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Exceptional-point-induced
nonequilibriumentanglement dynamics in
bosonic networks
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Exceptional points (EPs), arising in non-Hermitian systems, have garnered significant attention in
recent years, enabling advancements in sensing, wave manipulation, and mode selectivity. However,
their role in quantum systems, particularly in influencing quantum correlations, remains
underexplored. In this work, we investigate how EPs control multimode entanglement in bosonic
chains. Using a Bogoliubov-de Gennes (BdG) framework to describe the Heisenberg equations, we
identify EPs of varying orders and uncover spectral transitions between purely real, purely imaginary,
and mixed eigenvalue spectra. These spectral regions, divided by EPs, correspond to three distinct
entanglement dynamics: oscillatory, exponential, and hybrid. Remarkably, we demonstrate that
higher-order EPs, realized by non-integer-π hopping phases or nonuniform interaction strengths,
significantly enhance the degree of multimode entanglement compared to second-order EPs. Our
findings provide apathway to leveragingEPs for entanglement control and exhibit the potential of non-
Hermitian physics in advancing quantum technologies.

Non-Hermitian physics has garnered significant attention for its ability to
capture dissipative and open-system dynamics beyond traditional quantum
mechanics1,2. Among its intriguing phenomena, EPs3–5 —special parameter
regimes where eigenvalues and eigenvectors coalesce—offer profound
implications in a range of applications, from enhancing sensitivity in
sensors6–8 to controlling light-matter interactions9–11. While EPs are well-
studied in classical systems12–16, the investigation of their quantum coun-
terparts is still at an initial stage. Using methods such as extended Hilbert
spaces17 and quantum trajectories18 to construct effective non-Hermitian
Hamiltonians, or using the Liouvillian superoperator formalism within the
Lindblad master equation framework19,20, which explicitly incorporates
quantum jump effects, recent work has realized EPs in various quantum
systems such as optical systems21–23, superconducting circuits18,24–26, ion
traps27–29, nitrogen-vacancy centers17,30,31 and ultracold atoms32,33. The
coexistence of the non-Hermiticity and quantum properties makes them
promising platforms for establishing the relationship between quantum
correlations and EPs in few-body systems34–37.

Extending to the investigation of the broader implications of non-
Hermitian physics in multimode systems, previous research has revealed
intriguing phenomena in classical regime, such as exceptional topology5,

enhanced sensing via higher-order EPs38,39, and the dynamic behavior of
first-order moments40–45. However, the investigation of second-order
moments, which are crucial for understanding quantum correlations46,47,
remains largely unexplored. Instead of addressing the quantum jump effects
in dissipative quantum systems18–20, the bosonic chains withmode-hopping
and squeezing interactions48–55 provide an efficient route to construct non-
Hermitian dynamics without dissipation in Hermitian quantum systems.
With advances in optomechanics56–60 and mechanical systems61–64, the
implementation of the desired bosonic chains offers a timely opportunity to
exploremultimodequantumcorrelations in thenon-Hermitian framework.
This leads to a fundamental question: Can non-Hermitian physics, espe-
cially EPs, help us uncover deeper insights into multimode quantum cor-
relations in an N-mode bosonic network?

In this work, we explore the connection between non-Hermiticity and
entanglement in bosonic chains with mode-hopping and squeezing inter-
actions. Using the BdG framework to describe the equations of motion, we
identify the conditions for second-order and higher-order EPs and analyze
their effects on quantum entanglement dynamics. Importantly, we find that
EPs divide the parameter space into three distinct regions, characterized by
purely imaginary, purely real, and mixed eigenvalue spectra, along with
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entanglement exhibiting exponential, oscillatory, or hybrid behaviors.
Furthermore, we demonstrate that higher-order EPs can significantly
enhance the degree of multimode entanglement when parameter are opti-
mally tuned. These results deepen our understanding of the connections
between non-Hermitian spectral properties and entanglement dynamics in
bosonic systems, offering a practical foundation for utilizing EPs to control
quantum correlations in complex dynamical processes.

