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Fractional and composite excitations of antiferromagnetic

quantum spin trimer chains

Jun-Qing Cheng@®'*, Jun Li'*, Zijian Xiong'?, Han-Qing Wu@®'®, Anders W. Sandvik**™ and Dao-Xin Yao(®'™

Using quantum Monte Carlo, exact diagonalization, and perturbation theory, we study the spectrum of the S=1/2
antiferromagnetic Heisenberg trimer chain by varying the ratio g = J,/J; of the intertrimer and intratrimer coupling strengths.
The doublet ground states of trimers form effective interacting S = 1/2 degrees of freedom described by a Heisenberg chain.
Therefore, the conventional two-spinon continuum of width «J; when g = 1 evolves into to a similar continuum of width « J, when
g — 0. The intermediate-energy and high-energy modes are termed doublons and quartons which fractionalize with increasing g to
form the conventional spinon continuum. In particular, at g = 0.716, the gap between the low-energy spinon branch and the
high-energy band with mixed doublons, quartons, and spinons closes. These features should be observable in inelastic neutron
scattering experiments if a quasi-one-dimensional quantum magnet with the linear trimer structure and J, < J; can be identified.
Our results may open a window for exploring the high-energy fractional excitations.
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INTRODUCTION

Many quasi one-dimensional (1D) magnetic materials with spin
S$=1/2 moments harbor exotic phenomena originating from the
physics of the Heisenberg antiferromagnetic chain (HAC) and its
extensions'. The dynamic spin structure factor of KCuF;23,
measured using inelastic neutron scattering, exhibits the char-
acteristic gapless two-spinon continuum? of the uniform HAC. A
phase transition to a gapped dimerized state, driven by additional
frustration and spin-phonon couplings has been realized in
CuGeO3°. In systems with random couplings, the random-singlet
state with infinite dynamic exponent forms®’, as originally
observed in a class of Bechgaard salts®® and more recently in
BaCu,SiGeO,'° and BaCuy(SigsGegs)>0'". Furthermore, the reso-
nant inelastic X-ray scattering (RIXS) technique has now enabled
specific detection of multi-spinon excitations'>'® in the HAC
material Sr,CuOs, and string excitations have been identified by
terahertz spectroscopy in the Heisenberg—Ising compounds
SrCo,V,05'* and BaCo,V,0g'°.

A unit cell of more than one spin, which is the context of our work
presented in this paper, can lead to an even richer variety of 1D
magnetic properties'®'8, For example, ladder systems with rungs
consisting of an odd or even number of S = 1/2 spins have a gapless
or gapped spectrum, respectively'®, in a way similar to Haldane’s
conjecture'® of chains with half-odd-integer or integer spins. Trimer
chains have also been studied experimentally, including A;Cuz(PO,)4
(A=Ca, Sr, Pb)?>?* and (CsH;,NO,),.3CuCl,.2H,0%*, where in all
cases the structure is such that two spins in one trimer are coupled
to two spins of their neighboring trimers. The linear trimer chain
with repeated couplings J;—J;—J; (intratrimer J; and intertrimer J,),
is realized in Cu(P,040H),2°> and Cu(P,040D),%, both of which have
J,>J;. The case of strong intertrimer coupling has also been
investigated theoretically'®, and other quantum magnets with
trimerized structure have also attracted attention®”2°,

From the theoretical perspective, it is interesting to consider the
linear trimer chain illustrated in Fig. 1, where for J, <« J; the
excitations can be understood from perturbative calculations
starting from the eigenstates of the isolated trimers. Surprisingly,
though the case J, > J; has been studied both experimentally and
theoretically, the potential of the J;>J, system (J;,J, both
antiferromagnetic) to realize a host of interesting excitations and
their confinement—deconfinement cross-overs has not been
recognized in the previous literature. We will study this model
system extensively here.

An interesting preliminary aspect of the J;—J;—J, system, where
we define g = J,/J; € (0, 1], is that it reduces to the conventional
HAC when g =1, while for g« 1 the low-energy excitations can
be mapped onto an HAC consisting of one effective S = 1/2 spin in
each unit cell. Thus, in both these limits, the low-energy
excitations should be spinons, but they live in different Brillouin
Zones (BZs). By reducing the coupling ratio from g=1 one can
expect an evolution from the conventional two-spinon continuum
in the window g € [0, ] of width o« J; into three continua in the
windows g € [0, /3], [/3,2n/3], [2n/3,n] with band width o J,.
Moreover, at small values of g there should also be weakly
dispersive modes arising from the internal excitations of the
trimers, and these must eventually fractionalize into spinons as
g — 1. The interplay between the two types of spinons and the
higher-energy modes, and how these coexisting excitations
eventually evolve into just the conventional spinon continuum,
is not immediately clear. Our calculations reported here are also in
part motivated by recent work on two-dimensional systems
consisting of weakly coupled multi-spin plaquettes of different
shapes3%3', In the calculations for coupled 3 x3 plaquettes,
intriguing spectral features were found but were not fully
explained®®, and the simpler 1D system considered here can
guide additional calculations and provide interpretations.
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Fig. 1 Schematic representation of a trimer spin chain. J; and J,
represent the two different antiferromagnetic nearest-neighbor
Heisenberg intratrimer and intertrimer couplings, respectively. We
here consider systems with J; > J, > 0. We will use the letters g, b, c as
indicated to refer to the three spins within a given unit cell.

