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Optimising the relative entropy under
semidefinite constraints
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Finding the minimal relative entropy of two quantum states under semidefinite constraints is a pivotal
problem located at the mathematical core of various applications in quantum information theory. An
efficient method for providing provable upper and lower bounds is the central result of this work. Our
primordial motivation stems from the essential task of estimating secret key rates for QKD from the
measurement statistics of a real device. Further applications include the computation of channel
capacities, theestimationof entanglementmeasuresandmanymore.Webuildona recently introduced
integral representation of quantum relative entropy by [Frenkel, Quantum 7, 1102 (2023)] and provide
reliable bounds as a sequence of semidefinite programs (SDPs). Our approach ensures provable
sublinear convergence in the discretization, while also maintaining resource efficiency in terms of SDP
matrix dimensions. Additionally, we can provide gap estimates to the optimum at each iteration stage.

Within the last four decades, the field of quantum cryptography has
undertaken a massive evolution. Originating from theoretical considera-
tions by Bennet and Brassard in 19841 we are now in a world where tech-
nologies like QKD systems and Quantum random number generators are
on the edge of being a marked ready reality. Moreover, there is an ongoing
flow (see e.g.2,3 and references therein) of demonstrator setups and proof-of-
principle experiments within the academic realm that bears a cornucopia of
cryptographic quantumtechnologies thatmay reach anext stage in anot too
far future.

Despite these gigantic leaps on the technological side, we have to
constitute that the theoretical security analysis of quantum cryptographic
systems is still in a process of catching up with these developments. To the
best of our knowledge, there are yet no commercial devices with a fully
comprehensive, openly accessible, and by the community verified security
proof. Nevertheless, theory research has taken the essential steps in pro-
viding the building blocks for a framework that allows to do this4. Most
notably, the development of the entropy accumulation theorem5,6 and
comparable techniques7, allow us to deduce reliable guarantees on an ε-
secure extractable finite key in the context of general quantum attacks
requiring only bounds on an asymptotic quantity such as the conditional
von Neumann entropy as input.

The pivotal problem, and the input to this framework, is to find a good
lower bound on the securely extractable randomness that a cryptographic
device offers in the presence of a fully quantum attacker8. Mathematically,
this quantity is expressed by the conditional vonNeumann entropyH(X∣E).
Using Claude Shannon’s intuitive description, it can be understood as the
uncertainty an attackerEhas about the outcomeof ameasurementX, which
is performed by the user of a device. There are several existing numerical

techniques for estimating this quantity given a set of measurement data
provided by a device9–14. We will add to this collection, by providing a
practical and resource efficientmethod for this problem, which interpolates
between anexecutable tool and theoretical boundson the relative entropyby
convex interpolation.

At the core of our work stands a recently described15,16, and pleasingly
elegant, integral representationof thequantum(Umegaki) relative entropy17

(see also18) that we employ in order to formulate the problem of reliably
bounding H(X∣E) as an instance of semidefinite programs (SDP) by dis-
cretizing integrals. Our method comes with a provable sublinear con-
vergence guarantee in the discretization, whilst staying resource efficient
with the matrix dimension of the underlying SDPs. We furthermore can
provide an estimate for the gap to the optimum for any discretization stage.

To this end, letH ffi Cd be a finite-dimensional Hilbert space. Write
BðHÞ for the (bounded) linear operators onH and SðHÞ :¼ fω 2 BðHÞ :
ω≥ 0; tr½ω� ¼ 1g for the set of quantum states (density operators). Let
hi : BðHÞ ×BðHÞ ! R be affine maps, for i = 1, …, n. The central
mathematical problem considered here—more general than estimating a
conditional entropy H(X∣E) and not limited to QKD—is:

inf Dðρ k σÞ
s: t: hiðρ; σÞ≥ 0; i ¼ 1; . . . ; n;

μ σ ≤ ρ≤ λ σ;

ρ; σ 2 SðHÞ;

ð1Þ

where the (Umegaki) quantum relative entropy is Dðρ k σÞ :¼
tr ρ log ρ� log σ

� �� �
. The constraint ρ ≤ λ σ (with finite λ) enforces supp(ρ)
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⊆ supp(σ), ensuring the relative entropy to be finite; if, in addition, μ > 0,
then supp(ρ) = supp(σ).

Despite being convex, this optimisation problem is highly non-linear
and contains the analytically benign, but numerically problematic matrix
logarithm. Thus, for general instances, (1) can not be solved directly by
existing standard methods. The construction of a converging sequence of
reliable lower bounds on the value c in (1) is the central technical con-
tribution of this work.

Our focus task of estimating key-rates can be cast as an instance of
this (see the last section of IV and Supplementary Note 7). Here, lower
bounds on (1) directly translate into lower bounds on the key-rate, which
is exactly the direction of an estimate needed for a reliable security proof.
There is however a long list of further problems that can be formulated as
an instance of (1). It includes for example the optimisation over all types
of entropies which are expressible as relative entropies. For example we
provide the calculation of the entanglement-assisted classical capacity of
a quantum channel in the Supplementary Note 8 where one has to
optimise in fact the mutual information of a bipartite system. The
optimization problem (1) naturally generalizes from relative entropies to
general f-divergences. With minimal adjustments, our method can also
tackle this class. Despite not being the focus of this work, as a detailed
numerical analysis is left for future work, we already formulated the
relevant technical parts of the Methods section IV from this more
general perspective.

