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The concept of ferroelectricity is now often extended to include continuous inversion symmetry-
breaking transitions in various metals and doped semiconductors. Paraelectric metals near
ferroelectric quantum criticality, which we term ‘quantum paraelectric metals,’ possess soft transverse
optical phonons which can have Rashba-type coupling to itinerant electrons in the presence of spin-
orbit coupling. We find through the Kubo formula calculation that such Rashba electron-phonon
coupling has a profound impact on electron spin transport. While the spin Hall effect arising from non-
trivial electronic band structures has been studied extensively, we find here the presence of the
Rashba electron-phonon coupling can give rise to spin current, including spin Hall current, in response
to aninhomogeneous electric field even with a completely trivial band structure. Furthermore, this spin
conductivity displays unconventional characteristics, such as quadrupolar symmetry associated with
the wave vector of the electric field and a thermal activation behavior characterized by scaling laws
dependent on the phonon frequency to temperature ratio. These findings shed light on exotic
electronic transport phenomena originating from ferroelectric quantum criticality, highlighting the

intricate interplay of charge and spin degrees of freedom.

The search for materials combining ferroelectricity/polarity with metallicity
has been longstanding in condensed matter physics, dating back to the first
proposal by Anderson and Blount over 50 years ago'. This endeavor has
made significant progress, especially in the last decade, resulting in the
accumulation of numerous experimentally confirmed examples™, starting
with LiOsO5’. Other noteworthy examples include doped quantum para-
electrics such as SrTiOs" "%, IV-VI compounds'", and certain transition
metal dichalcogenides™'°. These so-called ferroelectric (or polar) metals,
typically doped ferroelectrics in semimetals and semiconductors, present
the intriguing coexistence of ferroelectricity and metallicity, contrary to their
apparent mutual exclusivity. In addition, the possibility of various correlated
electronic phenomena arising from ferroelectric quantum fluctuations near
a ferroelectric quantum critical point, including the augmentation of the
critical temperature for superconductivity, has attracted strong
interest™*" .

For the displacive ferroelectrics under consideration, the continuous
ferroelectric phase transition involves the softening of transverse optical
(TO) phonon modes associated with the displacement in proximity to the
critical point™”, as this transition is characterized by a collective displace-
ment of ions from their centrosymmetric positions”****. Given that the TO

mode displacement breaks the inversion symmetry while preserving the
time-reversal symmetry, the interactions between the TO phonons and
itinerant electrons in the presence of any finite atomic spin-orbit coupling
takes the unconventional form of a Rashba-type spin-orbit coupling, which
couples the momentum and spin of itinerant electrons™ . We refer to these
distinctive interactions as “phonon-mediated spin-orbit coupling” (PM-
SOCQ). Previous theoretical studies explored the impacts of the PM-SOC on
correlated electronic phenomena in the quantum critical region, such as
non-Fermi liquid behavior”, enhanced superconducting instability***,
charge transport™ and optical conductivity”; transport effects of soft TO
phonons have also been investigated for the two-phonon scattering
mechanism™*. However, the effect of the PM-SOC on spin transport,
particularly when subject to inhomogeneous electric fields, remains unex-
plored so far, remaining a missing piece of the physics near the ferroelectric
quantum critical region.

In this study, we investigate the influence of the PM-SOC on the
electronic transport properties of a centrosymmetric metal (i.e., posses-
sing finite carrier concentration) near the ferroelectric quantum critical
point, which may be termed as a ‘quantum paraelectric metal.” From the
Kubo formula, we obtain a nonzero spin conductivity, even in the
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Fig. 1 | Spin conductivity in quantum paraelectric metals. Schematic phase dia-
gram of quantum paraelectric metals with spin-orbit coupling near the ferroelectric
quantum critical point (8, T) = (0, 0) and distinct scaling laws of spin conductivity
(07)) in each phase. In these quantum paraelectric metals, an inhomogeneous electric
field induces a spin current. In the paraelectric phase (yellow area), the phonon-
mediated spin conductivity possesses a thermal-activated form:

oj ~ exp(—E, /kgT), where Eg ~ § is the energy gap of soft transverse optical (TO)
phonons associated with the phase transition. In contrast, within the gapless-
phonon region (red area), the spin conductivity adopts a power-law behavior:
o5~ T2. This power law of spin conductivity may undergo modifications in the
quantum critical (QC) region (blue area) below a specific crossover temperature
scale T« (indicated by the dashed line), wherein phonons or electrons lose their
coherence due to significant self-energy effects. § and T are, respectively, the tuning
parameter and temperature, while a, i, j denote the direction of spin quantization
axis, spin current, and electric field, respectively.

centrosymmetric paraelectric phase (Fig. 1), from a single orbital, albeit
contingent on the presence of inhomogeneous external electric fields. This
phenomenon may seem counter-intuitive at first glance since not only is
the Rashba spin-orbit coupling in the electronic band structure, which
results in the finite spin Hall conductivity’**’, symmetry-forbidden in such
aphase, but any orbital Hall effect”’*’ is also absent. However, the Rashba-
type spin-orbit coupling to TO phonons”, i.e., the PM-SOC, in con-
junction with inhomogeneous external electric fields, gives rise to an
unconventional type of spin conductivity. Notably, we shall show in
section “Quadrupolar symmetry” that this phonon-mediated spin con-
ductivity exhibits a unique directional dependence on the wave vector of
external electric fields, displaying a quadrupolar symmetry with respect to
the wave vector that is, however, distinct from the quadrupolar symmetry
predicted for electrical Hall resistivity in quantum Hall states**** or spin
Hall conductivity in Rashba metals*’. Furthermore, we demonstrate in
section “ Thermal activation behavior” that our phonon-mediated spin
conductivity also exhibits peculiar scaling laws as a function of a tuning
parameter and temperature (Fig. 1). Whereas most theoretical research on
spin transport has been based on band structure considerations, our
findings point to new possibilities in interaction-induced spin transport.
Moreover, our results highlight the intriguing aspect of the emergent
exotic transport phenomena arising from the intricate interplay of charge
and spin degrees of freedom in itinerant electrons in the realm of ferro-
electric quantum criticality.