We will develop a physical understanding of the various
observed branches of excitations and their intricate evolution
with g by interpreting the numerical spectral functions in the light
of perturbative calculations, as well as the known properties of the
spinon continuum in the uniform HAC. The S =1 excited states of
the uniform S=1/2 HAC are fractionalized into independently
propagating particles, spinons, each carrying S=1/2327% The
leading contributions of these excitations (two-spinon contribu-
tions) with total momentum g to the dynamic structure factor
S(q,w) can be calculated relatively easily* by Bethe ansatz (BA)
calculations, while four-spinon contributions require sophisticated
numerical calculations with the BA states°. The utility of the BA is
limited, however, when perturbing the HAC beyond the solvable
XXZ model*>*®. In general reliable calculations of dynamical
properties are very challenging beyond the small lattices
accessible to exact diagonalization (ED) techniques®’.

Currently, the density matrix renormalization group (DMRG)383°
and related methods formulated with matrix-product states
(MPS)* are very powerful for 1D systems and are also applicable
for calculations of dynamical structure factors*'*?, primarily for
systems with open boundaries, due to inefficiency in the case of
periodic chains. Quantum Monte Carlo (QMC) simulations with
subsequent numerical analytic continuation of the imaginary-time
correlation functions**=*° can be applied to large periodic system
sizes in any number of dimensions as long as the negative sign
problem can be avoided. Some very useful results for S(gq, w) have
been obtained for a variety of quantum magnets, e.g., in refs, 463,

We here study the trimer chain using both the QMC and
ED methods. For the former, we compute imaginary-time
correlations with the stochastic series expansion*® QMC method
and employ a variant of the stochastic analytic continuation (SAC)
technique®™=*>474° We will discuss results for S(q, w) in both the
regular and reduced BZs. When g is small, three well separated
features are observed. A low-energy continuum extending up to
w  J, with a characteristic spinon structure is present due to the
fact that each trimer hosts an effective spin-1/2 degree of freedom
and an effective HAC with coupling « J, forms. At higher energies,
w o J;, there are two different weakly dispersing modes corre-
sponding to the internal excitations of the trimers. These modes
evolve significantly as g is increased, and eventually, for g — 1 the
standard spinon continuum of the uniform chain is recovered. In
order to further understand the excitation mechanism and the
properties of these excitations, we construct perturbatively
motivated expressions for propagating internal trimer excitations
and find excellent agreement with the numerical results for small
to moderate values of g. According to the characters of these
excitations, we call the quasiparticle corresponding to the
intermediate-energy excitation (w=J;) the doublon and the one
corresponding to the higher energies (w=1.5J;) the quarton.
These excitations may be helpful for understanding similar dual
flat bands observed in the inelastic neutron-scattering spectra of
AsCu3(PO4)s (A=Ca, Sr, Pb)?°, where there are next-nearest-
neighbor interactions but where trimers are also effectively weakly
coupled as in the g <« 1 system studied here.

We will also use ED to compute the dynamic structure factor in
a truncated Hilbert space, where the full low-energy spinon space
is included in addition to one each of the doublon and quarton.
For g<0.5, the good agreement of the spectral functions
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obtained in this manner with those from the other calculations
confirms the nature of these excitations, while disagreements for
larger g show how the doublons and quartons loose their identity
when they begin to fractionalize into the standard HAC spinon
continuum that emerges when g—1. In the intermediate g
regime, we have two different spinon continua coexisting with the
doublon and quarton. These calculations demonstrate how two
branches of trimer excitations gradually broaden out when g
increases, then merge together and evolve into the upper part of
the two-spinon continuum in a fractionalization process. Based on
these results, we also develop an intuitive picture of the quasi-
particles as complex domain walls, generalizing the standard
domain-wall description of spinons in the HAC. The high-energy
spin excitations (energy of order J) have also been under intense
scrutiny in the antiferromagnetic parent compounds of the high-
T, superconductors®*>® and other systems described by the 2D
Heisenberg model*®®°, Our results on the fractionalization
mechanism of high-energy spin excitations of the trimer chain
may be helpful for further exploring the fractionalization
mechanism of high-energy magnons in these systems.

RESULTS

Model

The Hamiltonian of the spin-1/2 antiferromagnetic trimer chain
with periodic boundary conditions reads

N
H=> [)i(Sia-Sit+Sit - Sic) +J2Sic  Sis1a), Q)

i=1

where S, is the spin-1/2 operator at the ath site in the ith trimer,
the intratrimer labels a € {g, b, ¢} are explained by Fig. 1. The total
number of trimers is N and the total length of system is L =3N.
The tuning parameter g is defined as g =J,/J; and we here limit
our study to 0<g<1. For simplicity, we set the intratrimer
interaction J; = 1 as the energy unit, so that intertrimer interaction
J, =g. Our interest is in the whole range of intermediate coupling
ratios g € (0, 1) where the system evolves between the isolated
trimers and the isotropic BA solvable HAC.

The dynamic structure factor describing the time-dependent
spin—spin correlations at a given transferred momentum gq is
defined as

SP(q,w) = 21—” / " dt<s§(r)s[ q(0)>e"‘"7 2

where By refer to spin components x,y,z and Si) is the Fourier
transform of the spins that we discuss later (as it depends on
the type of BZ used). In frequency space the dynamic structure
factor is

5%(@.0) = 3 |[(wnlsilun)| 510 - (€2 — £ ®

where we have explicitly indicated the diagonal z component,
which already contains all information in the case of the spin-
rotational invariant model considered here. From now on we will
omit the superscripts and define (g, w) = 35%(q, w).