Results
In the following,wedenote byBðHÞ the set of (bounded) linear operators on
a finite-dimensionalHilbert spaceH andSðHÞ the set of quantum states on
H, i.e. all positive operators with unit trace. The trace onBðHÞ is denoted as
tr½��. Moreover, any self adjoint operator A 2 BðHÞ, can be uniquely
decomposed as a difference A = A+ − A− of Hilbert-Schmidt orthogonal
positive operators A+ and A−. Let trþ½A� :¼ tr½Aþ� denote the trace of the
positive part of A (similarly tr�½A� :¼ tr½A�� ¼ trþ½�A�). Note that this is
an SDP given by

trþ½A� ¼ sup tr½PA�
s: t: 0≤ P ≤ I:

ð2Þ

In the following we make use of the representation

Dðρ k σÞ ¼
Z λ

μ

ds
s
trþ½σs� ρ� þ log λþ 1� λ ð3Þ

which was firstly described by Jenčová in ref. 15 and holds for pairs of
quantum states that fulfill μσ ≤ ρ ≤ λσ with constants λ > μ ≥ 0. We remark
that we always use trþ½�� in comparison to tr�½�� in15. The reason for that is
the SDP characterization in (2), which can be written without a sign. As
outlined in the following, and with more detail in the methods section, the
representation (3) can be used to reformulate the non-linear function
D(ρ∥σ) as solution to a semidefinite minimisation. The leading idea of our
method is then to incorporate this into (1) in order to obtain an SDP
formulation of the whole problem. Along this path we make use of a
discretisation of the integral in (3). This discretisation introduces a set of free
variational parameters into our method, and a suboptimal choice of these
will producea gap.This gapcanhoweverbequantifiedand thediscretisation
parameters can be adjusted iteratively leading to an increasing sequence of
estimates on (1).

Discretisation and SDP formulation
For an interval (a, b) with μ < a < b < λ we have (see the discussion around
Lemma 1) the basic estimate

Z b

a

ds
s
trþ½σs� ρ� ≥ trþ½σðb� aÞ þ ρ logða=bÞ�: ð4Þ

Based on (4), we discretize the integral (3) on a grid of points t = (t1,…, tr),
i.e. intervals (tk, tk+1), and obtain an estimate on the relative entropy from
below.We furthermoreuse that the evaluationof the functional trþ½�� canbe
formulated as an SDP, which in combination leads us to the following
proposition:

Proposition 1. For any grid t, with μ ≤ t1≤ ⋯ ≤ ⋯ tr = λ, the relative
entropy is bounded from below by the semidefinite optimisation

Dðρ k σÞ≥ inf
Pr�1

k¼1
tr½μk� þ log λþ 1� λ

s: t: μk ≥ αkρþ βkσ;

k ¼ 1; . . . ; r � 1

μk ≥ 0;

ð5Þ

with coefficients

αk ¼ log
tk
tkþ1

� �
and βk ¼ tkþ1 � tk: ð6Þ

Proof. Supplementary Note 1.□

Approximation of 1
We are now in a position to state the main mechanism of our method. For
this purpose we fix μ; λ 2 R≥ 0 what guarantees that if the optimization
problem (1) is feasible, it has already finite value, because the value of λ is a
bound on the Dmax-relative entropy of the set of feasible states. In many
applications this is known beforehand, e.g. in the key rate estimation it is
given by Hayashi’s pinching inequality. Defining then a grid t on [μ, λ] and
combining (5) with (1) yields the SDP

cl tð Þ :¼ inf
Pr�1

k¼1
tr½μk� þ log λþ 1� λ

s: t: hiðρ; σÞ≥ 0; i ¼ 1; . . . ; n

μk ≥ αkρþ βkσ; k ¼ 1; . . . ; r � 1

μσ ≤ ρ≤ λσ

σ; ρ 2 SðHÞ; μk ≥ 0;

ð7Þ

which is a lower bound on c from (1). Moreover, optimising over all grids t
gives the tight bound

c ¼ sup
t�½μ;λ�

cl tð Þ: ð8Þ

This reduces the task of approximating c to the quest for a good grid t. As
every grid gives a valid lower bound by Proposition 1, we are now freed to
employ heuristic methods and still obtain rigorous statements, for example
in a security proof.

Upper bounds and a gap estimate
In order to construct an algorithm that terminates in finite time, it is helpful
to give an estimate on the accuracy of an approximation. Similar to Pro-
position 1, we can also construct semidefinite upper bounds for c (see
Supplementary Note 3), now involving coefficients γk; δk 2 R as described

https://doi.org/10.1038/s41534-026-01184-4 Article

npj Quantum Information |           (2026) 12:23 2

www.nature.com/npjqi


in Supplementary Note 3. Similarly to (7) we have

cu tð Þ :¼ inf
Pr
k¼1

tr½νk� þ log λþ 1� λ

s: t: hiðρ; σÞ≥ 0 i ¼ 1; . . . ; n

νk ≥ γkρþ δkσ; k ¼ 1; . . . ; r:

μσ ≤ ρ≤ λσ

σ; ρ 2 SðHÞ; νk ≥ 0:

ð9Þ

Concluding (1), (9) and (7), we get the chain of inequalities cl tð Þ≤ c≤ cu tð Þ
and a gap estimator

Δ tð Þ ¼ cu tð Þ � cl tð Þ: ð10Þ

Simple methods with convergence guarantee
As our methods for establishing the lower bound (7) and the upper bound
(9) rely on estimates of an integral, convergence can be guaranteed if we are
able to provide uniform bounds on the integrand for all pairs of feasible
states ρ; σ 2 SðHÞ. Again, we observe that the bound λ on Dmaxðρ k σÞ is
essential; without it, states with orthogonal supports would immediately
preclude such uniformity and this is precisely why the integral repre-
sentation from15 is particularly useful: it yields a compact integration interval
[μ, λ], provided we can bound theDmax-relative entropy for an optimal pair
of states ρ⋆ and σ⋆ solving (1).

The final missing ingredients, beyond compactness, to guarantee
uniform convergence in our setting are provided in Lemma 1, where we
show that gðsÞ :¼ trþ½σs� ρ� is convex, monotonically increasing, and
Lipschitz continuous. With these tools in place, we prove in Proposition 3
that the upper bounds converge uniformly, since they are nothing more
than a convex interpolation of the function g(s).

The outcome of this discussion of tools is summarized in the following
corollary.

Corollary 1. Let ρ; σ 2 SðHÞ with μσ ≤ ρ ≤ λσ and μ > 0. Choose the grid
recursively by

tk ¼
μ; k ¼ 1;

tk�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ε tk�1

p
; k≥ 2:

	
ð11Þ

Then the total approximation error obeys

cuðtÞ � c≤ ε; ð12Þ

and the number of grid points satisfies the explicit bound

r ¼ O
ffiffiffi
λ

ε

r !
: ð13Þ

Proof. Using Proposition 3 with f″(s) = 1/s yields convergence of the
interpolation: use

R λ
μ

ffiffiffiffiffiffiffiffiffi
f 00ðsÞ

p
ds ¼ R λμs�1=2ds ¼ 2ð

ffiffiffi
λ

p
� ffiffiffi

μ
p Þ, and since 1/s

is decreasing on [μ, λ], Lk−1 = 1/tk−1, yielding (11). Moreover, Corollary 3
yields that uniform convergence of the bounds is enough in order to prove
that the values of (9) converge to c in (1).□

Actually choosing μ = 0 in Corollary 1 yields nothing special, because
thenwe can apply ourmethod on the interval [ε, λ] and get an error ε in the
approximation on the interval [0, ε]. For details see Corollary 2. Addition-
ally, we provide in the section “Applications to QKD” an explicit explana-
tion how the grid construction works in practice.

