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Evidence for topological semimetallicity in a chain-compound
TaSe3
Ahmad Ikhwan Us Saleheen1, Ramakanta Chapai 1, Lingyi Xing1, Roshan Nepal 1, Dongliang Gong1, Xin Gui2, Weiwei Xie2,
David P. Young1, E. W. Plummer1 and Rongying Jin 1✉

Among one-dimensional transition-metal trichalcogenides, TaSe3 is unconventional in many respects. One is its strong topological
semimetallicity as predicted by first-principles calculations. We report the experimental investigations of the electronic properties of
one-dimensional-like TaSe3 single crystals. While the b-axis electrical resistivity shows good metallicity with a high residual
resistivity ratio greater than 100, an extremely large magnetoresistance is observed reaching ≈7 × 103% at 1.9 K for 14 T.
Interestingly, the magnetoresistance follows the Kohler’s rule with nearly quadratic magnetic field dependence, consistent with the
electron–hole compensation scenario as confirmed by our Hall conductivity data. Both the longitudinal and Hall conductivities
show Shubnikov-de Haas oscillations with two frequencies: Fα ≈ 97 T and Fβ ≈ 186 T. Quantitative analysis indicates that Fα results
from the two-dimensional-like electron band with the non-trivial Berry phase [1.1π], and Fβ from the hole band with the trivial Berry
phase [0(3D)− 0.16π(2D)]. Our experimental findings are consistent with the predictions based on first-principles calculations.
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INTRODUCTION
Topological materials have ushered in a new era in condensed
matter research since the discovery of the quantum Hall effect.
Over the years, a few material systems have been reported as
topological insulators such as Bi1−xSbx

1 and Bi2Se3
2, topological

semimetals such as Cd3As2
3–5, Na3Bi

6,7, YbMnBi2
8, BaMnSb2

9, and
topological superconductors such as CuxBi2Se3, Sn1−xInTe, and
others10–12. In an ordinary semimetal, there is a small overlap
between the valence and conduction bands. However, in a
topological Dirac semimetal (TDSM), the inverted bands contact
only at discrete Dirac points in momentum space with linear
energy dispersions. The behavior of these fermions is governed by
the relativistic Dirac equation13,14. In a TDSM, spin–orbit coupling
(SOC) does not open up a gap, and the Dirac points are protected
by the time-reversal and inversion symmetries3,15. If symmetries
are broken, these materials can be driven into various other
topological phases. For instance, the breaking of either the time-
reversal or inversion symmetry can drive a TDSM to a Weyl
semimetal3. Moreover, topological materials can also exhibit
superconductivity which is an extremely attractive feature for
quantum technological applications12.
One key indication of the possible topological phases in a

material is the inversion of energy bands at high-symmetry points
in the Brillouin zone16. These features can be investigated through
band structure calculations, which have been quite successful in
predicting topological phases in a number of material systems17–21.
Recently, Nie et al.22 have investigated the topological phases in a
chain-compound TaSe3 through first-principles calculations. The
Z2 invariants (ν0;ν1ν2ν3) were obtained for this material, which can
be used to distinguish if the system is ordinary or topologically
non-trivial. Here, ν0 is called the strong topological index, and a
value of ν0= 1 indicates a “strong” topological insulator (STI)
phase with an odd number of Dirac cones on the surface, which
are robust against weak time-reversal invariant perturbations. A
“weak” topological insulator phase is identified when ν0= 0, and

one of the indices ν1, ν2, or ν3, known as the weak topological
indices, is nonzero16. The calculations for TaSe3 revealed the Z2
invariants (ν0;ν1ν2ν3) to be (1;100)22, indicating a strong three-
dimensional TI with guaranteed Dirac states on the surfaces.
Furthermore, band calculations indicate that there is a band
inversion even without spin–orbit coupling (SOC) in TaSe3

22.
While there have been investigations on various physical

properties23–29, the topological properties of TaSe3 have remained
experimentally unexplored, except for a recent preprint30. This is
in part due to the multiple bands with two identical electron
bands related to band inversion, and one hole band involving no
band inversion. In order to distinguish them, information from
individual bands has to be separated. In this article, we report the
experimental investigation of the Fermi surface topology of TaSe3
single crystals. Shubnikov-de Haas (SdH) oscillations of both the
longitudinal and Hall conductivities are clearly observed. Fast
Fourier transformation (FFT) analysis of the SdH oscillations
indicates two frequencies, Fα ≈ 97 T and Fβ ≈ 186 T. By constructing
the Landau level fan diagram for each oscillation, we obtain the
Berry phase Φα

