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Cascade of transitions in twisted and non-twisted graphene
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Motivated by measurements of compressibility and STM spectra in twisted bilayer graphene, we analyze the pattern of symmetry
breaking for itinerant fermions near a van Hove singularity. Making use of an approximate SU(4) symmetry of the Landau functional,
we show that the structure of the spin/isospin order parameter changes with increasing filling via a cascade of transitions. We
compute the feedback from different spin/isospin orders on fermions and argue that each order splits the initially 4-fold
degenerate van Hove peak in a particular fashion, consistent with the STM data and compressibility measurements, providing a
unified interpretation of the cascade of transitions in twisted bilayer graphene. Our results follow from a generic analysis of an
SU(4)-symmetric Landau functional and are valid beyond a specific underlying fermionic model. We argue that an analogous van
Hove scenario explains the cascade of phase transitions in non-twisted Bernal bilayer and rhombohedral trilayer graphene.
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INTRODUCTION

Twisted bilayer graphene (TBG) is a two-dimensional correlated
electronic  system, which exhibits superconductivity' and
correlated phases*™'2. The focus of our work is the analysis of a
cascade of phase transitions near-integer fillings |n|=1,2,3,4,
detected in STM and electronic compressibility measure-
ments>'*1> (panels (a)-(e) in Fig. 1). Compressibility measure-
ments show sharp seesaw features of du/dn near integer |n|, and
STM data show that around each of these n a peak in the density
of states splits, and one of its components appears on the other
side of the Fermi level. For the interpretation, the authors of ref. 1#
adopted a strong-coupling approach and associated the observed
STM peaks with narrow sub-bands. They argued that at each
transition one sub-band crosses the Fermi level, moves away from
it, and becomes incoherent. The authors of ref. '° interpreted
compressibility data within a moderate coupling scenario of a
4-fold spin/isospin degenerate band and argued that the cascade
can be understood as a series of interaction-driven transitions.
They conjectured that at, e.g., electronic doping one of the bands
gets completely filled at each transition, while the occupation of
the remaining ones gets depleted; mirror symmetric behavior
holds for hole doping.

In this communication we propose the scenario in which the
cascade of transitions is caused by the development of particle-
hole orders, like in ref. ', but we specifically identify the STM
peaks with van Hove (vH) singularities. We argue that the
components of the initially 4-fold degenerate vH peak move
through the Fermi level one by one, but remain close to it.
The split peaks recombine into a single 4-fold peak at |n| <4,
when electronic order vanishes. Our scenario is illustrated in
panels (a), (c), and (f) in Fig. 1.

A cascade of transitions has been observed near van Hove
doping in less correlated non-twisted Bernal bilayer (BBG) and
rhombohedral trilayer graphene (RTG)'6"'°. We show that our vH
scenario equally explains the sequence of transitions in these
materials. We believe that the similarity between the ordered

states and electronic reconstruction in BBG/RTG and in TBG
supports a moderate coupling vH-based approach. We emphasize,
however, that we use this approach specifically to describe the
cascade of phase transitions with doping. A strong-coupling
approach is needed for explaining the insulating behavior of TBG
near-integer fillings.

We further emphasize that (i) vH peaks have been observed in
TBG at different twisting angles®2°, (ii) are present in the
electronic dispersion, obtained in first-principle calculations, and
in the one renormalized by the interaction, even if the bottom of
the dispersion moves away from Dirac points?', and (iii) the
cascade of transitions, observed in magic-angle twisted trilayer
graphene, has been argued to be triggered by vH peaks, at least
at high displacement fields?®2. The vH scenario has been also
discussed in context of chiral density wave and superconductivity
in TBG (see e.g,, refs. 23°27),