Moreover, as discussed rigorously in Section IV, the lower bounds can
be interpreted as a specific type of optimal supporting lines (see Section IV
for a precise definition), i.e., tangents lying below g(s) with respect to an

integral norm determined by the weight function s 7! 1
s. Geometrically, this

can be visualized via a mirroring argument in Fig. 3. Consequently, the
estimate

c� clðtÞ≤ ε ð14Þ

follows immediately from Corollary 1.
We can conclude this section with the result that in a numerical

algorithm the gap in (10) is in the magnitude of ε. We conclude this section

with the result that the gap in (10) is on the order of ε if we chooseO
ffiffi
λ
ε

q
 �
many grid points in the discretization.

Heuristic methods
Motivated by the observation that our approximation reduces to a linear
program when ρ and σ commute—and, in particular, trþ½σs� ρ� is then
piecewise linear, i.e., a sum of affine segments combined via a pointwise
maximum—we conclude that in this case a finite set of grid points already
suffices for an exact result, due to the affine nature of our approximations.
Consequently, a heuristic should also allow for routines that drop points
from t in order to remain resource-efficient.

This is especially relevant for the inner approximation, i.e., the upper
bounds. In fact, one can delete all grid points except the one corresponding to
the current optimizer from the previous iteration, since the upper bound is a
continuous function of s. This yields a highly efficient heuristic for obtaining
goodupper bounds,madepossible by the fact thatwe approximate the curves
defined by trþ½σs� ρ� from above using a convex, continuous function. In
comparison to the upper bounds, the lower bound (7) is not continuous. For
this reason it is impossible to delete grid points. Therefore it becomes even
more important to control the grid points wisely. An additional, but not
rigorous way of getting the sequence of values monotone is that we can
include a convex constraint such that the solver is enforced to staymonotone.
Of course this destroys the fact thatwewant provable upper or lower bounds.
But interestingly one can enforce monotony for a couple of rounds, then
using the resulting pair of optimal states as a warm start without this con-
straint. This method is efficient and leads to good results.

The left plot shows the sublinear convergence rate in the discretization
for a fixed state pair ρ and σwith themethod fromCorollary 1 in dimension
4. To be concrete, we calculated the relative entropy by its definition and the
error between our approximation and this value for increasing number of
grid points resulting from the iterative formula in Corollary 1. In themiddle
plot, we show a generic instance of (1) as discussed in (26). All numerical
examples are available in the GitHub repository. The right plot shows the
extractable randomness from(19) as a functionof theparameterα for a state
defined in (20) and a pair of mutually unbiased bases for Alice and Bob in
various local dimensions up to 8, corresponding to a total dimension of 64.
The plot exhibits the expected behavior with respect to depolarizing noise,
parameterized by α ∈ [0, 1].

Application to quantum key distribution
We compare the key rate protocol for entanglement based QKD for local
dimensions 2, 4 and 8with the techniques from12, our techniques and14. The
first plot shows runtime estimates between all of the three methods and the
second plots shows the precision in logarithmic scale. The system is
equipped with a 13th Gen Intel® Core™ i3-1315U processor and 8 GB of
RAM.Themethodby ref. 12was not executable for local dimension 4 and 8,
such that we replaced the values for 4 with values for local dimension 3.

The instances that initially motivate us to investigate (1) arise from the
task of estimating the extractable randomness for applications in quantum
cryptography. Consider a system consisting of three Hilbert spaces
HABE :¼ HA �HB �HE . In a basic entanglement-based QKD-setting
two parties, say, Alice and Bob, perform measurements XA

0 ; . . . ;X
A
n and

XB
0 ; . . . ;X

B
n on their shares of a tripartite quantum state ψABE 2 HABE

provided by a third malicious party Eve. Following common conventions,
the outcomesofmeasurementsXA

0X
B
0 will beused togenerate a key,whereas
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the data from all other measurements is used to test properties of the state
ψABE, and by this, bound the influence of Eve. For error correction, it is
assumed thatAlice’s data, i.e., the outcomes ofXA

0 , correspond to the correct
key, which means that Bob has to correct the data arising from the mea-
surement XB

0 . Furthermore, we will employ that each measurement XS
i can

be modeled by a channel ΦS
i : SðHSÞ ! SðRXS

i
Þ that maps states from a

quantum systemHS to a probability distribution pS,i on a classical register
RXS

i
. See also refs. 13,19 for more details on this model.
Within the notation above, the securely extractable randomness of

Alice’s key measurement is given by the conditional entropy
HðXA

0 jEÞðΦA
0�idEÞ½ρAE� and depends on the reduced quantum state ρAE of

the Alice-Eve system. Lower bounds on this quantity, which is up to now
only defined in an asymptotic scenario, are essential for reliably bounding
key rates in a full QKD setting involvingmultiple rounds. This accounts for
the asymptotic regime, in which theDevetak-Winter formula20 can be used,
as well as for finitely many rounds under collective attacks, where the AEP
can be used21, and general attacks where either EAT5,6 or de Finetti based
methods can be employed7,22,23.

