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Zero-energy pinning from interactions in Majorana nanowires
Fernando Domínguez1, Jorge Cayao3, Pablo San-Jose3, Ramón Aguado3, Alfredo Levy Yeyati1 and Elsa Prada2

Majorana zero modes at the boundaries of topological superconductors are charge-neutral, an equal superposition of electrons and
holes. This ideal situation is, however, hard to achieve in physical implementations, such as proximitized semiconducting nanowires
of realistic length. In such systems Majorana overlaps are unavoidable and lead to their hybridization into charged Bogoliubov
quasiparticles of finite energy, which, unlike true zero modes, are affected by electronic interactions. We here demonstrate that
these interactions, particularly with bound charges in the dielectric surroundings, drastically change the non-interacting paradigm.
Remarkably, interactions may completely suppress Majorana hybridization around parity crossings, where the total charge in the
nanowire changes. This effect, dubbed zero-energy pinning, stabilizes Majoranas back to zero energy and charge, and leads to
electronically incompressible parameter regions wherein Majoranas remain insensitive to local perturbations, despite their overlap.
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INTRODUCTION
Since the early experimental efforts toward the generation and
characterization of Majorana zero modes (MZMs) in nanowires,1–5

remarkable progress has been accomplished.6–8 Cleaner devices,
with longer mean free paths and much more robust-induced
superconductivity, are now available. Samples of this quality are
expected to develop an unambiguous, topologically non-trivial
superconducting phase hosting MZMs.9 Owing to their non-
Abelian statistics, braiding operations of MZMs are topologically
protected and hold promise as the basis of fault-tolerant quantum
computers.10, 11

Majoranas are topologically protected against local fluctuations
in the environment inasmuch as they do not overlap spatially.
However, deviations from this stringent condition always occur in
realistic samples of finite length L, see Fig. 1a. In this case, the two
MZMs at opposite ends of the wire overlap and become a charged
Bogoliubov quasiparticle of finite energy εM and charge QM < e
(assuming a macroscopic and/or grounded parent superconduc-
tor; the case of a floating superconductor with charging energy
has been studied in, e.g., refs 12, 13). While these deviations are
expected to be exponentially small, their importance of course
depends on the spatial extension of the Majoranas ξM as
compared to L (or the wire’s mean free path, whichever is
smaller), since both εM and QM decrease as � e�L=ξM .
Even in the longer L ~ 1 μm nanowires experimentally studied

so far, deviations from true MZM behavior are not negligible, since
typically ξM is in the hundreds of nanometers. This theoretical
expectation is in stark contrast with many experiments reporting
surprisingly robust zero-bias anomalies (see, e.g., ref. 8). Within a
non-interacting picture,14, 15 the only solution to this conflict is to
assume values of the spin-orbit coupling much larger than the
ones estimated for InAs or InSb NWs.16 Apart from the exponential
suppression, εM is expected to cross zero energy (parity crossings
where QM changes) in an oscillatory fashion17–19 as a function of

magnetic field, chemical potential, or length. Both the exponential
suppression and the oscillatory behavior of εM have recently been
demonstrated experimentally.7 However, these experiments
report on unexplained features in rather short wires with L ~ ξM
in the form of parity crossings that extend across a finite range of
magnetic field (instead of point-like zero-energy crossings).
In this work, we present an alternative to the non-interacting

view that provides an explanation to the above unresolved issues.
By considering electronic interactions with the electrostatic
environment,20 we demonstrate that zero-energy crossings
originating from the oscillatory splitting of overlapping MZMs
are spontaneously stabilized into extended regions in parameter
space wherein Majoranas become pinned to zero energy (Fig. 1c).
Our results show that the absence of Majorana splittings, which is
commonly identified with non-overlapping Majoranas with
topological protection, can occur despite the Majorana overlap
in nanowires of finite length.
The interactions involved in Majorana zero-energy pinning are

not intrinsic to the wire,18, 21–28 but rather extrinsic, between
electrons that enter the wire and bound charges in the dielectric
environment that arise in response. Our results suggest that such
electronic interactions provide a powerful mechanism to stabilize
Majorana-based qubits in realistic nanowires, and may account for
the hitherto unexplained experimental features.7, 8

