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Computational framework chinook for angle-resolved
photoemission spectroscopy
Ryan P. Day1,2*, Berend Zwartsenberg 1,2, Ilya S. Elfimov1,2 and Andrea Damascelli 1,2*

We have developed the numerical software package chinook for the simulation of photoemission matrix elements. This
quantity encodes a depth of information regarding the orbital structure of the underlying wavefunctions from which
photoemission occurs. Extraction of this information is often nontrivial, owing to the influence of the experimental geometry
and photoelectron interference, precluding straightforward solutions. The chinook code has been designed to simulate and
predict the ARPES intensity measured for arbitrary experimental configuration, including photon-energy, polarization, and
spin-projection, as well as consideration of both surface-projected slab and bulk models. This framework then facilitates an
efficient interpretation of the ARPES, allowing for a deeper understanding of the electronic structure in addition to the design
of new experiments which leverage the matrix element effects towards the objective of selective photoemission from states of
particular interest.

npj Quantum Materials            (2019) 4:54 ; https://doi.org/10.1038/s41535-019-0194-8

INTRODUCTION
Angle-resolved photoemission spectroscopy (ARPES) and its
variants have developed in recent years to be established among
the pre-eminent experimental methods in solid-state physics. With
an intimate connection to the one-electron removal spectral
function, ARPES is unique among the suite of techniques available
to condensed matter physicists in its direct correspondence to the
electronic structure of crystalline materials, providing access to the
one electron removal spectral function within its native momen-
tum space.1–3

In the framework of Fermi’s Golden Rule, the photoemission
intensity is described as:

Iðk;ωÞ /
X
i;f

Af ;iðk;ωÞ ψfh jΔ̂ ψij i�� ��2; (1)

where ψfh jΔ̂ ψij i�� ��2 is the photoemission matrix element, and Af,i is
the one-electron removal spectral function, given by:

Af ; iðk;ωÞ ¼ ΨN�1
f

� ��ck ΨN
i

�� �
δðω� EN�1

f þ ENi Þ; (2)

which reflects the overlap between the initial N-particle many-
body wavefunction upon removal of an electron and the
ensemble of (N− 1)-particle final state wavefunctions, while
preserving energy conservation. Written as the imaginary part of
the retarded Green’s function, the spectral function becomes:

Aðk;ωÞ ¼ 1
π

�Σ00ðk;ωÞ
ðϵ0k � ω� Σ0ðk;ωÞÞ2 þ Σ00ðk;ωÞ2 : (3)

The spectral function is seen to carry details of both the
underlying bare dispersion associated with the electronic struc-
ture of the material ϵ0k , as well as correlations via the self energy
Σðk;ωÞ ¼ Σ0ðk;ωÞ þ iΣ00ðk;ωÞ. In the opposing limits of vanishing
and strong interactions, ARPES is described as an ideal probe of
the bandstructure and correlation effects respectively.
In practice, the photoemission can be strongly modulated by

the ψfh jΔ̂ ψij i�� ��2 term, altering the spectral intensity through the
dependence of the initial and final states on energy, momentum,

and band index. At worst, this suppresses all intensity from certain
bands, precluding their study by ARPES entirely. From a different
perspective however, this modulation can be viewed as an
additional experimental signature in the ARPES intensity which
encodes a description of the photoemitted electron’s wavefunc-
tion. This term can be simulated to allow for quantitative
descriptions and insights regarding the experimental signal. While
such an approach has been made at some level for a number of
ARPES experiments, this requires substantial effort in developing a
specific model for each study.4–9 The development of a standard
numerical framework would allow for a much larger set of
experiments to be analysed at this level, providing the opportu-
nity to understand and leverage the matrix element effects in a
broad class of materials. We have pursued this objective through
the development of an open source software package, chinook,
implemented in Python to enable a broad audience to perform
quick and easy simulation of photoemission-related phenomena,
thereby improving both the interpretation and analysis of
experimental data.
In the following, we will outline the primary workflow of our

numerical approach, and the various ways in which this package
can be applied to the study of the electronic structure of solids
via ARPES.

RESULTS
Matrix element effects
In the design of an ARPES experiment, a cursory understanding or
prediction of the matrix elements relevant to a given system can
dramatically improve one’s ability to study aspects of the
electronic structure of interest. Before proceeding to explicit
description of our software, it is instructive to consider a
motivating example, taken here to be the iron-based super-
conductor FeSe. In Fig. 1, we plot experimental data along the ΓM
direction taken with two, orthogonal linear polarizations of light at
hν= 37 eV. Near the Brillouin zone centre, three hole-bands
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disperse away from the Fermi level (c.f. Fig. 2). For light polarized
along the momentum axis in Fig. 1a, only a single state is
observed clearly, whereas the perpendicular polarization in Fig.
1b. illuminates this and several other states. The third hole band is
almost imperceptible, for any choice of polarization. These
observations can be explained through an understanding of the
orbital structure of the underlying electronic states, indicated by
the insets of Fig. 1, in combination with the orbital-mixing effects
of spin-orbit coupling (SOC), as will be discussed in more detail
below.10,11 Recent experiments designed with these effects in
mind have leveraged the dipole matrix elements to perform
targeted spin- and angle- resolved photoemission from states of
particular interest, extracting fundamental information pertaining
to a broad variety of orbital-related phenomena.11–16