The summary of our results for TBG is presented in Fig. 1 along
with the experimental data from refs. '*'>, We label the vH peaks
in conduction (valence) bands in by [/ (/) and label peak
components by a,b,c,d. Our interpretation of the STM data from
ref. ' for electron doping (panel (b)) is the following: as the
system moves away from charge neutrality, the 4-fold degenerate
peak g1 b crq approaches u from above, and at n <1, splits in a
3-1 fashion: three components I, ... stay above y, and one
component, Iy jumps to below the Fermi level, but remains close
to it. At n <2, the three components again come close to y, and
the vH peak I, splits in 2-2 fashion, such that I, , moves back,
while /. jumps to below the Fermi level and merges with I, into
lerag- At n 53, 1,4 splits and I, jJumps to below the Fermi level and
merges with I, 4into Iy, 4. Finally, at n < 4, the last component /,
jumps across the Fermi level and merges with three other
components into 4-fold degenerate I, 4,4 For hole doping
the overall evolution is the same, but the data seem to show a
more gradual behavior: the components of peak /I in panel (d)
cross the Fermi level one-by-one, indicating the presence of an
intermediate state between 3-1 and 1-3 ones.
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Fig. 1

The cascade of electronic transitions in twisted bilayer graphene. a-d the proposed splitting of the initially 4-fold (spin and valley)

degenerate vH peak upon raising the electron filling n (panels (a), (b)) and hole filling (panels (c), (d)), and the corresponding STM data for
twist angle of 1.06°, reproduced with permission from the authors of ref. . The van Hove peaks in the conduction (valence) bands are labeled
by I(/l), and subscripts a,b,c,d label the 4 peak components. e Experimental data for inverse compressibility with seesaw features, interpreted as
a cascade of phase transitions. Reproduced with permission from the authors of ref. '>. The data are for twist angle 6 = 1.13°, f The schematic
phase diagram of TBG upon electron or hole doping, based on comparison between the theory and the STM data. Within our model, we
obtained SU(3) x U(1) (U(1) x SU(3)) symmetry for both electron and hole doping at 1 < |n| <2 (3 < |n| < 4), corresponding to 3-1 (1-3) splitting,
but it is reduced to SU(2) x U(1) x U(1) (U(1) x U(1) x SU(2)) if there is an intermediate phase with 2-1-1 (1-1-2) splitting, as STM data for hole

doping likely indicate.

We consider these data as evidence that once the 4-fold
degenerate vH peak gets close to u at |n| ~ 1 (peak / for n>0 and
peak Il for n < 0), the system develops a vH-induced particle-hole
order. The order exists between |n| <1 and |n| <4 and recon-
structs the fermionic spectra, pushing vH peaks in some bands
above u and in other band(s) below u. The structure of the order
changes near |n| = 2 and |n| = 3, via first-order transitions, and this
changes the splitting of the vH peak and simultaneously gives rise
to sharp changes in the compressibility (see Fig. 1e).

Here, we present the theoretical description of this scenario
within the model of interacting itinerant electrons whose band
structure has a vH singularity near u. We use as an input our
earlier result?®2° that the increased density of states near the vH
singularity enables a spontaneous symmetry breaking in spin and
valley spaces (for particle-hole orders with zero transferred
momentum electronic DOS has to exceed a threshold in order
to satisfy the Stoner-type criterion). For a model with intra-site
(Hubbard) and assisted hopping interactions within a given
hexagon°, we found 15 particle-hole order parameters, for which
the couplings are attractive, near-equal, and larger than for other
order parameters. They describe intra-valley order at zero
momentum (Q = 0) and inter-valley density waves (Q # 0). These
15 order parameters are described by 4 x 4 matrices in spin and
valley spaces, specified by spin o and valley isospin T and form
the adjoint representation of the SU(4) group. For shortness, we
call an order in (0,7) space a spin/isospin order. An SU(4)-
symmetric order parameter manifold and the interplay between
spin and isospin orders have been recently discussed in
refs. 30-37_these works provide additional motivation for us.
Another input for our analysis are band structure calculations®®=°,
which reported the pinning of the vH singularity to the chemical
potential over the range of n.

