small KL residuals while stra-
tified by A", are natural next steps. Furthermore, the present framework
served as the methodological foundation for our subsequent study on
transversal gates””. By adapting the Stiefel-manifold optimization
approach developed here, we were able to enforce both the Knill-
Laflamme conditions and target transversal-group constraints, ulti-
mately discovering new codes with non-Clifford transversal gates. This
continuity highlights the broader applicability of the A -based approach
to code discovery problems.

Finally, because A" depends on the behavior of RDMs, exploring its
connection to quantum entanglement measures, such as con-
centratable entanglement™, may yield new insights into the structure
and effectiveness of quantum codes. A deeper grasp of how A', entropy,
and entanglement measures interrelate could provide a stronger the-
oretical foundation for designing and improving quantum error-
correcting codes.

Methods
Algorithm for calculating range of A’
To parameterize the code space P, we use Stiefel manifold:

St(m,n) = {x € C"*": m=n,x'x = I}
Parametrization for Stiefel manifold is given by:

f: C™" — St(m, n)

63
. o—0(6"0) " ()

Above is the polar decomposition which maps (full rank) complex
matrix @ € C™*" to a Stiefel matrix and all Stiefel matrices can be generated
in such a way’*. We embed the code subspace into Stiefel manifold:

v={ly):i=1,---,K} € St(2",K) € C*"*¥,

For the parametrized states ¥ (not a valid code yet), we can calculate the
tensor A, ;; = (¥;10,|y;). For the subspace to be a valid code, the following

aij T
loss term Ly; should be optimized to zero:

L (0) = Z |/ia,i,j|2 + Z (’i(x,i‘i - <ia,i,i>i>2

a,i#f a,i

where <)~lan,-y,->_ = %Z ia,i,i

(64)

The two loss terms in Ly are introduced to ensure the validity of the code
and penalize the deviation from the KL conditions. To find the minimum
length of A vector, we can optimize the following loss

4(0:0) =l + [ AL = 3 (i), 69)

24

with £y, added as penalty and the hyper-parameter y control the penalty
strength. For a large enough y, the optimal value of £, should correspond to
A with minimum length. h

Similarly, to find the maximal length of A, we optimize the following
loss function:

51(93 .“) =Ly — H’Wi (66)

To find whether a code exists with length of A equal to ", we can define
such a loss function:
2

£(0;07) = g + (I, - 27) (67)

Notice that similarly one can also find the code with a predefined vector
A, just choose the loss function as:

E(@;u,7> = uly + Hi—YHz (68)

Data availability
All results presented are reproducible using the code available in our public
repository™’.

Code availability

The code used in this work is available in our public repository™.
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