Overview of numerical results

In this section, we present the spin excitation spectra of the trimer
chain obtained by QMC-SAC calculations (see the technical details
in “Methods”). Color plots of S(gq,w) representing the full (g, w)
space are shown in Fig. 2 for a chain with 192 spins. We have also
calculated the full spectrum by ED for a chain with 30 spins (see
Supplementary Fig. 1), which exhibits similar features as the QMC-
SAC results but with significant finite-size effects. To better reveal
the important spectral features, here and in graphs in later
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Fig. 2 Dynamic spin structure factor S(q, w) obtained from QMC-SAC calculations for different g values. The color coding of S(q,w),
illustrated with the bar on the right side, uses a piecewise function where the boundary value Uy, = 5 is indicated by the line on the color bar.
Below the boundary, the low-intensity portion is characterized by a linear mapping of the spectral function to the color bar, while above the
boundary a logarithmic scale is used, U = Uy + log 14[S(g, w)] — log ;4(Uo). Since the SAC method generates spectra with intrinsic broadening,
no additional broadening is imposed here. The vertical striped features, noticeable especially between the w~ 1 and w~ 1.5 bands in (a) and
(b), are typical in analytic continuation when the statistical precision of the QMC imaginary-time data is barely sufficient for resolving two
features, thus not completely resolving them for some momenta while resolving them in other cases (c)-(h).
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Fig. 3 The level spectrum and corresponding wave functions of one isolated trimer. The second column lists the wave functions in the
spin-z basis, while the third column presents the spin structures using a basis of singlets (gray ovals and rounded shapes), zero-magnetization
triplets (gray square shapes), and unpaired spins (arrows). The rightmost column lists the total spin quantum number S and magnetic

quantum number M.

sections, we used color coding of S(g,w) by a piecewise function
which is explained further in the caption of Fig. 2.

Let us first examine results for g = 1, shown in Fig. 2h, where we
observe the well understood characteristic asymmetric spinon
continuum of the HAC chain. As g — 0, the width of the continuum
vanishes along with the spectral weight, while at the other gapless
point g =1 the continuum has maximum width and the weight in
the thermodynamic limit is w™' divergent (with a logarithmic
correction). At the lower edge away from the gapless points, the
dispersion relation ¢, = (m/2)|sin(q)| reflects that of a single
spinon. The spectral weight is also concentrated at this edge, with a
(w— eq)”2 divergence. The divergent features can of course not be
strictly observed in the finite systems, and in the case of QMC-SAC
results there is also broadening and some distortions due to the
incomplete data used in the analytic continuation. Nevertheless, the
lower spectral bound is well reproduced and the observed
concentration of spectral weight at the lower edge is a true feature
of the spinon continuum®3>,

Next, we discuss how the spectral function evolves as g is increased
from 0 and eventually approaches 1. As apparent in Fig. 2a-c, when
g=0.1-03 the gapless low-energy spectrum comprises spinon
excitations originating from an effective HAC of N effective S=1/2
degrees of freedom. The reduced BZ corresponds to g € [0, 11/3] in the

Published in partnership with Nanjing University

full BZ used in the figures. The same excitations appear also in the
windows g € [r/3,2n/3] and g€ [2n/3,n], with different weight
distributions due to the different phase factors. In addition to g =0,
m, the spectrum is gapless at g =1/3 and g = 2n/3 when g < 1, which
can also be explained by the Lieb—Schultz—Mattis theorem%°¢ along
with BZ folding effect since the system is rotationally invariant and
translationally invariant with unit cell containing three spins.

Many of the observed features follow from the fact that the
three low-energy spinon continua must evolve into a single
continuum as g — 1. Thus, the spectral weight in the central
portions g € [n/3,2n/3] of the low-energy spinon continuum
decreases while the leftmost g € [0,1/3] and rightmost g € [2n/3,
] half arches become more prominent. A very interesting aspect
of the evolution is how the intermediate-energy and high-energy
modes gradually morph into the high-energy part of the standard
HAC spinon continuum. Thus, a fractionalization of the quasipar-
ticles takes place. In the following, we will provide a perturbative
analysis to explain the evolution of the spectrum.

Perturbative analysis: Effective Heisenberg coupling

In Fig. 3 we observe that the low-energy doublets contain a singlet
and an unpaired spin; thus, each trimer contains an effective

npj Quantum Materials (2022) 3
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spin-1/2 degree of freedom. Furthermore, there is a clear
separation to the higher-energy states, which according to our
results in the previous section survives at least for g<0.4.
Therefore, the low-energy excitations of trimer chain can be well
described by an effective Hamiltonian whose excitations only
contain the spinons. The trimer chain is translationally invariant
with a unit cell of three spins and rotationally invariant, and the
effective Hamiltonian must conserve the translation symmetry and
SU(2) symmetry. We explicitly derive the effective HAC arising
from the doublet trimer ground states by applying the Kadanoff
method®?~%°, projecting the Hamiltonian onto the a low-energy
subspace constructed from the lowest eigenstates of each trimer
(see Supplementary Note 2). The effective Hamiltonian for N
trimers is

N
Hett = Jest » ;- Sji1, (4)
=

which describes an isotropic HAC with an effective coupling
strength J.is =4J,/9, and S is the effective spin-1/2 operator.
We next define a dynamic structure factor in the reduced BZ as
follows

Sred(qvw) = Z Séz(q»w): (5)
a=a,b,c
where S% (g, w) is the dynamical structure factor as defined in

Eg. 2 but including only the spins at location a € {a, b, c}. The
momenta are then of the form q = 6nm/L for the system of L = 3N
spins. The low-energy part is the two-spinon continuum, with the
predicted lower boundary w; = mJeg|sin(g)|/2 and upper bound-
ary w, = Mek|sin(q/2)|, is indicated in the reduced BZ in
Fig. 4a-d. The predicted lower boundary w| = meg|sin(3q)|/2
and upper boundary w/, = ie|sin(3g/2)] in the full BZ is similarly
shown in Fig. 4e-f. We observe that the boundaries are in good
agreement with the numerical results, and the spectral weight
close to the upper bound is very small at g =, as is well known in
the case of the standard HAC. Thus, we have confirmed that the
trimer chain reduces to an effective HAC with exchange
interaction Jog = 4J,/9 even for g as high as about 0.4.