We derive and analyze the Landau free energy for an SU(4)-
symmetric fermionic model. We argue that there are three sets of
ordered states, which split the 4-fold degenerate vH peak in three
different ways. The first vH-induced instability splits the vH peak in
a 3-1 fashion, with peaks for 3 degenerate bands shifting towards
charge neutrality, and the remaining peak moving to below p. As
the magnitude of a spin/isospin order increases, the system
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undergoes a transition into a different ordered state, which splits
the vH peak into a 2-2 fashion. The transition is first-order in our
model, but in reality may occur via an intermediate phase with 2-
1-1 splitting. At |n|~3 the magnitude of the order starts
decreasing as some of vH peak components move further away
from y, and the system behavior goes in reverse—first the system
undergoes a transition into an ordered state, which gives rise to
1-3 vH peak splitting, again either via a direct first-order transition,
or via an intermediate phase with 1-1-2 splitting, and then, at even
larger |n| <4, the order vanishes, and all 4 vH peak components
merge into a single vH peak below p.

We use the same approach for BBG and RTG. The bands
structures and Fermi surfaces of BBG and RTG are very similar, and
we model both systems by an effective patch model of fermions,
located in the vicinity of K and K’ points in the BZ. We find that
the 15 leading instabilities are analogous to TBG: towards valley
polarization and intra-valley spin order (both with Q=0) and
towards inter-valley charge and spin density wave orders with
Q = K — K'. We find that for a Hubbard interaction, these orders
are described by the same SU(4)-symmetric Landau free energy
functional, Egs. (1) and (2), as in TBG. Like in TBG, the first vH-
induced transition is into a state with valley polarization and
ferromagnetism in a single valley. This order gives rise to
3-1 splitting, which in the case of BBG/RTG gives rise to one
larger and three smaller Fermi pockets. This splitting is analogous
to the one observed in the IF; state in the notations of ref. '°. The
subsequent transition upon doping is into a state with either pure
valley charge order or ferromagnetic order in both valleys. This
state gives rise to 2-2 splitting, which in BBG/RTG gives rise to two
larger and two smaller Fermi pockets. This is analogous to PIP,
state'®. A potential intermediate state with 2-1-1 splitting is
analogous to PIP, state in ref. ',

RESULTS
Cascade of transitions in TBG

Band structure calculations show that there are eight bands within
the flat-band regime of TBG, accounting for two spin projections,
two valley degrees of freedom from the original graphene layers,
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and two sublattices of the moiré superlattice. Four bands are with
upward and four with downward dispersion, merging at Dirac
points K and K'. Upon electron (hole) doping the chemical
potential moves up (down), simultaneously changing the filling of
four bands. Each band displays a vH singularity. The vH
singularities for four conduction (four valence) bands are at the
same energy. It was argued that strong-coupling renormalizations
may shift the minimum of electron band to the I point?'38, but vH
singularities remain even for the renormalized dispersion3%°,

We study the cascade of phase transitions by analyzing the
Landau free energy for the ordered phases of fermions with vH
singularity near p. The order parameters are expectation values of
fermionic bilinears, and the free energy can be obtained by
departing from a microscopic model of vH fermions with
4-fermion Hubbard and assisted hopping interactions*® and
integrating out fermions after performing a Hubbard-
Stratonovich transformation. Alternatively, one can write down
the Landau free energy solely based on symmetries and fix
parameters phenomenologically through comparison with
experiments. In an earlier study®® we found that out of a large
number of possible fermionic bilinears (143 in the 6-patch vH
model and even larger number in 12-patch model) there are 15,
for which the couplings are attractive and the largest by
magnitude. The set of 15 is composed of two subsets of 7 and
8 bilinears with a single coupling within each subset. 7 bilinears
with coupling A; are intra-valley with transferred momentum
Q =0, and 8 with coupling Ag are inter-valley with a finite Q
(Kekule-type states considered in ref. 41),

The couplings A; and Ag are not identical, but are close to each
other?, In our analysis we treat A, and Ag as equal, in which case the
15 bilinears form an adjoint representation of SU(4). We checked
that the cascade of transitions and the sequence of vH peak
splitting is the same in the model with only 7 bilinears (the case
A7 > Ag). In the model with 8 bilinears there is a single ordered phase
and no cascade.