Results

Model

Quantum paraelectric metals are characterized by the emergence of soft TO
phonon modes and their distinctive electron-phonon interactions, which, in
combination with atomic spin-orbit coupling, exhibit a Rashba-type spin-
orbit coupling for itinerant electrons”*”’. The minimal model for a
quantum paraelectric metal is given by the following effective

Hamiltonian®*%

2 f g f
H=D Gelppt 500 b OuXDippunCeptn (1)
sp k

s.s'.p

for electrons, where CL, is the electron creation operator (s, p denoting the
spin and wave vector of the elegtr(z)n, respectively), the electron energy
dispersion is isotropic, ie. §, = h% — u (m and p denoting the electron
effective mass and the chemical potential, respectively), g is the coupling
constant for the electron-phonon interaction, and ¢ is the transverse
phonon displacement field, whose dynamics, in the free limit, is given by the

action

M
S =2 D1 D D =ity R, + PR B, (@)

v, k i

where P(k) = 8,-]- — (& - k)(éj . k) is the transverse projection operator, v,,
is the boson Matsubara frequency, M, is the phonon effective mass, and the
phonon energy dispersion is given by w} = (fic|k|)* 4 E2, where ¢ and E,
denote the phonon velocity and energy gap, respectively.

Whereas previous studies of the Eq. (1) quantum paraelectric metal
model focused on its instability to superconductivity’*** or optical
conductivity”, we calculate in this work its spin conductivity, denoted as
0(w, q), using the Kubo formula:

i
U;(wv ‘1) = 5 ﬂg(lwna q)liwn—>w+i5' (3)
Here, the indices i and j denote the directions of the spin and charge cur-
rents, respectively, while w and q denote the frequency and wave vector of
the external electric field. ng(iwn, q) represents the current-current

correlation function, defined as

afs 1 # iw, T/ o :
ﬂij(lwnvq) = _V/O dren <]spin,i(77 ‘1)]](0,_‘1)>7 (4)

where j;.:(q) and ji(q) denote the spin and charge current operators,
respectively, and w,, the fermion Matsubara frequency. The average ( -+ )
denotes the ensemble average over the quantum partition function. The
charge and spin current operators are explicitly given by

2

" h . 1
]spin,i(q) = E Z |:ei : (P + 5 q):| (O-a)ssfcip-%—qcs/‘w (5)

$,8.p
. eh . 1
i@ = ;Z[ef (p+5q)}clp+qc&p- ©)
sp

Here, the unit vectors ¢; and ¢; denote the directions of the spin and charge
currents, respectively. We compute 07(w,q) through a diagrammatic
expansion in g. Further details can be found in Supplementary Note 1. As a

result, we obtain the following expression for of(w, q9*:

4 o Py n ’
oj(w, q) = & (ZH};} e - (p—1a) [7 L1 lni(e) — np(e + w)]

x Gret(e + va + q)GadV(€7p)Y?(€ + w + 187 €— ’57}" + ‘I,P)

@)

Here, ng(e) denotes the Fermi-Dirac distribution function and
Gretl€ + 0, p + q), Gaav(€, p) the retarded and advanced propagators for
the electron and hole states, respectively. We focus on the paraelectric phase
just outside the quantum critical region. In this case, we may posit that both
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Fig. 2 | Relevant Feynman diagrams for the computation of phonon-mediated
spin conductivity. a The correlation function involving charge and spin currents at
the tree level. b-d The correlation functions at the one-loop order. The black solid
and blue wavy lines represent electron and phonon propagators, respectively. The
black vertex points denote the electron-phonon interactions that result in Rashba-
type spin-orbit coupling for electrons. The red lines represent external electric fields.
In each diagram, p, k, and q represent the wave vectors for electrons, phonons, and
external electric fields, respectively.

electron and phonon propagators possess well-defined quasiparticle peaks:
Gret(e +w,p+ q) = WM, Gadv(€7p) = W, and

_ Zwk . . . .

Dy(w, k) = Pij(k) o Here, 7 represents the quasiparticle lifetime
stemming from elastic disorder scattering present in realistic macroscopic
materials and is phenomenologically introduced without explicit modeling

for the relevant disorder scattering.

Phonon-mediated spin conductivity

From the yet unelucidated vertex term y{, we can show that the spin con-
ductivity of Eq. (7) vanishes in lieu of the virtual TO phonon exchange. At
the tree level as shown in Fig. 2a, where such exchange is absent, it arises
entirely  from  jg, (q) and  takes  the  form  of
yie —id,e+ w+id;p,p+q) = & - (p+1qtr(o,), where “tr” repre-
sents a trace over spin matrices, and hence vanishes. At the one-loop order,
there are three diagrams, as shown by Fig. 2b-d. We note that two of these,
Fig. 2¢, d (the “self-energy diagrams”), vanish and hence do not contribute to
the PMSP due to the Pauli matrix algebra (see Supplementary Note 3 for
details). However, the “vertex-correction diagram” of Fig. 2b allows for a
non-vanishing form of the vertex function through the PM-SOC in this
system:

W [ dk 1

(e — id, id; p, =" P
yi(e—id,e+w+id;p,p+q) M, Qn) 20y

®)

Here, S(e, p, k; w, q) accounts for the creation of a virtual phonon with a
wave vector k, leading to the transition of the electron and hole states into
(p + q + k) and (p + k), respectively. Such a factor is a common occurrence
in conventional electron-phonon systems®”. To derive this factor, we
perform a Matsubara frequency summation in yf(e —id, e+ w +
i6;p, p + q) using a contour integral, following standard transport theory
calculations® (see Supplementary Note 2 for details). S(e, p, k; w, q) is
explicitly given by