In many cases, orbital symmetry can be extracted from the
polarization dependence alone. The information available from
these arguments is limited, in particular for high-orbital (l > 1)
states, where the dimension of the vector field provides
insufficient means to identify all orbitals uniquely. This is further
complicated in multi-atom bases, where now relative phases
between different sites can differ from symmetric combinations in
a momentum-dependent fashion. In these situations, the photo-
emission intensity pattern is found to depend sensitively on the
relative phases within the initial state wavefunction, producing so-
called photoelectron interference patterns. In this way however,
the matrix elements encode further information regarding the
initial state beyond orbital symmetry alone. These effects have
been seen in for example graphene7,17 and topological insula-
tors,8,9 demonstrating the full depth of information regarding the
initial state wavefunction which is contained in the ARPES matrix
element. To further leverage the information available from ARPES
experiments, it is advantageous to be able to simulate the full
ARPES experimental intensity, while maintaining physical trans-
parency. By preserving access to the relevant model parameters,
one can then establish a more fundamental, and conceptual
understanding of the electronic structure.

Model Hamiltonian
There are various levels at which the ARPES matrix element can be
modelled.1,4,6,18–20 While the most sophisticated approaches
account for the possibility of scattering processes subsequent to
the photoemission event such as those which make use of
Korringa-Kohn-Rostoker final states,21–23 we make two important
simplifying assumptions here. First, the final states are taken to be

free-electron plane waves:

ei
~k�~r

��� E
¼

X
l;m

il jlðkrÞYm
l ðθ;ϕÞYm�

l ðθk ;ϕkÞ: (4)

At high photon energies, the assumption of the plane wave final
state is particularly well justified, as the crystal potential can be
treated as a perturbation and sensitivity to the momentum
structure of the exact final states becomes negligible.3 The validity
of this assumption is ultimately material dependent, however
similar logic as that applied to the domain of suitability for the
Born approximation can be made: such an assumption is
reasonable when either the crystal potential Vo≪ ħ2/mea

2 or in
the high-energy limit, Vo/(ħ

2/mea
2)≪ ka, where a is the range of

the potential. At present it is possible within chinook to relax this
assumption only in the restricted sense of ref. 18, as one can
include phase shifts to the final state expansion. While beyond the
scope of chinook in its current form, it would be possible to write
the final states in the form of more sophisticated scattering final
states, where the radial and orbital components of the ket in Eq.
(4) are modified appropriately to reflect the presence of a finite
crystal potential. This can be done through modification of the
radial integrals Bl

0
b defined below.

Secondly, we work within a tight-binding framework wherein
the initial states can be described by localized atomic-like orbitals,
centred on the sites of the lattice basis. In materials where the spin
degree of freedom is relevant, the orbital basis can be doubled to
define a complete spinor basis, represented here by χ±. Formally,
the tight-binding basis set is expressed typically as:

ϕa ¼ Ran;lðrÞKa
l ðΩÞχ ± ; (5)

where a represents a basis index and n, l the principal and orbital
quantum numbers respectively. Ran;lðrÞ is a radial wavefunction,
Ka
l ðΩÞ a cubic harmonic, and χ± the spinor projection. Alternatives

such as distorted and rotated basis states can also be
accommodated, so long as a unitary transformation into the basis
of spherical harmonics can be made for the purpose of
photoemission calculations. While these simplifications are in

Fig. 1 Experimental ARPES on FeSe. Both panels display ARPES
intensity from valence states taken at hν= 37 eV and 120 K, directed
along the ΓM direction. Polarization is set to linear vertical (a) and
horizontal (b), allowing for photoemission from states of different
orbital character, as indicated by the insets. Adapted from ref. 11

with permission from the authors

Fig. 2 Tight-binding model of FeSe. Built using modified model
from ref. 60 for tetragonal FeSe. In (a) we plot the bandstructure
along a high symmetry path, with the colourscale indicating the
expectation value of h~L �~Si. The Fe-3d density of states is shown in
(b). In (c) we plot the crystal structure projected into 2D, with Fe in
red and the Se above (large) and below (small) in grey. In plane
hopping terms are indicated, in addition to the primitive unit cell.
The Fermi surface is plotted in (d)
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some cases unable to capture the full structure of the
experimental photoemission intensity, we trade this level of
universality for the substantial gains in transparency and physical
insight which can be extracted from this approach.
Regarding the definition of the tight-binding model, there are

various formalisms which are found in the literature, including
Slater-Koster,24 tab, and Wannier Hamiltonians: we have made an
effort to accommodate all possible variations without loss of
functionality. We require only that the Hamiltonian matrix
elements can be written as a Fourier series of bilinear terms in
the orbital Hilbert space:

