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Finding the minimal relative entropy of two quantum states under semidefinite constraints is a pivotal
problem located at the mathematical core of various applications in quantum information theory. An
efficient method for providing provable upper and lower bounds is the central result of this work. Our
primordial motivation stems from the essential task of estimating secret key rates for QKD from the
measurement statistics of a real device. Further applications include the computation of channel
capacities, the estimation of entanglement measures and many more. We build on a recently introduced
integral representation of quantum relative entropy by [Frenkel, Quantum 7, 1102 (2023)] and provide
reliable bounds as a sequence of semidefinite programs (SDPs). Our approach ensures provable
sublinear convergence in the discretization, while also maintaining resource efficiency in terms of SDP
matrix dimensions. Additionally, we can provide gap estimates to the optimum at each iteration stage.

Within the last four decades, the field of quantum cryptography has
undertaken a massive evolution. Originating from theoretical considera-
tions by Bennet and Brassard in 1984' we are now in a world where tech-
nologies like QKD systems and Quantum random number generators are
on the edge of being a marked ready reality. Moreover, there is an ongoing
flow (see e.g. and references therein) of demonstrator setups and proof-of-
principle experiments within the academic realm that bears a cornucopia of
cryptographic quantum technologies that may reach a next stage in a not too
far future.

Despite these gigantic leaps on the technological side, we have to
constitute that the theoretical security analysis of quantum cryptographic
systems is still in a process of catching up with these developments. To the
best of our knowledge, there are yet no commercial devices with a fully
comprehensive, openly accessible, and by the community verified security
proof. Nevertheless, theory research has taken the essential steps in pro-
viding the building blocks for a framework that allows to do this*. Most
notably, the development of the entropy accumulation theorem> and
comparable techniques’, allow us to deduce reliable guarantees on an &-
secure extractable finite key in the context of general quantum attacks
requiring only bounds on an asymptotic quantity such as the conditional
von Neumann entropy as input.

The pivotal problem, and the input to this framework, is to find a good
lower bound on the securely extractable randomness that a cryptographic
device offers in the presence of a fully quantum attacker’. Mathematically,
this quantity is expressed by the conditional von Neumann entropy H(X|E).
Using Claude Shannon’s intuitive description, it can be understood as the
uncertainty an attacker E has about the outcome of a measurement X, which
is performed by the user of a device. There are several existing numerical

techniques for estimating this quantity given a set of measurement data
provided by a device’". We will add to this collection, by providing a
practical and resource efficient method for this problem, which interpolates
between an executable tool and theoretical bounds on the relative entropy by
convex interpolation.

At the core of our work stands a recently described'®, and pleasingly
elegant, integral representation of the quantum (Umegaki) relative entropy'’
(see also™®) that we employ in order to formulate the problem of reliably
bounding H(X|E) as an instance of semidefinite programs (SDP) by dis-
cretizing integrals. Our method comes with a provable sublinear con-
vergence guarantee in the discretization, whilst staying resource efficient
with the matrix dimension of the underlying SDPs. We furthermore can
provide an estimate for the gap to the optimum for any discretization stage.

To this end, let H =~ C* be a finite-dimensional Hilbert space. Write
B(H) for the (bounded) linear operators on H and S(H) := {w € B(H) :
w20, trffw] = 1} for the set of quantum states (density operators). Let
h; : B(H)x B(H) — R be affine maps, for i = 1, ..., n. The central
mathematical problem considered here—more general than estimating a
conditional entropy H(X]E) and not limited to QKD—is:

inf D(p || o)
s.t.hi(p,0)20,i=1,...,n,
puos<ps<io,
p,0 € S(H),

O

where the (Umegaki) quantum relative entropy is D(p || 0) :=
tr [p(log p — log o) ]. The constraint p < A o (with finite 1) enforces supp(p)
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C supp(0), ensuring the relative entropy to be finite; if, in addition, 4 > 0,
then supp(p) = supp(0).

Despite being convex, this optimisation problem is highly non-linear
and contains the analytically benign, but numerically problematic matrix
logarithm. Thus, for general instances, (1) can not be solved directly by
existing standard methods. The construction of a converging sequence of
reliable lower bounds on the value ¢ in (1) is the central technical con-
tribution of this work.

Our focus task of estimating key-rates can be cast as an instance of
this (see the last section of IV and Supplementary Note 7). Here, lower
bounds on (1) directly translate into lower bounds on the key-rate, which
is exactly the direction of an estimate needed for a reliable security proof.
There is however along list of further problems that can be formulated as
an instance of (1). It includes for example the optimisation over all types
of entropies which are expressible as relative entropies. For example we
provide the calculation of the entanglement-assisted classical capacity of
a quantum channel in the Supplementary Note 8 where one has to
optimise in fact the mutual information of a bipartite system. The
optimization problem (1) naturally generalizes from relative entropies to
general f-divergences. With minimal adjustments, our method can also
tackle this class. Despite not being the focus of this work, as a detailed
numerical analysis is left for future work, we already formulated the
relevant technical parts of the Methods section IV from this more
general perspective.

