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Among one-dimensional transition-metal trichalcogenides, TaSes is unconventional in many respects. One is its strong topological
semimetallicity as predicted by first-principles calculations. We report the experimental investigations of the electronic properties of
one-dimensional-like TaSes single crystals. While the b-axis electrical resistivity shows good metallicity with a high residual
resistivity ratio greater than 100, an extremely large magnetoresistance is observed reaching =7 x 10°% at 1.9K for 14T.
Interestingly, the magnetoresistance follows the Kohler's rule with nearly quadratic magnetic field dependence, consistent with the
electron-hole compensation scenario as confirmed by our Hall conductivity data. Both the longitudinal and Hall conductivities
show Shubnikov-de Haas oscillations with two frequencies: F, =97 T and Fg = 186 T. Quantitative analysis indicates that F, results
from the two-dimensional-like electron band with the non-trivial Berry phase [1.177], and Fg from the hole band with the trivial Berry
phase [0(3D) — 0.1671(2D)]. Our experimental findings are consistent with the predictions based on first-principles calculations.
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INTRODUCTION

Topological materials have ushered in a new era in condensed
matter research since the discovery of the quantum Hall effect.
Over the years, a few material systems have been reported as
topological insulators such as Bi;_,Sb,' and Bi,Se;?, topological
semimetals such as CdsAs,>™, Na3Bi®’, YoMnBi,®, BaMnSb,°, and
topological superconductors such as Cu,BiSes;, Sni_,InTe, and
others'®'2 In an ordinary semimetal, there is a small overlap
between the valence and conduction bands. However, in a
topological Dirac semimetal (TDSM), the inverted bands contact
only at discrete Dirac points in momentum space with linear
energy dispersions. The behavior of these fermions is governed by
the relativistic Dirac equation'*'*. In a TDSM, spin-orbit coupling
(SOQ) does not open up a gap, and the Dirac points are protected
by the time-reversal and inversion symmetries®'>. If symmetries
are broken, these materials can be driven into various other
topological phases. For instance, the breaking of either the time-
reversal or inversion symmetry can drive a TDSM to a Weyl
semimetal®. Moreover, topological materials can also exhibit
superconductivity which is an extremely attractive feature for
quantum technological applications'2.

One key indication of the possible topological phases in a
material is the inversion of energy bands at high-symmetry points
in the Brillouin zone'®. These features can be investigated through
band structure calculations, which have been quite successful in
predicting topological phases in a number of material systems'’~2".
Recently, Nie et al.>> have investigated the topological phases in a
chain-compound TaSes through first-principles calculations. The
Z, invariants (vg;v;V,V3) were obtained for this material, which can
be used to distinguish if the system is ordinary or topologically
non-trivial. Here, v, is called the strong topological index, and a
value of vo=1 indicates a “strong” topological insulator (STI)
phase with an odd number of Dirac cones on the surface, which
are robust against weak time-reversal invariant perturbations. A
“weak” topological insulator phase is identified when vy =0, and

one of the indices v;, v,, or v;, known as the weak topological
indices, is nonzero'®. The calculations for TaSes revealed the Z,
invariants (Vovqvovs) to be (1;100)%%, indicating a strong three-
dimensional Tl with guaranteed Dirac states on the surfaces.
Furthermore, band calculations indicate that there is a band
inversion even without spin-orbit coupling (SOC) in TaSe;?2.

While there have been investigations on various physical
properties?>~?, the topological properties of TaSe; have remained
experimentally unexplored, except for a recent preprint®. This is
in part due to the multiple bands with two identical electron
bands related to band inversion, and one hole band involving no
band inversion. In order to distinguish them, information from
individual bands has to be separated. In this article, we report the
experimental investigation of the Fermi surface topology of TaSes
single crystals. Shubnikov-de Haas (SdH) oscillations of both the
longitudinal and Hall conductivities are clearly observed. Fast
Fourier transformation (FFT) analysis of the SdH oscillations
indicates two frequencies, F, = 97 T and Fg = 186 T. By constructing
the Landau level fan diagram for each oscillation, we obtain the
Berry phase ®f = 1.1 and (DE ~0(3D) — 0.16m(2D). This indicates
that the a band is topologically non-trivial, while the B band is
trivial. In addition, we observe extremely large magnetoresistance
(XMR) in this material which reaches about 7 x 10°% for H=14T
at T=1.9K, and follows the Kohler's scaling law. The quadratic
nature of the MR with respect to magnetic field points towards a
high degree of electron-hole compensation, supported by our
Hall effect data.