For the SU(4) case, the Landau free energy up to fourth order is*®
(note, that the expression here uses a slightly different definition of
prefactors in the free energy than the one in ref. %)

a_ 1.2 Yo (43 B T.4 B r.212
F = 2Tr{®}+3Tr[®]+4Tr[®}+4Tr{®} , (1
where ® = 3°/° ¢/, 7 are generators of SU(4), and ¢;~ f'Pf are
fermionic bilinears, which we treat as Hubbard-Stratonovich fields
(f and £ are operators of electrons near vH points). The term g’
does not appear within Hubbard-Stratonovich but is allowed by
symmetry, and we keep it for generality.

By construction, ® can be represented by a traceless matrix*2. In
the diagonal basis

d):diag()\17A27)\3>_()\1 +)\2 +)\3))> (2)

and the free energy is

el ) afer- (3
J J J J

2

4 2
+ g@@u (Ji)\,) ) +%’</i)\,2+ <Ji/\,—> ) .

At y =0, the order develops continuously when a changes sign
and becomes positive. At a finite y, the transition is necessarily first
order and occurs already when a is negative. Below we restrict to
a >0, when the order is already finite and also set 8 > 0, consistent
with the Hubbard-Stratonovich analysis and the calculation of a, 8
for the tight-binding model near a vH singularity®®. We discuss
the behavior of y below and in Supplementary Discussion V.
Minimizing F with respect to A; (j =1, 2, 3), we find three solutions
(up to permutations of A): () A=A =2A3 (i) Ay=A=—A;;
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(iii) Ay = A, # A3 (see Supplementary Discussion | for details). For the
first solution, ® = diag(A,A,A, —3A), and the broken symmetry is
described by the coset SU(4)/[SU(3) x U(1)], where SU(3) corre-
sponds to the transformation within the subset of the first three
components of ®, and U(1) to a rotation of the last component
relative to the other three. The ordered states in terms of
expectation values of fermionic bilinears (¢;) are mixtures of spin/
isospin order with particular ratios of spin and isospin compo-
nents?®. For example, a pure intra-valley order is a part of this set,
but a pure inter-valley order is not. The order parameter manifold
has 15 -8-1 =6 Goldstone modes. The feedback of this order on
fermions is 3-1 or 1-3 splitting of vH peaks, depending on the sign
of y. For the second solution, ® = diag(A,A, —A, —A), and the
broken symmetry is SU(4)/[SU(2) x SU(2) x U(1)], where the two
SU(2)'s correspond to rotations within the subsets of the first two
and the last two components of ®, and U(1) corresponds to a
rotation of one subset relative to the other. The ordered states in
terms of (¢;) include pure spin and isospin orders, e.g., intra-valley
ferromagnetism and valley polarization, and various inter-valley
density waves?®. This manifold has 15-6-1=8 Goldstone
modes. The feedback from such order on fermions leads to 2-2
splitting of the vH peaks. Finally, the third solution describes a
mixed state with ® = diag(A,A, —A3, —2A + A3) and broken sym-
metry SU(4)/[SU(2) x U(1) x U(1)]. The order parameter manifold
contains 15-3-1-1=10 Goldstone modes. The feedback on
fermions leads to 2-1-1 or 1-1-2 splitting of vH peaks.
The values of A and the free energies for the three states,

F = %f,(x,y), are functions of x = y/+/aB and y = 8'/B:
(’)AI = \/% b2 7y ’ fi(xvy)

7+12y
(mh/mmzy)2[3<7+12y>+2\x\<\x\t V7 +12y)]
- (7+12¢)°
(ii)/\ii = \/%ﬁ,fii()(,y) = _14:74y @
(III))\,,, = \/%X,)\iim, = %(\/%712;4}/)7 ‘X‘>7fiii(xvy)
123X (1+4y)
2(1+2y)

The solution (iii) exists for |x| < 1/4/T+ 4y and the £ sign is
for positive/negative y. We plot the free energy prefactors fi(x, y)
in Fig. 2.