Results

In the following, we denote by B(H) the set of (bounded) linear operators on
a finite-dimensional Hilbert space H and S(7) the set of quantum states on
'H, i.e. all positive operators with unit trace. The trace on B(H) is denoted as
tr[-]. Moreover, any self adjoint operator A € B(H), can be uniquely
decomposed as a difference A = A" — A™ of Hilbert-Schmidt orthogonal
positive operators A” and A™. Let tr™[A] := tr[A™] denote the trace of the
positive part of A (similarly tr~[A] := trffA™] = tr[—A]). Note that this is
an SDP given by

trt[A] = sup tr{PA]

2
s.t.0<P<I. @
In the following we make use of the representation
A ds
D(p || 0):/ ?tﬁ[as—p]—l-log)t—i—l—)t 3)
u

which was firstly described by Jencova in ref. 15 and holds for pairs of
quantum states that fulfill yo < p < Ao with constants A > y > 0. We remark
that we always use tr[-] in comparison to tr~[-] in'". The reason for that is
the SDP characterization in (2), which can be written without a sign. As
outlined in the following, and with more detail in the methods section, the
representation (3) can be used to reformulate the non-linear function
D(p||o) as solution to a semidefinite minimisation. The leading idea of our
method is then to incorporate this into (1) in order to obtain an SDP
formulation of the whole problem. Along this path we make use of a
discretisation of the integral in (3). This discretisation introduces a set of free
variational parameters into our method, and a suboptimal choice of these
will produce a gap. This gap can however be quantified and the discretisation
parameters can be adjusted iteratively leading to an increasing sequence of
estimates on (1).

Discretisation and SDP formulation
For an interval (a, b) with y < a < b < A we have (see the discussion around
Lemma 1) the basic estimate

b
/ ?tﬁ[as — pl=tr[o(b — a) + plog(a/b)]. 4)

a

Based on (4), we discretize the integral (3) on a grid of points t = (ti, ..., t,),
i.e. intervals (#, tx+1), and obtain an estimate on the relative entropy from
below. We furthermore use that the evaluation of the functional tr*[-] can be
formulated as an SDP, which in combination leads us to the following
proposition:

Proposition 1. For any grid t, with y<f;< -+ < -+ t, = A, the relative
entropy is bounded from below by the semidefinite optimisation

r—1
D(p || 0)=inf > trfy ] +logh+1—-2
k=1

s-t 2 op + Byo, ©)
k=1,...,r—1
w20,
with coefficients
2
o = log . and B, =t — & (6)
k+1

Proof. Supplementary Note 1. []

Approximation of 1

We are now in a position to state the main mechanism of our method. For
this purpose we fix y,A € R, what guarantees that if the optimization
problem (1) is feasible, it has already finite value, because the value of A is a
bound on the D, -relative entropy of the set of feasible states. In many
applications this is known beforehand, e.g. in the key rate estimation it is
given by Hayashi’s pinching inequality. Defining then a grid t on [y, A] and
combining (5) with (1) yields the SDP

r—1
q(t) :=inf Y tr{p ] +logh+1— 1
k=1

s.t.hip,0)20,i=1,...,n
wzup+po k=1,...,r—1
uo<p<io
o,p € S(H), w20,

@)

which is a lower bound on ¢ from (1). Moreover, optimising over all grids t
gives the tight bound

c= sup ¢(t).
tCluA] ! ®)

This reduces the task of approximating c to the quest for a good grid t. As
every grid gives a valid lower bound by Proposition 1, we are now freed to
employ heuristic methods and still obtain rigorous statements, for example
in a security proof.

Upper bounds and a gap estimate

In order to construct an algorithm that terminates in finite time, it is helpful
to give an estimate on the accuracy of an approximation. Similar to Pro-
position 1, we can also construct semidefinite upper bounds for ¢ (see
Supplementary Note 3), now involving coefficients y,, 8, € R as described
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in Supplementary Note 3. Similarly to (7) we have

c,(t) :=1inf Y tr[v,]+logA+1—1
k=1

s.t.hip,0)20i=1,...,n
eZpp+ oo k=1,...,r. ©)
uo<p<io

o,p € S(H), v.20.

Concluding (1), (9) and (7), we get the chain of inequalities ¢;(t) < c < ¢, (t)
and a gap estimator

A = ¢,(t) — ¢ (0. (10)

Simple methods with convergence guarantee

As our methods for establishing the lower bound (7) and the upper bound
(9) rely on estimates of an integral, convergence can be guaranteed if we are
able to provide uniform bounds on the integrand for all pairs of feasible
states p, 0 € S(H). Again, we observe that the bound A on D, (p || 0) is
essential; without it, states with orthogonal supports would immediately
preclude such uniformity and this is precisely why the integral repre-
sentation from " is particularly useful: it yields a compact integration interval
[, A], provided we can bound the D, -relative entropy for an optimal pair
of states p* and ¢” solving (1).

The final missing ingredients, beyond compactness, to guarantee
uniform convergence in our setting are provided in Lemma 1, where we
show that g(s) := trt[os — p] is convex, monotonically increasing, and
Lipschitz continuous. With these tools in place, we prove in Proposition 3
that the upper bounds converge uniformly, since they are nothing more
than a convex interpolation of the function g(s).

The outcome of this discussion of tools is summarized in the following
corollary.