Results
Our model
We consider a network ofN bosonicmodes with nearest-neighbor hopping
and squeezing terms, as illustrated in Fig. 1a. The Hamiltonian takes the
form (ℏ = 1)

bH ¼
XN
j¼1

η

2
ba2j þXN�1

j¼1

ðgbayj bajþ1 þ Jbayj bayjþ1Þ þ h:c:; ð1Þ

wherebaj andbayj denote themode annihilation and creation operators.Here,
g (gj = g), J (Jj = J), and η (ηj = η) represent the uniform beam-splitter (BS),
two-mode squeezing (TMS), and single-mode squeezing (SMS) rates,
respectively. The presence of the squeezing terms (either TMS or SMS)
significantly changes the system’s nonequilibrium behaviors. In addition to
modifying the dynamics, leading to non-reciprocal and non-Hermitian
behavior44,58–60, the squeezing terms are also well-known for generating
entanglement. This raises the question:What is the connection between the
non-Hermiticity of the dynamic matrix and entanglement?

To address it, we consider the dynamic matrix M describing the
nonequilibrium behavior of the system through the Heisenberg equation of
motion i(d/dt)Φ(t) = MΦ(t). Using the vector Φ ¼ ½a; ay�T with
a ¼ ½ba1;ba2; . . . ;baN �T , the dynamic matrix M takes the form of a bosonic

BdG matrix

Mðg; η; JÞ ¼ AðgÞ Bðη; JÞ
�B�ðη; JÞ �A�ðgÞ

� �
; ð2Þ

where AðgÞ and Bðη; JÞ are N × N parameter matrices (see detailed
expressions in Supplementary Note 1). Crucially, the presence of the
squeezing terms ensures Bðη; JÞ≠0, which induces non-Hermitian
dynamics without dissipation even though the Hamiltonian itself remains
Hermitian1,58,59. This approach fundamentally differs from both the
construction of effective non-Hermitian Hamiltonians17,18 and the use of
the Liouvillian superoperator formalism19,20, as it generates effective
dynamical non-Hermiticity through quantum coherence and parametric
driving under BdG framework.

By transforming the non-Hermitian matrixM into its Jordan normal
form, the structure of EPs in the dynamical spectrum can be identified
through its block structure (see details in Supplementary Note 2). For the
minimal system size N = 2, the eigenvalues of the conventional bosonic

Kitaev chain (BKC) with nearest-neighbor hopping and paring interaction

(g, J≠ 0 and η= 0) are λ1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � J2

p
and λ3,4 =− λ1,2. These eigenvalues

reveal two degenerate second-order EPs (2-fold EP2s) at g = g0 = J, dividing
the spectrum into two distinct regions: purely imaginary eigenvalues for g <
g0 and purely real eigenvalues for g > g0. This degeneracy of 2-fold EP2s can
be broken by adding the SMS term. As shown in Fig. 1b, c, the 2-fold EP2s
are split into two separate EP2s at g ¼ g�0 ¼ jJ � ηj and g ¼ gþ0 ¼ jJ þ ηj,
respectively. This splitting creates three distinct regions: (I) a purely ima-
ginary region (g < g�0 ), (II) a purely real region (g > gþ0 ), and (III) an
intermediate region (g�0 < g < gþ0 ), where the eigenvalues are mixed, with
two being real and the other two being imaginary [Fig. 2a, b].

Fig. 1 | Schematic ofN-mode bosonic chain and the dynamical spectrum divided
by EPs. a Schematic of an N-mode bosonic chain with nearest-neighbor mode-
hopping and squeezing terms. The system is represented graphically using the BdG
formalism, which includes BS (g), TMS (J), and SMS (η) interactions (Supplemen-
tary Note 1). b, c Illustration of the dynamical spectrum (M) change affected by the
EPs. For a system with only BS and TMS terms, the spectrum is divided into two
regions by X-fold EP2s appearing at g = g0. In contrast, the introduction of the SMS
term splits the X-fold EP2s into X-unfold EP2s located in the region of g�0 ≤ g ≤ gþ0 ,
corresponding to three different regions of the spectrum. Here X =N for evenN and
X = N − 1 for odd N.