B ≈ 1.1π and Φβ
B ≈ 0(3D)− 0.16π(2D). This indicates

that the α band is topologically non-trivial, while the β band is
trivial. In addition, we observe extremely large magnetoresistance
(XMR) in this material which reaches about 7 × 103% for H= 14 T
at T= 1.9 K, and follows the Kohler’s scaling law. The quadratic
nature of the MR with respect to magnetic field points towards a
high degree of electron–hole compensation, supported by our
Hall effect data.

RESULTS AND DISCUSSION
Crystal structure and magnetotransport
Figure 1a shows the X-ray diffraction (XRD) pattern for a single
crystal of TaSe3 at room temperature. The XRD peaks are
consistent with a monoclinic structure with the space group
P21/m. Due to its malleable nature, the single crystal was not
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perfectly flat on the sample platform, producing a weak 405 peak
at 2θ ≈ 50°, unexpected from the 101 plane (Fig. 1a). For further
confirmation, we performed single crystal XRD measurements at
room temperature, which also revealed the same monoclinic
structure. The lattice parameters, a= 9.834(2) Å, b= 3.496(1) Å,
c= 10.421(3) Å, and β= 106.237(6)° were obtained through a
Rietveld refinement of the single crystal XRD data. The crystal
structure of TaSe3 consists of infinite, trigonal prismatic chains
along the crystallographic b-axis, as shown in the left side of Fig. 1b.
A single linear chain is formed by stacking prismatic cages along
the b-axis. At the center of each cage there is a Ta atom,
coordinated with six Se atoms at the corners. However, the
neighboring chains are inequivalent, which are named as type-I
and type-II chains (Fig. 1b). The shorter distance between the Se
atoms in type-I chains enables the formation of strong covalent
p–p bonding between the two Se atoms, whereas this bond is
broken in the type-II chains due to the longer distance. According
to band structure calculations, these Se atoms in the type-II chains
form bonds with the Ta atoms from the neighboring chains, which
is primarily responsible for the band inversion in this material22.
Figure 1c shows the temperature dependence of the magnetic

susceptibility [χ(T)] measured at H= 1 kOe, which is negative over
the entire temperature range. This indicates a diamagnetic
behavior in TaSe3, which is also supported by the negative and
linear magnetic field dependence of the magnetization [M(H)],
measured at T= 1.85 K as shown in the inset of Fig. 1c. Since the
negative χ is not suppressed up to 7 T, the diamagnetism is not
related to superconductivity but to the core electron contribution
of TaSe3.

Figure 1d shows the temperature dependence of the b-axis
resistivity (ρb) of TaSe3 at zero magnetic field in the temperature
range of 1.9–305 K. The resistivity shows metallic behavior, which
decreases with decreasing temperature from ρb (300 K)=
1910 µΩ cm to ρb ((1.9 K)= 14 µΩ cm. This corresponds to a
residual resistivity ratio [RRR= ρ (300 K)/ρ (1.9 K)] of 136. The RRR
of this sample is similar to or exceeds the previously reported
values for this material23–29, indicating the high quality of our
single crystals. In the temperature range of T= 60–300 K, the ρ(T)
data follow the Bloch–Grüneisen (BG) law

ρ Tð Þ ¼ ρ0 þ A
T
θD

� �kZ θD=T

0

xkdx
ðex � 1Þð1� e�xÞ: (1)

Here, ρ0, A, and θD are the residual resistivity, electron–phonon
interaction constant, and Debye temperature, respectively. The
red solid line in Fig. 1d represents the fitting of the data with Eq.
(1). The fitting yields A= 8.23 ± 0.03 mΩ cm, θD= 310 ± 2 K, and
the exponent k= 4.6. The value of k is close to 5 expected for
simple metals with dominant electron–phonon scattering. On the
other hand, ρb(T) at low temperatures (T < 60 K) follows a power
law behavior given by ρb(T)= ρ0+ CTm, as shown in the inset of
Fig. 1d. The residual resistivity ρ0= 14.5 ± 0.5 µΩ cm and the
exponent m= 2.5 ± 0.02 were obtained from the fit. While there is
electron–phonon scattering, it had been argued that in quasi 1D
materials, the electron–electron Umklapp scattering can become
the dominant scattering mechanism at low temperatures, when
the energy (kBT) is smaller than the inter-chain interaction
energy31,32. In this scenario, the exponent m takes a value
between 2 and 331,32. Similar behavior was previously reported in

