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Origin of the exotic electronic states in antiferromagnetic NdSb
Peng Li1,4, Tongrui Li2,4, Sen Liao1, Zhipeng Cao3, Rui Xu1, Yuzhe Wang1, Jianghao Yao1, Shengtao Cui2, Zhe Sun2, Yilin Wang 1,
Xiangang Wan 3✉, Juan Jiang 1✉ and Donglai Feng 1

Using angle resolved photoemission spectroscopy measurements and first principle calculations, we report that the possible
unconventional 2q antiferromagnetic (AFM) order in NdSb can induce unusual modulation on its electronic structure. The obvious
extra bands observed in the AFM phase of NdSb are well reproduced by theoretical calculations, in which the Fermi-arc-like
structures and sharp extra bands are originated from the in-gap surface states. However, they are demonstrated to be topological
trivial. By tuning the chemical potential, the AFM phase of NdSb would go through a topological phase transition, realizing a
magnetic topological insulator phase. Hence, our study sheds new light on the rare earth monopnictides for searching unusual AFM
structure and the potential of intrinsic magnetic topological materials.
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INTRODUCTION
Rare earth monopnictides (RePn) have attracted extensive
attention due to their emerging topological electronic structure
and extremely large magnetoresistance1,2. The partial filling of 4 f
orbitals usually leads to antiferromagnetic (AFM) ground states in
some of RePn’s. The AFM order consists of Ising-like moments
pointing to z direction and are ferromagnetically coupled in the x
– y plane3–7. It provides an ideal platform to study the interaction
between magnetism and topology. The topological nature in most
of these materials were studied in their paramagnetic (PM) phase.
For example, the PM phase of ReSb (Re= La, Ce, Pr, Sm, Gd) shows
topological trivial band structures without band inversion8–13.
While band inversion happens in the PM phase of ReBi (Re= La,
Ce, Pr, Sm, Gd), resulting in a topological non-trivial semimetal
phase1,5,9,10,14,15. Recent works of NdBi and some of RePn reported
unconventional Fermi-arc states in their AFM phases16–18, striking
new interests of these materials. However, the corresponding
topological nature in their magnetic ground states are rarely
studied5.
Among the RePn compounds, CeSb has been proposed to host

magnetic Weyl points in its ferromagnetic (FM) phase under a
magnetic field19. In its Ising-like stacked AFM phase, CeSb
undergoes the devil’s staircase transition, and the magnetic
reconstruction dramatically alters the band dispersion at each
transition as resolved experimentally3. These band reconstructions
can be interpreted as band folding along the corresponding AFM
wave-vectors. In contrast, exotic Fermi-arc-like surface states have
been observed in the AFM phase of NdBi, which cannot be
assigned to any folded bulk bands in calculations based on the
AFM structure with single wave vector (single-q), and the origin of
the splitting behavior of these surface states remains unclear16.
However, since even in cubic systems, AFM could host several
symmetric wave vectors (multi-q), such as the 3q AFM structure in
USb7,20,21, one may consider multi-q AFM configurations of NdBi.
Indeed, people have provided such direction in the recent work to
reproduce the unconventional Fermi-arc-like states22. Hence, it is
crucial to identify the correlation between the AFM structure and
those exotic electronic states observed in RePn, which would

provide deeper understanding of the interplay between magnet-
ism and topology in RePn systems.
Here, using angle-resolved photoemission spectroscopy (ARPES)

and density functional theory (DFT) calculations, we show that
another RePn compound, NdSb, goes through an unusual
modulation on the electronic structures across the AFM transition.
In its PM phase, NdSb is found to be a topological trivial
semimetal. But in its AFM phase, new exotic surface states emerge,
which are most possibly related to the 2q AFM structure through
our calculations. However, these surface states are demonstrated
to be topological trivial. We further show that a topological phase
transition can be induced by tuning its chemical potential.