RESULTS AND DISCUSSION

Crystal structure and magnetotransport

Figure 1a shows the X-ray diffraction (XRD) pattern for a single
crystal of TaSe; at room temperature. The XRD peaks are
consistent with a monoclinic structure with the space group
P2;/m. Due to its malleable nature, the single crystal was not

"Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA. 2Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803,

USA. ®email: rjin@lsu.edu

Published in partnership with Nanjing University

NP| nature partner
pJ journals


http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-020-00257-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-020-00257-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-020-00257-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41535-020-00257-7&domain=pdf
http://orcid.org/0000-0002-9227-4492
http://orcid.org/0000-0002-9227-4492
http://orcid.org/0000-0002-9227-4492
http://orcid.org/0000-0002-9227-4492
http://orcid.org/0000-0002-9227-4492
http://orcid.org/0000-0002-1869-5395
http://orcid.org/0000-0002-1869-5395
http://orcid.org/0000-0002-1869-5395
http://orcid.org/0000-0002-1869-5395
http://orcid.org/0000-0002-1869-5395
http://orcid.org/0000-0001-5846-4324
http://orcid.org/0000-0001-5846-4324
http://orcid.org/0000-0001-5846-4324
http://orcid.org/0000-0001-5846-4324
http://orcid.org/0000-0001-5846-4324
https://doi.org/10.1038/s41535-020-00257-7
mailto:rjin@lsu.edu
www.nature.com/npjquantmats

npj

A.LU. Saleheen et al.

1R

(a) 1 Fj
o 3
o =5
— =
S| E
A o -
Z 8 =
(%] b
c| ,b e
a v e
o+ =H
C I
- o
I N Im m | 1© I~
— =} o o =} o
° M mn < © ~
a ] . | |
5 15 25 35 45 55 65 75 85
20 (degrees)
. -075}° (€) ;o0
—~
'v -1.00} © o —0.021 T=1.85K
O |
. —1.25»: S —0.041
o § _o06d
—1.50+ e 2 -0.06
=] ° s
e _ | o -0.08 1
S -1750 3
$ —2.00} o 2 2 & s
o
= ol H = 1kOe Hm
2.25
X
> -2.50 a0 VXY
[ ]
0 50 100 150 200 250 300
T(K)

Fig. 1

Type-I1 (b)

Type-I

v

© Ta 0 se }—’c

2.00F

® Experimental Data (d)
L7517 — BG Fit
1.50F

P (MQcm)

075}
050}
0.25}
O'OOV I I I I I I
0 50 100 150 200 250 300
T(K)

Crystal structure, magnetization, and electrical resistivity of TaSes. a XRD pattern of a TaSes single crystal. Inset: Picture of a TaSes

single crystal. b Crystal structure of TaSes. The larger blue and smaller red spheres represent Ta and Se atoms, respectively. ¢ Temperature
dependence of the magnetic susceptibility [x(T)] at H= 1 kOe. Inset: Magnetic field dependence of the magnetization [M(H)] at T=1.85K. d p,
vs. temperature (7). Solid red curve indicates the fitting of the data to the Bloch-Grlineisen formula. Inset: p,(T) for T < 60 K. The green solid

line represents a fit to the formula p,(T) = po + CT™ (see text).

perfectly flat on the sample platform, producing a weak 405 peak
at 20 = 50°, unexpected from the 101 plane (Fig. 1a). For further
confirmation, we performed single crystal XRD measurements at
room temperature, which also revealed the same monoclinic
structure. The lattice parameters, a=9.834(2) A, b=3.496(1) A,
c=104213) A, and B=106.237(6)° were obtained through a
Rietveld refinement of the single crystal XRD data. The crystal
structure of TaSes; consists of infinite, trigonal prismatic chains
along the crystallographic b-axis, as shown in the left side of Fig. 1b.
A single linear chain is formed by stacking prismatic cages along
the b-axis. At the center of each cage there is a Ta atom,
coordinated with six Se atoms at the corners. However, the
neighboring chains are inequivalent, which are named as type-|
and type-ll chains (Fig. 1b). The shorter distance between the Se
atoms in type-l chains enables the formation of strong covalent
p-p bonding between the two Se atoms, whereas this bond is
broken in the type-ll chains due to the longer distance. According
to band structure calculations, these Se atoms in the type-Il chains
form bonds with the Ta atoms from the neighboring chains, which
is primarily responsible for the band inversion in this material®.