Fig. 1 Crystal structure, magnetization, and electrical resistivity of TaSe3. a XRD pattern of a TaSe3 single crystal. Inset: Picture of a TaSe3
single crystal. b Crystal structure of TaSe3. The larger blue and smaller red spheres represent Ta and Se atoms, respectively. c Temperature
dependence of the magnetic susceptibility [χ(T)] at H= 1 kOe. Inset: Magnetic field dependence of the magnetization [M(H)] at T= 1.85 K. d ρb
vs. temperature (T). Solid red curve indicates the fitting of the data to the Bloch–Grüneisen formula. Inset: ρb(T) for T < 60 K. The green solid
line represents a fit to the formula ρb(T)= ρ0+ CTm (see text).
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TaSe3
31. Thus, we consider that the electron–electron Umklapp

scattering plays the dominant role in scattering at low tempera-
tures in TaSe3.
According to Fig. 1a, the flat surface of the as-grown TaSe3

single crystals is normal to the [101] direction. For probing the
magnetic field (H) effect, we apply H normal to the flat surface, i.e.,
H ⊥ [101]. For easy discussion, the applied field direction is
indicated with respect to the Brillouin zone (BZ) and Fermi surface
pockets, as shown in Fig. 2a, b (adapted from ref. 22), respectively.
Figure 2c shows the temperature dependence of ρb at various
magnetic fields up to 14 T. This and the rest of the measurements
were conducted using a sample with RRR= 107. In the presence
of an applied magnetic field normal to the current (H ⊥ I), the ρb(T)
curves maintain metallic behavior at high temperatures, where the
resistivity decreases with decreasing temperature until reaching a
minimum at Tm. Below this temperature, the resistivity keeps
increasing until a plateau-like region is reached at Ti. The onset
temperature Tm is identified as the point where ∂ρb(T, H)/∂T= 0,
whereas Ti is the point where ∂ρb(T, H)/∂T is minimum. The inset of
Fig. 2c shows the magnetic field dependence of these two
characteristic temperatures, both increasing with increasing
magnetic field. However, the increase in the onset temperature
Tm is more drastic than that of Ti.

Kohler’s scaling law
The magnetic field-induced resistivity upturn and XMR have been
frequently observed in topological materials33–37. Several mechan-
isms are proposed to explain these features, such as field-induced
metal-to-insulator transition, electron–hole compensation, topo-
logical protection, and so on36,38,39. Recently, it was demonstrated

that this type of field-induced resistivity upturn could be
explained within the framework of the Kohler’s scaling law
without invoking any topological considerations35,40. The Kohler’s
scaling law is given by41,42

MR ¼ α H=ρ0ð Þn (2)

with α and n being constants. Since MR is given by ρ T ;Hð Þ� ρðT ;0Þ
ρðT ;0Þ , Eq.

(2) can be rearranged and written as

ρ T ;Hð Þ ¼ ρ T ; 0ð Þ þ α
Hn

ρ T ; 0ð Þn�1 : (3)

In light of Eq. (3), ρ(T, H) consists of two terms: temperature
dependence of the resistivity at zero field [ρ(T, 0)] and the
magnetic-field-induced resistivity [Δρ= αHn/ρ(T, 0)n−1]. Since
these two terms have opposite temperature dependence, the
minimum in the ρ(T, H) curve arises due to a competition between
the two terms35,40,43. For demonstration, we choose ρb(T) at H=
7 T, as shown by the blue symbols in Fig. 2d. The solid green line
in the figure represents a fit of the data to Eq. (3) with α= 1.3 ×
10−10 (Ω cm)n T−n and n= 1.95. The purple symbols in Fig. 2d
represent the difference in the temperature dependence of the
resistivity measured at H= 0 and 7 T [Δρ= ρb(7T)− ρb(0T)]. The
data was fitted with the second term in Eq. (3), as represented by
the solid (magenta) line. We note that Eq. (3) can describe the
field-induced resistivity fairly well. Furthermore, the plateau in the
ρb(T, H) curves (Fig. 2c) at low temperatures can also be explained
through Eq. (3). At low temperatures, ρb(T, 0)= ρ0 becomes very
low and practically temperature independent. Therefore, ρ(T, H) ~
αHn/ρn�1

0 is constant at low temperatures, giving rise to a plateau.