RESULTS AND DISCUSSION
Antiferromagnetic order induced extra bands and DFT
calculations
NdSb crystalizes in a rock-salt structure. Resistance measurement
shows a sharp AFM transition at 15.3 K (Supplementary Fig. 1a),
and the RRR (ðR300K � R2KÞ=R2K ) ratio is about 131, indicative of
high sample quality. Similar as the recent work of “multi-q”
magnetic structure in NdBi22, we consider various “multi-q”
structures as candidates for its magnetic ground state, for
example, multiple orientations of magnetic moments can
generate 1q, 2q or 3q AFM structures (configurations of these
magnetic structures can be found in Fig. 1a, b and Supplementary
Fig. 2). The three dimensional (3D) Brillouin zones (BZ) and
associated surface BZs in the 2q or 3q AFM phase are shown in
Fig. 1c, and the blue dashed rectangles indicate the corresponding
boundary of surface BZs in the PM phase (the definition of the 3D
and surface BZs can be found in Supplementary Fig. 1b). Our
calculations show that the 2q AFM state has the lowest energy
among the three kinds of magnetic structures (1q, 2q, 3q). These
three magnetic structures (1q, 2q, 3q) show clear differences in
the calculated electronic structures. Their calculated Fermi
surfaces are plotted in Fig. 1d–f, respectively (more details can
be found in Supplementary Fig. 2). Interestingly, obvious Fermi-
arc-like structures can be observed on the Fermi surfaces of both
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the 2q and 3q AFM structures (Fig. 1e, f), but not on those of the
1q AFM structure (Fig. 1d). However, the Fermi surface of the 2q
AFM structure shows a 2-fold symmetry in the (010) plane of the
momentum space (Fig. 1f), which is different from the 3q AFM
case. Thus, the 2-fold symmetry of the Fermi surface in the (010)
plane is a distinct character of the 2q AFM phase.
We have successfully cleaved two different surfaces, (001)

surface (abbreviated as S1) and (010) surface (abbreviated as S2) in
Fig. 1g, h. Our ARPES measured Fermi surface of S1 shows clear
Fermi-arc-like states with 4-fold rotational symmetry (Fig. 1g),
however, obvious 2-fold symmetry has been observed in S2 (Fig.
1h(i)) (more details can be found in Supplementary Fig. 3). Since
the high symmetry XPM point in the PM surface BZ is identical the
second Γ point in the 2q AFM phase (illustrated in Fig. 1c), one can
see that despite of some intensity differences of the Fermi
surfaces at the Γ and ΓðXPMÞ points (Fig. 1h(ii)), they are actually
the same in principle and both could be well explained by the
calculated Fermi surface in Fig. 1f(ii). What’s more, we considered
other possible 1q AFM structures in Supplementary Materials Fig.
S4. In despite of the similar Fermi-arc-like surface states, the band
structures in the particular E-k window deviate from our ARPES
spectrum in Fig. 2d, q AFM calculations in Fig. 2f. Thus, we can
conclude from our data that NdSb favors a 2q AFM magnetic
ground state (More details to exclude the possibilities of other
magnetic structures can be found in Supplementary Fig. 4).

The calculated bulk bands in the PM and 2q AFM phases of
NdSb are shown in Fig. 2a, b, respectively. The band inversion is
absent between the Sb 5p and Nd 5d bands in the PM phase. Bulk
bands in the 2q AFM phase are much more complicated due to
band folding. The band structures of the PM and AFM states are
obviously different in our ARPES data (Fig. 2c, d), and especially
several sharp extra bands appear in the AFM phase. Usually, the
bands induced by AFM band-folding effects have weak photo-
emission signal. Thus, these sharp extra bands are unlikely due to
the AFM band folding. By comparing the measured (Fig. 2c) and
calculated (Fig. 2e) band structures of the PM phase, we find at
least three pairs of sharp extra bands near the Fermi level (EF) in
the AFM phase (Fig. 2d). We assign these three pairs of sharp
bands located around Γ(XPM) and Γ points as 1, 2, 3 and 10, 20, 30,
respectively. One could see that they are symmetrized according
to the X point in the AFM surface BZ. Pair 3/30 forms the Fermi-arc-
like states as indicated in Fig. 1h, which merge into the bulk band.
This behavior is similar to the Fermi-arc-like states reported in a
recent study on NdBi16 and some other RePn17. Pairs 1/10 and 2/20
contribute to the Fermi pockets centered around Γ. These are
reproduced by DFT calculations with the 2q AFM structure (Fig. 2f),
further indicating these three pairs of extra bands are most likely
related to the AFM transition. The photon energy dependent
measurements are presented in Supplementary Fig. 5, where the
bands show no dispersion along the out-of-plane momentum
direction, indicative of their surface origin. In addition, there are
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Fig. 1 Determination of the magnetic structure of NdSb from the electronic structure. a Normal 1q magnetic structure, which is similar to
the cases of many other ReSb/ Bi compounds. b 2q magnetic structure. c Bulk BZ of the 2q AFM, and the projected surface BZs of the (001)
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other subtle features in the AFM phase, as indicated by the
highlighted green and black dashed curves (black arrows) in Fig.
2d, f, including the characteristic folded bulk bands and surface
states in the AFM phase at Γ near EF, and another sharp surface
state located at 0.3 eV below EF at the Γ point. All these emerging
bands in the AFM phase are perfectly reproduced by our DFT
calculations, indicating that the 2q AFM structure is possible
crucial for the exotic Fermi-arc-like state and extra sharp bands.
These features are unlikely from the surface effect because the
surface magnetic structure is usually similar to the bulk in other
RePn materials.