Using a technical result for calculating the entropy of a state ρAE
13,19,24

(see Supplementary Note 2), we can express the conditional von Neumann
entropy in terms of a relative entropy

HðXA
0 jEÞΦA

0 ½ρAE � ¼ DðρAB k ΦA
0 ½ρAB�Þ: ð15Þ

Test data obtained from additional measurements XS
i naturally give

affine constraints on an unknown state ρAB. The central problem of lower
bounding the extractable randomness can therefore be formulated as

inf DðρAB k ΦA
0 ½ρAB�Þ

s: t:ΦA
i �ΦB

j ½ρAB� ¼ pAB;iji; j ¼ 1; . . . ; n

ρAB 2 SðHA �HBÞ
0≤ ρAB ≤ λΦ

A
0 ½ρAB�

ð16Þ

which is an instance of (1) towhichwe can apply ourmethodology. In order
to solve (16), we need to fix constants μ and λ such that an optimal mini-
mizer ρAB 2 SðHA �HBÞ satisfies

μΦA
0 ðρABÞ≤ ρAB ≤ λΦA

0 ðρABÞ: ð17Þ

ByHayashi’s pinching inequality, the value of λ can be chosen as the square
root of the overall dimension and is therefore known in advance. Without
loss of generality, the value of μ in (17) can be set to zero. In the numerical
examples in the repository, the function grid_function(c, epsi-
lon, mu, lamb) generates a sequence of grid points starting from the
lower boundμ and ending at the upper bound λ as defined inCorollary 1.At
each step, the next grid point is computed as

tk ¼ tk�1 þ
ffiffiffiffiffiffiffiffiffiffiffi
tk�1 ϵ

c

r
; ð18Þ

where tkdenotes the current grid point. This process continuesuntil thenext
point would exceed λ, at which stage the final grid value is set exactly to λ.
The resulting sequence is returned as the vector grid.

With this in hand,we can formulate the following explicit optimization
program (with αk; βk 2 R computed as in (6)) for provable lower bounds
on (16):

inf
Pr�1

k¼1
tr½μk� þ log λþ 1� λ

s: t:ΦA
i �ΦB

j ½ρAB� ¼ pAB;ij i; j ¼ 1; . . . ; n;

μk ≥ αkρAB þ βkΦ
0
AðρABÞ k ¼ 1; . . . ; r � 1;

ρAB 2 SðHA �HBÞ; μk ≥ 0:

ð19Þ

To construct a probability distribution pAB,ij as test data in the following
examples, we start from a maximally entangled state ΩAB 2 SðHA �HBÞ
and mix it with white noise, obtaining

ΩABðαÞ :¼ ð1� αÞΩAB þ α
I
d
: ð20Þ

As measurement channels, we employ projective measurements in two
mutually unbiased bases (see e.g.25). Solutions of (19) are shown in Fig. 1 the
right plot for local dimensions, i.e. dimensions of Alice respectively Bob’s
systembetween2, 4, 8, which corresponds to 1, 2, and 3 qubits per party and
different values for α ∈ [0, 1]. All results are achieved in seconds on a
personal computer.Moreover, we can state a similar corollary asCorollary 1
for the special case of QKD:

Corollary 2. Let ρ 2 SðHA �HBÞ and ΦA
0 a projective measurement

channel with dA ¼ dimHA many outcomes and choose ε > 0 fixed. Fur-
thermore, choose the grid recursively by

tk ¼
ε; k ¼ 1;

tk�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ε tk�1

p
; k≥ 2:

	
ð21Þ

Then the total approximation error for (19) obeys

c� clðtÞ≤ 2ε; ð22Þ

and the number of grid points satisfies the explicit bound

r ¼ O
ffiffiffiffiffiffi
dA
ε

r !
: ð23Þ

Proof. FromHayashi’s pinching inequality (17), it follows immediately that
wemay choose λ= dA. Moreover, on the interval [ε, λ], we apply Corollary 1

Fig. 1 | Blue are the lower bounds, green the upper
bounds and the straight is a regression certifying the
complexity statement In the right figure we compare
local dimensions 2 (light green), 4 (green), and 8
(light blue).
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to obtain an approximation error ε. Additionally, using the estimate

trþ ΦA
0 ðρABÞ s� ρAB

� � ¼ sup
0≤ P ≤ I

tr P ΦA
0 ðρABÞ s� ρAB

� �� �
¼ sup

0≤ P ≤ I
tr½PΦA

0 ðρABÞ� s
�

�tr½P ρAB�
�

≤ sup
0≤ P ≤ I

tr½PΦA
0 ðρABÞ� s

≤ s;

ð24Þ

we can bound the contribution on the interval [0, ε] as

Z ε

0

ds
s
trþ ΦA

0 ðρABÞ s� ρAB
� �

≤

Z ε

0
ds ¼ ε: ð25Þ

This shows that the additional error incurred by assuming μ= 0 is atmost ε.
Combining these bounds yields (22).□

Further optimisation tasks that can be handled
As instances for the left and middle plots in Figure 1, we use a randomly
generated matrix M (available in the repository) as a witness and solve
problems of the form

c :¼ inf Dðρ k σÞ
s: t: tr½ρM�≥ κ1;
tr½σM�≤ κ2;
μσ ≤ ρ≤ λσ;

σ; ρ 2 SðHÞ;

ð26Þ

for various values of κ1; κ2; μ; λ 2 R.
The left plot shows the sublinear convergence in the discretization

predicted byCorollary 1 in dimension 4.Weplot the error corresponding to
the grid from (11) as a function of the number of grid points for a generic
instance. Furthermore, in the left plot of Fig. 1, we performa regressionwith
the model function n 7! c

n2 for a regression parameter c. The analysis shows
that c is close to the chosen λ, as predicted by Corollary 1. This supports the
conclusion that we have obtained the correct asymptotic convergence
behavior.

Further instances of (1) are reported in SupplementaryNote 7.Notable
examples include bounds on the relative entropy of entanglement,

min
σAB2SEPðA:BÞ

DðρAB k σABÞ; ð27Þ

where SEP(A: B) denotes the set of separable states and ρAB is a possibly
entangled state, as well as the classical capacity of a quantum channel
(see also9).

The left picture shows that we can approximate a monotone and
convex function frombelowwith linear functions. It furthermore shows the
corridor in which the divergence will be located. Furthermore, there is a
degree of freedom in choosing a tangential straight from below. Amirrored
straight g″, which is a feasible lower bound yields the same convergence rate
for the lower bound. Theworse case that could happen for approximation is
that the function has a kink as shown on the right picture. The right picture
shows an interval [tk, tk+1]. Thenwe see the error for the upper bound scales
with the volume of a blunt triangle.