RESULTS
The central idea behind the zero-energy pinning phenomenon is
the emergence of repulsive self-interactions through image
charges in the dielectric medium. Before presenting full micro-
scopic calculations, we first illustrate the mechanism with a toy
example. Assume a quantum system with a single-particle state ψM

that carries an electric charge QM. In the absence of interactions its
energy is εM. The Hamiltonian, including a “self-interaction” term,
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takes the form H ¼ εMψ
y
MψM þ VbQMhψy

MψMiψy
MψM, with eVb an

energy scale. Thus, in the presence of interactions, the effective
level ~εM is the self-consistent solution to ~εM ¼ εM þ VbQMf ð~εMÞ,
where f ðεÞ ¼ 1=ðeε=kBT þ 1Þ is the Fermi function. As εM is
externally tuned by a parameter VZ to cross the Fermi energy
(defined as zero), the resulting electron and hole energies �~εM
with interactions (solid curves, Vb > 0 [repulsive]) and without
(dashed, Vb = 0) are of the form shown in Fig. 1c for T→0. We see
that the Vb = 0 parity crossing at εM(VZ) = 0 transforms, for
repulsive Vb > 0, into a finite plateau (in red), wherein ~εM becomes
pinned to zero within a finite range of VZ, 0 < εM(VZ) < VbQM. The
pinning plateau is electronically incompressible, and is the result
of thermal equilibrium combined with the self-interaction energy
cost of occupying state ψM.
The above toy model for pinning presents a fundamental

question when considering Majoranas in the role of the ψM state:
how do physical self-interactions arise? It is clear that self-
interactions of the form hψy

MψMiψy
MψM are unphysical in an isolated

quantum system. In a generic basis, a direct (intrinsic)
charge–charge interaction of the form HC ¼ P

ijψ
y
i ψiV ijψ

y
j ψj

produces self-interaction of eigenstates when treated at the
Hartree level, but this is canceled by the Fock correction.29–31

However, if the electronic system is immersed in a dielectric
medium, a bound charge density ρb(r) may appear, in response to
electric charges ρ̂ðrÞ in the system, at interfaces where the
dielectric constant ε(r) changes, see Fig. 1b. These ρb(r) generate an
electrostatic potential ϕ(r) that acts back onto ρ̂ðrÞ, such that the
total potential ϕtot(r) = ϕsys(r) + ϕ(r) satisfies the inhomogeneous
Poisson equation = � ½εðrÞ=ϕtotðrÞ� ¼ �4πhρ̂ðrÞi, and ϕsys(r) is the
potential for an infinite system with a uniform ε (without bound
charges). The resulting (extrinsic) interaction between the system’s
ρ̂ðrÞ and bound charges ρb(r′) then takes the form of a Hartee-like
physical self-interaction,

R
ϕðrÞρ̂ðrÞ ¼ R

Vbðr0; rÞhρ̂ðr0Þiρ̂ðrÞ, where
Vb depends on the actual device geometry. Note that no Fock-like
correction should be included here, since this is a purely classical
effect: bound charges are located outside the nanowire and can
be distinguished from the free charges. Thus, an effective
Hamiltonian similar to the toy model above becomes relevant.
Interaction with bound charges should be expected to produce
zero-energy pinning of a quantum state as long as they are
repulsive (i.e., if ρb and ρ have the same sign). The latter condition
is satisfied if the dielectric environment has a smaller dielectric
constant than the nanowire, the typical situation in most

experiments (e.g., InSb or InAs nanowires on a SiO2 substrate,
see the “Discussion” section for further details). Such self-
interactions are well known in the context of molecular
junctions,32, 33 but, to our knowledge, their implications have
not been explored in the context of Majorana wires.
A second relevant question concerns the charge QM associated