Temperature evolution of the splitting behavior of the surface
states
Of particular interest is the temperature dependent behavior of
the surface states across the AFM transition. Figure 3a, b plot the
temperature evolution of the ARPES spectra at the Γ and Γ(XPM),
respectively. Interestingly, the two “splitting” branches of the
surface states, referred as 2, 3 or 20, 30 in Fig. 2, gradually move
towards each other and finally annihilate in the PM phase with
increasing temperature. Meanwhile, pair 1=10 shows no obvious
change with increasing temperature, before it disappears in the
PM phase. It should be noted that pairs 2/20 and 3/30 do not split
with a constant energy scale along their dispersions, similar to the
NdBi case16. This splitting behavior has also been reported in an
independent work17, we further consider the relationship between
the splitting energy and the net magnetic moment of Nd. Figure
3c displays the energy distribution curves (EDC’s) at various
temperatures along the white dashed line in Fig. 3b, where the
energy splitting between the two bands is the largest. The red
arrows guide the peak splitting energy which gradually decreases
with increasing temperature, and the peak separation is plotted in

Fig. 3d as a function of temperature. Meanwhile, the net magnetic
moment of Nd measured by previous neutron scattering
measurements is also plotted in Fig. 3d for comparison23. The
almost identical temperature dependent behaviors suggest that
the splitting of the surface states is directly related to the
magnetization.

Band topology in both PM and AFM phases
We then examine the topological nature of NdSb. A key criterion
of the topological non-trivial band structure in the PM ReSb/Bi
compounds is the bulk p-d band inversion combined with clear
topological surface states at the X point8,9,14. In the PM phase of
NdSb, the photoemission spectrum (Fig. 4a) and the correspond-
ing EDC’s (Fig. 4b) clearly show the absence of the surface states
and an obvious band gap at the X point, revealing its trivial
topology. Once entering the AFM phase, the bulk band structure is
reconstructed due to the band folding. Interestingly, the Nd 5d
orbitals and Sb 5p orbitals fold to each other resulting in series of
band crossings along both the Γ� XPM direction and the Γ� Z
direction as shown in the bulk band calculations (Fig. 4c). Under
different symmetries, the crossing points behave differently. As
shown in the inset that enlarges the region near the crossing point
along the Γ� Z direction, two bulk Dirac points are formed
characterized by different irreducible representations (LD6 and
LD7). Whereas along the Γ� X direction, the two bands (DT5) have
same irreducible representations and thus a large hybridization
gap (~40meV) is induced by strong SOC effect (Fig. 4c). The exotic
surface states are exactly located inside this band gap and merge
into the bulk states.
In order to identify the topological nature in the AFM phase of

NdSb, we need to calculate its topological index. We employ the
method of magnetic topological quantum chemistry (MTQC)2,24–26
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to reveal the nature of the topology for occupied bands of NdSb,
in which the number of the occupied bands is set to 76. The
magnetic space group of the 2q AFM structure is Pc42/nnm or
N.134.481, the corresponding indicators are defined using parity-
based eigenvalues: Z2p0 ¼ 1=2Z4p ¼

P
k2TRIM 1=4ðN�

k � Nþ
k Þ

mod227,28, where N�
k and Nþ

k are the number of odd and even
parity of occupied bands at the time-reversal-invariant momenta
(TRIM), respectively. The calculated eigenvalues at the eight TRIM
are listed in Fig. 4d. Both Z2p0 and Z4p are 0, indicating trivial
topology of NdSb in its AFM phase with 76 occupied band
number. Therefore, the AFM phase of NdSb is topological trivial,
and the exotic in-gap surface states cannot be from a topological
origin. Our findings show that they are most likely trivial surface
states originated from the 2q AFM structure. Since the net
magnetic moment of Nd is temperature dependent, the
hybridization band gap varies with temperature, which will
modify the dispersion of the in-gap surface states. This may
account for the observed intriguing temperature dependent
behavior of the surface states.
More interestingly, by increasing the occupied band number

from 76 to 80, i.e., shift the chemical potential ~0.1 eV above EF, a
topological non-trivial phase will appear. In this case, indices (