Discussion
The general optimisation problem in (1) is a central task in (quantum)
information theory, as it encompasses all types of numerical estimates for
which the relative entropy is the underlying quantity. A well-known
example is given by (16), where the optimisation yields bounds on the
extractable randomness in a QKD experiment (or, similarly, in a random

number generation experiment). Recently, instances of (1) such as the
relative entropy of entanglement in (27) and various channel-related
quantities, including the classical capacity of a quantum channel, have also
attracted attention. But, as already noted, the problem (1) is a nonlinear yet
convex optimisation problem. Its difficulty stems from the fact that the
relative entropy is only lower semicontinuous and, for certain pairs of states
ðρ; σÞ 2 SðHÞ×SðHÞ with Dmaxðρ k σÞ ¼ 1, takes the value + ∞. This
property complicates the use of generic convex optimisation solvers for
tackling (1).

Given the importance of (1), a variety of solutions have been developed
with different purposes and techniques. Broadly speaking, these approaches
can be classified into four categories according to their scope and the tools
they employ.

The first class of methods includes the approach of 9, which estimates
the relative entropy via the formula Dðρ k σÞ ¼ tr½ρðlog ρ� log σÞ� by
numerically computing thematrix logarithm. Thismethod is highly flexible
but, for ρ; σ 2 SðHÞ with dimH ¼ d, it requires working with matrices of
size d2 × d2. The second class, aimed particularly at estimating (16), includes
the works10,19,26. The most recent of these10 achieves very high precision (see
Sec. 5, numerical testing, in ref. 10) for systems consisting of one qubit per
party (i.e., Alice’s and Bob’s systems), but is restricted to equality constraints
in (16). Inequality constraints are mentioned as an outlook for future work.
The third class is represented by the recentwork14, which introduces a solver
based on self-concordant barriers for specialized cones associated with the
quantum (relative) entropy. This framework enables the direct application
of interior-point methods to (1). Finally, in the fourth class,12 and our
present work use integral representations of the relative entropy.
Specifically,12 employs Kosaki’s formula27, while we use Frenkel’s formula16,
approximating the relative entropy via numerical quadrature for the
resulting integral representation.

With our technique, we propose, on the one hand, a concrete
numerical tool for solving (1), whichwe benchmark against state-of-the-art
instances in theQKD setting in Fig. 2, comparing with14 and12. On the other
hand, we introduce a technical method to estimate the relative entropy
variationally in both directions, providing both upper and lower bounds. In
comparison tootherapproaches, ourmethods contrasts by its simplicity.An
implementationneeds only some few line of code for implementing the SDP
(1) in a favored solver and some iteration for refining the grid. This naturally
provides a user withmany directions for adapting refining and customizing
our method beyond the implementation provided in the supplement.
Furthermore, our SDP approximation can also be a starting point for an
analytical handling of the relative entropyoptimizationproblem. In termsof
runtimes and resource demands our method, in its currently not highly
optimized implementation, lies in between the method12 and the recently
launchedandhighly specialized softwarepackage14.However,we emphasize
that14 only addresses the case of the Umegaki relative entropy, whereas our
techniques yield variational approximations for all f-divergences. In parti-
cular, sincemost f-divergences likely do not admit a closed-form expression
analogous to the relative entropy with the matrix logarithm, our technique
is, in this regime, the only applicable one.

In the numerical benchmark, we observe that for small instances our
technique achieves precision comparable to12, but is strictly outperformed
by the specialized solver14 for relative entropy programming. In terms of
runtime, our method shows a clear improvement over12, while still yielding
slower performance than14. Beyond the numerical benchmark for (1), it is
also instructive to compare our technique with12 from a technical per-
spective, since both approaches rely on integral representations and thus
offer comparable flexibility. In particular, our method provides provable
upper and lower bounds for (1), whereas12 yields only upper bounds. This
has the advantage that we can, for example, employ the dimension-efficient
formula (15) in the QKD setting, and we can quantify a gap as in (10). As
another concrete application, our the our discretization technique has
enabled Moreover, the flexibility of our technique has enabled the first
numerically applicable algorithm for obtaining provable bounds on the
relative entropy of channels— an open problem since the development of
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resource theories for quantum channels28. Both applications in refs. 28 and
29 rely at their core on the discretization of Proposition 1. Although this is
just one instance of the techniques presented here, and in both cases it is
applied only to the Umegaki relative entropy in special scenarios, it shows
that the general idea of a discretized integral representation with rigorous
numerical analysis is very powerful.

Moreover, both techniques enable applications to device-independent
quantum key distribution, as reported in refs. 11 and 29, which is not
possible with14. In this regime29 reports an efficiency advantage of our
technique. From the perspective of divergences and despite the coincidental
overlap in termsof theUmegaki relative entropy, our tools and thoseof 12 are
complementary in a broad sense: Kosaki’s integral formula can be extended
to all operatormonotone functions (see27,Lem. 2.1]), while our approach can be
generalized to all f-divergences as shown in Section IV.

Concretely regarding our technique, the fact that we need fixed
integral bounds 0 < μ ≤ λ which on first view seems to be a disadvantage,

turns out to be the important ingredient for a rigorous numerical analysis
(i.e., theoretical error bounds). The existence of these values bounds the
problem tofinite range andone can think about the lower respective upper
bounds as continuous functionals with values in a compact set. Therefore,
a rigorous numerical analysis becomes applicable. It is a beautiful obser-
vation that compactness of the image of the functionals is equivalent to
finite relative entropy. Since we are only interested in minimisation tasks
here, we get rid of numerical analysis artifacts with infinities directly and
naturally.

In contrast, controlling thenumber andplaces of supporting points is
in general a difficult gamewith no a priori best solution.Of course one has
to have inmind that practically the number of grid pointsmust not be too
big, because it increases the number of variables in the SDP solver directly.
This calls for a clever heuristic, especially with regard to even larger
dimensions. With the proofs of Proposition 3 we give a clear mathema-
tical, and therefore rigorous, frameworkwhichone canuse in constructing
heuristics. In the error analysis of Proposition 3 we observe that it highly
depends on f″ and its values on the grid intervals. For the function
s 7!s log s the second derivative is given by s7! 1

s and thus the error of our
tools decrease as s becomes larger. In particular, if s> 1 theweight function
s 7! 1

s in the integration is a damping factor. Thus, good heuristics for the
Umegaki relative entropy shouldhave amore refinedgrid for s∈ [μ, 1] and
a coarser grid in [1, λ].Moreover, one could ask for an optimal quadrature
rule regarding this specific type of integrands s 7!f 00ðsÞtrþ½σs� ρ� for f
twice continuously-differentiable.