S(e, p,k; 0, q) = [”B(wk) + % np(e + wy) + % np(e + w
+0;) | Guael€ + 0, p + K)Gryl€ + 0 + w0y, p+ k + q)
+[ng(wp) + 1 — 3 np(e — wp) — 3np(e + @ — wy)] Gy, (€
—w, p+ k)Gret(e +w—w,p+k+q).
)

. 1.,
- <p+k+5q>y (P, k; 9)S(e. p, k; w, q)-

Y¥(p, k; q) now includes the effects of the PM-SOC vertex pair as shown in
Fig. 2b:

Pk q) = Puktr[o,e - (0% (p + q+k/2)e; - (0% (p + k/2))].
k,l

(10)

Parts of this trace arise from the annihilation and the creation of a virtual TO
phonon through the Rashba-type spin-orbit interactions, which result in
e - (0X(p+q+k/2) and & - (o X (p + k/2)) respectively. Their pro-
duct can be written as:

e (X (p+q+k/2)e - (0% (p+k/2)
=((p+a+k/2)-(p+k/))e-e)—(p+q+Kk/2)-&)(p+k/2)- &)
+ilp+q+k/2)- (& xe)(p+k/2) - 0) +ie - (% (p+k/2)(& - 0).

(11)

In this expression, the first two terms vanish after taking the trace over spin
due to 0,. The third term vanishes after averaging over all phonon polar-
izations (k and [) due to antisymmetry in k < ], as the transverse projection
operator P(k) is symmetric. However, the last term may survive in both
tracing over spin and summing over the phonon polarizations, leaving a
nonzero spin polarization,

P(p.kig) = 2i{2, - [a% (p+ k/2)] — @ - Wk - [a% (p+k/2)] |
(12)

in contrast to the tree level, where e, denotes the unit vector in the
direction of a. This quantity is termed “phonon-mediated spin polariza-
tion” (PMSP).

A physical picture of PMSP can be obtained through a simple re-
writing of our PMSP. The first step is to take the vector product of the two
momenta associated with the electron and hole states, namely (p + q + k/2)
and (p + k/2): P = q x (p + k/2). The next step is to take the k rejection of P,
ieP, =P— k(k - P), as illustrated in Fig. 3a. The final step is to take the
scalar product of P, and é,, resulting in y*(p, k; q) = 2ie, - P, . From
e, - P=q-[(p+ k/2) % o], we canregard j*(p, k; q) as a Rashba-like term
with g, the wave vector of the external electric field, plays a role analogous to
inversion-symmetry breaking fields in conventional Rashba spin-orbit
coupling. This in turn induces a non-vanishing spin polarization propor-
tional to g, namely the PMSP. Also, we can easily see now conditions under
which y*(p, k; q) would vanish. A simplest example is determined by the
orientations of k:

kil +e, = 7(p,k;q) =0, (13)
as depicted by the cyan lines in Fig. 3b—d. In other words, TO phonons with
momenta parallel to &, do not contribute to the PMSP and, ultimately, to
spin conductivity. Additionally, there exists a more general vanishing
condition:

éoc 1 PJ_ = ?u(p.‘ k; ‘1) =0, (14)
as illustrated by the magenta lines in Fig. 3(b-d). Consequently, TO phonons
that result in P, being perpendicular to e, also do not contribute to the
generation of the PMSP.

From the PMSP we have obtained, we find that the lowest order term in
q of the DC spin conductivity, i.e.

oj(q) = lim aj(w, ),

is quadratic, which means that the spin current will arise in response to an
inhomogeneous electric field. By substituting Eqgs. (8), (9) and (12) into
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Fig. 3 | Phonon-mediated spin polarization. (a)

a Schematic illustration of the vector calculations

involved in computing phonon-mediated spin

polarization. The outcome, e, - P, represents the

value of the desired spin polarization. b-d Plots of

e, - P asa function of the azimuthal (¢,) and polar e,-
(6x) angles ofk = (sin 8y cos ¢y, sin 6, sin ¢, cos 6;).
b Plot for P || e,, wheree, = zand P = |P|z.(c) Plot
for é, = zand P = |P|(~/2/2,0,+/2/2). (d) Plot for
P 1 e, wheree, = zand P = |P|x. The unit vectors
&, and k denote the directions of the spin polarization
and the phonon wave vector, respectively. P = q x (
P + k/2) denotes the vector product of g and p + k/2.
P, =P— k(k - P) represents the vector rejection of
P from k. (b-d) The color scale denotes the value of
e, - P, . Specific relative orientations between e, and

(b) e, 1P é,-

Pare utilized in each plot. The cyan and magenta lines
indicate the conditions under which ¢, - P, vanishes,
corresponding to k|| + e, and e, L P, respectively.

Eq. (7) and taking the limit w — 0, we obtain

| gl dp
imlMPh @n)’ (P +k+3 2 ‘1)

& {lax o+ k/2] - k(k- qx(p+k/2))}
x [ (0,9 + DG4, (0, )Grog(@p, p + K + PG (@i, p + K) + (w0, < —wp)].