Figure 1c shows the temperature dependence of the magnetic
susceptibility [x(T)] measured at H = 1 kOe, which is negative over
the entire temperature range. This indicates a diamagnetic
behavior in TaSes, which is also supported by the negative and
linear magnetic field dependence of the magnetization [M(H)],
measured at T= 1.85K as shown in the inset of Fig. 1c. Since the
negative x is not suppressed up to 7T, the diamagnetism is not
related to superconductivity but to the core electron contribution
of TaSes.
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Figure 1d shows the temperature dependence of the b-axis
resistivity (o) of TaSes at zero magnetic field in the temperature
range of 1.9-305 K. The resistivity shows metallic behavior, which
decreases with decreasing temperature from p, (300K)=
1910 uQcm to pp ((1.9K)=14uQcm. This corresponds to a
residual resistivity ratio [RRR = p (300 K)/p (1.9 K)] of 136. The RRR
of this sample is similar to or exceeds the previously reported
values for this material®®*™°, indicating the high quality of our
single crystals. In the temperature range of T=60-300K, the p(T)
data follow the Bloch-Griineisen (BG) law

T\K r6/7 xkdx
o =n0+(g) [, wmia—en

Here, po, A, and 6y are the residual resistivity, electron-phonon
interaction constant, and Debye temperature, respectively. The
red solid line in Fig. 1d represents the fitting of the data with Eq.
(1). The fitting yields A=8.23+0.03mQcm, 6p =310+ 2K, and
the exponent k= 4.6. The value of k is close to 5 expected for
simple metals with dominant electron-phonon scattering. On the
other hand, p,(T) at low temperatures (T < 60 K) follows a power
law behavior given by p,(T) = po + CT™, as shown in the inset of
Fig. 1d. The residual resistivity po=145+0.5uQcm and the
exponent m = 2.5+ 0.02 were obtained from the fit. While there is
electron-phonon scattering, it had been argued that in quasi 1D
materials, the electron-electron Umklapp scattering can become
the dominant scattering mechanism at low temperatures, when
the energy (kgT) is smaller than the inter-chain interaction
energy®'®?. In this scenario, the exponent m takes a value
between 2 and 3*'*2 Similar behavior was previously reported in

M
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Fig.2 Brillouin zone, Fermi surface, and magnetotransport measurements. a Bulk Brillouin zone (BZ) of TaSe; with the high-symmetry points
and the projected surface BZ, highlighted in green®2. b Fermi surface with the hole (purple) and electron (yellow-green) pockets??. The closed
electron pockets near the B point and the hole pocket [~k, into the page] are enlarged for clarity. The red arrow indicates the applied field
direction. The red lines indicate cyclotron orbits for which SdH oscillations were observed. c p, vs. T measured at various magnetic fields with H L
I. Inset: H dependence of the two characteristic temperatures: T, (black squares) is defined as the point where dp,(T, H)/0T = 0 and T; (blue circles)
is where 0p,(T, H)/0T is minimum. d Determination of the resistivity change between 0 and 7 T, described by Eq. (3). The black, blue, and purple
symbols represent p,(0 T), pp(7 T), and py(7 T) — pp(0 T), respectively. The solid green and magenta lines represent fits to Eq. (3) and Ap = aH"/p(T,
0)""', respectively. e MR vs. H at various temperatures. f Kohler's plot of the MR data (MR vs. H/po) in the temperature range of T=1.9-12K. Inset:
MR vs. H/py at T=4K. The solid blue line represents a fit to Eq. (2). (a, b are adapted with permission from ref. 22, copyright (2018) by The

American Physical Society).

TaSes®'. Thus, we consider that the electron-electron Umklapp
scattering plays the dominant role in scattering at low tempera-
tures in TaSes.