Fig. 2 | Exceptional points and entanglement dynamics for the two-mode system.
The real part (a) and imaginarypart (b) of four eigenvalues ofM versus g/Jwithη/J=0.2.
The spectrum is divided into three regions by two EP2s at g�0 =J ¼ 0:8 and gþ0 =J ¼ 1:2.
c The time evolution of ν− for g/J = 0.79 (blue), g/J = 1.19 (orange) and g/J = 1.59 (red),
showing three distinct types of the entanglement dynamics, i.e., exponential behavior in
region I (blue), oscillatory behavior in region II (red) and mixed behavior in region III
(orange). d The long time evolution of ν−, to show more difference between region II
(red) and III (orange).Other parameters are the same as (c). eThe values of ν− versus g/J
and t/Jwith η/J = 0.2. The representative parameters (g/J = 0.79 and g/J = 1.19) near the
EP2s in (c) are chosen to illustrate the contrasting entanglement dynamics across these
regions, while g/J = 1.59 is just chosen to ensure a consistent parametric spacing.
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Extending to the multimode BKC with N being even, N-fold EP2s are
observed at g= g0, separating the purely imaginary region (I, g< g0) from the
purely real region (II, g > g0). The addition of SMS term breaks the
degeneracy at g = g0, splitting the N-fold EP2s into N-unfold EP2s. For
example, in the case of N = 4, four non-degenerate EP2s can be found,
satisfying g�0 ¼ g1 < g2 < g3 < g4 ¼ gþ0 . The spectrum in this case exhibits
three regions: (I) the purely imaginary region (g < g�0 ), (II) the purely real
region (g > gþ0 ), and (III) an intermediate region (g�0 < g < gþ0 ), where
eigenvaluesmix real and imaginary parts. For systemswithN being odd, (N
− 1)-fold EP2s are found. Unlike the case with even N, odd-number-mode
chains do not feature a purely real spectrumafter adding SMS term. Instead,
it contains imaginary eigenvalues in all regions, resulting in scalable
entanglement over time (see details in Supplementary Note 2).

Nonequilibrium entanglement dynamics divided by EPs
Multimode systems can present complex entanglement structures, whose
characterization poses significant challenges. We focus here on bipartite
entanglement, namely entanglement between two partitions of the system,
such as between one mode and the rest of the system, which we denote as
(1∣N − 1). The entanglement is characterized by the covariance matrix
(CM), which describes second-order moments and serves as a common
criterionof bipartite entanglement forGaussian systems46,47. TheCM σof an
N-mode state bρ is expressed as a 2N × 2N real symmetric matrix with

elements σ ij ¼ hbβibβj þ bβjbβii � 2hbβiihbβji;whereβ ¼ ðbX1; bP1; . . . ; bXN ; bPN Þ
>
.

The operators bXi ¼ ðbaþ bayÞ= ffiffiffi
2

p
and bPi ¼ �iðba� bayÞ= ffiffiffi

2
p

represent the
amplitude and phase quadratures of the ith mode, respectively. Quantifi-
cation of bipartite entanglement can be achieved through the minimal
symplectic eigenvalue, denoted as ν−, of the CM after performing a partial
transpose. Specifically, ν− < 1 signifies the presence of entanglement, with
smaller values of ν− indicating stronger entanglement. This allows us to
track the time evolution of ν−(t) in different parameter regions.

For the two-mode model without SMS interaction,

ν�ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðtÞ2 � deteσðtÞqr

; ð3Þ

where ξðtÞ ¼ ðg2 � J2 cosð4ctÞÞ=c2; c ¼ λ1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � J2