(15)

& k mp(@o+np(wg) o
(27! 2wy

oj(@) = (p—39)

Given that our PMSP factor is proportional to |g|, o7(q) obviously vanishes
as|q| — 0. However, 07;(q) turns out to be even, not odd, in q. Given that the
electron dispersion is even in momentum, i.e. E_I, = EP, we expect the elec-
tron and the hole propagators to be even in their momenta. Since the
phonon dispersion is likewise even in momentum, ie. w_p=wy, it is
straightforward to show that Eq. (15) is unchanged by reversing the sign of
all its momenta, ie. p <> — p, k<> — k and q & — q. Consequently, if we
expand 07(q) in the powers of g, the first non-vanishing term is quadratic,
hence the predominant g-dependence of ¢7(q). Our numerical integration
on Eq. (15) confirms this quadratic behavior within a low-|q| regime (Fig.
4b). Assuming Er=1 eV and 7=10""* 5, we determined that the quartic
term is significantly smaller than the quadratic term for
|q|<<%k,::0.0212kp, where kp denotes the Fermi wave vector. Further

Eq. (15) by substituting g =0 into the electron propagators and collecting
non-vanishing even terms in . This term contributes to the imaginary part of
the spin conductivity as the integrand is purely real. But there is also the
second term arising from expanding the electron propagators in q. This
expansion leads to the additional factor 2" 24 G, (0, p). Conventionally, this
term is disregarded because it is of hlgher order in q. However, in our case,
both this term and the first term are quadratic in g, and hence, both must be
retained. The second term contributes to the real part of the spin conductivity
as the additional progagator Gier(0, p) in the integrand introduces a purely
imaginary factor (E =7).Itis noteworthy that this real part predominates in
typical metals as =7 >>1 is required for having well-defined quasiparticles;
conversely, close to the ferroelectric quantum criticality, the predominance of
the real part cannot be taken for granted. It needs to be noted here that, in
deriving Eq. (16), the phonon momentum k is set to be zero except for
[np(wr) + nwi)]/wy  that effectively constrains |k| at small values
|k| << |p| ~ kr in the k-integral”. Further details can be found in Methods.

The lowest-order g-dependence and the temperature dependence of
07(q) can be obtained analytically by performing the Eq. (16) integration,
details of which can be found in the Methods. The result can be written in the
form

details can be found in Supplementary Note 5. o%(q) = ( V() + VA q)) + ZKO( V() + V4 q)) 17)
To obtain this first non-vanishing term of ¢7(q),
oi(q) ~ L 5;\2: ‘(;’;1)’3 I(Z:){J %“:FW where 1/(q) is a quadratic function of g, defined as:
xp [*q : (é,- xe)(q-&)+q-(¢xe)q- é,-)] (1= K)IG(0.p)I" Vi) =q- (&%e)q- &) (18)
i gleh® f ] j‘ & k3 np(w)+np(wy)
Fmnty ) ey ) G 20 Xo and x, are g-independent constants, which are defined as
~2 2
xpip;[a- (P> )] (1 = k)4 (P - DI Grer(0, P)I* Goer(0, p) + O(q*), neht\ (g8 \ (ksTt\*(Eer\ 8 (E
= (== ATl Y ) .y e 19
(16) Xo ( ) M, ( h ) (h)snz (kBT)’ (19)
we need to consider how the electron propagator should be expanded in the
powers of q and how the dependence on k should be approximated; given
that we are interested in the long wavelength limit, our expansion will neht gz kTt 2, Eg
assume ||/ < 1, where [=vgT is the mean-free-path (see Supplementary Ky = (T) WM ( 7 ) ﬁl (ﬁ) (20)
Note 6 for further details). In this equation, the first term is derived from ph B
npj Quantum Materials | (2024)9:51 4
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Fig. 4 | Quadrupole symmetry of the spin con-

Re[o® rb. unit
ductivity. a Real part of the spin conductivity e[oxy(q)] (arb. uni) 21 o’
(Re[(rfcy(q)]) asafunction of g = (¢, dy 0) (in units of
qg./kr and q,/kp) obtained from a numerical inte- 2
gration using the formula in Eq. (15). b Re[o%,(q)] 1
along the line g, = 0, showcasing the quadratic
dependence on ¢2. a The color scale indicates the 0
magnitude of tbeﬁspin conductivity divided by the 1
overall factor ﬁziz . b The parameter values used are
as follows: Ep = 3eV, vp= 10°m/s, 7= 1045, -2
¢=10"'m/s, E;= 1meV, and T=1K. 0.02 -3 ‘ : ‘
-0.02 -0.01 0 001 0.02 002 -001 0 001 002
a, /K a /K,
which confirms yo/xy = 4Ep1/15h > 1 when the quasiparticles are well-  explicitly given, in accordance with Eq. (22) as:
3 212
defined. In this expression, n = 3% and Ep = % denote the electron
. . . 2 2\ a2 2
density and the Fermi energy, respectively. E; denotes the phonon energy (@ = Xo(dx — ;) + ixo(q, + ), (23)
E
gap. I (kﬂ—gT) denotes an integral function representing the integral over |k|,
2 o 2 2
which is given by: 03 (@) = xo(q — 9,) — i (q; + ). (24)
o0 52 2 Note here the quadrupolar dependence on g characterized by q> — qj for
I(y) = / dx — =7 P (—ayb) . (21) thereal parts of these components. Our numerical computation on Eq. (16)
0 2\/x% + yrsinh [/x2 + y? | confirms this quadrupolar behavior within a low-|q| regime (Fig. 4a).

where a =~ 0.75 and b =~ 1.05.

Quadrupolar symmetry
The non-vanishing components of rank-3 tensor of(q) exhibit the
unconventional quadrupolar symmetry in q. In principle, o7(q) could have
twenty-seven distinct components, among various combinations of (3, j, )
where i, j, @ = {x, , z}. However, three longitudinal components with i=
j = o vanish, remaining only six components with i =j# . Moreover, we
can see from Eq. (17) that each pair of transverse components with i # j is
related by a symmetric relation in the permutation i < j:
o5(q) = [o5(]", (22)
where * denotes a complex conjugation. The symmetry of Eq. (22) also
reduces the number of independent components to nine for the transverse
components. The six longitudinal and nine transverse components are
summarized in Table 1 and Table 2, respectively. These response functions
collectively characterize the spin conductivity in the quantum paraelectric
metal. Among these non-vanishing components, of particular interest are
0%,(q) and 0},(q). These transverse spin conductivity components are

Table 1 | Non-vanishing components of longitudinal
conductivity

i a G

y X Xo(—29.q,)
z X X0(29,qz)
X y X0(292Gx)
z y Xo(—20x9;)
X z Xo(—2G,9x)
y z X0(29xq)

af(q) fori, a={x, y, z} denotes the longitudinal conductivity for spin currents, as defined in Eq. (17).
Here, i denotes both the spin current and the external electric field direction, while a denotes the spin
quantization axis direction. g = (gx, gy, g,) denotes a wave vector of external electric fields. xo is a g-
independent constant, as defined in Eq. (19).