to Majoranas. MZMs in infinite superconducting systems are
charge-neutral, an equal superposition of electrons and holes. As
such, it might come as a surprise that electronic interactions,
which are sensitive to electronic charge, would have an effect on
Majoranas. It was demonstrated,34, 35 however, that the state
resulting from the hybridization of two overlapping MZMs, each
located at an end of a nanowire of length L, is not charge-neutral,
but rather defines a charged Bogoliubov quasiparticle of finite
energy εM and charge QM < e, with typical εM and QM decreasing
exponentially as � e�L=ξM . We now analyze this phenomenology in
detail within a non-interacting model14, 15 of a proximitized InSb
semiconducting nanowire, oriented along the x-direction, of
length L = 1 μm and subjected to a parallel Zeeman field VZ =
gμBB/2 (g is the g-factor, μB is the Bohr magneton, and B is the
magnetic field). The continuum Hamiltonian without supercon-
ductivity reads H0 ¼ �h2k2=2mþ ασyk þ VZσx , where �hk is the
momentum along the wire, σ is the spin, the InSb spin-orbit
coupling is α = 0.2 eV Å, and the effective mass is m = 0.015me. We
include the induced superconducting pairing Δ = 0.5 meV in the
second-quantized Nambu representation,

H ¼ 1
2

Z
dx ðΨyðxÞ;ΨðxÞÞ H0 � μ � iσyΔ

�

iσyΔ μ� H�
0

� �
ΨðxÞ
ΨyðxÞ

� �
;

where Ψ(x) = (Ψ↑(x), Ψ↓(x)) is the electron field, so that the charge
density reads ρ̂ðxÞ ¼ e

P
σΨ

y
σðxÞΨσðxÞ.

Figure 2a and b show the total charge in the nanowire Qtot ¼R L
0dxhρ̂ðxÞi at zero temperature and the low-energy spectrum as a

function of VZ, respectively. Any given Bogoliubov quasiparticle
eigenstate

ψn ¼
Z L

0
dx½unðxÞΨðxÞ þ vnðxÞΨyðxÞ� ð1Þ

in the Nambu spectrum with energy εn > 0 contributes to
Qtot = ∑n Qn with a charge

Qn ¼ e
Z L

0
dxff ðεnÞjunðxÞj2 þ ½1� f ðεnÞ�jvnðxÞj2g; ð2Þ

Fig. 1 a Proximitized Rashba nanowire of length L with gate-tunable Fermi energy μ and under a parallel Zeeman field VZ. b Bound charges ρb
arise in the dielectric surroundings, which interact with free charges ρ in the nanowire. c Sketch of the interaction-induced pinning, discussed
in this work, of Majoranas at zero energy around parity crossings. This pinning provides a natural explanation to hitherto unresolved
experimental features in Majorana wires (see, e. g., Fig. 3c in ref. 7)
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where f(εn) is its occupation probability. For VZ>Vc
Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ μ2

p

the nanowire becomes topologically non-trivial and, for L→∞,
develops MZMs at each end γL;R ¼ γyL;R with uL;RðxÞ ¼ v�L;RðxÞ.
These states have zero charge, since changing their occupation
does not change Qtot. For finite L, the MZMs overlap and are no
longer eigenstates, but hybridize into two special n = ±1 Nambu
eigenstates ψ1 = ψM = (γL + iγR)/2 and ψ�1 ¼ ψy

M ¼ ðγL � iγRÞ=2,
whose energies ±εM oscillate around zero as a function of VZ, μ,
or L. Each time εM crosses zero in Fig. 2b (parity crossing), the zero-
temperature occupation of the ψM quasiparticle at equilibrium
changes abruptly, and the total charge of the wire experiences a
non-quantized jump QM = |Q1 −Q−1|, as shown in Fig. 2a. Thus, the
charge QM of the non-local Majorana fermion ψM is non-zero
despite it being a superposition of the two neutral MZMs, and is
distributed almost uniformly along the wire. It reads