We see that at large |x| the ground state configuration is state (i)
while for small |x| it is state (ii). There is a direct first-order transition
between states (i) and (i) at some intermediate |x| = x,,. We expect
that a > 0 between 1 < |n| < 4, where the vH peak remains near the
chemical potential, and argue that y changes sign from positive to
negative as |n| increases, because the sign of y is different when the
bands are empty and when they are filled. As a result x evolves from
a large positive value to a large negative one via zero upon
increasing |n|. As small a corresponds to large |x|, when the order first
emerges, the system moves into state (i), and the components of the
vH peak split in 1-3 fashion for positive y. As a increases, |x| decreases
and eventually reaches x., where the system undergoes a first-order
transition into the ordered state (i), for which the splitting of the
components of the vH peak is 2-2. At larger n, y changes sign and
its magnitude increases, while a starts decreasing. As a result, |x]|
increases. When it reaches x., the system undergoes another first-
order transition into the state, which gives rise to 3-1 splitting of the
components of the vH peak. Eventually the order disappears and all
4 components of the vH peak recombine into a single peak. We also
note that while the intermediate state (jii) is not the ground state for
any x and y, its free energy F;; is only slightly larger than F; and F; at
x| near x.. This is particularly so at large y (at xo ~ +/3/16y, Fy is
larger than F; = F; by (@*/B)1/(16y)?). Thus, it seems possible that the
intermediate state (jii) will become the ground state once we move
away from an SU(4)-symmetric model by, e.g., including interaction
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Fig.2 Landau free energy. The functions f(x, y) from Eq. (4), with / =i, ii, iii, shown as functions of x = y//af for two values of y = 8'/B:y =0

(panel (a)) and y = 1 (panel (b)). The free energies are F,= (a?/B)f|(x, y), hence the smallest f/(x, y) determines the ground state. The states (i) and
(ii) are the ones for which the vH peaks split in 3-1 (1-3) and 2-2 fashion, respectively. The state (iii) is an intermediate state with 2-1-1 (1-1-2)
splitting. This intermediate state does not appear as a ground state in our model for all y, but its energy is close to those of (i) and (ii) near
critical x of the first-order transition between the two, and it can potentially become a ground state around this x if we move away from SU(4)-
symmetric model by, e.g., including interaction terms with inter-valley scattering. The relation between x and |n| is shown at the bottom.

(@

(e)

Fig. 3 The cascade of transitions in BBG/RTG. The notations—the same as in refs. '®'%, are as follows: IF;—isospin ferromagnet, PIP;—
partially isospin-polarized phase with one large Fermi surface and one small, PIP,—partially isospin-polarized phase with two large Fermi
surfaces and two small, Sym,—a symmetric phase with 4 identical large Fermi surfaces (one per isospin), Sym;,—a symmetric phase with 12
identical small Fermi surfaces (three per isospin). The states in panels a-e are symmetric 4-fold degenerate, 1-3, 1-1-2, 2-2, and again
symmetric 4-fold degenerate, correspondingly. The 3—1 and 2—1—1 states have not been detected in ref. '® and are not shown. The small
pockets in 1—3 (IF;) are assumed to sink below the Fermi level. The symmetry between three small pockets in panels ¢ and d may be broken

by subleading interactions, leaving only one small pocket, as the data in ref. '6 indicate.

terms with inter-valley scattering. Such terms are small, but finite in
TBG30434 If the transition from (i) to (i) is via the intermediate phase
(iii), there is a range of |n| where the splitting of the vH peak
components is 2-1-1 or 1-1-2, again depending on the sign of y.
Some indications of 2-1-1 and 1-1-2 splitting have been found in STM
for hole-doped samples>'4,