The quadrupolar symmetry can be understood as a long-wavelength
property dictated by the symmetry of the system. The absence of any odd
power of g can be attributed to the inversion symmetry. Combined with the
aforementioned absence of any spin conductivity constant in g, this means
that the spin conductivity in the long-wavelength limit g — 0 should be
quadratic in ¢. In addition, the rotational invariance of our model dictates
that its response function, 07(q) should also exhibit the rotational invariance
around &,. As an illustration of how our quadrupolar symmetry satisfies the
rotational invariance, let us consider the two components shown in Egs. (23)
and (24). The invariance under the 7/2 rotation around the z-axis requires
054, 4q,,9,) = —03,(—4,, 4, q,). The quadrupolar symmetry of the real
part proportional to g2 — q)z, generates the additional sign change under the

7/2 rotation rotation of the wave vector q (g, — — g, and q, — q,). This
compensates for the sign between the two sides, ensuring the transformation
rule is satisfied. The phonon-mediated spin conductivity can also be written
as the sum of very distinct responses to the longitudinal and the transverse
electric field, respectively, allowing us to clarify its quadrupolar symmetry
further. This can be derived by using ¢7(q) in Eq. (17) to calculate spin

Table 2 | Non-vanishing components of transverse
conductivity

i J 75(q) = [o5(q)I"
X y X Xo(—0xq2) + iKo(—0xg2)
y z x X%0(@2 — G2) +ixo(qZ + 92
z X X Xo(@xqy) + iko(—qxqy)
X y y X0(@,92) + iko(—a,q5)
y z y Xo(—QxQy) + iKo(—Gxqy)

x y X0(@2 — G2) + ixg(G2 + G2)
X z X0(@2 — @) +ixo(qZ +2)
y z Xo(0xG2) + iko(—Gxa)
z X z Xo(—9yq2) + iko(—Qyq2)

o;?(q) fori,j, a={x,y, z} denotes the spin conductivity, as defined in Eq. (17). Here, i denotes the spin
current direction, j denotes the external electric field direction, and a denotes the spin quantization
axis direction. q = (g, Gy, g,) denotes a wave vector of external electric fields. xo and o are g-
independent constants, as defined in Egs. (19) and (20), respectively.

* denotes complex conjugation.
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Fig. 5 | Schematic illustration of spin currents generated by external electric
fields. a The longitudinal electric field (E;(r)) and its wave vector (q) align in the
same x direction. A sinusoidal form E, (r) = EyX sin(q - r) is assumed where
translation symmetry is assumed in the other directions. The spin current (J§;,(r))
and the spin quantization axis (e,) point in the y and z directions, respectively. b The
transverse electric field (E, (r)) and its wave vector (q) point in the different z and x
directions. A sinusoidal form E | (r) = Eyzsin(q - r) is assumed. The spin current
(J3pin(r)) and spin quantization axis () point in the y and z directions, respectively.

In each plot, the thin black line guides the real-space modulation of E;(r) and E, (r)
along the x direction. The sizes of the black and red arrows indicate the magnitudes
of the electric field and the spin current, respectively. a The longitudinal electric field
and its wave vector are indicated by the black and green arrows, respectively. The
spin current and the spin quantization axis are shown, respectively, by the red and
blue arrows. b The transverse electric field and its wave vector are denoted by the
black and green arrows, respectively. The spin current and the spin quantization axis
are denoted by the red and blue arrows, respectively.

currents generated by external electric fields, which are expressed as:

Jin(@) = Z &,0:(q)E{(q). (25)
ij
Here, Ej(q) denotes an electric field applied in the j direction. Substituting
Eq. (17) into Eq. (25), we obtain the first of our main results, an explicit
expression of J' ‘S"pin(q):
Join(@ = (xo — ix)(e, X @)lq - E (@] + (x, + ixo)qle, - (% EL()]-
(26)

Here, E, (q) and E(q) represent longitudinal and transverse components of
E(q) with respect to g, respectively, which are defined as

E/(q) = q(q|~ b;(q))7 27)
d
E,(q) = E(g) - "("lq—f(")) (28)

We note that the spin current of Eq. (26) will be non-uniform in general, e.g.
when x,/xo can be ignored, it can be written in the real space approximately
as
T = —Xo[(€ X V)V - E) + V{e, - (VX E)}].

Eq. (26) tells us that E; generates the spin Hall current perpendicular to the
spin polarization direction e, whereas E, generates the g-parallel spin Hall
current whose magnitude is maximized for e, L q. For an example of
response when E = E), we can consider g = gX, E(q) = E%,and e, = 2, for
which the resulting spin Hall current flows in the y direction (Fig. 5a):

been discussed. For an example of response when E = E, , we can consider
q = g%, E(q) = Eyz,and e, = , for which the resulting spin current flows
in the x direction (Fig. 5b):

Foin(@) = (o + i) (—%)q°Ey.- (30)
This g-parallel Hall spin current induced by E, has, to the best of our
knowledge, no analog reported in the transport of either the Rashba metal or
the quantum Hall state and can be considered as the most distinct feature of
the phonon-mediated spin conductivity.