Perturbative analysis: Propagating internal trimer excitations
Looking at the full level spectrum and corresponding eigenvec-
tors of one single trimer in Fig. 3, the ground state is a doublet
with energy Eo = —J;, total spin quantum number S=1/2, and

o )
q q

2m/3

magnetic quantum number M=+1/2. The first and second
excited states of the trimer are a doublet with £, =0, S=1/2 and
a quartet with E; =J,/2, S=3/2, respectively. We also show the
structure of the eigenstates when written as pairs of spins
forming a singlet or a triplet, with one or three left over unpaired
spin. The two low-energy doublets both contain only singlets and
unpaired spins, while the higher quadruplet excitations contain
either a triplet pair and an unpaired spin or three unpaired spins.
The magnetic quantum number M =+1/2 or M=+3/2 corre-
sponds to the number of unpaired spins in each case.

Taking two trimers as an example, when g is small enough the
coupling can be regarded as a perturbation of the product state
of the isolated trimers. There are four states forming a singlet
ground state and a triplet excitation with a gap of order g. In
addition, the lowest internal excitations of the trimers have a gap
of order J; to the low-energy states. The almost degenerate
excitations originating from the two different trimers include
S =1 states, which are of our primary interest when considering
the dynamic spin structure factor. Increasing the number of
trimers, the analogy of the lowest singlet and triplet of the two-
trimer system is the spinon continuum, which for non-interacting
spinons come with S =0 and S = 1. The internal excitations of the
trimers will form weakly dispersive bands for small g, and
lose their single-trimer identity for larger g. For simplicity, the
calculations involving these higher excitations will not be carried
out with the spin rotation symmetry maintained. Being interested
in S=1 excitations probed with the dynamic structure factor, we
will still focus on excited states with |AM| =1.

The internal excitations of the trimer chain are almost localized
when g is small, and cannot be classified as magnons or triplons.
In order to understand the nature of these excitations, we propose
a scheme to calculate their dispersion relations. The results are
shown in Fig. 4 as a number of dispersion relations corresponding
to propagation of internal trimer excitations in the background of
a chain with defects mimicking the complex ground state of the
effective HAC. The overall good agreement with the QMC-SAC
results on the location of these excitations and their band widths
suggest that our picture of the excitation is correct even though
the calculation involves a very rough approximation of the ground
state. The bending of, in particular, the intermediate band, and the
broadening for g < 0.3 visible in the full BZ are not captured by the
simple ansatz used here, which will be presented in detail below.
The approach nevertheless forms a good starting point before
considering other approaches.

i3 23 o i3
q q

23

Fig.4 QMC-SAC results compared with perturbative energy levels. a-d Show results for S.4(g, w) in the reduced BZ, while e—h show S(g, w)
in the full BZ as in Fig. 2. In a-d the magenta and red solid lines are respectively the lower boundary w; = mJeg|sin(g)|/2 and upper boundary
wy = Tegt|sin(q/2)| of the two-spinon continuum, the black solid lines represent the dispersion relations (see Egs. 6—8) corresponding to the
intermediate-energy spectrum. The green solid lines are the dispersion relations (see Egs. 9—17) corresponding to the higher-energy
spectrum. The dispersion relations in full BZ are obtained by unfolding the results in the reduced BZ. The boundaries between the linear and
logarithmic color mappings are a-d Uy =4 and e-h Uy = 5, respectively, as indicated on the color bars.

npj Quantum Materials (2022) 3

Published in partnership with Nanjing University



By assuming the ground-state wave function of the spin chain is
the product states of ground states of each trimer and the excited-
state wave function contains one excited trimer, we are able to
calculate the dispersion relations corresponding to the
intermediate-energy excitations with |AM|=1. Considering the
massively degenerate states obtained from the possible choices of
the doublet ground state on each trimer and total magnetization
M=0, it is found that the dispersion relations are mainly
dependent on the excited trimers and their neighbors. Translated
to finite size, this means that the correct generic result is already
obtained from a system with N=4 trimers. The details can be
found in Supplementary Note 3. The result is six remaining
dispersion relations,

1
E, —Ey — §J2 cosq, (6)
Ey — Eo, (7)
2
Ey —Eo+ 512, (8)

where each case is two-fold degenerate. All three dispersion
relations for g=0.1 are graphed in Fig. 5a. Two dispersion
relations are independent of g since the excitations are localized.
According to the characters of this excitation starting from the
g =0 limit, we refer to it as the doublon.

Calculating the dispersion of the high-energy excitations
evolving from the trimer quartet at w=3J;/2 is more
complicated but we follow the same strategy as for the
doublon. The intermediate-energy band is formed by reconfi-
guring the singlet bond in the original ground state of the trimer
in Fig. 3 at a cost of J;. The higher band is formed out of trimers
excited into their S = 3/2 highest state, which can be seen as the
singlet of two spins excited into a triplet, at a cost of 3J;/2.
Accordingly, we refer to this high-energy quasiparticles as the
quartons. This rough estimation of the quarton energy matches
with the QMC-SAC results for small g values.