Cascade of transitions in BBG and RTG

The same analysis can be applied to study the cascade of phase
transitions in BBG and RTG. In both systems, application of an
electric field opens a gap between conduction and valence bands
and flattens the fermionic dispersion near Dirac K and K’ points®.
Near charge neutrality, this creates small Fermi pockets, three near
K and three near K. Upon doping, pockets merge at vH fillings
and eventually transform into one larger pocket near K and one
near K' (refs. %7>1). We consider the full 6-pocket model in
Supplementary Discussion XI and here illustrate the behavior
using a simplified model of fermions in two patches near K and K’
with Hubbard intra-patch and inter-patch density-density interac-
tion. In this model, electronic instabilities towards valley polariza-
tion, intra-valley ferromagnetism, and inter-valley spin and charge
order all occur at the same critical coupling A. These 15 bilinears
then form an adjoint representation of SU(4) and are described by
the same Landau free energy functional as in Eq. (1). The cascade
of transitions in BBG and RTG then matches the one in TBG with
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the only difference that some pockets may sink below the Fermi
level (see Fig. 3). In a more realistic 6-patch model, the coupling
for 7 C; symmetry preserving order parameters with Q=0 is not
the same as for order parameters with momenta Q close to K — K'.
The sequence of transition and the Fermi surface reconstruction
remain the same as in the 2-patch model if the order develops
with Q=0.

Comparison with experiments on TBG

In our proposed vH scenario, spin/isospin order develops at
|n| < 1, when the 4-fold degenerate vH peak approaches the Fermi
level, and persists up to |n| $4. In this range of n, the vH peak
splits, but according to STM data, its components are still
located near the Fermi energy, i.e., the enhancement of the DOS
near the Fermi level persists. At larger |n|, the vH peak again
becomes 4-fold degenerate and moves away from the Fermi level.
The evolution of spin/isospin order and of its feedback on the
components of the vH peak is governed in our theory by the
relative strength of the prefactor of the cubic term in the Landau
free energy (specifically, by x= y/\/@). This prefactor is
expressed via a convolution of three fermionic propagators and
vanishes for particle-hole symmetry around the Fermi surface. In
the absence of such symmetry, y is non-zero. We conjecture that x
is positive near n=1 passes through zero at 2<n<3, and
becomes negative at larger n (see Supplementary Discussion V for
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more discussion on this). We then end up with the phase diagram
in Fig. 1f. There are two phase transitions between disordered and
ordered states at [n| <1, and |n| <4, and two transitions between
different ordered phases at |n| <2 and |n| < 3. Specifically, within
our theory the sequence for the symmetry-breaking pattern and
the degeneracy of the vH peak is:

1:50(4) = SUB3)xU(1): (4,0) — (3,1)
2:SUB)x U(1) — SU(2)xSU(2)x U(1) : (3,1) — (2,2)
3:5U(2)xSU(2)x U(1) — U(1)xSU(3) : (2,2) — (1,3)

n < 4:U(1)xSUB) — SU(4):(1,3) — (0,4)

where a and b in (g, b) indicate the number of vH peaks above and
below u for the case of electron doping. For hole doping the
sequence is identical, except a and b in (g, b) are interchanged. If
the transformations (3,1) — (2,2) and (2,2) - (1,3) occur via an
intermediate phase (c), each of the two first-order transitions
around |n| =2 is replaced by two second-order transitions with
the intermediate structure of vH peaks (2,1,1) and (1,1, 2).