p
and eσðtÞ is the

partial transposed CM (PCM), as can be seen in Methods. The time evo-
lution of the parameter ν− shows different behaviors in the region of purely
imaginary eigenvalues (g/J < 1) and purely real eigenvalues (g/J > 1), cor-
responding to a change from exponentially decaying to oscillatory. When
adding SMS interaction, the entanglement dynamicsbecomemore complex
while maintaining close connections to the spectral bifurcations. In the
purely imaginary region (region I) as shown in Fig. 2a, b, the entanglement
witness ν− exhibits an exponential decay, indicating amonotonic increase in
entanglement over time [blue line in Fig. 2c]. In contrast, in the purely real
region (region II), entanglement exhibits oscillatory behavior over time [red
line in Fig. 2c, d], markedly different from the behavior in region I. In the
intermediate region (region III), where the eigenvalues are a mixture of real
and imaginary parts, the entanglement dynamics combine exponential-like
and oscillatory behaviors [orange line in Fig. 2c, d]. We classify these
dynamics into three distinct types: type-I, type-II, and type-III [Fig. 2e],
corresponding to regions I, II, and III, respectively. Each type exhibits
unique nonequilibrium behaviors in both the time and frequency domains
(see details in Supplementary Note 3). Extending the analysis to a
multimode chain and considering the translation invariance of the bulk
modes, a similar transition in bipartite entanglement dynamics induced by
EP2s can be observed. These entanglement transitions align well with the
spectral bifurcation points, as detailed in Supplementary Note 3.

Enhanced entanglement by higher-order EPs
Beyond second-order EPs, we demonstrate that N-mode chains have the
potential to exhibit higher-order EPs, which can induce stronger entan-
glement compared to the case of second-order EPs. In previous work,

higher-order EPs can be generated by the evolution matrices of system
operator higher-order moments20. Here, we use an alternative method to
achieve higher-order EPs of bosonic BdG matrix by introducing a non-
integer-π hopping phase, efficiently constructing a dynamical matrix with a
higher-dimensional Jordan block (see details in Supplementary Note 2).
Considering an N-mode BKC, 2-fold highest-order EPs (EPNs) emerge in
the dynamical spectrum when the phase ϕ of the BS terms satisfies ϕ ≠mπ
(m 2 Z) with g/J=1 (For g/J≠ 1, the system is not operated at EP regardless
of the phase ϕ. See details in Supplementary Note 2). Conversely, X-fold
EP2s arise at ϕ = mπ as discussed before. Under the same parameter con-
dition, we observe that the degree of multimode entanglement is sig-
nificantly higher when the system operates at EPNs compared to EP2s. As
illustrated in Fig. 3a, the (1∣N-1)-bipartite entanglement degree increases to
itsmaximum as the hopping phase varies from 0 to π/2. The corresponding
ν−(ϕ, t) in the N-mode system is expressed as

ν�ðϕ; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξN ðϕ; tÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2N ðϕ; tÞ � 1

qr
; ð4Þ

with ξN ðϕ; tÞ ¼ 1þPN�1
j¼1 cjJ

2jt2jsin2ðj�1ÞðϕÞ, where the coefficient
sequence {cj} remains consistent across different N (see details in Supple-
mentary Note 3). Obviously, a non-integer-π phase induces higher-order
terms in ξN leading to enhanced entanglement and thereby directly
demonstrating the connection between the order of EPs and entanglement
dynamics. Besides, We can find that � logðν�Þ increases monotonically
with the phase distance from ϕ = 0 to π/2.

Moreover, the degree of multimode entanglement in the highest-
order EPs accumulates with increasing time, as shown in Fig. 3b. The
improvement of the optimizedmultimode entanglement (themaximum
atϕ= π/2) induced by EPNs for theN-mode BKC can be quantified by the
ratio RðtÞ ¼ log½ν�ðπ=2; tÞ�= log½ν�ð0; tÞ�, which exhibits exponential
growth with the order of EPs [see Fig. 3b inset]. As N increases, we find
that multimode entanglement induced by the highest-order EPs can
reach up to ~ 2.5 times that of the EP2s case at the fixed time Jt = 3.5. The
saturation feature observed here is caused by the coefficients cj which
decrease by orders of magnitude as j increases. More specifically,
although the highest power (Jt)2(N−1) grows rapidly with N, its con-
tribution is suppressed by the small prefactor cj (See details in Supple-
mentary Note 3). So, as N increases, the additional gain from higher-
order terms diminished for a fixed Jt, leading to the observed saturation
of R.