Our calculation does not conserve the total spin of the
collective many-body state, but we consider the excitations
corresponding to AS =1 on one trimer. As a result, 96 dispersion

1.05 (@) 1.60 (b)
‘ 1.55°
1.0-------- (2 R E LR R L e i
i G
< ; (2 S /
[y 150_(.49/ >
== Eq-Eg-Joc0s(q)/3 (83
0.95 --- E-Ep —M
— E-Eg+(245)/9 1.45
0 77/2 T 0 77/2 7T
q q

Fig. 5 Dispersion relations of the intermediate-energy and high-
energy excitations in the reduced BZ. All results are from the case
where g=0.1. The numbers marked on curves represent the
degeneracies. In a each dispersion relation is two-fold degenerate.
In b four colors have been used to distinguish the different
degeneracies.
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relations fall into 33 different cases,

22+ 1 J
EZ—EO—gJZcos(qH 0,—21%, )
9 9
2vV/2 +1 Jr, 2J
E27E0+Q.}2COS(Q)+ 0,*2,72 s (10)
9 9°'9
2 J 2J
Ey—Eo—~ZJycos(q) + 4 + =2, + =24, (11)
9 9
2 Jy Jy 54
E, — E —J + = = — 12
2 —Eo+ zcos(q)+{ 9,3,9}, (12)
J, 2J; J> 5),
Ey—Eo+40,£2, =2 422 2220 13
2 0+{7 97 97 37 9}, ( )
V3 2, 4
[ 2 e 14
2— b0 Spheosta) + {32 2.2}, i
J, J, 2J),
E,—E — 0, =, ——>, 15
2= o+ Tycos(a) + {022 - 521 as)
J2 -/2 2J2 JZ
Ey—Ep+2 2 2 2 1
2 o+6cos(q)+{0,9,9,3}, (16)
2v/2 -1 J
Ey —Eo+ \/_TJZ cos(q) +§27 (17)

which are displayed in Fig. 5b for g =0.1. The calculation details
can be found in Supplementary Note 3. The number marked on
each curve shows the degeneracy of every dispersion relation of
the high-energy excitation depending on the number of times it
appears among the total 96 cases. Among these dispersion
relations, some are independent of g, see Eq. 13, and the
dispersion relations E;, — Eg —J,/9 and E, — E; both have the
maximum degeneracy, eight. It can be found that most of
the dispersion relations in Eq. 13 also have large degeneracies.
The reason is that when g is small, these excitations are localized
in the trimers and dominate the whole types of excitation in our
perturbative calculation. When g is increased, the dispersion
relations dependent of g will become more significant, therefore
the deviation of our perturbative calculation on the condition of
small g will be more obvious.

Comparisons of numerical and analytical results

Next, we compare the above doublon and quarton dispersion
relations with QMC-SAC results in both the reduced and full BZs. At
g=0.1, Fig. 4a, we clearly observe three different bands of
excitations; in addition to the low-energy spinon continuum
we have weakly dispersive intermediate-energy (w=J;=1) and
higher-energy bands (w = 2J;/3 = 1.5) exactly in the regions where
the QMC-SAC results exhibit large spectral weight. Figure 4e shows
the unfolded dispersion relations and QMC-SAC results in the full
BZ. The intermediate-energy and high-energy modes are more
clearly visible in the full BZ, as the three g windows have different
weighting for the g, b, and ¢ trimer spin operators, thus offering
more opportunities for an optimal weighting that makes any of the
features visible. The advantages of the full BZ are even more clear at
g=0.2 in Fig. 4b, f, where the dynamic structure factor in the
reduced BZ does not exhibit two separate modes but they have
merged into a single continuum. This merger of the two modes
may partially be due to the limitations of the QMC-SAC approach,
but most likely it reflects to a large extent the actual weight
distribution. As g is increased, these two bands merge into each
other also in the full BZ. It is remarkable how flat the bands are even
at g as large as 0.4, and that the perturbative calculation at least
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points a g =n/6 and b g =5n/6 for g = 0.7, 9/(4x), 0.8, in the region where all the different excitations merge together and their individual
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The upper boundary of the two-spinon continuum (red solid line) and the dispersion relation Eq. 7 corresponding to the intermediate-energy
branch (black solid line) cross over at g = n. The boundaries between the linear and logarithmic color mappings are (c) Uy =4 and (d) Uy =5,

respectively, as indicated on the color bars.

gives the correct region of dominant spectral weight in the reduced
BZ. However, from the full BZ results, it is also clear that non-
perturbative effects set in, with dispersive modes visible in between
the two bands predicted by the variational states with only a single
excited doublon or quarton. These dispersive modes that grow out
of the doublons and quartons eventually evolve into the upper part
of the spinon continuum as g — 1, as seen in Fig. 2.

We can also see in Fig. 2 that the low-energy and high-energy
bands merge near g =0.7. As shown in Fig. 6a, b, S(m/6,w) and
S(5m/6,w) both exhibit two peaks when g=10.7, while in both
cases only one peak is present for g = 0.8. Along with Fig. 2f, g, we
can conclude a threshold value g, between g=0.7 and g=0.8
where the spinon upper bound touches the lower edge of the
higher-energy band. This point signifies a hybrid of the doublon
and quarton excitations becoming part of the conventional spinon
continuum, which should be associated with a fractionalization
mechanisms. Beyond the threshold value, the spectrum exhibits a
continuum with a single peak, tending to the standard two-spinon
continuum of the isotropic HAC when g — 1.