QM ¼ e
4

Z L

0
dx½ju�LðxÞ þ iu�RðxÞj2 � ju�LðxÞ � iu�RðxÞj2� ¼

e
Z L

0
dxjuLðxÞuRðxÞj;

ð3Þ

i.e., QM is the spatial overlap of the two Majoranas (here we have
chosen uL real and uR imaginary without loss of generality). As we
have discussed in the “Introduction”, the spatial extension of MZMs
ξM is typically larger than the spin-orbit length LSO ¼ �h2=αm,36

which is seldom smaller than a few hundred nanometers (LSO =
254 nm here). In the weak SO regime, which corresponds to
typical SO lengths for InSb nanowires of LSO ≈ 250 nm (SO coupling
α∼0.2 eVÅ), the Majorana localization length is ξM∼LSO, and
furthermore increases with Zeeman field.37 The condition L≫ξM
cannot be fulfilled as the Zeeman field exceeds the critical value
above the topological transition. If, on the other hand, we assume
stronger SO couplings, ξM saturates to ξM∼α/Δ,16, 36 which, for
typical values of Δ, is still much larger than the SO length. For
example, assuming a SO coupling ten times larger than before,
α∼2 eVÅ, and a proximity gap Δ = 0.5meV (of the order of the

experimental one in ref. 8), the Majorana localization length is
ξM∼400 nm. The L≫ξM limit would therefore need much longer
wires than the ones studied so far. Thus, even in rather long L ~ 1
μm non-interacting topological nanowires, the overlap of the
Majoranas is sizeable, and results in large QM ~ e charge jumps (see
Fig. 2a).
Since parity-crossings introduce a charge QM into the system,

they should be expected to give rise, in a repulsive dielectric
environment, to bound charges of the same sign and hence to
repulsive self-interactions and to zero-energy pinning of the
corresponding MZMs. To demonstrate this effect we now add
interactions to the above InSb Rashba nanowire model. Following
the preceding discussion, we include only interactions with bound
charges in the dielectric medium, described at a self-consistent
Poisson mean field level. (The addition of intrinsic interactions do
not change the essential results, and are analyzed in the Supple-
mentary Information.) We replace H0 in the non-interacting
nanowire Hamiltonian H above with H0 + ϕ(x), where the self-
consistent potential created by bound charges is written as

ϕðxÞ ¼
Z

dx0 Vbðx; x0Þhρ̂ðx0Þi: ð4Þ

We assume a simple geometry and a Coulomb interaction with
image charges of the form

Vbðx; x0Þ � ðε� ε0Þ=ðεþ ε0Þ=ð4πε0εðð2RÞ2 þ jx � x0j2Þ1=2Þ;
where ε = 17.7 is the InSb dielectric constant, ε′ = 3.9 is that of a SiO2

substrate, and R = 50 nm is the nanowire radius (see Supplementary
Information for a derivation). The results are qualitatively indepen-
dent of the precise form of Vb, as long as it is repulsive (ε > ε′). We
reabsorb the VZ = 0 value of the potential ϕ(L/2) at the center of the
nanowire into μ, so that the actual Fermi energy at zero magnetic
field is equal to μ with and without interactions.
The potential ϕ(x) is solved numerically by self-consistent

iteration (see the Supplementary Information for analytical results).