The above separation of the two components of the spin con-
ductivity is physically relevant as a metal exhibits different responses
to E; and E,. Briefly, E; is screened below the plasma frequency,
whereas, as dictated by the Faraday effect, E, is necessarily dynamic;
note that the coupling of electric field to the TO phonon, omitted in
our analysis, can be adequately treated with the static dielectric
constant for frequency far below E,/#. Indeed, the response to E; can
be interpreted as the generation of spin current in response to an
electromagnetic wave if we additionally take into account the fre-
quency dependence of the spin conductivity. For instance, we have
derived in Supplementary Notes 4 and 7 the approximate relation,
valid for the low frequency wt <« 1, between the static and dynamic
conductivity in the first order in w:

0w, q) = <1 + g iwr) 03 (4) (31)
Physically, large differences between |E;| and |E, | is required for obtaining a
nearly pure spin Hall current; |E(q)| #0 and |E (q)| # 0, on the other
hands, will give us a nonzero longitudinal spin current. For instance, with
E(q=q9X) =E, ";EZ and e, = ¥, the spin Hall and longitudinal currents are
given by

x—z
Fu(a = q&) = —icy—=q’E,, (32)
Fo@ = (o = )7, (9 AT
In fact, this spin current is of the form analogous to the charge current in ) . i+z,
quantum Hall states induced by inhomogeneous electric field*>****; the Jion(d = 9%) = —Xo 7‘1 Ey. (33)
spin analog in the quantum spin Hall state™ and the Rashba metal* has also
npj Quantum Materials | (2024)9:51 6
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Fig. 6 | Scaling laws in spin conductivity. a Real (@)
part of the spin conductivity (Re[o%,(q)]) as a func-
tion of temperature (T). b Imaginary part of the spin

’ o Eg=1 O'Z(meV)

(b)
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Likewise, for any of the longitudinal spin conductivity components of Table
1 to be nonzero, both |E;| # 0 and |E,| # 0 need to hold.
One relevant parameter for assessing the magnitude of the spin con-

ductivity in Eq. (17) is the ‘spin Hall angle’ defined as fg; = 2 U‘;"'“(‘;l‘)l

J(q) = 0.(q)E(q) is the electric current induced by the same external electric
field E(q). Using the Drude conductivity o.(q) = ne’r < with assuming o.(q)
__ 2N Xo+Ks ~

v quFa(qa E)or

—h

, where

independent of g, we obtain 0,

2 A

s = (55) () 1(E) V(2 B + @ Ra@ b, 69
where the directional factor F (g, E)= \/ q- E)z +((gxe,)- E)z is order
of unity. To provide a rough numerical estimate, we consider SrTiO; as an
example despite its deviations from our model, including its multi-orbital
electronic structure. Employing the following parameter values:
g=~30meVa®, with a=~55 A being the lattice constant of tetragonal
StTiO3", E;~ 2 meV and Ep = 10 meV for n =4 x 10°cm >, 7=10" s for
T=10K" and assuming M,;, = 4 x 10 % kg and ¢ = 10’ m/s for the TO, ,
we obtain Oy =~ 8.36 x 10~ 16q m”. Specifically, for g = (3x10~m), this
yields 6Oy =0.0093, which is comparable to that of Pt at the same
temperature. It’s notable that the relatively high value of kT't// ~ 13 and its
quadratic dependence are primarily responsible for the substantial 6.

Thermal activation behavior
The second of our main results is the scaling laws with respect to tem-
perature governing the phonon-mediated spin conductivity, as represented

| ) e (2]

k
a 2 B
where a~0.75 and b= 1.05, as obtained in Eq. (21). Importantly, 07(q)
becomes zero at absolute zero temperature (T =0). Conversely, the spin
conductivity undergoes enhancement as the temperature increases. This
behavior stems from the mediation of thermally excited TO phonons. This

(35)

thermal activation behavior stands in stark contrast to the previous intrinsic
spin Hall conductivity, which maintains a nonzero value at the zero
temperature™. It also represents a significant departure from the impact of
acoustic phonons, which lead to the degradation of electrical conductivity™.
It is worth noting that the quadratic temperature dependence in the scaling

3
formula originates from the phase volume factor k7, ¢ = (";}’—f) divided

by an additional factor of kpT stemming from the phonon energy w.
Roughly speaking, this factor accounts for the density of thermally excited
TO phonons that give rise to the generation of the PMSP. Additionally, the
presence of four electron propagators results in a cubic dependence on the
electron’s scattering time 7, another crucial departure from the usual linear
dependence observed in conductivity.

When E, < kT, as indicated by the red region in Fig. 1, TO phonons
exhibit gapless behavior, and thermal effects dominate. In this gapless-
phonon regime, the exponential factor can be disregarded, simplifying the
scaling formula in Eq. (35) as follows:

kyTT\*

o laf () L @) (36)

Our numerical results confirm this power-law relationship, as depicted in
Fig. 6a, b. This quadratic temperature scaling is a distinctive feature of the
phonon-mediated spin conductivity, specifically in the gapless-phonon
regime.

However, it needs to be recognized that as temperatures decrease, the
system eventually enters the quantum critical regime (E, < kgT S kgT*), as
indicated by the blue region in Fig. 1. In this regime, our results may not be
applicable due to the significant impact of phonon self-energy corrections,
invalidating the usage of the free phonon propagator, which forms the basis
of our calculations. Our analysis of phonon self-energy corrections provides

37rg" mc
2 J‘E2

an estimate of T, ~ 5 (see Supplementary Note 9 for the

derivation of T%). Consequently, the quadratic scaling law for phonon-
mediated spin conductivity remains valid within a limited temperature
range T > T
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Conversely, when E, >> kT, the exponential factor dominates, and the
power-law component can be neglected. In such cases, the scaling formula
in Eq. (35) can be expressed simply as:

E b
ai(q) o |qI* exp {—a(k T) } (Eg > ks T). (37)

Our numerical results confirm this exponential behavior in the gapped-
phonon regime, as shown in Fig. 6¢, d. This thermal activation behavior
emphasizes that the spin Hall effect is facilitated by thermally excited TO
phonons, and the presence of TO phonons becomes increasingly favorable
as their energy gap diminishes, enhancing the spin conductivity. We suggest
that this scaling law is applicable in the “classical” paraelectric phase near the
quantum critical point where Eg>> kpT, as depicted by the yellow region in
Fig. 1.