Hab
o ð~kÞ ¼

X
f~rabg

tabe
i~k�~rab cyk;ack;b: (6)

In this expression rab denotes the full connecting vector between
basis states ϕa and ϕb, as opposed to the equivalent form where
one refers to the connecting lattice vector alone. In addition to
Ho(k), any other bilinear functions of momentum can also be
added to the full Hamiltonian at this stage, including spin-orbit
coupling, and orbital or spin order. Adherence to Bloch’s theorem
can be further relaxed in the context of the low-energy effective
models which describe a narrow region of momentum space: in
this scenario, a more general function of momentum which
satisfies the point-group symmetry can be employed.25

With the basis and Hamiltonian so defined, the eigenvalue
problem can be solved, and the initial state wavefunctions then

defined as a superposition of the basis states described by Eq. (5):

ψi ¼
X
b

ηbϕb: (7)

With this information, a full characterization of the model for a
specific material can be performed, followed by subsequent
simulation of ARPES matrix elements. This includes density of
states, bandstructure, 3D Fermi surface, orbital projections of the
eigenstates, as well as the expectation values of various operators
of interest, such as for example, 〈L ⋅ S〉 as in Fig. 2 for tetragonal
FeSe. By defining an N × N Hermitian matrix, the expectation value
of any observable operator can be computed in this way.

Computation of matrix elements
The workflow of chinook is sketched in Fig. 3. Once a satisfactory
material model is established, one can proceed to the simulation
of ARPES intensity maps. A suitable region of interest in
momentum and energy space must be defined, and the
eigenvalue problem is then solved over this domain.
We model the matrix elements of the dipole operator as:

Mαð~k;ωÞ / hei~k�~r jϵ̂ �~rjψα
i i; (8)

where we have made use of the commutation relations to express
the dipole operator in the position representation.
In explicit evaluation of the ARPES matrix element, we expand

both the initial and final states as prescribed by Eqs. (4) and (5),
which allows us to express Eq. (8) as:

Mαð~k;ωÞ / hei~k�~r jϵ̂ �~rjψα
i i

¼ P
b
cbαð~k;ωÞηb

Z
d3rei~k�~r�zb=2ξ ϵ̂ �~rRbðrÞYmb

lb
ðΩÞ

¼ P
b;l0

cbαηbY
m0
l0 ðΩkÞðiÞl

0
Z

drjl0 ðkrÞr3RbðrÞ

´
P
μ
ϵμ

Z
dΩYm

0
l0 ðΩÞYμ1ðΩÞYmb

lb
ðΩÞ:

(9)

This sum over integrals can be expressed in compact form as:

Mαð~k;ωÞ /
X

μ;b;l0;m

ϵμc
b
αð~k;ωÞηbYm

l0 ðΩkÞBl0bðkÞGb;μ
l0;m; (10)

where cbαð~k;ωÞ � ϕbjψα
i

� �
, and ϵμ the components of the

polarization vector. In the third line, we have absorbed an
extinction factor e�zb=2ξ into ηb, where ξ represents the mean-free
path of a photoemitted electron, and zb the spatial extent of the
basis orbital below the surface.8,26 The radial and angular integrals
are contained in the following terms, respectively:

Bl
0
bðkÞ ¼ ðiÞl0

Z
drjl0 ðkrÞr3RbðrÞ; (11)

and:

Gb;μ
l0;m0 ¼

Z
dΩYm

0
l0 ðΩÞYμ1ðΩÞYmb

lb
ðΩÞ; (12)

Here, Gb;μ
l0;m0 is equivalent to a small subset of Gaunt coefficients,

allowing for efficient and exact evaluation of this term.
Meanwhile, the radial integrals cannot necessarily be expressed

in an analytical form and must be computed numerically, as the
radial wavefunction is loosely constrained in most tight-binding
models.27 Whether a hydrogenic, Slater, or more complex object
should be employed to describe the radial wavefunction is left to
the discretion of the user, as the best choice is somewhat
dependent on the nature of the material and states of interest.
The user is given the opportunity to select from a variety of initial
state wavefunctions in addition to importing their own functions
or radial integrals at the start of the calculation. This could be the
Wannier function grid as generated by for example Wannier90.28