Corollary 1. Let p, 0 € S(H) with yo < p < Ao and p > 0. Choose the grid
recursively by

H, k=1,
= (11)
te, + VAL, k=2
Then the total approximation error obeys
c,(t) — c<g, (12)
and the number of grid points satisfies the explicit bound
A
r= O< ;) . (13)

Proof. Using Proposition 3 with f(s) = 1/s yields convergence of the
interpolation: use fﬁ\/f”(s) ds = fﬂs‘l/zds =2(vA - VH), and since 1/s
is decreasing on [y, A], Ly_; = 1/t;_, yielding (11). Moreover, Corollary 3
yields that uniform convergence of the bounds is enough in order to prove
that the values of (9) converge to ¢ in (1). []

Actually choosing ¢ = 0 in Corollary 1 yields nothing special, because
then we can apply our method on the interval [, A] and get an error ¢ in the
approximation on the interval [0, ¢]. For details see Corollary 2. Addition-
ally, we provide in the section “Applications to QKD” an explicit explana-
tion how the grid construction works in practice.

Moreover, as discussed rigorously in Section IV, the lower bounds can
be interpreted as a specific type of optimal supporting lines (see Section IV
for a precise definition), i.e., tangents lying below g(s) with respect to an

integral norm determined by the weight function s— 1. Geometrically, this
can be visualized via a mirroring argument in Fig. 3. Consequently, the
estimate

c—qt)<e (14)
follows immediately from Corollary 1.

We can conclude this section with the result that in a numerical
algorithm the gap in (10) is in the magnitude of e. We conclude this section

with the result that the gap in (10) is on the order of ¢ if we choose O < \/%>

many grid points in the discretization.

Heuristic methods

Motivated by the observation that our approximation reduces to a linear
program when p and ¢ commute—and, in particular, trt[os — p] is then
piecewise linear, ie., a sum of affine segments combined via a pointwise
maximum—we conclude that in this case a finite set of grid points already
suffices for an exact result, due to the affine nature of our approximations.
Consequently, a heuristic should also allow for routines that drop points
from t in order to remain resource-efficient.

This is especially relevant for the inner approximation, i.e., the upper
bounds. In fact, one can delete all grid points except the one corresponding to
the current optimizer from the previous iteration, since the upper bound is a
continuous function of s. This yields a highly efficient heuristic for obtaining
good upper bounds, made possible by the fact that we approximate the curves
defined by tr*[os — p] from above using a convex, continuous function. In
comparison to the upper bounds, the lower bound (7) is not continuous. For
this reason it is impossible to delete grid points. Therefore it becomes even
more important to control the grid points wisely. An additional, but not
rigorous way of getting the sequence of values monotone is that we can
include a convex constraint such that the solver is enforced to stay monotone.
Of course this destroys the fact that we want provable upper or lower bounds.
But interestingly one can enforce monotony for a couple of rounds, then
using the resulting pair of optimal states as a warm start without this con-
straint. This method is efficient and leads to good results.

The left plot shows the sublinear convergence rate in the discretization
for a fixed state pair p and o with the method from Corollary 1 in dimension
4. To be concrete, we calculated the relative entropy by its definition and the
error between our approximation and this value for increasing number of
grid points resulting from the iterative formula in Corollary 1. In the middle
plot, we show a generic instance of (1) as discussed in (26). All numerical
examples are available in the GitHub repository. The right plot shows the
extractable randomness from (19) as a function of the parameter « for a state
defined in (20) and a pair of mutually unbiased bases for Alice and Bob in
various local dimensions up to 8, corresponding to a total dimension of 64.
The plot exhibits the expected behavior with respect to depolarizing noise,
parameterized by a € [0, 1].

Application to quantum key distribution
We compare the key rate protocol for entanglement based QKD for local
dimensions 2, 4 and 8 with the techniques from'?, our techniques and'*. The
first plot shows runtime estimates between all of the three methods and the
second plots shows the precision in logarithmic scale. The system is
equipped with a 13th Gen Intel” Core™ i3-1315U processor and 8 GB of
RAM. The method by ref. 12 was not executable for local dimension 4 and 8,
such that we replaced the values for 4 with values for local dimension 3.
The instances that initially motivate us to investigate (1) arise from the
task of estimating the extractable randomness for applications in quantum
cryptography. Consider a system consisting of three Hilbert spaces
Hape = Hs ® Hg @ Hp. In a basic entanglement-based QKD-setting
two parties, say, Alice and Bob, perform measurements XOA7 .. 7Xﬁ and
XB,...,X® on their shares of a tripartite quantum state ¥ ,p; € Hypg
provided by a third malicious party Eve. Following common conventions,
the outcomes of measurements X4 X5 will be used to generate a key, whereas
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the data from all other measurements is used to test properties of the state
Yapp and by this, bound the influence of Eve. For error correction, it is
assumed that Alice’s data, i.e., the outcomes of XOA, correspond to the correct
key, which means that Bob has to correct the data arising from the mea-
surement XZ. Furthermore, we will employ that each measurement X can
be modeled by a channel @f : S(Hg) = S(Rys) that maps states from a
quantum system Hy to a probability distribution ps, on a classical register
Rs. See also refs. 13,19 for more details on this model.

" Within the notation above, the securely extractable randomness of
Alice’s key measurement is given by the conditional entropy
H(XélE)(q)3®idE)[PAE] and depends on the reduced quantum state p,g of

the Alice-Eve system. Lower bounds on this quantity, which is up to now
only defined in an asymptotic scenario, are essential for reliably bounding
key rates in a full QKD setting involving multiple rounds. This accounts for
the asymptotic regime, in which the Devetak-Winter formula™ can be used,
as well as for finitely many rounds under collective attacks, where the AEP
can be used”, and general attacks where either EAT*® or de Finetti based
methods can be employed”***.