We can derive the threshold value for the merger of the different
quasiparticle bands using the perturbative dispersion relations,
which amounts to solving the equation mJeg|sin(g/2)| = E1 — Eo,
with the result g, = 9/(4m) = 0.716. While we do not expect this value
to be very precise, in Fig. 6a, b, S(g, w) at g = /6 and g = 57/6 with
gy = 9/(4m) are seen to contain a single broad peak. Figure 6c, d
present Sreq(q, w) and S(g, w) obtained from QMC-SAC calculations
for g = 9/(4m), where the spectrum begins to form a single band.
The gap between the upper boundary of the two-spinon continuum
and the dispersion relations corresponding to the intermediate-
energy branch is closed at g =m. Here, we should emphasize that
there is no phase transition near this threshold, but still there is a
dramatic change in the nature of the excitations of energy o J;.

npj Quantum Materials (2022) 3

Quasi-particles in a truncated Hilbert Space

Motivated by the results in the preceding sections, we now
more formally construct a truncated Hilbert space in which the
number of internal trimer excitations is limited to one doublon
or quarton (with no restriction on their internal magnetization).
We could in principle carry out low-order perturbation theory in
this space, but the spinons are not easily accounted for in this
way. Here our goal is instead to demonstrate that the spinons,
doublons, and quartons can all be present in the spectrum
originating from a severe truncation of the Hilbert space of the
trimer states. We, therefore, carry out full ED calculations and
construct the dynamic structure factor based on only the
approximation of truncated Hilbert space with at most one
internal trimer excitation.

We construct a set of states Q formed by the eigenvectors of
isolated trimers as shown in Fig. 7. In order to capture the spinon
continuum, we include all Cx/z combinations of the trimer
doublet ground states for which the total magnetic quantum
number M = 0. For the single excited trimer in its excited state,
there are several options for replacing the doublet ground states,
as indicated in Fig. 7. The Q covers all the M =0 sates including
the spinons, one doublon, and one quarton, which is a crucial
condition for realizing the full spectrum in this truncated Hilbert
space. The states contain

ZC%/ZC)W doublons, (18)

2<Cx/2c}\//2 +C/<\1N+2)/2C2N’2)/2> quartons, (19)

and the total number of states ¢; € Q, including those without
internal trimer excitations, is

a2 +acyChyy + 203 2Cly_z))- (20)
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Fig. 7 Representation of the truncated Hilbert space. This space
contains all the single-trimer eigenstates (see Fig. 3) in addition to
the full space of states of the background spin chain, restricted to
the total M=0 sector. There are Cx/z ground states with M=0
formed by permutation without repetition of |0 ---0'0%- - - 0%). For
states containing a doublon or a quarton, one excited trimer
(represented by red color) is present instead of one of the doublet
trimer ground states. The excitations correspond to changes in
quantum numbers obeying |AM| = 0, which in some cases require a
flip of a background spin (represented by green color). Here, the
excitations |0)> — [1)"? and [0)? — |2)"?*** are not included since a
duplicate of the state can be found from among the already
constructed configurations with |AM| =

The effective Hamiltonian matrix in Q is

Hj = (¢ilH|d;), (21)

where the states are visualized in Fig. 7.
To diagonalize the effective Hamiltonian, we first Fourier
transform the spin operator Sé (also see Eqg. 33 in “Methods”),

L1

ﬁ 3 e 9gz, (22)
with a unit cell index R=0,---,N—1,
¢- 1 ¥ PR (Sh o+ e ISh, + 075, ), (23)
RELY =
The spin operators in the truncated Hilbert space are given by
(Sha), = (@iS5aldy). (24)

where the intratrimer labels a € {g, b, c}. Then, above spin operator
in momentum space is written as

St = \/_Zef'”q o T eISh, + 7S] ), (25)

where the momenta is still g=2nn/L,n=0,1,---,L—1. The
dynamic structure factor is given by

= ‘<me|sg|wo>‘2<s[w — (Em — Eo)], (26)

where |¥,,) is the mth eigenstate with energy [E,,.

Results for L = 24 are already enough to reveal the key features
of the excitations and spectral functions. As shown in Fig. 8, when
g <0.5 the spectral shapes and weights coincide well with the
results of QMC-SAC (Fig. 2). For g > 0.5, the agreement gradually
deteriorates, which confirms that the single propagating trimer
excitations are no longer a good quasiparticles of the full system.
In particular, the doublon and quarton bands fail to merge into
the spinon continuum in the truncated Hilbert space, and this
failure also naturally corresponds to the inability of the truncated
Hilbert space to capture the fractionalization of the internal trimer
excitations.
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It is remarkable that the agreement with the full and truncated
calculations is good up to g as large as 0.5. The truncated
calculation also captures some of the arch feature of the upper
bound of the spinon continuum for g > 0.5. This also implies that
the fractionalization of the doublons and quartons has not yet set
in when the arch forms. The fractionalization likely sets in only at
g=0.72, when the arch touches the lower-energy portion of the
continuum, and some of the high-energy excitations may remain
confined until g =1 (similar to the 2D Heisenberg model, where
only some of the high-energy excitations exhibit signs of
fractionalization®). At the same time, the spectral weight of the
low-energy spinons evolves to form the lower edge of the
conventional spinon continuum as g — 1.

Simplified pictures of doublons and quartons

Here we develop an intuitive picture of the doublons and
quartons, generalizing the standard cartoonish picture of spinons
as domain walls in an antiferromagnet. In the conventional
simplified description of spinons in the HAC, illustrated in Fig. 93,
one starts from a staggered spin configuration (mimicking the
quasi-ordered antiferromagnetic true ground state). Flipping one
spin creates an excitation with |[AM| = 1, which in the actual spin-
rotationally invariant system corresponds to an excitation carrying
spin S=1. The left and right misalignments of the flipped spin
with respect to its neighbors can be regarded as two domain
walls, and these domain walls can move by two lattice spacings at
a time by flipping pairs of adjacent spins (conserving the
magnetization). These mobile domain walls are the spinons, and
once the domain walls have separated the originally flipped spin
has lost its identity and is completely fractionalized into two
independently propagated spinons.