Fig. 3 chinook workflow. Essential steps are denoted by solid dark
lines, with dashed arrows indicating optional iterative methods.
Informed by experiment, DFT, or literature, the user defines a model
Hamiltonian, including lattice geometry, orbital basis, and kinetic
terms. This model can be characterized through consideration of the
(orbitally-projected) bandstructure, total and projected density of
states (DOS), Fermi surface, and the expectation value of other
relevant operators. The experimental configuration is then defined,
and the matrix element integrals can be computed. The resulting
intensity is plotted, and compared against experiment. The model
can be further refined, or the results exported for additional analysis
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We note that elsewhere it is common to take advantage of the
plane-wave final state to recast the matrix element as a
polarization modulated Fourier transform of the initial state.19,29

Specifically, one can write

MFT / hei~k�~r j∇̂ � ϵ̂jψii ¼ i~k � ϵ̂hei~k�~r jψii: (13)

MFT can be expanded as in Eq. (10), establishing some formal
equivalence to Eq. (8). However, one commonly observes
qualitative deviation from experiment within this description,
due to the form of the radial integrals Bl

0
b introduced above. In the

Fourier representation, these are written as:

Bl
0
bðkÞ ¼ ðiÞl

Z
drjlðkrÞr2RbðrÞ: (14)

One can contrast this with Eq. (11) which we employ in chinook.
It is made explicit in Eq. (14) that the Fourier representation of
the dipole operator imposes radial integrals which are
independent of final state angular momentum. The implications
for multi-orbital systems, and for those where l > 0, are
important as final state interference becomes relevant. This is
ultimately why for a plane-wave final state, the position, rather
than momentum representation of the dipole operator yields a
better description of experiment. We emphasize that although
the limited constraints of tight-binding imply that the integrals
Bl0b are to some extent parameters of the calculation, support for
distinct final state angular momentum cross-sections is
essential to the success of the position representation used
here. Furthermore, it offers a natural extension of our frame-
work to scattering-final states, wherein the commutation
relations required to establish Eq. (8) are more rigourously
justified (Further discussion of these approximations can be
found in the Supplementary Materials).
Returning to the calculations executed in chinook, the central

object of importance is the coherent matrix element factor:

Mαð~kÞ ¼
M#

μ¼�1 M#
μ¼0 M#

μ¼1

M"
μ¼�1 M"

μ¼0 M"
μ¼1

" #
α

ð~kÞ: (15)

Evaluation of this object proceeds following Eq. (9). Each column
corresponds to the projection of the polarization vector in the
basis of spherical harmonics, (i.e. μ≡ Δm= ±1, 0), and the rows
indicate the spinor projections. By retaining the matrix element in

this coherent form, the ARPES intensity for arbitrary polarization
and spin projection can be recalculated at run-time with minimal
computational overhead. For each band and k-point in the region
of interest, a spectral function as defined in Eq. (3) is added to the
total intensity map, with its amplitude multiplied by:

jMαj2 ¼ j
X
μ

ϵμM
#
α;μðkÞj2 þ j

X
μ

ϵμM
"
α;μðkÞj2: (16)

The photoemission intensity is then computed as described in
Eq. (1), with ψfh jΔ̂ ψij i�� ��2! jMαj2. Spin projection, polarization,
resolution, temperature and self-energy can all be updated with
little overhead at run-time. With ARPES intensity maps then
calculated for different experimental configurations, these results
can be exported for further analysis, or combined to define
quantities such as spin-polarization and circular/linear dichroism.
In this sense, the output of the standard chinook calculation is a
three-dimensional array of intensity in coordinates of momentum
and energy which can be explored and analyzed in the same way
as an experimental ARPES measurement.

DISCUSSION
Bulk electronic structure and orbital texture
Returning to the motivating case of the Fe-based superconductor
FeSe, we can implement the model characterized above in Fig. 2
and compare the simulated ARPES intensity against the low-
energy region of Fig. 1. As with the experiments, the calculations
were done at hν= 37 eV and T= 120 K. A Fermi-liquid type self-
energy has been applied to the spectral features, resulting in an
energy-dependent broadening of the photoemission linewidth. In
the present case, the tight-binding model has already been
renormalized to match the experimental spectra, such that the
dispersion is more appropriately defined as ϵ0k ¼ ϵ0k � Σ0ðk;ωÞ.
Consequently, the self-energy used in the ARPES simulation is
purely imaginary, Σð~k;ωÞ ¼ iΣ00ðωÞ ¼ �ið0:005þ 1:0ω2Þ, which is
plotted in Fig. 4e. As ARPES matrix-elements can confound the
evaluation of the spectral function and correlation effects in
experimental data,30–32 the ability to model both components in
the same environment can facilitate the disentanglement of these
two objects of interest.
The simulation in Fig. 4 captures the relative intensity ratio