In principle, our calculations can be extended to the quantum critical
regime by accounting for self-energy effects. In this scenario, the detailed
characteristics of the spin conductivity, such as the quadratic scaling law,
may undergo potential modifications. Nevertheless, the presence of the spin
conductivity remains robust since the mediation of the spin conductivity by
TO phonons, as described by the PMSP in Eq. (10), sorely relies on Rashba-
type spin-orbit coupling, which is a fundamental aspect of the system,
irrespective of the specific phonon or electron propagator. Consequently, we
argue that the spin conductivity persists even in the quantum critical regime,
though it may not necessarily adhere to the specific form, as presented in Eq.
(35), and could manifest with a different temperature dependence char-
acterized by a different exponent and numerical coefficients.

Anisotropy effects
Many metals near the ferroelectric phase transition exhibit quasi-two-
dimensional behavior or belong to the category of two-dimensional (2D)
materials’™; the possibility in van der Waals materials is attracting wide-
spread interest in recent years” with the discovery of WTe, metallic
ferroelectricity'*" and the prediction of strain-tunable ferroelectricity in 8-
GeSe™ being just two of many examples. The crystalline anisotropy in such
systems significantly impacts the energy dispersion of TO phonons, leading
to either an easy-plane or easy-axis behavior. Additionally, the anisotropic
character can be experimentally manipulated using external stimuli, such as
strain®. Furthermore, the electron-phonon coupling effect on the electrons’
dynamics is quite different in 2D anisotropic systems compared to 3D
isotropic systems™. Hence, it’s crucial to consider anisotropy when applying
our theoretical model to the candidate materials for the quantum para-
electric metal.
Under these considerations, we extend our previous three-dimensional
(3D) isotropic results, as presented in Egs. (15) and (17), to encompass
anisotropic 2D scenarios, including easy-plane and easy-axis cases. The
primary modification arises in the factor y*(p, k; q) in Eq. (10), which is
adjusted as follows:
ek =0

3,070, k; ), (38)

PP, k) = 8,7 (p. K: ). (39)
Here, the superscripts “EP” and “EA” denote “easy-plane” and “easy-axis,”
respectively. In comparison to the isotropic case, *(p, k; q) now exhibits
directional preferences denoted by projection factors such as (1 — d,.) and
0. These projection factors constrain the direction of the spin polarization
to the easy-plane a = {x, y} or to the easy-axis « = z in each case. This spin
polarization constraint clearly differentiates the spin conductivity in
anisotropic systems from that of isotropic systems.

To precisely quantify the deviations from the isotropic scenario, we
calculate the phonon-mediated for both easy-plane and easy-axis cases,
which are denoted as cf“ EP (q) and a (q), respectively, and find the same
quadrupolar symmetry w1th the dlfferent response for the transverse and the

longitudinal field, albeit with the spin polarization constraint of Eqgs. (38)
and (39). The calculations closely mirror those of the isotropic case; for

further detalls, refer to Supplementary Note 8. As a result, we obtain 0“ )
and a (q) up to quadratic order in q as:
o5 @ = (=0 ) [ (i@ + @) +ic® (—vi@ + @) .
(40)

05" @ = 0. [ (i@ + vit@)) + ic” (—vit@) + vi@) | (1)

In contrast to the isotropic case, the spin quantization direction « cannot be
freely adjusted any longer; for the easy-plane case, « is constrained to the
easy-plane directions, while for the easy-axis case, it aligns with the easy-axis
direction as indicated by the factors 1 — §,, and ,,, respectively. For the
easy axis case, the spin current response to the longitudinal electric field is
now exactly the same form as that of the Rashba metal"

The qualitative change due to the 2D nature does occur in the tem-
perature dependence, as can be seen from the coefficients of the spin con-

ductivity,
oo (Mapeht gt kgTT\ (Ep7) 3 E,
Ao = ( m )(hMPhc2>( n )\ ) 2o\t ) @

D _ n,peht gt kgTt LI E,
o m hM,c? h ) on ®P\k,T)’

z o . E
where 1, = ];—; represents the electron density in 2D. It is I, (ﬁ), an
B
integral function that encapsulates the integration over |k|,

(43)

B — O
P 2\/x2+yzsinh[\/x2+y2]_2 2/’ (44)

that gives rise to the most important qualitative change in the temperature
and the phonon energy gap dependence. In the gapless-phonon regime,

E,<kgT or y<1, (the red region in Fig. 1), Lp(y) can be well-
approx1mated asLp(y)=1ln ) , simplifying the scaling formula in Eq. (40)

as follows:
kpTT 2k, T
|2(BT) ln( EBg ) (B, < ksT).  (45)

Conversely, in the gapped-phonon regime, E,>> kgT or y > 1, (the yellow
region in Fig. 1), Lp(y) can be approximated as I,;(y)=exp(—y),
simplifying the scaling formula in Eq. (40) as follows:

oy e ol

E
o,EP(EA) 2 g
[ (q) « |q|” exp {— (kB_T)} , (Eg>>kBT). (46)

In both easy-axis and easy-plane cases, the temperature dependence in Egs.
(45) and (46) may undergo substantial modifications at the QCP where the
effect of self-corrections becomes significant. Nevertheless, our results raise
the possibility of stronger phonon-mediated spin conductivity in
anisotropic 2D materials compared to isotropic 3D materials such as
SrTiOs.