13,19,24

Using a technical result for calculating the entropy of a state pag
(see Supplementary Note 2), we can express the conditional von Neumann
entropy in terms of a relative entropy

H(X3|E)q>3[pw] = Dlpyg ®0A[PAB])~ (15)

Test data obtained from additional measurements X; naturally give
affine constraints on an unknown state p,p. The central problem of lower
bounding the extractable randomness can therefore be formulated as

inf D(p,g | ©5lpas))
5. 0.0 @ Dpypl = pag i = 1,1
Pag € S(H,4 ® Hy)
0<p,p SMDQ[PAB]

(16)

which is an instance of (1) to which we can apply our methodology. In order
to solve (16), we need to fix constants y and A such that an optimal mini-
mizer p,, € S(H, ® Hyp) satisfies

P‘(DQ (Pap) SPap< MDQ (Pap)- (17)
By Hayashi’s pinching inequality, the value of A can be chosen as the square
root of the overall dimension and is therefore known in advance. Without
loss of generality, the value of ¢ in (17) can be set to zero. In the numerical
examples in the repository, the function grid_function(c, epsi-
lon, mu, lamb) generates a sequence of grid points starting from the
lower bound y and ending at the upper bound A as defined in Corollary 1. At
each step, the next grid point is computed as

where f; denotes the current grid point. This process continues until the next
point would exceed A, at which stage the final grid value is set exactly to A.
The resulting sequence is returned as the vector grid.

With this in hand, we can formulate the following explicit optimization
program (with &, 8, € R computed as in (6)) for provable lower bounds
on (16):

r—1
inf 3 trfg ] +logA +1 -2
k=1

s 0.0 @ V[ppl = pagyii=1,....m,

ez app + B (o) k=1,...,r =1,
pas € S(H4 ® Hp), 4y 20.

(19)

To construct a probability distribution p,p; as test data in the following
examples, we start from a maximally entangled state Q,; € S(H, ® Hp)
and mix it with white noise, obtaining

Q@) =1 —-a)Qp+a ! (20)

7
As measurement channels, we employ projective measurements in two
mutually unbiased bases (see e.g.””). Solutions of (19) are shown in Fig. 1 the
right plot for local dimensions, i.e. dimensions of Alice respectively Bob’s
system between 2, 4, 8, which corresponds to 1, 2, and 3 qubits per party and
different values for « € [0, 1]. All results are achieved in seconds on a

personal computer. Moreover, we can state a similar corollary as Corollary 1
for the special case of QKD:

Corollary 2. Let p € S(H, ® Hg) and @} a projective measurement
channel with d, = dim H, many outcomes and choose ¢ > 0 fixed. Fur-
thermore, choose the grid recursively by

g, k=1,
t = 21
£ {tk,1+«/4stk71, k>2. (1)
Then the total approximation error for (19) obeys

c—¢(t) <2, (22)

and the number of grid points satisfies the explicit bound

d

r= (’)( f) ) (23)

b=t + [t—1€ , (18)  Proof. From Hayashi’s pinching inequality (17), it follows immediately that
¢ we may choose A = d4. Moreover, on the interval [¢, 1], we apply Corollary 1
Fig. 1 | Blue are the lower bounds, green the upper 10-2F e T 08 o 1.0 . ]
bounds and the straight is a regression certifying the P ] o N
complexity statement In the right figure we compare i 2 0.6 . & °
local dimensions 2 (light green), 4 (green), and 8 10-3 L gt 5 ° O.
i 5 £ = = °
(light blue). % E g:f oal 73 1] %, .. |
[ EL E ° ..
1074 ¢ | . B "o ey %
: g2 = es, ®0g%
r o o | ..‘o.:..‘
L o o | - o *2880000 |
L1 Lo 0 1 1 1 1 1
10* 102 20 40 0 0.5 1
grid points iterations alpha
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to obtain an approximation error ¢. Additionally, using the estimate

tr [©F(pap) s — pas] = . S‘;P . tr [P(®F(Pap) s — Pap)]

= sup (tr[P DG (ppp)]s

0<P<l (24)
—tr[P p,])
< sup [P D (p,p)]s
ospP<l
<s,
we can bound the contribution on the interval [0, €] as
& ds n n &
N tr [(DO (pap)s — pAB] <[ ds=e (25)
0 0

This shows that the additional error incurred by assuming y = 0 is at most €.
Combining these bounds yields (22). []

Further optimisation tasks that can be handled

As instances for the left and middle plots in Figure 1, we use a randomly
generated matrix M (available in the repository) as a witness and solve
problems of the form

c:=inf D(p || 0)
s.t.tr[pM] 2k,
trloM] <k,
po<p<io,
0.p € S(H),

(26)

for various values of x;, k,, 4,1 € R.

The left plot shows the sublinear convergence in the discretization
predicted by Corollary 1 in dimension 4. We plot the error corresponding to
the grid from (11) as a function of the number of grid points for a generic
instance. Furthermore, in the left plot of Fig. 1, we perform a regression with
the model function n+— - for a regression parameter c. The analysis shows
that c is close to the chosen A, as predicted by Corollary 1. This supports the
conclusion that we have obtained the correct asymptotic convergence
behavior.