between the three hole bands, with the heaviest (largest effective

Fig. 4 Calculated ARPES spectra for FeSe. Performed with hν= 37 eV, along ΓM direction. The balance of SOC and the crystal-field can be
observed with the orbital projections plotted in (c) for several points along the dispersion, as indicated by the cursors in (b). In (b, c),

polarization vectors are indicated by arrows, corresponding to s-polarized ϵ̂ ¼ ½0; 1; 0� in (b) and p-polarized ϵ̂ ¼
ffiffi
1
2

q
½�1; 0; 1� light in (c). The

sample is aligned with the Fe-Fe bond direction oriented along the Cartesian basis. In (d), calculated Az as from circularly polarized spin-ARPES
(CPS-ARPES) provides a more direct perspective on SOC, with an explicit connection to the h~L �~Si, projected along the ẑ axis. Finite linewidth
of the spectra in (b–d) reflect the convolution of experimental resolution ΔE= 10meV, Δk= 0.01 Å−1 and Im[Σ(ω)] plotted in (e)
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mass) band visible only through the SOC-induced hybridization
gaps near EB= 50 meV. This latter state, composed primarily of dxy
orbitals, has vanishing photoemission intensity along the normal
emission (limkjj!0) direction due to the selection rules associated
with its definition in terms of spherical harmonics Y ± 2

2 : all possible
final states have a node along the normal emission direction.
While conventional interpretation of the remaining states
assumes dxz/yz-like wavefunctions, SOC allows for finite intensity
from both states, as observed both experimentally and in the
simulation near k||= 0 Å−1. This orbital character mixing of the
initial states is supported by projection of the tight-binding
eigenstates onto the basis of spherical harmonics, as done at
select k-points in Fig. 4a using built-in diagnostic tools from
chinook.
A more direct measure of the influence of SOC can be achieved

through combining circularly polarized light with spin resolution
to gain explicit access to both spin and orbital degrees of freedom.
One can define the polarization asymmetry as:

Az ¼
ffiffiffiffiffiffiffiffi
I#þI"�

q
�

ffiffiffiffiffiffiffiffi
I"þI#�

q
ffiffiffiffiffiffiffiffi
I#þI"�

q
þ

ffiffiffiffiffiffiffiffi
I"þI#�

q ; (17)

where subscripts indicate the helicity of light polarization, and
superscripts the spin-projection of the photoelectrons. This
quantity is closely related to the projection of h~L �~Si along the
quantization axis of the experiment, allowing for a connection
between Figs. 2c and 4d to be made. This technique has been
applied to both ruthenates13,33 and Fe-based superconductors,11

and utilizes the dipole selection rules encoded within the matrix
element factor to provide the most direct measure of spin-orbital
entanglement in solid state.

Supercell impurity model
Consideration of a supercell model illustrates the information
encoded in the ARPES matrix element beyond orbital symmetry
alone. Regarding the electronic structure of periodic systems, one
can choose an arbitrarily large unit cell in exchange for a reduced
Brillouin zone and additional backfolded bands. By contrast,
impurities or other symmetry-breaking potentials (SBP) explicitly
require such an expanded unit cell. While one can numerically
perform an unfolding of these bands in an attempt to recover the
spectrum within the extended Brillouin zone,34 such an unfolding
is carried out naturally in the photoemission experiment. In the
absence of the SBP, Bloch’s theorem would impose that the
original band becomes a symmetric superposition over the
neighbouring lattice sites. The additional bands, which must be
orthogonal to the original state will destructively interfere in
evaluation of the ARPES matrix element, preventing observation
of many of the folded states. Ultimately, an SBP can mix these
states; when the SBP is an essential feature of the potential
landscape, as in graphene and the Fe-based superconductors,7,35

the folded bands can be observed with strong intensity over a
range of momenta. When the SBP is weak or disordered, intensity
from these folded bands vanishes away from the avoided
crossings.
To demonstrate these effects, we consider the artificial example

of a square lattice of Li 2s orbitals, into which we substitute some
number of Na 3s orbitals. Allowing for nearest neighbour hopping
alone, and imposing a ϵNa =−0.35 eV impurity potential for the
Na sites, we simulate the effect of local defects in this lattice and
the resulting ARPES spectra. Kinetic terms and onsite potentials
have been adapted from the phenomenological rules set out in
ref. 36. In an attempt to consider the impurity problem realistically,
we populate a 30 × 30 supercell of Li with various concentrations
of randomly distributed Na impurities. For each particular
distribution, the density of states is integrated to fix the Fermi-
level at half-filling, consistent with electron counting. We then

compute the photoemission intensity at hν= 21.2 eV over the ΓM
direction of the extended Brillouin zone. For clarity, we assume a
constant intrinsic linewidth of 10 meV along the entire dispersion.
Energy and momentum resolution are set to 10 meV and
0.005 Å−1. The results, plotted in Fig. 5c have been averaged over
80 such configurations, corresponding to a nominal doping of
Li0.9Na0.1. This can be compared against the pure Li-supercell in
Fig. 5b. The full spectrum of the latter is displayed in Fig. 5a.
In each case, we compute the photoemission intensity from all