The theoretical phase diagram agrees with the STM results
(Fig. 1b, d), including fine details, lending support to our theory.
Note, that there is no symmetry of the phase diagram with respect
to |n| = 2, i.e,, the transitions at |n| $ 1 and n < 3 are different ones
(there is an approximate symmetry with respect to |n| = 2.5). The
theory also explains the seesaw behavior of electron compressi-
bility, reported in ref. ’> and shown in Fig. 1e. Our reasoning is the
following. As doping increases and the system approaches one of
transitions from the cascade, the inverse compressibility du/dn
decreases as the n-times degenerate vH peak approaches the
Fermi level, where du/dn=0 (n=4,3,2, depending on the
number of the transition in the cascade). After a new order
develops, one peak component crosses the Fermi level, while the
other (n — 1) components move back from the Fermi level. As all
vH peaks move away from the Fermi level in a first-order
transition, du/dn jumps to a larger value. As doping increases
further towards the next transition from the cascade, the (n — 1)—
times degenerate vH peak approaches the Fermi level, and du/dn
again decreases towards zero. Then the new order develops, one
peak component crosses the Fermi level, while the other (n — 2)
components move back from it, and du/dn again jumps to a
higher value. This gives rise to seesaw structure of the inverse
compressibility (see Supplementary Discussion V for an example
calculation of du/dn for one transition of the cascade). As all four
VvH peak components remain close to the Fermi level, all four
contribute to the evolution of du/dn between the transitions. This
is consistent with a weak dependence of the slope of du/dn on the
number of a transition in the cascade.

(©)
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Comparison with experiments on BBG/RTG

Measurements of inverse electronic compressibility and magne-
toresistance in BBG'®'” and RTG'® at a finite displacement field
revealed a cascade of transitions upon hole or electron doping.
The fermionic structure of the two materials is almost identical,
and for definiteness we focus on hole-doped BBG. Near charge
neutrality, the system is in the valley/spin symmetric state (labeled
Sym,, in ref. '® and in Fig. 3a) with twelve Fermi pockets: three
spin-degenerate ones for each valley. At large enough doping,
the triad of pockets for each valley and spin transforms into a
single larger pocket, leaving four pockets, again valley and spin
symmetric (Sym, state in ref. '® and in Fig. 3e). The cascade of
transitions happens in between these two limits, when the system
develops particle-hole order that breaks valley and/or spin
symmetry. We show the sequence of transitions in the cascade
in the 2-patch model in Fig. 3.

The authors of refs. '®'7 detected the symmetric three
intermediate phases, which they labeled IF,, PIP;, and PIP,. The
IF, state has one large pocket, the PIP, state has two large and
two small pockets, and the intermediate PIP; state has one large
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and one small pocket. We argue that IF, is the state (i) in Eq. (4)
with co-existing valley polarization and ferromagnetism in one
valley. This order develops first and splits Fermi pockets in 1-3
fashion with one large pocket and 3-fold degenerate small
pockets, which may be present or sink below the Fermi level
(panel (b) in Fig. 3). The PIP, is the state (ii) in Eq. (4) with either
valley polarization or ferromagnetism in both valleys. This order
develops at a larger magnitude of the order parameter and splits
Fermi pockets into two large and two small pockets (panel (d) in
Fig. 3). In the SU(4)-symmetric case there are three small pockets,
but their number may be reduced by subleading interactions.
The PIP; is the intermediate state (iii) in Eq. (4) with one large and
one small pocket (panel (c) in Fig. 3). Experiments did not reveal
the 1-3 state, which is the part of our theoretical sequence. We
expect this state to be present, but probably in a narrow doping
range. The spin-polarized correlated metal at the end of the
cascade in ref. ' is a potential candidate for the 1-3 state. We
also note that it depends on the size of the displacement field
and the splitting on which side of the van Hove energy the Fermi
level ends up after the transition to the 1-3, 2-2, and 3-1 states so
that more phases are possible. This provides an explanation for
the additional phases observed at larger displacement field in
ref. 7. The data also show that in some range of displacement
fields the system returns back to Sym;; state in between PIP; and
PIP,. In our theory, this holds if particle-hole order vanishes in this
parameter range.