Fig. 2 a Total charge Qtot in a non-interacting topological nanowire vs. VZ. For VZ> VZ
c, Qtot increases in jumps of magnitude QM< e at parity

crossings, shown in red in b. c, d Charge jumps become more (less) quantized as μ (L) increases
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The solution for μ = 0 is shown in Fig. 3a as a function of VZ, while ϕ
(L/2) evaluated at the center of the nanowire is shown in Fig. 3b.
The VZ-dependent ϕ(L/2) transforms the simple non-interacting
Fermi energy εF = μ + VZ into a non-trivial εeffF ¼ μþ VZ � ϕðL=2Þ at
the center of the nanowire, changing also the VZ-dependence of
the spectrum as a result. Panels (c) and (d) show the corresponding
low-energy spectrum without and with interactions, respectively.
For VZ > VZ

c = 0.5meV, parity crossings emerge in the non-
interacting spectrum that inject a finite charge QM into the
system (Fig. 2a). At each of these points, the interactions with
bound charges conspire to suppress the charging, giving rise to
finite intervals of VZ with pinned zero-energy modes in place
of parity crossings (panel (d)). These are the result of a rapid
increase in the overall self-consistent ϕ(x) within each interval
(red curves in panels (a, b)), which screens the Zeeman field in
εeffF almost completely, making the system incompressible
@εeffF =@VZ � 0. This intermittent incompressibility is visible in Fig. 3b
as a slope ∂ϕ(L/2)/∂VZ ≈ 1. The electronic compressibility against
variations of VZ may be quantified by the effective g-factor
geff ¼ g@εeffF =@VZ ¼ g½1� @ϕðL=2Þ=@VZ �, in blue. Deviations from
exact zero-energy pinning and perfect incompressibility geff = 0
may arise from finite temperature, T = 10mK in these simulations,
or finite decay rate into the reservoirs, neglected here.
In the above simulation the chemical potential was taken as

μ = 0. A similar phenomenology persist also at different electronic
densities. Figure 4 shows the incompressible pinned regions
(panels (a, b), in red) and total charge Qtot in the nanowire (panels

(c, d)) across the full μ − VZ parameter space, without and with
interactions. When interactions are switched on, zero-measure
parity crossings grow into extended areas of pinned MZMs, always
separated by areas with finite MZM hybridization j~εMj>0 (white).
Along a given line within each incompressible area, the charge in
the nanowire jumps by a finite, almost constant QM.
We note that, apart from stabilizing MZMs, interactions induce a

change around μ = 0 in the slope s of incompressible regions in
the μ − VZ plane, with s = −1 for μ < 0 like in the non-interacting
case, and −1 < s < 0 for μ > 0. The incompressible regions are
contours of constant εeffF ,36 so that s = −gκeff/geff is a ratio between
system’s μ-compressibility κeff ¼ @εeffF =@μ, and the VZ -compressi-
bility geff=g ¼ @εeffF =@VZ discussed above. While both are equal for
μ < 0, κeff becomes suppressed for μ > 0, so that s ≈ −1/(1 + (v/μ)1/2)
for a constant v∝Vb2 related to the interaction strength
(see Supplementary Information).

DISCUSSION
We have discussed a generic mechanism whereby electrostatic
interactions with the dielectric surroundings stabilize zero-energy
modes in a finite length Majorana nanowire. This zero-energy
pinning effect is the result, within a self-consistent mean field, of a
repulsive self-interaction of nanowire electrons that arises when
its dielectric environment has a smaller dielectric constant than
the nanowire itself. In a more general situation in which the
charge screening by the normal contacts and the parent