Z4p; Z2p0 ) are (2, 1), indicative of a strong antiferromagnetic
topological insulator (Fig. 4c)24. This suggests that further
engineering the electronic states by external effects, such as
electron doping or gating, could induce a topological phase
transition in the AFM structure of NdSb.
In conclusion, by performing ARPES measurements and DFT

calculations, we systematically studied the electronic structures in
both the PM state and the AFM state of NdSb. Exotic electronic
states have been observed when it enters the AFM phase. We
found that this exotic behavior is most likely related to an
unconventional 2q magnetic structure. However, both its PM and
AFM phase are proved to be topological trivial. Moreover, by
tuning the band occupation, the AFM phase of NdSb would go
through a topological phase transition to an intrinsic magnetic
topological material24,29–41. Our results unveil the consequence of
the unconventional multi-q magnetic structure on the band
structure, and the interplay between band topology and magnet-
ism in rare earth monopnictides. However, the micro-mechanism
of the existence of multi-q magnetic structure in NdSb and some
other rare earth monopnictides is still not clear, further experi-
mental and theoretical researches are needed to resolve this issue.
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Note added
While we were finalizing this manuscript, we noticed one
independent study of NdSb reporting the complex band structure
in the AFM phase18 and two other independent studies of NdBi
and NdSb based on the multi-q antiferromagnetic structure17,22.
Our work considered more possibilities of magnetic structures and
developed a reasonable method to address the topology of both
the PM and AFM phases of NdSb.

METHODS
Single crystal synthesis
Single crystals of NdSb were synthesized using indium flux
method with a molar ratio of Nd: Sb: In of 1: 1: 10. The starting
materials were weighted and loaded in alumina crucibles, sealed
in an evacuated quartz tube, and heated to 1100 °C before cooled
down to 800 °C. Finally, the samples were separated from the
indium in a centrifuge. The typical crystal size is 4 × 4 × 4mm.

ARPES measurement
ARPES measurements were performed at beamline BL13U of
National Synchrotron Radiation Laboratory (NSRL) in Hefei, China.
The measurement pressure was kept below 8 × 10−11 Torr, and
data were recorded by Scienta DA30 analyser at various sample
temperatures. The total convolved energy and angle resolutions
were 15 meV and 0.2°. The fresh surface for ARPES measurement
was obtained by cleaving the NdSb sample in-situ along its natural
cleavage plane.

Computational methods
Electronic structure calculations were performed using density
functional theory (DFT) with a plane wave basis projected
augmented wave, as implemented in the Vienna ab-initio
simulation package (VASP)42. The Perdew-Burke-Ernzerhof (PBE)
approximation was used as the exchange-correlation potential.
The 4 f electrons were treated as localized core electrons and spin

orbit coupling was included. An energy cutoff of 300 eV and
8 ´ 8 ´ 8 Γ-centered k-mesh were employed in the calculation. The
surface spectra and Fermi surfaces were calculated by surface
Green’s function methods as implemented in WannierTools43.
U= 7.2 eV and J= 0.7e V have been used for our DFT+ U+ SOC
calculations in all of the considered AFM phases, resulting in a
total magnetic moment of 2.7 μB on Nd, which is consistent with
the experimental results (2.9 ± 0.2 μB)6. The used U and J values
were based on the localized behavior of the 4 f electron of NdSb,
producing similar 4 f levels as the previous XPS experiments44. The
parameters U and J modified little of the band structure near
Fermi level in a relatively large range. Fermi levels were shifted up
by 80meV to match the ARPES spectra. The parity analysis is
based on the method described in ref. 45.
Since the PBE is known to exaggerate the band inversion

features46, especially in ReSb/Bi compounds where the partial
filled f electrons make the accurate calculations more difficult. This
makes the results of PBE calculations are usually inconsistent with
ARPES results8,12. In order to remedy this discrepancy, we slightly
enlarged the lattice constant by a ratio of 1.06 to reduce the
overestimated band inversion effect, which produce much better
consistency of band structures between calculations and ARPES
measurements. In fact, ARPES measurements have indicated the
full gap features at the XPM point in LaSb, CeSb, PrSb, SmSb,
etc9,12. The former theoretical calculations have noted the larger
gapped feature at the XPM point from PrSb to YbSb due to
Lathanum contraction effect11,47, indicating a full gap must exists
in the PM phase of NdSb. Therefore, our slightly lattice
enlargement PBE method, providing much better consistency
with ARPES, is reasonable and a potential easier method to study
the topological natures in ReSb/Bi compounds.

DATA AVAILABILITY
All data needed to evaluate the conclusion in the paper are present in the paper and/
or the Supplementary information.
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Fig. 4 The topological identifications of the PM and 2q AFM phases of NdSb. a ARPES spectra near the Χ point in the PM phase measured
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different band index. The color bar shows the ARPES spectra intensity.
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