Fig. 3 | Entanglement enhancement by higher-order EPs. a Logarithmic negativity
� log ν� ofN-mode BKCmodel as a function of hopping phase ϕ forN = 2 (blue),N
= 3 (light blue), N = 4 (yellow), N = 5 (orange), and N = 6 (red). Here, we set Jt = 3.5
and any point on the solid line corresponds to 2-fold EPNs except for ϕ = 0, π (X-fold
EP2s instead). b The time evolution of optimized entanglement enhancement ratio
RðtÞ ¼ log½ν�ðπ=2; tÞ�= log½ν�ð0; tÞ�with different lengths ofN= 3 (light blue),N=4
(yellow),N = 5 (orange) andN = 6 (red). The inset shows the ratio R as a function of
N (2 ~ 30) with fixed time, i.e., Jt = 3.5, which can be fitted as R ≈ − 4.11e−0.4633N +
2.493, revealing a trend of nearly 2.5 times enhancement by highest-order EPs in
thermodynamic limits. The other parameters are fixed at g/J = 1 and η = 0.
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Besides adding a non-integer-π hopping phase, tuning BS (TMS)
interaction strengths being unequal, i.e., gi≠ gj (Ji≠ Jj), can also be applied to
construct the highest-order EPs. Taking a 3-mode BKC as an example
[Fig. 4a], the condition for generating EPs requires g21 þ g22 ¼ J21 þ J22 (For
g21 þ g22≠J

2
1 þ J22, the system is not operated at EPs. See details in Supple-

mentary Note 2). Unlike the emergence of third-order EPs induced by the
hopping phase, 2-fold third-order exceptional surfaces (ESs) can be
observed with zero hopping phases. The degenerate ESs divide the para-
meter space into two distinct regions: one where all eigenvalues are purely
imaginary (above the ESs) and anotherwhere they are purely real (below the
ESs). Additionally, the parameter space of the degenerate ESs includes a
boundary line (red line), corresponding to the case where g1 = J1 and g2 = J2.
This condition generates the second-order exceptional arcs (EAs)65.

Figure 4b illustrates the entanglement behavior under varying hopping
strengths [along the light blue cut inFig. 4a, J1 = J2 = J]. By calculating ν13j2� to
measure the bipartite entanglement between mode a2 and modes a1,3, the
degree of entanglement displays twodistinct behaviors, separated by theEPs
(white dashed line). When g21 þ g22 < 2J

2, an exponentially decaying trend
(type I) is observed, while oscillations (type II) occur for g21 þ g22 > 2J

2. This
behavior aligns with the entanglement dynamics governed by EPs in the
BKC with identical interaction strengths, as discussed earlier. Similar pat-
terns are observed for the other two bipartite entanglements, ν12j3� and ν23j1� ,
further indicating the presence of genuine tripartite entanglement. The
entanglement gain induced by the highest-order EPs can be quantified by

varying the interaction strengths along thewhite dashed line, as describedby

the equation: ν13j2� ðφ; tÞ ¼ ðξn�idðφ; tÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2n�idðφ; tÞ � 1

q
Þ
1=2

, with

ξn�idðφ; tÞ ¼ 32J4t4sin2φþ 16J2t2 þ 1: Here, the parameter φ ¼ π=4�
arctanðg2=g1Þ represents the angle betweenEP3s and the EP2s (see details in
SupplementaryNote 3). The degree of entanglement as a function ofφ and t
is shown in Fig. 4c, d, which exhibits the stronger entanglement induced by
higher-order EPs.