Further instances of (1) are reported in Supplementary Note 7. Notable
examples include bounds on the relative entropy of entanglement,

min
0,3ESEP(A:B)

Dlpyp Il 9ap), (27)

where SEP(A: B) denotes the set of separable states and p4p is a possibly
entangled state, as well as the classical capacity of a quantum channel
(see also”).

The left picture shows that we can approximate a monotone and
convex function from below with linear functions. It furthermore shows the
corridor in which the divergence will be located. Furthermore, there is a
degree of freedom in choosing a tangential straight from below. A mirrored
straight ¢, which is a feasible lower bound yields the same convergence rate
for the lower bound. The worse case that could happen for approximation is
that the function has a kink as shown on the right picture. The right picture
shows an interval [t;, #;,1]. Then we see the error for the upper bound scales
with the volume of a blunt triangle.

Discussion

The general optimisation problem in (1) is a central task in (quantum)
information theory, as it encompasses all types of numerical estimates for
which the relative entropy is the underlying quantity. A well-known
example is given by (16), where the optimisation yields bounds on the
extractable randomness in a QKD experiment (or, similarly, in a random

number generation experiment). Recently, instances of (1) such as the
relative entropy of entanglement in (27) and various channel-related
quantities, including the classical capacity of a quantum channel, have also
attracted attention. But, as already noted, the problem (1) is a nonlinear yet
convex optimisation problem. Its difficulty stems from the fact that the
relative entropy is only lower semicontinuous and, for certain pairs of states
(p,0) € S(H)x S(H) with D, (p || 0) = 00, takes the value + oo. This
property complicates the use of generic convex optimisation solvers for
tackling (1).

Given the importance of (1), a variety of solutions have been developed
with different purposes and techniques. Broadly speaking, these approaches
can be classified into four categories according to their scope and the tools
they employ.

The first class of methods includes the approach of ’, which estimates
the relative entropy via the formula D(p || o) = tr[p(logp — log )] by
numerically computing the matrix logarithm. This method is highly flexible
but, for p, 0 € S(H) with dim H = d, it requires working with matrices of
size & x . The second class, aimed particularly at estimating (16), includes
the works'*"***. The most recent of these'’ achieves very high precision (see
Sec. 5, numerical testing, in ref. 10) for systems consisting of one qubit per
party (i.e., Alice’s and Bob’s systems), but is restricted to equality constraints
in (16). Inequality constraints are mentioned as an outlook for future work.
The third class is represented by the recent work'*, which introduces a solver
based on self-concordant barriers for specialized cones associated with the
quantum (relative) entropy. This framework enables the direct application
of interior-point methods to (1). Finally, in the fourth class,”” and our
present work use integral representations of the relative entropy.
Specifically,"” employs Kosaki’s formula”’, while we use Frenkel’s formula'®,
approximating the relative entropy via numerical quadrature for the
resulting integral representation.

With our technique, we propose, on the one hand, a concrete
numerical tool for solving (1), which we benchmark against state-of-the-art
instances in the QKD setting in Fig. 2, comparing with'* and". On the other
hand, we introduce a technical method to estimate the relative entropy
variationally in both directions, providing both upper and lower bounds. In
comparison to other approaches, our methods contrasts by its simplicity. An
implementation needs only some few line of code for implementing the SDP
(1) in a favored solver and some iteration for refining the grid. This naturally
provides a user with many directions for adapting refining and customizing
our method beyond the implementation provided in the supplement.
Furthermore, our SDP approximation can also be a starting point for an
analytical handling of the relative entropy optimization problem. In terms of
runtimes and resource demands our method, in its currently not highly
optimized implementation, lies in between the method'* and the recently
launched and highly specialized software package'*. However, we emphasize
that'* only addresses the case of the Umegaki relative entropy, whereas our
techniques yield variational approximations for all f-divergences. In parti-
cular, since most f-divergences likely do not admit a closed-form expression
analogous to the relative entropy with the matrix logarithm, our technique
is, in this regime, the only applicable one.

In the numerical benchmark, we observe that for small instances our
technique achieves precision comparable to", but is strictly outperformed
by the specialized solver' for relative entropy programming. In terms of
runtime, our method shows a clear improvement over'’, while still yielding
slower performance than'*. Beyond the numerical benchmark for (1), it is
also instructive to compare our technique with'” from a technical per-
spective, since both approaches rely on integral representations and thus
offer comparable flexibility. In particular, our method provides provable
upper and lower bounds for (1), whereas" yields only upper bounds. This
has the advantage that we can, for example, employ the dimension-efficient
formula (15) in the QKD setting, and we can quantify a gap as in (10). As
another concrete application, our the our discretization technique has
enabled Moreover, the flexibility of our technique has enabled the first
numerically applicable algorithm for obtaining provable bounds on the
relative entropy of channels — an open problem since the development of
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Fig. 2 | Our work is red, Araujo et al. blue and QICS orange.

resource theories for quantum channels®. Both applications in refs. 28 and
29 rely at their core on the discretization of Proposition 1. Although this is
just one instance of the techniques presented here, and in both cases it is
applied only to the Umegaki relative entropy in special scenarios, it shows
that the general idea of a discretized integral representation with rigorous
numerical analysis is very powerful.