DISCUSSION

In this theoretical work, we used as an input STM data for TBG,
which show that upon electron or hole doping, one of the vH
peaks in the DOS remains near the chemical potential in a wide
range of fillings—between |n| <1 and |n| <$4. We analyzed a
cascade of phase transitions imposed by evolving spin/isospin
order, which in turn is associated with the enhancement of the
DOS for low-energy fermions due to a confinement of a vH peak
close to u. We found a set of phase transitions: two first-order
transitions at |n| <1 and |n| <4 between disordered and ordered
states and two transitions at |n| <2 and |n| < 3 between different
ordered states with different spin/isospin order and different
splitting of vH peaks. These last transitions can be first order or
continuous, via a narrow intermediate phase. We argue that these
transitions give rise to the seesaw behavior of the compressibility,
with the jumps of du/dn at the first-order transitions (where we
also expect hysteretic behavior of the magnetization) and
continuum, but rapid changes of du/dn if the transition is via an
intermediate phase. We also emphasize that in our description the
minima of du/dn are near, but not exactly at integer n.

The semi-phenomenological explanation of the cascade of
transitions put forward in ref. > assumes that at every transition
one of 4 initially degenerate bands gets fully filled/fully emptied
and no longer contributes to particle-hole order. Within this
scenario, one can naturally explain the emergence of insulating
states at integer fillings, but one would need to explain why the
four vH peaks, seemingly moving to different energies as |n|
increases, recombine into a single vH peak at |n| <4, as STM data
show, and would also need to explain why the measured slope of
du/dn does not scale inversely with the number of remaining peak
components. We discuss this scenario in some detail in the
Supplementary Discussion VIII. Interestingly, it yields the same
ordered states as in our SU(4) scenario.

There is an element of phenomenology in our approach as well.
Namely, we departed from a metal, associated the emergence of
spin/isospin order with a vH singularity, and associated the
cascade of transitions with near-integer |n| based on STM data
rather than on microscopic calculations. The confinement of
transitions to integer |n| and the emergence of insulating phases
around these |n| are most likely strong-coupling phenomena.
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We note in this regard that the SU(4)-symmetric Landau free
energy, on which our results and the results of ref. '° are based
upon, is in fact generic, and while we derived it from the specific
microscopic itinerant model of interacting fermions with u near
the vH singularity, the same expression can be obtained in a
strong-coupling limit, where the bands are assumed to be nearly
completely flat'>2152-5> and their internal structure does not play
a role. Within the strong-coupling scenario, the STM peaks, which
we interpreted as van Hove peaks, are treated as the peaks
corresponding to flat bands. In either scenario, the Luttinger
theorem states that the splitting due to spin/isospin orders can
lead to the formation of insulating states only at integer fillings. A
similar conclusion that a symmetry-breaking occurs at a non-
integer filling due to vH physics and gives rise to an insulating
behavior near integer n has been reached in ref. °%. In a recent
experimental study®’ the authors argued that the cascade of
transitions in TBG is present in a range of twist angles, even when
there are no insulating states near-integer fillings. These results
lend further support to our van Hove-based scenario of the
cascade of phase transitions in TBG.

Our theory also describes the cascade of phase transitions,
detected in compressibility and magnetoresistance measure-
ments in BBG and RTG under a displacement field. These
systems have small Fermi pockets near K and K’, which undergo
a set of transitions around the vH doping. We argue that the
splitting of the pockets in different phases in the cascade is the
same as in TBG and is caused by the same set of valley and spin
orders. The similarity of the cascade phases in TBG and BBG/RTG
is quite striking given that BBG/RTG are substantially less
correlated than TBG because an application of the displacement
field flattens the dispersion near K and K/, but the full bandwidth
remains the same as in the original non-twisted bilayer
graphene. We believe that the similarity is an indication that
the structure of particle-hole order in all three systems and the
structure of the accompanied splitting of the electron bands can
be understood already by analyzing what are the leading
instabilities of a doped metal with valley and spin degrees of
freedom. A strong-coupling approach is certainly needed for the
description of how in TBG the order creates an insulating
behavior nearinteger fillings.

DATA AVAILABILITY
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