According to Fig. 1a, the flat surface of the as-grown TaSe;
single crystals is normal to the [101] direction. For probing the
magnetic field (H) effect, we apply H normal to the flat surface, i.e.,,
H L [101]. For easy discussion, the applied field direction is
indicated with respect to the Brillouin zone (BZ) and Fermi surface
pockets, as shown in Fig. 2a, b (adapted from ref. 2), respectively.
Figure 2c shows the temperature dependence of p, at various
magnetic fields up to 14 T. This and the rest of the measurements
were conducted using a sample with RRR = 107. In the presence
of an applied magnetic field normal to the current (H L /), the p,(T)
curves maintain metallic behavior at high temperatures, where the
resistivity decreases with decreasing temperature until reaching a
minimum at T,,. Below this temperature, the resistivity keeps
increasing until a plateau-like region is reached at T;. The onset
temperature T,, is identified as the point where 9p,(T, H)/dT =0,
whereas T; is the point where dp,,(T, H)/0T is minimum. The inset of
Fig. 2c shows the magnetic field dependence of these two
characteristic temperatures, both increasing with increasing
magnetic field. However, the increase in the onset temperature
T is more drastic than that of T,

Kohler's scaling law

The magnetic field-induced resistivity upturn and XMR have been
frequently observed in topological materials**~’. Several mechan-
isms are proposed to explain these features, such as field-induced
metal-to-insulator transition, electron-hole compensation, topo-
logical protection, and so on®®#3°_ Recently, it was demonstrated

Published in partnership with Nanjing University

that this type of field-induced resistivity upturn could be
explained within the framework of the Kohler's scaling law
without invoking any topological considerations®>*°. The Kohler's
scaling law is given by*'*?

MR = a(H/p,)" )

with a and n being constants. Since MR is given by %ﬂ, Eq.
(2) can be rearranged and written as

Hn

p(T,H) =p(T,0) + GW.

®3)

In light of Eq. (3), p(T, H) consists of two terms: temperature
dependence of the resistivity at zero field [p(T, 0)] and the
magnetic-field-induced resistivity [Ap =aH"/p(T, 0)"'l. Since
these two terms have opposite temperature dependence, the
minimum in the p(T, H) curve arises due to a competition between
the two terms>>*>*3. For demonstration, we choose p,(T) at H=
7T, as shown by the blue symbols in Fig. 2d. The solid green line
in the figure represents a fit of the data to Eq. (3) with a=1.3x
107" (Qcm)” T" and n=1.95. The purple symbols in Fig. 2d
represent the difference in the temperature dependence of the
resistivity measured at H=0 and 7T [Ap = pp(7T) — pp(0T)]. The
data was fitted with the second term in Eq. (3), as represented by
the solid (magenta) line. We note that Eq. (3) can describe the
field-induced resistivity fairly well. Furthermore, the plateau in the
pu(T, H) curves (Fig. 2¢) at low temperatures can also be explained
through Eq. (3). At low temperatures, p,(T, 0) = po becomes very
low and practically temperature independent. Therefore, p(T, H) ~
aH"/p5~" is constant at low temperatures, giving rise to a plateau.

npj Quantum Materials (2020) 53



npj

A.LU. Saleheen et al.

Aoy (a.u.)

0.08 0.10 0.12 014 016 0.18 0.20

. (a) - 19K -e 6.0K
i 6f
€ \ A
G 4r \ —>—
2 -
S
ok
0.0
—
I
€
g 2.0K 7.0K
=2 30K —4— 80K
S 40K 10.0 K
—oar 50K —— 12.0K
0 2 a 6 8 10 12 14
H(T)
() ’ - 19K - 50K
—_ $ 20K —#— 6.0K
= 400r <.;? —— 3.0K 7.0 K
@ g —»— 40K —+ 8.0K
)
°
S
=
o
e
< FB
|_
(i
w
—_— S
0 100 200 300 400 500 600
Frequency (T)

H=Y(T™1)
1.0
(d) o cha.nd
] - |LKFit
T 0.8}
2 B BBand
a — LKFit
€ 0.6f
f_t m;* = 0.490mo
[T
04 m¥ =0.486mj
£
So2
0.0t .
2 3 4 5 6 7
T(K)

Fig.3 Conductivity and SdH oscillations. a Longitudinal conductivity (o,,) (upper panel) and Hall conductivity () (bottom panel) of TaSe; for a
field range of H=0-14T at various temperatures. b Oscillatory conductivity (Ag,) vs. inverse magnetic field (H™") at indicated temperatures. ¢ FFT
spectrum of the oscillations at various temperatures. d The temperature dependence of the FFT amplitudes of the two principal frequencies

(Fx and Fp) in the FFT spectra. Solid lines represent fits to Eq. (5).