Fig. 2 Brillouin zone, Fermi surface, and magnetotransport measurements. a Bulk Brillouin zone (BZ) of TaSe3 with the high-symmetry points
and the projected surface BZ, highlighted in green22. b Fermi surface with the hole (purple) and electron (yellow–green) pockets22. The closed
electron pockets near the B point and the hole pocket [~k1 into the page] are enlarged for clarity. The red arrow indicates the applied field
direction. The red lines indicate cyclotron orbits for which SdH oscillations were observed. c ρb vs. Tmeasured at various magnetic fields with H ⊥
I. Inset: H dependence of the two characteristic temperatures: Tm (black squares) is defined as the point where ∂ρb(T, H)/∂T= 0 and Ti (blue circles)
is where ∂ρb(T, H)/∂T is minimum. d Determination of the resistivity change between 0 and 7 T, described by Eq. (3). The black, blue, and purple
symbols represent ρb(0 T), ρb(7 T), and ρb(7 T)− ρb(0 T), respectively. The solid green and magenta lines represent fits to Eq. (3) and Δρ= αHn/ρ(T,
0)n−1, respectively. eMR vs. H at various temperatures. f Kohler’s plot of the MR data (MR vs. H/ρ0) in the temperature range of T= 1.9–12 K. Inset:
MR vs. H/ρ0 at T= 4 K. The solid blue line represents a fit to Eq. (2). (a, b are adapted with permission from ref. 22, copyright (2018) by The
American Physical Society).
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To confirm the Kohler’s scaling law, we have measured the
magnetic field dependence of ρb(T, H) at fixed temperatures with
H ⊥ I. Since the measured ρb(T, H) can contain both the
longitudinal (ρyy) and Hall (ρxy) contributions, the longitudinal
component was isolated from the Hall component by using the
relation, ρyy= [ρb(T, +H)+ ρb(T, −H)]/2. The MR was then
calculated using the standard relation, MR= [ρyy(H)− ρyy(0)]/
ρyy(0). Figure 2e shows the MR at indicated temperatures for up
to 14 T. We observe the XMR in this material which reaches about
7 × 103% at T= 1.9 K and H= 14 T without showing any sign of
saturation. This is comparable to other XMR materials, such as
Cd3As2

44, Na3Bi
45, NbP46, TaAs47, WTe2

33,38, and PtBi2−x
37.

The Kohler’s scaling law (Eq. (2)) can describe the motion of
electrons in magnetic field for a single band or multiple bands
with electron–hole compensation35,41,42. For n= 2, the Kohler’s
law [MR= α(H/ρ0)

2] can be derived from the two-band model of
the electrical resistivity for non-magnetic materials, when the
electron and hole carrier concentration is perfectly compen-
sated35. However, Wang et al.35 also argued that MR for an
imperfectly compensated system can still obey the Kohler’s law if
either or both the mobilities are small. Nevertheless, this law
would be violated if α is temperature dependent35. Figure 2f
shows the MR at various temperatures plotted against the
rescaled magnetic field H/ρ0. Consequently, all the MR curves
from T= 1.9–12 K collapse on to a single curve, indicating that the
scattering mechanism is the same throughout the relevant
temperature and field ranges. This rules out the possibility of a
metal-to-insulator transition35,36,48. In addition, the collapse of the
MR curves, according to the Kohler’s rule, indicates that the carrier
concentration and the mobility ratio of hole-to-electron do not

change significantly with temperature49,50. The inset of Fig. 2f
shows a fitting of the MR curve at T= 4 K using Eq. (2), yielding
α= (1.30 ± 0.01) × 10−10 (Ω cm)n T−n and n= 1.950 ± 0.001. These
values are used to fit the ρb(T) data, as shown in Fig. 2d. The value
of n depends on the level of carrier compensation. For a system
with perfect electron–hole compensation, n should be 235,43. Thus,
the value of n= 1.95 for TaSe3 points towards a high degree of
electron–hole compensation.