Moreover, both techniques enable applications to device-independent
quantum key distribution, as reported in refs. 11 and 29, which is not
possible with'"*. In this regime” reports an efficiency advantage of our
technique. From the perspective of divergences and despite the coincidental
overlap in terms of the Umegaki relative entropy, our tools and those of '* are
complementary in a broad sense: Kosaki’s integral formula can be extended
to all operator monotone functions (see’”*™*"1), while our approach can be
generalized to all f-divergences as shown in Section IV.

Concretely regarding our technique, the fact that we need fixed
integral bounds 0 < y < A which on first view seems to be a disadvantage,

turns out to be the important ingredient for a rigorous numerical analysis
(i.e., theoretical error bounds). The existence of these values bounds the
problem to finite range and one can think about the lower respective upper
bounds as continuous functionals with values in a compact set. Therefore,
a rigorous numerical analysis becomes applicable. It is a beautiful obser-
vation that compactness of the image of the functionals is equivalent to
finite relative entropy. Since we are only interested in minimisation tasks
here, we get rid of numerical analysis artifacts with infinities directly and
naturally.

In contrast, controlling the number and places of supporting points is
in general a difficult game with no a priori best solution. Of course one has
to have in mind that practically the number of grid points must not be too
big, because it increases the number of variables in the SDP solver directly.
This calls for a clever heuristic, especially with regard to even larger
dimensions. With the proofs of Proposition 3 we give a clear mathema-
tical, and therefore rigorous, framework which one can use in constructing
heuristics. In the error analysis of Proposition 3 we observe that it highly
depends on f and its values on the grid intervals. For the function
s—>slogs the second derivative is given by s 1 and thus the error of our
tools decrease as s becomes larger. In particular, if s > 1 the weight function
s— 1 in the integration is a damping factor. Thus, good heuristics for the
Umegaki relative entropy should have a more refined grid for s € [y, 1] and
a coarser grid in [1, A]. Moreover, one could ask for an optimal quadrature
rule regarding this specific type of integrands s—f"(s)tr*[as — p] for f
twice continuously-differentiable.

Another key could be to design a method that removes grid points as
well. Many scenarios are possible here, which we leave open for future
adjustment. In addition to heuristics, we would like to mention that our
approach can also be carried out directly with the original integral
representation of Frenkel'’. Since the singularities at 0 and 1 play a decisive
role there, it becomes much more difficult to extract provable scenarios.
However, we did numerical experiments in this direction with success, but
apparently without numerical analysis, i.e. theoretical error-
dependencies.

We conclude with an outlook for future research. In terms of grid
refinement, we believe that further improvements are possible, and that
more advanced numerical quadrature techniques for the integration step in
Proposition 3 and Corollary 1 may be applicable. From an information-
theoretic perspective, a recent series of results has clarified how the family of
a-f-divergences defined in ref. 16 relates to the well-known a-relative
entropies—namely, the Petz and sandwiched relative entropies (see’’' for
inequalities and'*™™ ¥ for a regularization result). These findings suggest
that our numerical techniques could be applied to estimate well-known a-
entropies. Developing this connection and applying it to finite-resource
tasks in information theory would be an interesting direction for
future work.

Methods
As our tools easily generalize to f-divergences, we provide here the fully
detailed analysis for general f-divergences. A f-divergence is defined as

Dy(p |l 0) := [ (9t [p — so]

+s73f"(sHrt[o — sp] ds, (28)

where f : (0,00) — R is assumed to be twice continuously differentiable
with f(1) = 0 (see, e.g,"*"* 2*). From'*"*- >4 it then follows that f-diver-
gences are jointly convex in p,o € S(H), satisfy the data-processing
inequality (DPI) for positive trace-nonincreasing linear maps, and are
faithful. As usual, we define for states p, 0 € S(H)
D,..(p || 0) :=inf{A>0]p<éo} (29)
where we use the convention inf{} = co. We start with a first small result,

generalizing'> ™ ! from the Umegaki relative entropy to general f-
divergences.
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Proposition 2. For states p,0 € S(H) define y := e Pm(lP) and
A := ePmuPl9) Then we have

Dy(p |l 0) = fif”(s)tﬁ[sa — plds

, (30)
)+ A=V Q).
Proof. Start from the definition (28)
D(p | o) = [T (trtlp — yol 61
+y7 (7Dt [o — ypldy,
With the change of variables s = y~" in the second term,
Di(p || 0) = [*f"(s)trT[p — so] ds
(Il @) = [2F (O [p — sol )

+féf"(s)tr* [p — solds.

Ifuc<p <o thentrt[p —so] = 0fors=Aand tr [p — so] = 0 fors <y,
hence

1 9
Dy = / f ()™ [p — salds + / F ()t [p — so] ds. (33)
u 1

Using tr[p — so] = tr™[p — so] + (1 — s) gives

A A
Dy = /Hf”(s)tr’[p — so]ds + /1(1 —8)f"(s) ds. (34)
Integration by parts yields
Nla=9f'©ds = [f)+1 -9 )] 35

f)+0 =D W,

which proves (30). ]

Proposition 2 shows that all tools needed for the relative entropy
program (1) and the special case of f(s) = slogs can be discussed in the
more general class of f-divergences and the optimization problem

¢ = inf Df(p Il o)
s.t.hi(p,0)20i=1,...,n
uo<p<io
g,p € S(H).