Let us now extend this cartoon-like picture to the doublon
excitation. As shown in Fig. 9b, to create an excitation of this type
with |AM| =1, we again start from an antiferromagnetic spin
configuration with three parallel spins, but now the effective spin
in the middle is of the excited type. We can again think of the
misaligned spin configurations as associated with domain walls,
and once these domain walls move away from the central doublet
site they look just like standard spinons. However, they may not
completely free, but bound to the still present central doublet
spin. The consequence of the binding is that the central doublet
propagates through the system dressed by spinons, and there
should be a large number of internal modes of these composite
excitations, leading to a band of finite width in energy of these
excitations. In addition to the bound spinons forming the cloud,
there should also be freely propagating spinons coexisting with
the propagating central doublet excitations, since on top of such
an excitation a pair of low-energy spinons can be created.
However, the observed dynamic spin structure factor, where the
initial excitation is created locally and later destroyed locally,
should be dominated by states with only dressed central doublet
and no free spinons, because of matrix element effects in the
same way as two-spinon processes dominate the structure factor
of the standard HAC.

Next, we turn to the quarton, which offers several possibilities
for cartoon states with |AM|=1 according to the trimer
excitations listed in Fig. 3. For simplicity, we consider those based
on the $°=3/2 states, where the effective particles can be
fractionalized or not, as illustrated in Fig. 9¢, d. In Fig. 9c, we first
replace a spin S5 = —1/2 by the §=3/2 triplet state. Then we
have AM = 2, and to bring this down to AM =1 we flip one of the
neighbor §* = 1/2 spins down. This creates a domain wall, which
can travel away from the excited trimer in the way discussed
above. On the other side of the excited trimer, a domain wall can
also propagate out. Thus, as in the case of the central doublet,
Fig. 9b, the trimer quarton will create a cloud of bound spinons
surrounding it, with the difference that the separation between
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Fig. 9 Schematic illustrations of propagating doublons and quartons. In each case a-d, the excitation mechanism and propagation of a
quasiparticle are illustrated from top to bottom. a The conventional simplified description of spinons in the HAC, where the dots indicate
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without (d) domain walls for |AM| =1 (S=1).

the domain walls is an even number of trimers, instead of an odd
number in the central doublet case.

In Fig. 9d, we replace an S7 = 1/2 state by the S* = 3/2 triplon
state, which gives us AM =1 in a single step. Here we just
illustrate how this trimer excitation can propagate with
assistance of virtual spinons. Such processes are also possible
with the central doublet in Fig. 9b and the first quarton in Fig. 9c.
These processes represent the motion of the center of mass of
the spinon-dressed internal trimer excitations. If we restore spin-
rotation symmetry, the cases depicted in Fig. 9¢c, d would no
longer be separable, and the |$?| = 1/2 trimer excitations would
also be involved on equal footing.

Clearly the above considerations only provide rough cartoons of
the actual excited states, but in the same way as the simple
pictures in Fig. 9a have been important in forming useful intuition
about spinons, these similar pictures for the collective aspects of
the internal trimer excitations are also useful as an illuminating
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complement to the spectral functions and perturbative dispersion
relations. In particular, the fact that these high-energy excitations
already contain spinons suggests that they eventually fractionalize
into the conventional HAC spinons by unbinding when g — 1. At
the same time, the internal trimer excitation becomes gradually
more ill-defined, involving a larger number of trimers.

DISCUSSION

We have investigated the dynamic spin structure factor and the
nature of the visible excitations of the spin-1/2 antiferromagnetic
trimer chain by employing the QMC-SAC, ED, and approximate
analytical methods. We showed that changes in the intertrimer
interactions lead to different types of collective excitations related
to the HAC and the internal trimer excitations, and we used a
perturbative approach and ED calculation in a truncated Hilbert
space to confirm the excitation mechanisms.
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When g is small, three well separated excitation branches are
present. The low-energy continuum corresponds to the decon-
fined spinon excitations of an effective HAC with coupling Jeg =
4J,/9. In the full BZ of the chain, three such continua are present,
with different spectral weight distributions. When g = 1, the trimer
chain reduces to the conventional HAC with its two-spinon
continuum of width w o« J;. We have investigated the cross-over
behavior from one type of spinon to the other kind, as well as the
manifestations of the fractionalization of the higher-energy
quasiparticles when they evolve into conventional spinon
continuum as g — 1.

When g 0.2, the propagating internal trimer excitations form
two weakly dispersive bands, which we named doublons and
quartons according to the nature of the excited isolated trimers.
For larger g, these two quasiparticle bands merge into each other,
and when g—1 they lose their identity completely as they
fractionalize and evolve into the conventional spinon continuum.
The coexistence of two kinds of emergent spinon branches and
two bands of trimer excitations for intermediate g give rise to
interesting spectral signatures. Perturbatively, we identify a
threshold value g, = 9/(4m) = 0.716 of the coupling ratio at which
these excitations merge into a single continuum, and our
numerical results confirm the behavior for g close to this value.
Our calculations in a truncated Hilbert space involving all the spin
states of the background chain but only one doublon and one
quarton. Comparing the results with those of the other calcula-
tions confirm the stability of the internal quasi-particle excitations
up to g=0.5, while for larger g the description of the full system
requires a larger number of degrees of freedom to describe the
fractionalization process.