SdH oscillations
As can be seen in Fig. 2e, ρb exhibits SdH oscillations. The SdH
oscillations occur in crystalline solids when the density of states is
periodically modulated as a function of magnetic field due to the
Landau quantization of the energy states in magnetic field51. One
of the most useful aspects of SdH oscillations is that it contains
information on band topology reflected in the Berry phase. A
widely used method to extract the Berry phase is to construct the
Landau level fan diagram, where the minima in the SdH
oscillations of the conductivity are assigned to an integer Landau
level index51. We calculated the longitudinal (σyy) and Hall
conductivities (σxy) using the following relations:

σyy ¼ ρyy
ρ2yy þ ρ2xy

;

σxy ¼ � ρxy
ρ2yy þ ρ2xy

:
(4)

Figure 3a shows the longitudinal and Hall conductivities measured
at various temperatures for H= 0–14 T. The smooth background
of the σyy(H) data was deduced through polynomial fitting, which
was then subtracted from the data to obtain the oscillatory

Fig. 3 Conductivity and SdH oscillations. a Longitudinal conductivity (σyy) (upper panel) and Hall conductivity (σxy) (bottom panel) of TaSe3 for a
field range of H= 0–14 T at various temperatures. b Oscillatory conductivity (Δσyy) vs. inverse magnetic field (H−1) at indicated temperatures. c FFT
spectrum of the oscillations at various temperatures. d The temperature dependence of the FFT amplitudes of the two principal frequencies
(Fα and Fβ) in the FFT spectra. Solid lines represent fits to Eq. (5).
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component of the conductivity Δσyy. Figure 3b shows σyy(H) vs.
H−1 at indicated temperatures. FFT analysis reveals two frequen-
cies with Fα ≈ 97 T and Fβ ≈ 186 T, as shown in Fig. 3c. The FFT
frequency (F) and the Fermi surface cross-section (AF) are related
by the Onsager relation F= (ħ/2πe)AF. Therefore, Fα and Fβ
correspond to Aα= 0.009 Å−2 and Aβ= 0.018 Å−2, respectively. In
Fig. 2b, the cyclotron orbits perpendicular to the H direction are
depicted by red lines for both electron (yellow–green) and hole
(purple) pockets. Note that the two electron pockets are
identical22, thus having the same frequency, i.e., Fα. Since the
cross-sections are not perfectly circular, it is difficult to accurately
estimate the corresponding Fermi wave vectors from the
measured cross-section areas.
Figure 3d shows the temperature dependence of the normal-

ized FFT amplitudes for the α and β bands. The gradual damping
of the oscillation amplitudes with increasing temperature can be
described by the Lifshitz–Kosevich (LK) equation51–53

RT ¼ A0ðm�=m0ÞT
sinh½A0 m�=m0ð ÞT � : (5)

Here, RT,m0, andm* are the FFT amplitude, free electron mass, and
effective mass, respectively. The parameter A′ is given by
A0 ¼ 2π2kBm0

e�hHeff
, where Heff= 2/(1/H1+ 1/H2), with H1= 5 T and H2=

14 T being the lower and upper limits of the magnetic field range
in which the FFT analysis was conducted. kB and ħ are the
Boltzman and Planck constants, respectively. We obtain the
effective masses of m�

α = 0.49m0 and m�
β = 0.48m0 corresponding

to the α and β bands though fitting the FFT amplitude vs.
temperature data with Eq. (5), as shown in Fig. 3d.

Berry phase
We have isolated the oscillations corresponding to each frequency
(Fα and Fβ) through filtering, and the isolated single frequency
oscillations were used to construct the Landau level fan diagram
as shown in Fig. 4a, b. The minima in Δσyy(H

−1) positions are
assigned integer Landau level indices (N), whereas the maxima
positions are assigned N+ 1/2. According to the Lifshitz–Onsager
relationship, N= F/H+ΦB/2π+ δ51,52. Here, ΦB is the Berry phase,
and δ depends on the dimensionality of the Fermi surface and
carrier type. For a two-dimensional (2D) Fermi surface δ= 0,
whereas δ=+1/8(−1/8) for the minima (maxima) of a three-

dimensional (3D) electron band. On the other hand, δ=−1/8(+1/8)
for the minima (maxima) of a 3D hole band. It implies from the
Onsager relationship that the slope of N(H−1) plot should
correspond to the oscillation frequency, while the intercept can
be used to calculate ΦB. The slopes of the straight lines were
found to be 97.25 ± 0.03 and 186.2 ± 0.01 T for the α and β bands,
respectively. These values are in excellent agreement with the
oscillation frequencies identified through FFT analysis. The
intercepts were found to 0.56 ± 0.004 and 0.08 ± 0.002 for the α
and β bands, respectively. According to band structure calcula-
tions22, the α band is 2D (see Fig. 2b). Thus, the corresponding
Berry phase is Φα