(36)

Particularly, the estimates in (7) and (9) are straightforward to generalize.
We divide the convergence analysis of (7) and (9) into two parts,

namely the analysis of tr*[os — p], which becomes a central ingredient and

the convergence analysis itself then becomes the second part of this section.

Analysis of tr[os — p]

Our method for the relaxations in (7) and (9) is based on the following
observation in the f-divergence setting. Denote w(s): = f (s) > 0 (recall that for
a convex, differentiable function the derivative is an increasing
function®™™ '** and thus the second derivative is positive) and use the
terminology from Proposition 2 with const (1) := f(1) + (1 — A)f7(),
then we have

upper upper

g(s) 7 a h

| LS | |
! lower Al fr fk|+1

[

Fig. 3 | The convergence analysis. Upper and lower bound of a convex function g(s).

supremum once after integration. For this purpose choose a, b € [y, A] such
that 4 < a < b <1 and estimate

f Zw(s) sup tr [P(os — p)] ds
0<P<I (38)

> sup [ zw(s)tr [P(os — p)] ds.
1

0<P<

Of course, this is in general a loose estimate, but its interpretation is that we
choose the best linear functional (via a single effect P) that lower bounds the
trace term at the level of the weighted integral, rather than approximating
the pointwise convex function s—tr* [os — p] itself. Thus the supremum is
reinterpreted from a pointwise optimization to an optimization over inte-
grated values, while exploiting the structural properties of s—>trt[os — p]
collected in the following Lemma 1.

Lemma 1. (Properties of Divergence) Let p, 0 € S(H) be two quantum

states. Then g(s) := tr*[os — p] has the following properties

(a) gis convex for s € R and in particular continuous in (s, p, 0).

(b) gis monotonically increasing.

(c) tr*[os — p] satisfies the data processing inequality, i.e. for every posi-
tive, trace-nonincreasing channel @ we have

trt[os — p] > trt[D(0)s — D(p)] p, 0 € S(H). (39)

(d) foralls € R wehaves — 1<trt[os — p] <s.

Proof. Supplementary Note 4. []

The idea of our technique is to use a grid t and apply (38) interval-wise.
Combining the facts that tr*[os— p] is convex and monotonically
increasing, and that interchanging the integration and supremum yields
valuable lower bounds, suggests—at least heuristically—that even a small
number of grid points is sufficient to obtain non-trivial lower bounds
on (36).

Detailed convergence analysis

From Figure 3 it is geometrically evident that the optimised lower bound in
Proposition 1 has an error no greater than that of the upper bound: by
convexity, the mirrored straight line g is a feasible supporting line (see the
discussion below for a precise definition of supporting line) for the lower
bound in (7), and thus we obtain at least the same error dependence as the
convex interpolation in the upper bound. Without loss of generality, and in
order to focus the convergence analysis on the upper bound, in the fol-
lowing, we formalize this geometric observation using the properties of
convex functions.

Fors € R let

N 8(s) := tros — p], w(s) := f"(s)20, f(1) = 0, (40)
Dy(p || o) — const(A) = S #w(s)trJr[as —plds
! (37)  and fix an interval [a, b] C [y, A]. By Lemma 1(a), g is convex.
= W) 021;2 I tr [P(os —p)] ds. Recall the subdifferential of g at sy:
At this point, one may evaluate the supremum in P pointwise in s € [y, A]. 3 — R: S —s)foralls e R 41
But since w(s) = 0, it is valid for obtaining lower bounds to estimate the 2(s) = {m € K2 g(5) 2g(so) + mls = 5) foralls € K. (41)
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For any m € dg(so) the affine map

Tsmm(s) = g(sy) + m(s — s;) (42)

w<gonRand T, , (s)) = g(sy)). The
32,Thm. 4. 12]) if s, < 55 my €

isa supporting line of gat s (so T';,

subdifferential mapping is monotone (see e.g.

0g(s;) and m, € dg(s,), then

0<(my, — my)(s, —s;) = m; <m,. (43)

Recall the notion of left and right derivatives, denoted as g’ (-), g’ (-),

for convex functions from e.g.*>™™ !4 and define the secant of g over [a, b]
by

Sa,h(s) = g(a) + mg b(s - a)
— g(h)—g(a)

ab € [¢}(a), g(b)].

By convexity and the generalized mean-value theorem for convex functions
(see e.g > 2E2)) there exists s* € [a, b] with m,;, € dg(s*). Hence the
particular supporting line we use is simply

(44)
m

T, (5) = §(s") + my (s — s) < g(s) for alls, (45)
and Ty, ,, (s) = g(s").

Moreover, since g is the pointwise supremum of the affine forms
st>tr[P(as — p)] over effects P (0<P<I), the supremum at s* is attained by at
least one effect P* (see Danskin's theorem). For such a P* we have

g =1tr [P*(cfs* — p)] and m, , = tr[P*0], (46)
so, equivalently, T, ,, (s) = tr [P*(os — p)].