states. However intensity from all folded bands is vanishing in the
absense of the SBP; the full bandstructure is plotted in white over
the spectra to demonstrate the large suppression of photoemis-
sion intensity. At the bottom of the band, the dipole selection
rules suppress photoemission intensity from even the main band.
In the disorder-averaged supercell, a substantial broadening of the
spectral lineshape is observed.37,38 As indicated by the overlain
bandstructures of Fig. 5a–c, the impurity potential introduces a
high density of avoided crossings, where the eigenvector supports
finite photoemission intensity. In this sense, the broadening can
be associated with the relative phases within the tight-binding
eigenvector to which the ARPES matrix element is sensitive.
One can demonstrate that the linewidth broadening is

dependent on both concentration and strength of impurities. In
Fig. 5e, f we plot energy distribution curves (EDCs) at kF= 0.44 Å−1

for fixed concentration (Li0.9Na0.1) with variable attractive (nega-
tive) ϵNa, and fixed ϵNa ¼ �0:35 eV with variable concentration.
Each spectrum has been averaged over 80 similar configurations,
and normalized to its peak intensity. The linewidth is observed to
increase monotonically with both concentration and impurity

Fig. 5 Na impurity-substituted Li supercell. In (a–c), we plot the
ARPES intensity at 21.2 eV with s-polarized (along momentum axis)
light over the ΓM direction of the extended Brillouin zone. The
spectra have been averaged over 80 random configurations of a
30 × 30 square lattice (as for example in (d)). Panels (a, b) represent
the pristine lattice of Li: the dispersion follows precisely that of the
1-Li unit cell, with all other states destructively interfering to
produce zero intensity. Representative tight-binding bandstructures
are plotted over the spectra. In (c) however, 90 Na atoms (
ϵNa ¼ �0:35 eV) have been substituted for Li. In (e), the effect of
impurity potential ϵNa is demonstrated for the series of EDCs at the
Fermi momentum kF, at a fixed concentration of 10% Na. Similarly in
(f), fixing ϵNa ¼ �0:35 eV, the same is done for different
concentrations
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potential, indicating the similar role these degrees of freedom play
in modifying the spectra of disordered systems. Despite this
lineshape broadening, the low-energy dispersion is resilient
against a high level of disorder, as illustrated by Fig. 5c. By
applying an out-of-plane polarization sensitive to states near the
bottom of the band, we also confirm an increase of the bandwidth
for this attractive impurity potential, which grows quadratically
with impurity potential for the modest jϵNaj

W < 0:15 considered
here: at 10% Na and ϵNa ¼ �0:35 eV, the band bottom is extended
30meV. Such detailed study of the impurity-substituted ARPES
spectra is not possible without consideration of the matrix
elements, which allow for a straightforward disentanglement of
the supercell bandstructure and an opportunity to achieve
meaningful insights from disordered materials.

Surface vs bulk, and emergent kz dispersion
To this point we have considered the bulk-electronic structure, but
it is important to appreciate the surface-sensitivity of the ARPES
experiment: the high scattering cross-section in the ultraviolet
regime results in penetration depths of the order of 5–10 Å.26 This
corresponds to the top few unit cells of the lattice, depending on
experimental details. In many cases, the surface introduces
modest corrections to the local electronic structure, facilitating a
direct connection between the measured photoemission intensity
and the bulk electronic structure.39 In others, details of the surface
preparation result in reconstructions of the ARPES spectra which
deviate profoundly from the bulk electronic structure.39–42

This surface sensitivity becomes rather important in the context
of three- or even quasi-two- dimensional materials, where the
photoelectron escape depth and kz information are intimately
connected. For intermediate energies in the ultraviolet regime,
where the penetration depth is of the order of 5 Å, the Δkz
required by the uncertainty principle becomes comparable to the
size of the Brillouin zone. In the presence of finite kz dispersion,
this can result in anomalously broad linewidths, as the spectrum
effectively integrates over the third dimension of momentum
space. This is visualized well in Fig. 6, where we have projected our
FeSe model onto a 20-layer slab model along the (001) direction.
While the slab bandstructure is by construction independent of kz,
signatures closely related to the bulk kz dispersion are observed in
photon energy-dependent matrix element calculations, as seen in
Fig. 6b. We estimate the attenuation factor e�ξ=2zi of the escaping
photoelectrons using the universal escape depth curve from
ref. 26. The kz value probed is calculated using an inner potential of
V0= 12.2 eV.10 While at both low and high photon energies the
penetration depth is sufficiently large that that Δkz should be less
than 0.05 Å−1, at hν= 71 eV Δkz= 0.11 Å−1, and linewidth broad-
ening is observed as a result (note here π/c= 0.57 Å−1).
Conversely, for larger ξ values, Δkz becomes negligible, and
something akin to the bulk electronic structure is recovered. Note
that Δkz is not explicitly included in these calculations, but
emerges naturally from the combination of slab geometry with
variable penetration depth. From these results, it becomes evident
that the surface sensitivity can complicate successful estimation of
the bulk electronic structure. This emphasizes the need for proper
characterization of the kz dispersion, accessible via photon-
energy-dependent measurements, as in Fig. 6b.