B = [0.56 ± 0.004] × 2π ≈ [1.120 ± 0.008]π. This
indicates a non-trivial topology for the α band. On the other
hand, the β band is predicted to be hole-like with the 3D
characteristic (see Fig. 2b). With H ⊥ [101], Fβ corresponds to the
maxima of the β Fermi pocket, with δ=+1/8. Thus, we obtain
Φβ

B(3D)= [(0.08 ± 0.002)− 1/8] × 2π= [−0.09 ± 0.003]π ≈ 0. Since it
is disc shaped (Fig. 2b), Φβ

B(2D)= [0.08 ± 0.002] × 2π ≈ [0.160 ±
0.004]π using δ= 0. The non-trivial Berry phase for the α band and
a trivial one for the β band are consistent with first-principles
calculations22. Interestingly, an oscillation frequency of 175 T was
identified to correspond to a non-trivial band in ref. 30. At present,
it is unclear whether the slight frequency difference can make
such a dramatic change in the topology of the β band.

Hall effect and two-band fitting
To further understand the electronic structure of TaSe3, we have
investigated the Hall effect at low temperatures. Figure 5a shows
the results of Hall resistivity (ρxy) measurements up to H= 14 T
between temperatures T= 1.9–8 K. The field dependence of the
Hall resistivity [ρxy(H)] shows a non-linear behavior, which changes
from positive at lower fields to negative at high fields (H > 7.5 T).
This behavior suggests that both types of charge carriers are
responsible for the Hall effect. The ρxy(H) curves are almost
identical in the temperature range of T= 1.9–8 K, indicating that
the carrier concentrations and mobilities do not significantly
change in this temperature range50. Clear SdH oscillations can be
seen for H > 9 T, especially at low temperatures. Since ρxy≪ ρyy,
multiple band analysis of the Hall data should be conducted
through the Hall conductivity σxy

50,51, which was calculated
through Eq. (4). For a system with multi-band transport, σxy can

Fig. 4 Landau level fan diagrams. a Landau level fan diagram for the α band at T= 1.9 K, where N is obtained from Δσyy and plotted as a
function of H−1. Solid line represents a linear fit to the data. b The Landau level fan diagram for the β band at T= 1.9 K.
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be expressed as

σxy ¼ eH
nhμ2h

1þ μhHð Þ2 �
neμ2e

1þ μeHð Þ2
" #

: (6)

Here, nh(ne), μh(μe) are the concentration of holes (electrons) and
mobilities of holes (electrons), respectively. Figure 5b shows the
magnetic field dependence of the Hall conductivity at T= 2 K, and
the corresponding fitting using Eq. (6). We can see that the two-
band model fits the σxy(H) data at T= 2 K quite well. Similarly, Eq.
(6) generated good fits for the σxy(H) data in the temperature
range of T= 2–8 K. The carrier concentrations and mobilities were
obtained from fitting, and their temperature dependence in the
range of T= 2–8 K is shown in Fig. 5c, d. The hole concentration
remains slightly higher than the electron concentration through-
out the temperature range, whereas the mobility of the electrons
remains higher than that of holes. From the semiclassical two-
band model, the MR of non-magnetic materials with perfectly
compensated electron and hole-type carriers (nh= ne) can be
described by MR ≈ μeμhH

2 35,54,55. We have used the carrier
mobilities obtained from the Hall conductivity data to estimate
the MR at various temperatures through this relation. The MR
curves estimated from the mobilities are remarkably similar to that
obtained from experiment, as demonstrated in the inset Fig. 5d for
T= 2 K. The slight difference between them could be due to the
imperfect carrier compensation in TaSe3.
At T= 2 K, the fitting yielded the hole and electron concentra-