To confirm the Kohler's scaling law, we have measured the
magnetic field dependence of p,(T, H) at fixed temperatures with
H L1 I Since the measured py(T, H) can contain both the
longitudinal (p,,) and Hall (p,,) contributions, the longitudinal
component was isolated from the Hall component by using the
relation, py, =[pu(T, +H)+pp(T, —H)I/2. The MR was then
calculated using the standard relation, MR = [p,,(H) — p,,(0)l/
py,(0). Figure 2e shows the MR at indicated temperatures for up
to 14T. We observe the XMR in this material which reaches about
7x10°% at T=1.9K and H= 14T without showing any sign of
saturation. This is comparable to other XMR materials, such as
CdsAs,*, NasBi*®, NbP*, TaAs*, WTe,**?®, and PtBi, ,’.

The Kohler's scaling law (Eq. (2)) can describe the motion of
electrons in magnetic field for a single band or multiple bands
with electron-hole compensation®*>*'*2, For n=2, the Kohler's
law [MR = a(H/po)?] can be derived from the two-band model of
the electrical resistivity for non-magnetic materials, when the
electron and hole carrier concentration is perfectly compen-
sated®. However, Wang et al* also argued that MR for an
imperfectly compensated system can still obey the Kohler’s law if
either or both the mobilities are small. Nevertheless, this law
would be violated if a is temperature dependent®®. Figure 2f
shows the MR at various temperatures plotted against the
rescaled magnetic field H/po. Consequently, all the MR curves
from T=1.9-12 K collapse on to a single curve, indicating that the
scattering mechanism is the same throughout the relevant
temperature and field ranges. This rules out the possibility of a
metal-to-insulator transition®>%“8, In addition, the collapse of the
MR curves, according to the Kohler's rule, indicates that the carrier
concentration and the mobility ratio of hole-to-electron do not

npj Quantum Materials (2020) 53

change significantly with temperature*®°°. The inset of Fig. 2f
shows a fitting of the MR curve at T=4K using Eq. (2), yielding
a=(130+£0.01)x107'"°(Q cm)” T~" and n = 1.950 + 0.001. These
values are used to fit the p,(T) data, as shown in Fig. 2d. The value
of n depends on the level of carrier compensation. For a system
with perfect electron-hole compensation, n should be 2343, Thus,
the value of n=1.95 for TaSe; points towards a high degree of
electron-hole compensation.

SdH oscillations

As can be seen in Fig. 2e, p, exhibits SdH oscillations. The SdH
oscillations occur in crystalline solids when the density of states is
periodically modulated as a function of magnetic field due to the
Landau quantization of the energy states in magnetic field®'. One
of the most useful aspects of SdH oscillations is that it contains
information on band topology reflected in the Berry phase. A
widely used method to extract the Berry phase is to construct the
Landau level fan diagram, where the minima in the SdH
oscillations of the conductivity are assigned to an integer Landau
level index’'. We calculated the longitudinal (o,,) and Hall
conductivities (o,,) using the following relations:

_ Py

O =5y

W pY (4)
O,y — — 2

i opy Py

Figure 3a shows the longitudinal and Hall conductivities measured
at various temperatures for H=0-14T. The smooth background
of the o,,(H) data was deduced through polynomial fitting, which
was then subtracted from the data to obtain the oscillatory
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component of the conductivity Aoy,. Figure 3b shows o,,(H) vs.
H™" at indicated temperatures. FFT analysis reveals two frequen-
cies with F;=97T and F3=186T, as shown in Fig. 3c. The FFT
frequency (F) and the Fermi surface cross-section (Ag) are related
by the Onsager relation F=(h/2ne)Ar. Therefore, F, and Fg
correspond to Aq =0.009 A~? and Ag = 0.018 A2, respectively. In
Fig. 2b, the cyclotron orbits perpendicular to the H direction are
depicted by red lines for both electron (yellow-green) and hole
(purple) pockets. Note that the two electron pockets are
identical??, thus having the same frequency, ie., F,. Since the
cross-sections are not perfectly circular, it is difficult to accurately
estimate the corresponding Fermi wave vectors from the
measured cross-section areas.