Photoelectron interference, and spin-ARPES
Despite these challenges associated with surface sensitivity, the
surface can also precipitate new states localized to the interface
region which are not possible in bulk systems. Such is the case for
example in the Shockley surface states observed along the (111)-
termination of noble metals,23,43 Fermi arcs on Weyl-semimetals,44

and conductive surface states observed in topological insulators
such as Bi2Se3.

45

To model the ARPES spectra from these surface states, an
extended lattice basis is required, with the unit cell projected onto
a slab-geometry. Our implementation of the slab generation is
inspired by the algorithm in ref. 46, allowing for nearly total
automation of the slab Hamiltonian initialization. Given a surface
Miller index, new lattice vectors can be defined which projects the
new unit cell along the desired surface direction to the desired
thickness. The bulk Hamiltonian can be propagated over this slab
supercell. While we formally maintain periodic boundary condi-
tions, rather than preserve the full translational symmetry of the
bulk crystal, a vacuum buffer is defined, with a thickness
sufficiently large to suppress hopping elements between neigh-
bouring slab unit cells. The precise location of the crystal-vacuum
interface is tuned by the user to achieve the desired surface
termination of the crystal. In the case of Bi2Se3, this termination
must occur between the van der Waals-bonded layers of two
adjacent quintuple layers (QL) to preserve the topological surface
states. The procedure is illustrated in Fig. 7a–c.
Expansion of the basis set to a suitably large slab carries the

caveat of a significant memory overhead, which can be to an
extent mitigated in the calculation of ARPES intensity: as the finite
penetration depth of the probe and photoemitted electrons limit
the volume of the unit cell to which we are actually sensitive, the
eigenvectors are truncated beyond a modest multiple of the
mean-free path, allowing for both efficient and high-fidelity
surface-projected ARPES maps to be computed, as done for the
400-orbital basis used for the simulation in Fig. 8a. As a result, it is
the mean-free path more than the size of the basis which limits
the ability to treat very large slab unit cells. As an example of this
functionality, simulated and experimental ARPES intensity from
Bi2Se3 are plotted in Fig. 8. Many of the central tenets of a model

Fig. 6 Surface-projected photon energy dependence in FeSe. In (a),
we build a 20 layer slab tight-binding model from the bulk model in
Fig. 2. We calculate the ARPES intensity along the ΓM direction, at
several photon energies; the results are summarized by a cut at
constant binding energy of EB= 25meV in panel (b). Spectra at each
photon energy have been renormalized to their maximum intensity.
In panels (c–e), spectra at select photon energies are plotted, chosen
to correspond to the same kz= 0 Å−1 point in successive Brillouin
zones to enable direct comparison. Photon energy dependence of
the measured linewidth is observed due to effective kz integration

R.P. Day et al.

6

npj Quantum Materials (2019)    54 Published in partnership with Nanjing University



strong TI have been confirmed in this material, such as the
anticipated chiral spin texture, observed directly via spin-resolved
ARPES.45,47–49 Such spin-resolved experiments50–52 can also be
simulated within the chinook software, as shown in Fig. 8b, where
we present the simulated spin polarization:

Py ¼
I"y � I#y
I"y þ I#y

: (18)

This result is in agreement with experiment,45 and can be
compared favourably with the surface-projected expectation
value of the spin Ŝ operator, e�

jẑj
ξ Ŝ, plotted in Fig. 7e. The bulk

states, which lack any discernible spin-polarization (Fig. 7d), vanish
from the calculation of Py and so do not appear in Fig. 8b.
While the topological surface states ΨTSS are primarily

composed of pz orbitals at the surface, a pronounced modulation
of the photoemission intensity around the Dirac cone is observed
as a consequence of the finite extension of ΨTSS into the crystal
bulk. Hybridization with bulk states, in addition to interlayer
photoelectron interference can be understood as the progenitor
of this modulation, as explored in depth in ref. 8 The interpretation
of this angular intensity pattern in ARPES measurements presents
an essential experimental verification and explanation of the
limitations of applying a simple ~k �~p model to the description of
real topological insulators such as Bi2Se3. While localized within a
finite region near the vacuum interface, the full three-
dimensionality of the surface state becomes apparent through
consideration of this spectroscopic evidence. Convenient exten-
sion to a slab-geometry is then a critical functionality offered by
the chinook package.