Another key could be to design amethod that removes grid points as
well. Many scenarios are possible here, which we leave open for future
adjustment. In addition to heuristics, we would like to mention that our
approach can also be carried out directly with the original integral
representation of Frenkel16. Since the singularities at 0 and1 play a decisive
role there, it becomes much more difficult to extract provable scenarios.
However, we did numerical experiments in this directionwith success, but
apparently without numerical analysis, i.e. theoretical error-
dependencies.

We conclude with an outlook for future research. In terms of grid
refinement, we believe that further improvements are possible, and that
more advanced numerical quadrature techniques for the integration step in
Proposition 3 and Corollary 1 may be applicable. From an information-
theoretic perspective, a recent series of results has clarified how the family of
α-f-divergences defined in ref. 16 relates to the well-known α-relative
entropies—namely, the Petz and sandwiched relative entropies (see30,31 for
inequalities and18,Thm. 3.2] for a regularization result). These findings suggest
that our numerical techniques could be applied to estimate well-known α-
entropies. Developing this connection and applying it to finite-resource
tasks in information theory would be an interesting direction for
future work.

Methods
As our tools easily generalize to f-divergences, we provide here the fully
detailed analysis for general f-divergences. A f-divergence is defined as

Df ðρ k σÞ :¼ R11 f 00ðsÞtrþ½ρ� sσ�
þs�3f 00ðs�1Þtrþ½σ � sρ� ds;

ð28Þ

where f : ð0;1Þ ! R is assumed to be twice continuously differentiable
with f(1) = 0 (see, e.g.,18,Def. 2.4]). From18,Prop. 2.6] it then follows that f-diver-
gences are jointly convex in ρ; σ 2 SðHÞ, satisfy the data-processing
inequality (DPI) for positive trace-nonincreasing linear maps, and are
faithful. As usual, we define for states ρ; σ 2 SðHÞ

Dmaxðρ k σÞ :¼ inffλ > 0 j ρ≤ eλσg ð29Þ

where we use the convention inffg ¼ 1. We start with a first small result,
generalizing15,Cor. 1] from the Umegaki relative entropy to general f-
divergences.

Fig. 2 | Our work is red, Araujo et al. blue and QICS orange.
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Proposition 2. For states ρ; σ 2 SðHÞ define μ :¼ e�DmaxðσkρÞ and
λ :¼ eDmaxðρkσÞ. Then we have

Df ðρ k σÞ ¼ R λμf 00ðsÞtrþ½sσ � ρ� ds
þf ðλÞ þ ð1� λÞf 0ðλÞ:

ð30Þ

Proof. Start from the definition (28)

Df ðρ k σÞ ¼ R11 f 00ðγÞtrþ½ρ� γσ�
þγ�3f 00ðγ�1Þtrþ½σ � γρ� dγ;

ð31Þ

With the change of variables s = γ−1 in the second term,

Df ðρ k σÞ ¼ R11 f 00ðsÞtrþ½ρ� sσ� ds
þR 10f 00ðsÞtr�½ρ� sσ� ds:

ð32Þ

If μσ ≤ ρ ≤ λσ, then trþ½ρ� sσ� ¼ 0 for s ≥ λ and tr�½ρ� sσ� ¼ 0 for s ≤ μ,
hence

Df ¼
Z 1

μ
f 00ðsÞtr�½ρ� sσ� dsþ

Z λ

1
f 00ðsÞtrþ½ρ� sσ� ds: ð33Þ

Using trþ½ρ� sσ� ¼ tr�½ρ� sσ� þ ð1� sÞ gives

Df ¼
Z λ

μ
f 00ðsÞtr�½ρ� sσ� dsþ

Z λ

1
ð1� sÞf 00ðsÞ ds: ð34Þ

Integration by parts yields

R λ
1ð1� sÞf 00ðsÞds ¼ f ðsÞ þ ð1� sÞf 0ðsÞ� �λ

1

¼ f ðλÞ þ ð1� λÞf 0ðλÞ;
ð35Þ

which proves (30).□
Proposition 2 shows that all tools needed for the relative entropy

program (1) and the special case of f ðsÞ ¼ s log s can be discussed in the
more general class of f-divergences and the optimization problem

cf :¼ inf Df ðρ k σÞ
s: t: hiðρ; σÞ≥ 0 i ¼ 1; . . . ; n

μσ ≤ ρ≤ λσ

σ; ρ 2 SðHÞ:

ð36Þ

Particularly, the estimates in (7) and (9) are straightforward to generalize.
We divide the convergence analysis of (7) and (9) into two parts,

namely the analysis of trþ½σs� ρ�, which becomes a central ingredient and
the convergence analysis itself then becomes the second part of this section.

Analysis of trþ½σs� ρ�
Our method for the relaxations in (7) and (9) is based on the following
observation in the f-divergence setting.Denotew(s): = f″(s)≥0 (recall that for
a convex, differentiable function the derivative is an increasing
function32,Thm. 1.4.3] and thus the second derivative is positive) and use the
terminology from Proposition 2 with const ðλÞ :¼ f ðλÞ þ ð1� λÞf 0ðλÞ,
then we have

Df ðρ k σÞ � const ðλÞ ¼ R λμwðsÞtrþ½σs� ρ� ds
¼ R λμwðsÞ sup

0≤ P ≤ I
tr Pðσs� ρÞ� �

ds:
ð37Þ

At this point, one may evaluate the supremum in P pointwise in s ∈ [μ, λ].
But since w(s) ≥ 0, it is valid for obtaining lower bounds to estimate the

supremumonce after integration. For this purpose choose a, b∈ [μ, λ] such
that μ ≤ a < b ≤ λ and estimate

R b
awðsÞ sup

0≤ P ≤ I
tr Pðσs� ρÞ� �

ds

≥ sup
0≤ P ≤ I

R b
awðsÞtr Pðσs� ρÞ� �

ds:
ð38Þ

Of course, this is in general a loose estimate, but its interpretation is that we
choose the best linear functional (via a single effect P) that lower bounds the
trace term at the level of the weighted integral, rather than approximating
the pointwise convex function s 7!trþ½σs� ρ� itself. Thus the supremum is
reinterpreted from a pointwise optimization to an optimization over inte-
grated values, while exploiting the structural properties of s 7!trþ½σs� ρ�
collected in the following Lemma 1.