tions: nh= 1.25 × 1019 cm−3, ne= 1.12 × 1019 cm−3, and mobilities

μh= 3.6 × 103 cm2 V−1 s−1, μe= 7.8 × 103 cm2 V−1 s−1. The rela-
tively low carrier concentrations are consistent with the semi-
metallic nature of TaSe3. For TaSe3, the relatively lower mobility
(≈103 cm2 V−1 s−1) is due to its relatively “heavier” effective mass
(m* ≈ 0.49m0) compared to other semimetals4,34,36,50,56,57. In the
temperature range of T= 2–8 K, the ratio nh/ne ≈ 1.1, as shown in
Fig. 5c. This feature points towards a high degree of carrier
compensation, making the Kohler’s scaling law well justified (Fig. 2f).
To summarize, we have grown single crystals of a chain-

compound TaSe3 through the chemical vapor transport method.
We observed the XMR effect in this material which reaches up to
7 × 103% at T= 1.9 K for H= 14 T applied normal to the b-axis. The
XMR obeys the Kohler’s scaling law as evident from the collapse of
the MR curves measured at different temperatures on to a single
curve when plotted as MR= α(H/ρ0)

n. Furthermore, both the
longitudinal and Hall conductivities exhibit SdH oscillations at low
temperatures. A FFT analysis of the SdH oscillations of the
electrical conductivity revealed two fundamental frequencies, Fα ≈
97 T and Fβ ≈ 186 T. The Berry phases Φα

B ≈ 1.1π and Φβ
B ≈ 0(3D)−

0.16π(2D) for the corresponding α and β bands were extracted
through the construction of Landau level fan diagrams. This
indicates the non-trivial Berry phase for the α band and the trivial
one for the β band. Comparing with band structure calculations22,
we found that the non-trivial α band is the 2D electron pocket,
whereas the trivial β band represents the hole pocket. An analysis
of the Hall conductivity revealed two types of carriers, whose
concentrations and mobilities were calculated. The obtained
electron and hole concentrations are very close, pointing towards

Fig. 5 Hall effect and two-band fitting. a Hall resistivity (ρxy) vs. H at various temperatures. b Hall conductivity (σxy) vs. H at T= 2 K. Solid red
line represents a fit to the two-band model (Eq. (6)). c Temperature dependence of hole and electron concentrations (left vertical axis) and nh/
ne (right vertical axis). d Temperature dependence of the mobilities of the holes and electrons. Inset: MR vs. H at T= 2 K from experiment

MR ¼ ρ Hð Þ� ρð0Þ
ρð0Þ

h i
and mobilities [MR= μhμeH

2], represented by the brown and green lines, respectively. The error bars in c, d represent

standard errors obtained through fitting the experimental data to Eq. (6).
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a nearly perfect electron–hole compensation in this material. The
XMR is likely to have originated from this nearly perfect carrier
compensation.
Compared to other TDSMs, a distinguishing feature of TaSe3 is

its quasi 1D crystal structure. As predicted in ref. 22, this unique
structure can host various topological phases, such as 3D STI, 3D
WTI, and Dirac semimetal phases under different strains. It is thus
an ideal material system for studying the structure–topological
property relationship. Future investigations into the strain or
pressure effects on TaSe3 could offer valuable new insights.

METHODS
Sample synthesis
Single crystals of TaSe3 were grown through the chemical vapor transport
method. High purity (better than 99.9%) powder of Ta and Se with a molar
ratio of 1:3.3 were mixed together and pressed into a pellet. The excess Se
acts as the transport agent. The pellet was sealed in an evacuated quartz
tube, and placed into a horizontal tube furnace. The end of the quartz tube
with the pellet (starting material) was placed in the middle of the tube
furnace and heated to 700 °C. The other end of the tube furnace was kept
open to the atmosphere, which acted as the cold end, and thus creating a
temperature gradient necessary for vapor transport. The furnace was
maintained at 700 °C for 14 days, followed by a slow cooling to room
temperature. Finally, thin 1D-like single crystals with shiny surfaces were
obtained.

Measurements
Single crystal XRD measurements were carried out at room temperature
using a Bruker Kappa Apex-II and a PANalytical Empyrean X-ray
diffractometer. Electrical resistivity and Hall effect measurements were
carried out using the standard four-probe technique in a physical property
measurement system (PPMS, Quantum Design) for up to 14 T, and in a
temperature range of T= 1.9–305 K. The electrical contacts were made
using gold wires attached to the sample through epoxy. Hall effect data
were measured in both positive and negative field and then subtracted to
eliminate the lead-offset voltage.

DATA AVAILABILITY
All data that support the findings of this study are available from the corresponding
author upon reasonable request.
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