Fig. 3 a Screening potential ϕ(x) along a proximitized InSb nanowire of radius R= 50 nm and length L= 1 μm for increasing Zeeman field VZ.
We take Δ= 0.5 meV and μ= 0. Red (gray) curves correspond to an incompresible (compressible) regime. b Increase of the potential at the
center of the wire ϕ(L/2) with VZ, and the corresponding effective g-factor geff= g[1−∂ϕ(L/2)/∂VZ] (blue line). Intervals in red correspond to
almost perfect screening of VZ (geff≈ 0). c, d Non-interacting and interacting spectra of the nanowire. Note that perfect Zeeman screening by
interactions is correlated with zero-energy pinnings of Majorana bound states (extended zero modes in red). An equivalent simulation to d
including also intrinsic interactions in the nanowire is shown in Supplementary Material Fig. 1
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superconductor is also considered (a situation not presented here
for simplicity, but with qualitatively similar results), the relevant
quantity becomes the difference between the total electrostatic
energy of a charge inside and outside the proximitized nanowire.
This energy difference becomes positive, and hence self-
interactions are repulsive, if charge screening is reduced upon
entering the proximitized region. Such is the natural situation for
nanowires with partial superconducting shells but full metallic
covering at the contacts. The addition of charge into the nanowire
calculated self-consistently then leads to pinning. Related
dielectric-induced changes in addition energies have been
discussed in molecular single electron transistors.32 Zero-energy
pinning cannot be captured by solving the electrostatic problem
for infinite nanowires,20 since it is necessary to take into account
the electrostatic energy cost of adding charge at each parity
crossing. Pinning, moreover, does not require a single
channel regime. It also operates for any odd number of open
channels,38–40 as the physics of parity crossings is similar.
Within the stabilized regions in parameter space with pinned

Majoranas, the system becomes electronically incompressible (a
related phenomenon of global incompressibility, albeit uncon-
nected to zero-energy pinning and parity crossings, was discussed
in Majorana nanowires in the limit of strong intrinsic interac-
tions18). As a result, potential fluctuations δμ from the environ-
ment or fluctuations δVZ in the applied Zeeman field become
screened out by interactions. This should remain true even for
spatially non-uniform perturbations. As a result, the pinning effect
could potentially be exploited to protect realistic Majorana-based
qubits against environmental noise. We anticipate that, by

carefully engineering the dielectric surroundings of finite-length
Majorana nanowires, one could exploit the electronic incompres-
sibility of pinned regions to replace, at least partially, the
topological protection of MZMs against decoherence, which is
lost by their overlap. In this respect it is important to emphasize
that pinned MZMs still overlap spatially, but become locked into
degenerate parity eigenstates, regardless of any local perturba-
tion, as long as thermal equilibrium is preserved. We should stress
that, despite the common misconception in large part of the
literature that identifies robust zero Majorana splitting with
topological protection, it is non-locality what ultimately renders
fermionic parity qubits immune to local noise. While there is a
strong resemblance, the resilience to arbitrary perturbations
discussed in this work is different from topological protection.
The implications of pinning for the decoherence and relaxation
times of parity-conserving Majorana qubits, such as, e.g., the |00〉
and |11〉 even-parity states of a four-Majorana setup, are non-
trivial and should be the subject of future work.
The zero-energy pinning mechanism described in this work is

generic, and is the result of the electrostatic energy cost from the
interaction of the finite charge QM added to the nanowire at parity
crossings and image charges in the dielectric environment. Given
the generality of the mechanism, we speculate that the ideas
discussed here are also relevant in other contexts, including parity
crossings of Shiba states in non-topological superconductors.

METHODS
All the numerical results were computed within a self-consistent mean-
field treatment of interactions in a tight-binding model for the

Fig. 4 Topological phase diagram of a non-interacting (a, c) and interacting (b, d), finite-length nanowire, see Fig. 3 for parameters. The dashed
line corresponds to the non-interacting topological transition VZ

c= (Δ2 + μ2)1/2. Red areas in a, b represent zero-energy modes (with energy
below 10 μeV at T= 10mK), which correspond to narrow parity crossings from hybridized MZMs in a, and extended incompressible regions of
MZMs pinned at zero energy in b. The total charge in the nanowire, panels c, d, increases by QM jumps at each zero-energy crossing
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semiconducting nanowire. We used the MathQ framework41 on a spatial
discretization of the nanowire model H0 ¼ �h2k2=2mþ ασyk þ VZσx . The
lattice spacing used is 10 nm. The mean field self-consistency condition,
encoded in Eq. (4), is achieved by iteration with an adaptive update
coefficient. This is required at low temperatures to achieve convergence
around pinned regions.
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