Asaminor result, we require an adapted error analysis for the trapezoid
method for the special case of a convex function. This result is essentially the
classical error estimate for the trapezoid rule, as found in standard textbooks

on numerical analysis (see, e.g.,”** 7)), but stated without the assumption
of differentiability.
Lemma 2. Let g be convex on [y, A] and let y =t; <t, < --- <t,=Abea
partition. Denote on each [t, ;1] the secant from (44) as
Sk(t) = Stk b (t) (47)
Then the trapezoidal-rule error satisfies
r=1 7981 A
> / Sy(t)dt — / g(t)dt < (48)
k=1 2
A (t ¢ ) /
Z kH : g (tep) — g+(tk))- (49)

Proof. This is [**, Cor. 3]. []
Lemma 2 enables us to prove the following technical lemma.
Lemma 3. For every convex function gand any a < b, the secant S, ,, of gon

[a, b] and any supporting line T, of g at some s* € [a, b] and w=0 and
Ly p = Supgp, yyW(s), we have

Proof. See Supplementary Note 6. []
Thus, on each grid interval [f, ti1]:
(i) the upper error from convex interpolation by secants, and
(ii) the lower error from the best affine minorant realized by a single
effect P
are both bounded by the common quantity in (50)-(51). Thus, using the
coarse weights L, := sup  w(s), the optimized lower bound is at least as
s€ltiotin]
good as the upper bound.
Moreover, Eq. (48) has the interesting consequence that for convex g,
g/ and g’ exist everywhere and are nondecreasing, hence

1

(g,_(tkﬂ) _g;-(tk)) <g (t)— g;(tl)a

1

r

(52)

=~
Il

by the observation that —(g’, (t;) — g’ (t;)) <0.

Proposition 3. (Convergence for f-divergences)
Let p, 0 € S(H) with po < p < Ao. Approximate a f-divergence via the

convex interpolation upper boundonagridt=(u =1t <t < - <t, = A):
=1 Ll R A
> / w(s)g(s)ds < / w(s)S,(s)ds, (53)
=1 k& k=1 &

with g(s) = tr*[os — p] and S; the secant of g on [#, ). Fix a target
accuracy € > 0 and choose the grid recursively by

k=1
b= {tk L os k22 (54)
with L;_; := sup w(s). Then the total interpolation error obeys
selti_i ]
r—1 bt
> [ waso - go)ds < (55)
k=17 k&
and the number of grid points satisfies
1 M
=0 —/ "(s)ds | . (56)
iV
Proof. On each interval we have (see Lemma 2)
Lkt
T w(s)(S,(s) — g(s))ds
f t ( k 4 ) (57)

s %(tkﬂ — )7 (g (teyr) — £ (1)

Choose the grid by (54), so that (. ; — t;) < 4e/L,; hence the k-th interval
contributes at most £(g’_(;.,.;) — g, (#,)). Summing over k and using (52)
with Lemma 1 (d), which yields that (52) can be estimated with 1 for
g(s) = tr*[os — p], because tr[o] = 1, implies

r—1

- g)ds <ey (g'_(ka) - g;(tk))

Z ftkﬂ W(S) (Sk (58)

<e.

For the grid size, from (54) we have t, — t,_; = /4¢/L,_,. By con-
tinuity of w, there exists s,_; € [tx_1, ;] with Ly_; = w(s¢_1), hence

b L
/ w(s) (Sa,b(s) — g(s)) ds< Zb (b —a)’ (gﬂ(b) — g/+(¢1))7 (50)
\ i 1< 4%(tk —t ). (59)
[ w09 (66) = T,400) ds= =5 (0= 0 (¢ 0) - &) (5D
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Summing from k = 2 to r and passing to the Riemann sum limit gives

r—1< \/%—SZ;:I\/ W(Sk)(tk+1 — &)
SZﬁ.fimd&

(60)

which proves the stated bound on . []

Recalling now the general optimization problem in the language of f-
divergences (36) yields that we can approximate the value ¢; by the upper
bounds ¢, (t), because the bounds guarantee uniform convergence as stated
in the next corollary.

Corollary 3. Let ¢sbe the value of (1). Foragridt= (u=1t, < - <t,= 1)
define

r—1
Up,0) := ];1 i w(s) S(s) ds

(61)
+f)+ A= Hf ),
and the corresponding relaxation value
Cu(t) = (62)
inf{ Uy(p,0) : hi(p,0)=0, ys<p<Ao, p,o € S(H)}.
Similarly, define with (42)
r—1
Vt(P7 0) = ];1 fiiﬂ W(S) Ttk‘tk“ (S) ds (63)
+f)+ A =Df ),
and the corresponding relaxation value
o(t) = (64)
inf{ Vy(p,0) : hi(p,0)=0, us<p<o, p,o € S(H)}.
If t is chosen by (54) for a target accuracy € > 0, then
¢ — €< qt)< ¢ < c,(t) < ¢ te (65)
and
1
r=0 —/ \/f'(s)ds |. (66)

In particular, for any refining sequence of grids with &} 0 we have ¢,(t) T crand
cu(t){ ¢s (monotone value convergence).

Proof. By Proposition Proposition 3 and Lemma 3, for every feasible pair (p,
0),

Di(p Il 0) —e<Vi(p,0)<Ds(p || 0)

<U(p.0) < Dy(p || 0) +e. ©7)

Taking the infimum over the common feasible set yields (similarly for the
lower bound)

¢ =inf Dy < inf Uy = ¢,(t) < inf(D; +¢) = ¢; + & (68)
The stated bound on r follows directly from Proposition Proposition 3. []
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