Discussion
Non-Hermitian physics has garnered considerable attention in recent years,
driving advancements in sensing and wave manipulation. As quantum
techniques develop, it has become feasible to simulate non-Hermitian
dynamics within quantum systems, attracting both theoretical and experi-
mental interest in how to harness quantum resources under non-Hermitian
conditions effectively. By constructing a non-Hermitian BdG framework to
understand multimode entanglement dynamics, our work provides a
foundational and distinct mechanism to utilize entanglement resources
efficiently. We present two examples to demonstrate its potential applica-
tions. In quantummetrology, for aparameter χ encoded in an initial state, the
metrological power of the corresponding final quantum state can be quan-
tified by its quantumFisher information (QFI)Qχ, which sets a boundon the
precision (Δχ)2 to estimate χ, i.e., (Δχ)2 ≥ 1/(νQχ) with ν being the number of
independent measurements. Thus, a larger QFI indicates greater metrolo-
gical power. We can find that the QFI Qχ in our three-mode BKC is sig-
nificantly enhanced in the parameter regimes where all nonzero eigenvalues
are purely imaginary, while it remains relatively low in the purely real
regimes. This demonstrates that distinct behaviors ofQFI on the two sides of
EP2s can be observed and the states in purely imaginary region can provide a
higher accuracy for parameter estimation. Another application is to detect
multimode entanglementundernoise. For afixedevolution time,we canfind
the entanglement in our three-mode BKC quickly vanishes as the thermal
noise increases in the purely real spectral region. In contrast, in the region
where all nonzero eigenvalues are purely imaginary, the entanglement only
diminishes slightly and remains detectable, revealing a more resilient para-
meter regime for implementing and observing multimode entanglement
under noise (see detailed calculations in Supplementary Note 4).

To discuss the possible implementation of our model, we note that the
rapid progress in quantum technologies—particularly in bosonic platforms
—offers promising avenues for realizing both mode-squeezing and mode-
exchange interactions. Optical and mechanical systems are especially well-
suited for this purpose, as their photonic andmechanical degrees of freedom
naturally support continuous-variable quantum information processing
and bosonic quantum simulations. For instance, integrated optical chips
have recently emerged as powerful platforms capable of implementing
frequency-mode exchange and pair-squeezing interactions among quan-
tum modes66,67. In optomechanics58–60, exchange (squeezing) couplings can
be engineered by modulating the intensity of the drive laser using multiple
harmonic tones with frequencies that approximate the frequency differ-
ences (sums) of mechanical modes. Moreover, two- and three-mode hop-
ping and single-mode squeezing interactions were demonstrated in a
gigahertz-frequency multimode mechanical resonator coupled to a super-
conducting qubit62,63. By controlling the qubit’s driving frequency, these
exchange and squeezing couplings can also be extended to a large-scale
multimode setting. Additionally, superconducting quantum circuits also
offer a natural environment for realizing hopping and pairing terms in the
synthetic dimensions of a multimode superconducting parametric cavity51.

In summary, our work studies the entanglement behavior driven by
EPs inmultimode bosonicmodels. Bymapping theHeisenberg equations to
the non-Hermitian BdG framework, we uncover a variety of EPs, from
second-order to highest-order, separating distinct spectral regimes char-
acterized by purely imaginary, purely real, or mixed eigenvalue spectra.
These EPs directly determine nonequilibrium entanglement transitions,
giving rise to exponential, oscillatory, or hybrid entanglement dynamics.
Remarkably, by comparing to the multimode entanglement achievable in

Fig. 4 | Exceptional points and entanglement dynamics in the nonuniform BKC.
a Schematic of a three-mode system and the corresponding conditions for EPs in
parameter space. The light red surface represents the 2-fold third-order ESs, where
each point corresponds to 2-fold EP3s, except for the EAs (red line) consisting of
2-fold EP2s. The parameter space is divided into two regions: eigenvalues are purely
imaginary above the ESs, while they are purely real below the ESs, with the exception
of two eigenvalues always being 0. The light blue cut at J1/J2 = 1 is shown as a visual
guide for the data presented in (b). b The entanglement witness ν13j2� at Jt = 5 versus
interaction strengths, along the blue cut in (a). In region I, entanglement evolves
exponentially, while in region II, it oscillates. The white dashed line, marking the
intersection of the light red surface and the light blue plane, indicates the positions of
EPs, with φ representing the angle between EP3s and EP2s. c Entanglement witness
� logðν13j2� Þ as a function of φ along the white dashed line in (b). The degree of
entanglement increases as φ moves further from EP2s. d Time evolution of
� logðν13j2� Þ at φ = 0 (blue line), φ = π/8 (orange line), and φ = π/4 (red line), with
other parameters being the same as in (c).

https://doi.org/10.1038/s41534-025-01158-y Article

npj Quantum Information |           (2026) 12:14 4

www.nature.com/npjqi


the EP2s case, we demonstrate that the highest-order EPs, obtained through
non-integer-π hopping phases or nonuniform interaction strengths, can be
designed to enhance the entanglementdegreewhenoperatedoptimally.Our
findings provide new insights into the relationship between non-Hermitian
features and quantum entanglement, with the potential applications for
further engineering quantum correlations as well as enhancing sensitivity in
photonic66,67, optomechanical58–60, and mechanical platforms61–64.