Figure 3d shows the temperature dependence of the normal-
ized FFT amplitudes for the a and B bands. The gradual damping
of the oscillation amplitudes with increasing temperature can be
described by the Lifshitz-Kosevich (LK) equation®' ™3

! *
Ry =AM /mo)T 5)
sinh[A’(m*/mg)T]
Here, Ry, mo, and m” are the FFT amplitude, free electron mass, and
effective mass, respectively. The parameter A’ is given by

A =2k, \where Hegr = 2/(1/H; + 1/Hy), with H; =5T and H, =
14T being the lower and upper limits of the magnetic field range
in which the FFT analysis was conducted. kg and A are the
Boltzman and Planck constants, respectively. We obtain the
effective masses of mg = 0.49mq and mg; = 0.48m; corresponding
to the a and B bands though fitting the FFT amplitude vs.
temperature data with Eq. (5), as shown in Fig. 3d.

Berry phase

We have isolated the oscillations corresponding to each frequency
(Fq and Fp) through filtering, and the isolated single frequency
oscillations were used to construct the Landau level fan diagram
as shown in Fig. 4a, b. The minima in Ao,/ (H ') positions are
assigned integer Landau level indices (N), whereas the maxima
positions are assigned N + 1/2. According to the Lifshitz—-Onsager
relationship, N = F/H + Og/2m + 6°'°2. Here, O is the Berry phase,
and 6 depends on the dimensionality of the Fermi surface and
carrier type. For a two-dimensional (2D) Fermi surface 6§ =0,
whereas 6 =+1/8(—1/8) for the minima (maxima) of a three-
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dimensional (3D) electron band. On the other hand, § = —1/8(4-1/8)
for the minima (maxima) of a 3D hole band. It implies from the
Onsager relationship that the slope of N(H™') plot should
correspond to the oscillation frequency, while the intercept can
be used to calculate ®g. The slopes of the straight lines were
found to be 97.25 +£0.03 and 186.2 £ 0.01 T for the a and 3 bands,
respectively. These values are in excellent agreement with the
oscillation frequencies identified through FFT analysis. The
intercepts were found to 0.56 +0.004 and 0.08 + 0.002 for the a
and B bands, respectively. According to band structure calcula-
tions*2, the a band is 2D (see Fig. 2b). Thus, the corresponding
Berry phase is ®f =[0.56+0.004] x 2 =[1.120+0.008]m. This
indicates a non-trivial topology for the a band. On the other
hand, the B band is predicted to be hole-like with the 3D
characteristic (see Fig. 2b). With H L [107], F corresponds to the
maxima of the B Fermi pocket, with 6 =+1/8. Thus, we obtain
(Dg(3D) =[(0.08 £ 0.002) — 1/8] x 2m =[—0.09 + 0.003]r = 0. Since it
is disc shaped (Fig. 2b), Of(2D)=[0.08 +0.002] x 277~ [0.160 +
0.004]7r using 6 = 0. The non-trivial Berry phase for the a band and
a trivial one for the B band are consistent with first-principles
calculations?. Interestingly, an oscillation frequency of 175 T was
identified to correspond to a non-trivial band in ref. 3°. At present,
it is unclear whether the slight frequency difference can make
such a dramatic change in the topology of the  band.

Hall effect and two-band fitting

To further understand the electronic structure of TaSes;, we have
investigated the Hall effect at low temperatures. Figure 5a shows
the results of Hall resistivity (o,,) measurements up to H=14T
between temperatures T= 1.9-8 K. The field dependence of the
Hall resistivity [o,,(H)] shows a non-linear behavior, which changes
from positive at lower fields to negative at high fields (H>7.5T).
This behavior suggests that both types of charge carriers are
responsible for the Hall effect. The p,(H) curves are almost
identical in the temperature range of T=1.9-8 K, indicating that
the carrier concentrations and mobilities do not significantly
change in this temperature range®°. Clear SdH oscillations can be
seen for H>9T, especially at low temperatures. Since p,, < py,,
multiple band analysis of the Hall data should be conducted
through the Hall conductivity o,,°>*', which was calculated
through Eq. (4). For a system with multi-band transport, o,, can
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be expressed as

Oy = eH

Mhdp  Nep ©)
2 21"
T+ (uH)™ 1+ (peH)

Here, nn(ne), unlue) are the concentration of holes (electrons) and
mobilities of holes (electrons), respectively. Figure 5b shows the
magnetic field dependence of the Hall conductivity at T= 2K, and
the corresponding fitting using Eq. (6). We can see that the two-
band model fits the o,,(H) data at T= 2K quite well. Similarly, Eq.
(6) generated good fits for the o,,(H) data in the temperature
range of T=2-8 K. The carrier concentrations and mobilities were
obtained from fitting, and their temperature dependence in the
range of T=2-8K is shown in Fig. 5¢, d. The hole concentration
remains slightly higher than the electron concentration through-
out the temperature range, whereas the mobility of the electrons
remains higher than that of holes. From the semiclassical two-
band model, the MR of non-magnetic materials with perfectly
compensated electron and hole-type carriers (n,=n,) can be
described by MR=p.unH®> 3°*°>. We have used the carrier
mobilities obtained from the Hall conductivity data to estimate
the MR at various temperatures through this relation. The MR
curves estimated from the mobilities are remarkably similar to that
obtained from experiment, as demonstrated in the inset Fig. 5d for
T=2K. The slight difference between them could be due to the
imperfect carrier compensation in TaSes.