It would be very interesting to explore the details of the
fractionalization mechanism in future calculations using other
theoretical and numerical approaches. The trimer chain is perhaps
the simplest setting in which such mechanisms can be explored—
theoretically, as well as experimentally. We note that there are
already examples of coupled-trimer quantum magnets as
discussed in the introduction, for instance, A;Cuz(PO,), (A= Ca,
Sr, Pb)?°-23, From the inelastic neutron-scattering spectra mea-
sured at 8K in Pb3Cu;3(P04),%°, two flat excitations at w~ 9 meV
and w~13.5meV are observed, which are also revealed by the
intermediate-energy (at w~J;) and high-energy (at w~1.5J;)
excitations in our theoretical results when g=0.1. Since the
intertrimer couplings are small in this material, the trimers are
approximately isolated, some features like the energies and
relative intensity of two flat bands (see Figs. 2 and 3 in ref. ?°) can
also be compared with our results. However, the trimers in
PbsCus(PO,)4 do not correspond directly to our linear chain model
with only with nearest-neighbor couplings and g<1. It is very
likely that materials can be synthesized that correspond closely to
our model. Once such a quasi-1D material has been identified, our
results will be helpful for interpreting inelastic neutron scattering
and other experiments probing dynamical properties that beyond
the spin waves and conventional spinons,

High-energy (~J) spin excitations of quantum magnets are less
studied than the low-energy modes, but are attracting growing
interest motivated by the emergence of unusual features in the
spectral functions of the high-T, cuprates®*=>8, as well as in other
antiferromagnets described by the 2D Heisenberg model*®>°,
These features have been interpreted as partial fractionalization of
magnons, which in the presence of additional interactions can
evolve into full fractionalization in some parts of the BZ. Our
results offer useful insights for further exploring coexisting exotic
excitations and fractionalization within a relatively simple
theoretical framework.
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METHODS
Stochastic analytic continuation of QMC data

In this section, we outline the SAC of QMC data. The imaginary-time
correlation function G,() corresponding to S(q, w) is given by

Go(r) = (S4(T)S 4(0)), @)

from which S(g,w) can in principle be reconstructed by inverting the
relationship

Gy(1) =+ [ 1 dws(q, w)e ™. (28)

In reality, the inversion procedure has limited frequency resolution due to
the incomplete information available from QMC calculations of G4(1) on a
finite grid of points and with statistical errors. Nevertheless, with the best
available analytical continuation tools and small statistical errors achiev-
able with long runs using efficient algorithms, quantitatively useful
information can be extracted.

In our QMC simulations*®, we obtain unbiased statistical estimates of
G4(1) for a set of imaginary-time points {r;}. Since the statistical
fluctuations for different time points are highly correlated, we also have
to compute the covariance matrix. With a number of QMC data bins Npg,
based on sufficiently long simulation segments to be in practice
uncorrelated, we obtain the averages Ggy(T;) = ZGZ(T;)/NB and the
covariance matrix b

Ng Gb i _G i Gb . _G X
) :Z[ o(T0) ;\7,:(-/\)/]3[:](11;) G(Tj)].

b=1

(29)

In practice, we also normalize the correlation functions so that
Gq(t = 0) = 1, which automatically removes the covariance corresponding
to an overall uniform fluctuation of the correlations. The remaining
covariance is still significant and has to be taken into account for the
method to be statistically sound.

In the SAC process, S(g,w) is parameterized with a large number of
S-functions. Instead of the commonly used fixed grid with equally spaced
S-functions with sampled amplitudes, we here use the approach where the
S-functions all have equal amplitude and instead the frequencies are
sampled. The mean density of &-functions, accumulated in a histogram,
then represents the normalized spectral function S(g,w). The normal-
ization factor G4(t = 0) is reintroduced after the analytic continuation so
that the correct spectral weight is recovered.

The most complete discussion of the sampling process is currently in
ref. %8, Here we just briefly review the variant of the method corresponding
to Fig. 1a of ref. %8, which was also used in refs. >'>? where some additional
tests and comparisons with other methods are presented. For a given
sampled set of the equal-amplitude &-functions, the corresponding
imaginary-time function G (t;) on the chosen set of points {t} is calculated
according to Eq. 28. The goodness of fit, x?, defines the closeness to the
corresponding QMC data as:

N:

K= > (G(m) = Ga(m)) &5 10) (G5 (1) = Galry)). (30

ij=1

The spectral function is sampled in a Monte Carlo simulation using the
probability distribution

X
p ). 31
(S) x exp( 2 ) (31)
Here the fictitious temperature © is set so that

(X*) & Xein + \/ 22 (32)

which provides a natural scale of fluctuations at which we do not “fit to the
errors” while a good fit is still automatically guaranteed.

We now turn to the Fourier transform of the spin operator, SZ, for the
system with three spins per unit cell. Using the full BZ of the spin chain of
length L = 3N, we define

=
= e M9z, (33)
7 V3N ,ZO: !

where g=2nn/L,n=0,1,...,L — 1, and the corresponding imaginary-time
correlation function is

Gq(T) = 3<557 (1)S%. q(o)>. (34)
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It is also useful to consider a reduced BZ. Denoting by S, the spin at
position a € {a, b, ¢} of the ith unit cell, we define

1 N-1 F
Sia= U2 e
=

where g=2nm/N, n=0,1,...,N—1. The correlation function for the
reduced BZ is then assembled as:

(35)

ab.c

G,(1) = > (S5a(1)54al0) )-

In principle, we could also consider other form factors internally in the unit
cells, but for our purposes here it suffices to consider the reduced BZ with
the uniform summation, along with results for the full BZ based on Eq. 34.

We have performed the QMC calculation with the length of the spin
chain up to L=192(N=264). To obtain results representing the low-
temperature limit T— 0, we scale the inverse temperature 8 =J,/T=4L.
This low temperature is also necessary in order to resolve the spectral
features appearing at very low energies, which are reflected in the
imaginary-time correlations at large 7. In the SAC procedure, the statistical
noise of the underlying imaginary-time data is a decisive factor governing
the frequency resolution. Normalizing G,(1) by setting G,(0) = 1 as explained
above, the statistical errors vanish as T — 0 and approach roughly a constant
value as 7 is increased. This almost constant statistical error for large 7 is a
good measure of the level of the statistical errors*’*¢, We have performed
sufficiently long calculations to achieve an error level of approximately 10~¢
for most of the results presented above.

(36)
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