Variable experimental geometry
In practice, ARPES experiments rotate either the sample normal or
spectrometer in order to access a broad set of emission angles.
While some modern techniques such as photoemission electron

microscopy (PEEM),53 angle-resolved time-of-flight (ARTOF),47,54

and deflector-based ARPES55–57 apparatus avoid this complication,
the assumption of a constant experimental geometry is not always
possible. Furthermore, it is often advantageous to rotate the
sample orientation in order to for example explore large regions of
momentum space, or to achieve better momentum resolution
available at higher emission angles.3 While the most direct
complication is associated with variable photon polarization, in
the case of S-ARPES, the relative orientation of the detector with
respect to the sample is essential to interpret data correctly.
To exemplify the practical considerations associated with such

experiments wherein the geometry is variable, one may consider
an exploration of Rashba-split spin-polarized surface states, as in
for example PtCoO2.

58 Using the model presented in ref., 58 in Fig.
9, the Fermi surface is surveyed over several neighbouring
Brillouin zones, accessed by rotation of the sample about the
horizontal (i.e. kx) axis. The ARPES intensity calculated with and
without consideration of the rotated polarization vector can be
compared in Fig. 9a, b. While the intensity in the first Brillouin
zone is fairly homogeneous in either case, the higher order zones
reflect more substantial variation. These rotations complicate the
extraction of orbital character from the photoemission intensity,
requiring explicit consideration of the polarization rotation.
In the context of spin-resolved measurements, the spin-

projection is measured within the laboratory frame-of-reference,
which remains fixed for all sample orientations. As the sample is
rotated, contamination of orthogonal spin-channels is inevitable.
While such effects are minimal near Γ1, a significant out-of-plane
spin-polarization arises near Γ2, with Pz over 36% of Px, as
demonstrated in Fig. 9d–f. It is important to note that the intrinsic
spin-polarization is confined entirely to the plane; this apparent
out-of-plane polarization exists only in the coordinate frame of the
laboratory apparatus. Accounting for the rotation of the measure-
ment coordinate frame for the given experiment, one can then
redistribute this information into the channels associated with the

Fig. 7 Topological surface states in Bi2Se3. The progression from the
rhombohedral unit cell of the bulk lattice (a) to the (111)-surface
projected (b) hexagonal unit cell, and finally a Se1-terminated slab
(c) is plotted in the top row. In the bottom row, the bulk (d) and an
11-QL slab (e) bandstructure are compared. The colourscale of panel
(e) reflects the expectation value of the surface-projected spin,
directed orthogonal to the momentum axis (〈Sy〉 along kx, and 〈Sx〉
along ky)

Fig. 8 ARPES spectra from topological surface states on Bi2Se3. In
(a), simulated photoemission spectra along the kx direction around
the surface Brillouin zone Γ point, as observed with p-polarized light

(ϵ̂ ¼
ffiffi
1
2

q
½�1; 0; 1�). Calculated spin-polarization, projected out of the

plane of the page (c.f. Eq. (18)) for the same region is plotted in (b).
Constant energy contours give evidence for bulk-hybridization and
interlayer interference, as seen in both the simulation (c) and
experiment (d). Data in panel (d) reproduced from8 with permission
from the authors
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sample’s intrinsic spin texture:

~Pi ¼~Pexp �~SðθÞ; (19)

where here ~Pexp is the measured spin polarization from Eq. (18)
and ~SðθÞ the spin-projection axis measured at each emission
angle. Although Fig. 9b indicates higher photoemission intensity is
available in the second Brillouin zone, Fig. 9e, f illustrate the
practical challenges associated with resolving the spin-texture
near Γ2. By affording the user with an ability to encode a realistic
experimental configuration in the simulation, such effects can be
accounted for in detail, circumventing a significant experimental
limitation which may otherwise restrict more general application
of the techniques detailed here.
We have presented here a simple and powerful numerical

framework implemented in Python for the simulation and
interpretation of ARPES spectra for a broad variety of materials
of interest. Designed with this specific purpose in mind, the open-
source structure of the chinook software package is engineered to
accommodate further extension beyond this application, as we
have done recently for the study of resonant optical excitations in
pump-probe spectroscopy experiments.59 Through the develop-
ment of these tools, we hope to motivate and facilitate the
consideration of the great depth of information encoded in the
matrix element of ARPES towards a better understanding of these
experiments and the electronic structure of the materials under
consideration.

METHODS
All work presented here was performed in Python using the chinook
package.

DATA AVAILABILITY
Data presented here is available from R.P.D. on reasonable request.

CODE AVAILABILITY
The chinook source code is available at https://www.github.com/rpday/chinook.
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