Looking forward, several intriguing questions remain open. For
example, (i) while we provide a connection between second-order quad-
rature correlations (covariance matrix) and the dynamical matrix, it is
unclear whether a deeper connection can be established between the
dynamical matrix and higher-order quadrature correlations. This would be
valuable, as it may offer a path to better understand multimode non-
Gaussian entanglement dynamics68 (i.e., entanglement beyond second-
order quadrature correlations), which is considered as a necessary resource
for quantum computation and metrology69,70. (ii) The introduction of the
squeezing terms may also induce rich topological phases48,51,60. Given the
strong connection between the topological phases and the dynamics of first-
ordermoments40–45, the investigations of the connection with the CMcould
provide valuable insights into a deeper understanding of quantum corre-
lations in a topological framework. (iii) It would also be interesting to extend
dissipation-free bosonic chains to Markovian17–20 and non-Markovian71

regimes and investigate the connection between the non-Hermiticity and
quantum correlations in open quantum systems.

Methods
The positive partial transpose criterion
Here, we introduce the entanglement criterion we used to describe the
multimode entanglement in our model. For Gaussian systems, the positive
partial transpose (PPT) criterion is widely applied to measure the bipartite
entanglement46,47. Specifically, considering a nA × mB bipartite Gaussian
state ρAB, we can obtain its CM σAB with matrix elements

σ ij ¼ hbβibβj þ bβjbβii � 2hbβiihbβji, where we define vector β ¼ ðbXA
1 ; bPA

1 ; . . . ;bXA
n ; bPA

n ; bXB
1 ; bPB

1 ; . . . ; bXB
m; bPB

mÞ. As a bona fide CM, it should satisfy

σAB þ iΩ≥ 0; ð5Þ

or equivalently

νABi ≥ 1 ð8i ¼ 1; . . . ; nA þmBÞ; ð6Þ

where νABi is the symplectic eigenvalue of σAB andΩ is the symplectic form

Ω ¼ �N
k¼1

ω; ω ¼ 0 1

�1 0

� �
: ð7Þ

Correspondingly, the PCM eσAB ¼ θABσABθAB with

θAB ¼ diag 1; 1; . . . ; 1; 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
2nA

; 1;�1; . . . ; 1;�1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
2mB

8><>:
9>=>;; ð8Þ

which means mapping bPB to �bPB. PPT criterion indicates that if the new
matrix eσAB isn’t a bona fide CM, i:e

eσAB þ iΩ< 0; ð9Þ
or equivalently

eνABi < 1 ð9i 2 f1; . . . ; nA þmBgÞ; ð10Þ

the subsystem SA composed of nAmodes is entangledwith the subsystem SB
composed of nB modes. To be clear, the PPT criterion is the sufficient and
necessary condition for all (nA×1)-modeGaussian states but not for generic

cases. However, it still can be used to measure the entanglement in nA ×mB

bipartite Gaussian state once eσAB isn’t a bona fide CM. Moreover, we can
used the logarithmic negativity EN to quantify the violation of the PPT
criterion,

i:e:;EN ¼
�P

k
logeνk; for k : eνk < 1

0; if eνi ≥ 18i:
(

ð11Þ

Namely, the logarithmic negativity EN is a good choice to measure
entanglement. By the way, there is a lemma that at most Nmin �
minfnA;mBg symplectic eigenvalues eνk of eσAB can violate the PPT
inequality for a nA × mB bipartite Gaussian state. Especially, for all
(nA × 1)-mode Gaussian states, we can directly use ν� � minfeνig to
measure entanglement as we apply to measure the entanglement
between one mode and the rest of the system, denoted as (1∣N − 1), in
the main text. When ν− < 1, the system has entanglement. Otherwise,
it’s separable. Furthermore, the closer ν− to zero, the greater the
entanglement.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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