At T= 2K, the fitting yielded the hole and electron concentra-
tions: n, =1.25x 10" ecm~3, ne=112x 10" cm~3, and mobilities
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Un=36%10°cm?V "s!, ue=78x10>cm?V's"". The rela-
tively low carrier concentrations are consistent with the semi-
metallic nature of TaSes. For TaSes, the relatively lower mobility
(=10°cm?V~"s7") is due to its relatively “heavier” effective mass
(m” = 0.49m,) compared to other semimetals*3*36°0°557 | the
temperature range of T=2-8K, the ratio n,/n.= 1.1, as shown in
Fig. 5c. This feature points towards a high degree of carrier
compensation, making the Kohler’s scaling law well justified (Fig. 2f).

To summarize, we have grown single crystals of a chain-
compound TaSes through the chemical vapor transport method.
We observed the XMR effect in this material which reaches up to
7% 10%% at T=1.9K for H= 14 T applied normal to the b-axis. The
XMR obeys the Kohler's scaling law as evident from the collapse of
the MR curves measured at different temperatures on to a single
curve when plotted as MR = a(H/po)". Furthermore, both the
longitudinal and Hall conductivities exhibit SdH oscillations at low
temperatures. A FFT analysis of the SdH oscillations of the
electrical conductivity revealed two fundamental frequencies, F, =
97T and Fg= 186 T. The Berry phases Og = 1.17 and (Dg =0(3D) —
0.16m(2D) for the corresponding a and  bands were extracted
through the construction of Landau level fan diagrams. This
indicates the non-trivial Berry phase for the a band and the trivial
one for the B band. Comparing with band structure calculations??,
we found that the non-trivial a band is the 2D electron pocket,
whereas the trivial B band represents the hole pocket. An analysis
of the Hall conductivity revealed two types of carriers, whose
concentrations and mobilities were calculated. The obtained
electron and hole concentrations are very close, pointing towards
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a nearly perfect electron-hole compensation in this material. The
XMR is likely to have originated from this nearly perfect carrier
compensation.

Compared to other TDSMs, a distinguishing feature of TaSes is
its quasi 1D crystal structure. As predicted in ref. 22, this unique
structure can host various topological phases, such as 3D STI, 3D
WTI, and Dirac semimetal phases under different strains. It is thus
an ideal material system for studying the structure-topological
property relationship. Future investigations into the strain or
pressure effects on TaSes could offer valuable new insights.

METHODS

Sample synthesis

Single crystals of TaSez were grown through the chemical vapor transport
method. High purity (better than 99.9%) powder of Ta and Se with a molar
ratio of 1:3.3 were mixed together and pressed into a pellet. The excess Se
acts as the transport agent. The pellet was sealed in an evacuated quartz
tube, and placed into a horizontal tube furnace. The end of the quartz tube
with the pellet (starting material) was placed in the middle of the tube
furnace and heated to 700 °C. The other end of the tube furnace was kept
open to the atmosphere, which acted as the cold end, and thus creating a
temperature gradient necessary for vapor transport. The furnace was
maintained at 700°C for 14 days, followed by a slow cooling to room
temperature. Finally, thin 1D-like single crystals with shiny surfaces were
obtained.

Measurements

Single crystal XRD measurements were carried out at room temperature
using a Bruker Kappa Apex-ll and a PANalytical Empyrean X-ray
diffractometer. Electrical resistivity and Hall effect measurements were
carried out using the standard four-probe technique in a physical property
measurement system (PPMS, Quantum Design) for up to 14T, and in a
temperature range of T=1.9-305K. The electrical contacts were made
using gold wires attached to the sample through epoxy. Hall effect data
were measured in both positive and negative field and then subtracted to
eliminate the lead-offset voltage.
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author upon reasonable request.
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