Lemma 1. (Properties of Divergence) Let ρ; σ 2 SðHÞ be two quantum
states. Then gðsÞ :¼ trþ½σs� ρ� has the following properties
(a) g is convex for s 2 R and in particular continuous in (s, ρ, σ).
(b) g is monotonically increasing.
(c) trþ½σs� ρ� satisfies the data processing inequality, i.e. for every posi-

tive, trace-nonincreasing channel Φ we have

trþ½σs� ρ�≥ trþ½ΦðσÞs�ΦðρÞ� ρ; σ 2 SðHÞ: ð39Þ

(d) for all s 2 R we have s� 1≤ trþ½σs� ρ� ≤ s.

Proof. Supplementary Note 4.□
The idea of our technique is to use a grid t and apply (38) interval-wise.

Combining the facts that trþ½σs� ρ� is convex and monotonically
increasing, and that interchanging the integration and supremum yields
valuable lower bounds, suggests—at least heuristically—that even a small
number of grid points is sufficient to obtain non-trivial lower bounds
on (36).

Detailed convergence analysis
From Figure 3 it is geometrically evident that the optimised lower bound in
Proposition 1 has an error no greater than that of the upper bound: by
convexity, the mirrored straight line g″ is a feasible supporting line (see the
discussion below for a precise definition of supporting line) for the lower
bound in (7), and thus we obtain at least the same error dependence as the
convex interpolation in the upper bound.Without loss of generality, and in
order to focus the convergence analysis on the upper bound, in the fol-
lowing, we formalize this geometric observation using the properties of
convex functions.

For s 2 R let

gðsÞ :¼ trþ½σs� ρ�; wðsÞ :¼ f 00ðsÞ≥ 0; f ð1Þ ¼ 0; ð40Þ

and fix an interval [a, b] ⊆ [μ, λ]. By Lemma 1(a), g is convex.
Recall the subdifferential of g at s0:

∂gðs0Þ :¼ fm 2 R : gðsÞ≥ gðs0Þ þmðs� s0Þ for all s 2 Rg: ð41Þ

Fig. 3 | The convergence analysis.Upper and lower bound of a convex function g(s).
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For anym ∈ ∂g(s0) the affine map

Ts0;m
ðsÞ :¼ gðs0Þ þmðs� s0Þ ð42Þ

is a supporting line of g at s0 (so Ts0 ;m
≤ g onR and Ts0 ;m

ðs0Þ ¼ gðs0Þ). The
subdifferential mapping is monotone (see e.g.32,Thm. 4.3.12]): if s1 < s2, m1 ∈
∂g(s1) and m2 ∈ ∂g(s2), then

0≤ ðm2 �m1Þðs2 � s1Þ ) m1 ≤m2: ð43Þ

Recall the notion of left and right derivatives, denoted as g 0þð�Þ; g 0�ð�Þ,
for convex functions from e.g.32,Thm. 1.4.2] and define the secant of g over [a, b]
by

Sa;bðsÞ :¼ gðaÞ þma;bðs� aÞ;
ma;b :¼ gðbÞ�gðaÞ

b�a 2 g 0þðaÞ; g 0�ðbÞ
� �

:
ð44Þ

By convexity and the generalizedmean-value theorem for convex functions
(see e.g.32,Chap. 2,Ex. 2]), there exists s⋆ ∈ [a, b] with ma,b ∈ ∂g(s⋆). Hence the
particular supporting line we use is simply

Ts?;ma;b
ðsÞ ¼ gðs?Þ þma;bðs� s?Þ≤ gðsÞ for all s; ð45Þ

and Ts?;ma;b
ðs?Þ ¼ gðs?Þ.

Moreover, since g is the pointwise supremum of the affine forms
s 7!tr½Pðσs� ρÞ� over effectsP (0≤P≤I), the supremumat s⋆ is attained by at
least one effect P⋆ (see Danskin's theorem). For such a P⋆ we have

gðs?Þ ¼ tr P?ðσs? � ρÞ� �
and ma;b ¼ tr½P?σ�; ð46Þ

so, equivalently, Ts?;ma;b
ðsÞ ¼ tr P?ðσs� ρÞ� �

.
As aminor result,we require anadaptederror analysis for the trapezoid

method for the special case of a convex function. This result is essentially the
classical error estimate for the trapezoid rule, as found in standard textbooks
on numerical analysis (see, e.g.,33,Eq. 5.1.7]), but stated without the assumption
of differentiability.

Lemma 2. Let g be convex on [μ, λ] and let μ = t1 < t2 < ⋯ < tr = λ be a
partition. Denote on each [tk, tk+1] the secant from (44) as

SkðtÞ � Stk;tkþ1
ðtÞ: ð47Þ

Then the trapezoidal–rule error satisfies

Xr�1

k¼1

Z tkþ1

tk

SkðtÞ dt �
Z λ

μ
gðtÞ dt ≤ ð48Þ

Xr�1

k¼1

ðtkþ1 � tkÞ2
8

g 0�ðtkþ1Þ � g 0þðtkÞ
� �

: ð49Þ

Proof. This is [34, Cor. 3].□

Lemma 2 enables us to prove the following technical lemma.

Lemma3. For every convex function g and any a< b, the secant Sa,b of g on
[a, b] and any supporting line Ta,b of g at some s⋆ ∈ [a, b] and w≥0 and
La;b :¼ sups2½a;b�wðsÞ, we have

Z b

a
wðsÞ Sa;bðsÞ � gðsÞ� �

ds≤
La;b
4

ðb� aÞ2 g 0�ðbÞ � g 0þðaÞ
� �

; ð50Þ

Z b

a
wðsÞ gðsÞ � Ta;bðsÞ

� �
ds≤

La;b
4

ðb� aÞ2 g 0�ðbÞ � g 0þðaÞ
� �

: ð51Þ

Proof. See Supplementary Note 6.□
Thus, on each grid interval [tk, tk+1]:

(i) the upper error from convex interpolation by secants, and
(ii) the lower error from the best affine minorant realized by a single

effect P
are both bounded by the common quantity in (50)-(51). Thus, using the
coarse weights Lk :¼ sup

s2½tk ;tkþ1�
wðsÞ, the optimized lower bound is at least as

good as the upper bound.

Moreover, Eq. (48) has the interesting consequence that for convex g,
g 0þ and g 0� exist everywhere and are nondecreasing, hence

Xr�1

k¼1

g 0�ðtkþ1Þ � g 0þðtkÞ
� �

≤ g 0�ðtrÞ � g 0þðt1Þ; ð52Þ

by the observation that �ðg 0þðtkÞ � g 0�ðtkÞÞ≤ 0.

Proposition 3. (Convergence for f-divergences)
Let ρ; σ 2 SðHÞ with μσ ≤ ρ ≤ λσ. Approximate a f-divergence via the

convex interpolation upper bound on a grid t = (μ = t1 < t2 <⋯ < tr = λ):

Xr�1

k¼1

Z tkþ1

tk

wðsÞgðsÞds ≤
Xr�1

k¼1

Z tkþ1

tk

wðsÞSkðsÞds; ð53Þ

with gðsÞ ¼ trþ½σs� ρ� and Sk the secant of g on [tk, tk+1]. Fix a target
accuracy ε > 0 and choose the grid recursively by

tk ¼
μ k ¼ 1

tk�1 þ
ffiffiffiffiffiffiffi
4ε
Lk�1

q
k≥ 2

(
ð54Þ

with Lk�1 :¼ sup
s2½tk�1 ;tk�

wðsÞ. Then the total interpolation error obeys

Xr�1

k¼1

Z tkþ1

tk

wðsÞ SkðsÞ � gðsÞ� �
ds ≤ ε; ð55Þ

and the number of grid points satisfies

r ¼ O 1ffiffi
ε

p
Z λ

μ

ffiffiffiffiffiffiffiffiffi
f 00ðsÞ

q
ds

 !
: ð56Þ

Proof. On each interval we have (see Lemma 2)

R tkþ1
tk

wðsÞ SkðsÞ � gðsÞ� �
ds

≤ Lk
4 ðtkþ1 � tkÞ2 g 0�ðtkþ1Þ � g 0þðtkÞ

� �
:

ð57Þ

Choose the grid by (54), so that ðtkþ1 � tkÞ2 ≤ 4ε=Lk; hence the k-th interval
contributes at most ε g 0�ðtkþ1Þ � g 0þðtkÞ

� �
. Summing over k and using (52)

with Lemma 1 (d), which yields that (52) can be estimated with 1 for
gðsÞ ¼ trþ½σs� ρ�, because tr½σ� ¼ 1, implies

Pr�1

k¼1

R tkþ1

tk
wðsÞ Sk � g

� �
ds≤ ε

Pr�1

k¼1
g 0�ðtkþ1Þ � g 0þðtkÞ
� �

≤ ε:

ð58Þ

For the grid size, from (54) we have tk � tk�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ε=Lk�1

p
. By con-

tinuity of w, there exists sk−1 ∈ [tk−1, tk] with Lk−1 = w(sk−1), hence

1 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðsk�1Þ

p
ffiffiffiffiffi
4ε

p ðtk � tk�1Þ: ð59Þ
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Summing from k = 2 to r and passing to the Riemann sum limit gives

r � 1≤ 1ffiffiffi
4ε

p
Pr�1

k¼1

ffiffiffiffiffiffiffiffiffiffi
wðskÞ

p
ðtkþ1 � tkÞ

≤ z 1ffiffiffi
4ε

p
R λ
μ

ffiffiffiffiffiffiffiffi
wðsÞ

p
ds;

ð60Þ

which proves the stated bound on r.□
Recalling now the general optimization problem in the language of f-

divergences (36) yields that we can approximate the value cf by the upper
bounds cu(t), because the bounds guarantee uniform convergence as stated
in the next corollary.

Corollary 3. Let cf be the value of (1). For a grid t = (μ = t1 <⋯ < tr = λ)
define

U tðρ; σÞ :¼ Pr�1

k¼1

R tkþ1
tk

wðsÞ SkðsÞ ds

þ f ðλÞ þ ð1� λÞf 0ðλÞ;
ð61Þ

and the corresponding relaxation value

cuðtÞ ¼
inf U tðρ; σÞ : hiðρ; σÞ≥ 0; μσ ≤ ρ≤ λσ; ρ; σ 2 SðHÞ� 


:
ð62Þ

Similarly, define with (42)

V tðρ; σÞ :¼ Pr�1

k¼1

R tkþ1
tk

wðsÞTtk ;tkþ1
ðsÞ ds

þ f ðλÞ þ ð1� λÞf 0ðλÞ;
ð63Þ

and the corresponding relaxation value

clðtÞ ¼
inf V tðρ; σÞ : hiðρ; σÞ≥ 0; μσ ≤ ρ≤ λσ; ρ; σ 2 SðHÞ� 


:
ð64Þ

If t is chosen by (54) for a target accuracy ε > 0, then

cf � ε≤ clðtÞ≤ cf ≤ cuðtÞ ≤ cf þ ε ð65Þ

and

r ¼ O 1ffiffi
ε

p
Z λ

μ

ffiffiffiffiffiffiffiffiffi
f 00ðsÞ

q
ds

 !
: ð66Þ

In particular, for any refining sequence of grids with ε↓0we have cl(t)↑cf and
cu(t)↓cf (monotone value convergence).

Proof. ByPropositionProposition3andLemma3, for every feasible pair (ρ,
σ),

Df ðρ k σÞ � ε≤V tðρ; σÞ≤Df ðρ k σÞ
≤U tðρ; σÞ ≤ Df ðρ k σÞ þ ε:

ð67Þ

Taking the infimum over the common feasible set yields (similarly for the
lower bound)

cf ¼ inf Df ≤ inf U t ¼ cuðtÞ ≤ inf ðDf þ εÞ ¼ cf þ ε: ð68Þ

The stated bound on r follows directly from Proposition Proposition 3.□

Data availability
Data is provided within themanuscript or supplementary information files.
An implementation for all use cases is accessible upon request.
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