Discussion

In this study, we have demonstrated that quantum paraelectric metals near
ferroelectric quantum criticality can exhibit an unconventional phonon-
mediated spin transport in response to an inhomogeneous electric field, an
example of spin transport arising from interaction rather than band
structure. Our rigorous calculations, employing the Kubo formula and a
perturbative expansion in electron-phonon interaction, have unveiled that
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soft transverse optical phonons, with their intrinsic Rashba-type spin-orbit
coupling to electrons, can serve as unconventional contributors to the spin
conductivity in response to the inhomogeneous electric field. Furthermore,
the resulting spin conductivity displays a couple of intriguing and unique
characteristics. One is that it exhibits unconventional quadrupolar sym-
metry associated with the g-vector, leading to a possible nonzero response,
in contrast to the theoretical prediction for quantum Hall states and Rashba
metals, even when V - E = 0. The resulting spin current is, therefore, non-
uniform, and its observation may require a local spin probe such as the X-ray
magnetic circular dichroism™ or the spin-torque transfer ferromagnetic
resonance’’; recent years have seen the successful application of both to the
2D van der Waals materials™”. The other is that it follows distinctive scaling
laws in temperature and phonon energy gap; the conductivity increases as
temperature rises or the energy gap diminishes, as it is mediated by ther-
mally excited phonons. Consequently, the proposed spin transport may be
best observed in the vicinity of a ferroelectric quantum criticality, where the
phonon energy gap diminishes while thermal effects amplify, even if how
much of Fermi liquid theory-based temperature dependence would hold in
the quantum critical regime remains to be examined in future research.
Therefore, the recent report of the ferroelectric quantum critical point in the
n-type SrTiO; may provide one example”*®'; 2D van der Waals materials
may provide other examples of ferroelectric quantum criticality’”*** and
hence enhanced interaction-induced spin transport. Lastly, we note that the
impurity effect on the spin conductivity is an interesting issue to be
addressed, e.g. whether it would be analogous to that of the Rashba metal
spin Hall conductivity®>®.

Methods

Expansion of spin conductivity to the wave vector of

electric fields

To obtain the quadratic term of o7(q) presented in Eq. (16), we expanded
the full expression of Eq. (15) to the wave vector q of electric fields. Utilizing
the expansion of G,(0, k+ ¢) to g:

1
G0k +) = G001 = G0, 051 — G (0, 5L)

G0+ (EA 1LY G, 0,k + ("4:9) G0, 0 + Og),

(47)
and a similar expression for G, (wy, p + k + q), we expanded the product of
the electron propagators in Eq. (15) as:

G0, + )Gute (0. P)Gra (@4 P+ K+ )G (4 p + 1) + (5, > —y)
= (G0, p>|2\Gm<wk PP {1+ 129G, 0.p) + “ERG, (0, p+ b
I G0.0) + 52 G 0+ 0+ (29) 16,0908 + (V2229) (G, w0y, p + BT
+(£249) (B9 G, (0, p)Gra(@i p + K + Og*) } + (@4 < — ).
(48)

Substituting Eq. (48) into Eq. (15) and gathering terms of quadratic order in
q, we obtain

of@= s [k [ ket {g  [(p+ k/2)<e,] - @ ba - [(p+k/2)xk| |
* {160 PP G p + BF (3@ 0 p) — 3 (0 +RE - )
+2,- (p+ KE ) (21 G,0.0) + " ERG (0, p + B) )+ {0 & —a}].
(49)

This expression is further simplified by approximating (p + k/2) = p,
(p+k)=p, and Gelwpp+k)=G(0,p)”. This approximation is
ensured by the distribution factor LICAAKTACAR WY exponentially decays for a
large |K|, effectively constraining |k|<< b T, where Cis an arbitrary constant.
In a low-temperature regime T< CkF of our interest, this constraint
indicates |k| < kg~ |p|, thus vahdatmg the stated approximation. Within

this framework, we approximate Eq. (49) as:

a i 2eh® Pk np(wp)+ng(wy)

o3a) = LS [k [k el G (0, )
x{a-(pxe)— @ 0a- >k }@p,—pa)
A [ [k |G (0, )G (0, )

@n’ J @ny 2w

><{q.(pxéa)—(éa-lAC)q'(PX’A()}PinW%‘

(50)

The requirement of the integrand being even in k and p leads to:

{a-@0xe)— @, ba- oxb bap, - pa) > {a-@xeap —a-@xeap ja k),
{a-@0xe) — @ ba-oxb }pp — a- (pxe)(1 — kKpp,
(51)

Substituting Eq. (51) into Eq. (50), we obtain Eq. (16).

Evaluation of the spin conductivity
To obtain the explicit expression for o7(q) presented in Eq. (17), we per-
formed an analytic integration of Eq. (16) by approximating the integrated
as follows: (i) the electron propagator is represented as
Gro(0, P)=(—hvpp +ih/27) " = G,y (0, p), where p=1p| —kp (iD) the
factors of p are replaced by kpp, and (iii) the 1ntegral measure is represented
as [ d’p= [ _dpky [ dQ,, where [ dQ, = j dcos@ fo d¢,. These
approximations are justiﬁed under the cond1t1on the cond1t1on Epr>h,
ensuring that the integral over p sharply peeks around |p| = kr. Additionally,
we represent the integral over kas [ d’k = [;° dkk® [ dQ;. Within this
framework, we approximate ¢7(q) in Eq. (16) as:

L 2op6 JA a2 ~2
08(g) = £ [ d el [0, (1 - k)
X [, dplGe0. )" [ a2, [{(@- @) - (pxe)} — {i < 7}
. 020k AR2KS 2
LA SN [ g ) |0, (1 - k)

X [ P10, p)* Gy (0, p) [ dQ,(&; - P)(E; - P)[q- (P> &,)]-

(52)

The integrals for O, p, and €, can be conducted analytically, yielding

f ko(l - i(z) = 8?”7
ffooo dp|Gret(07p)|4 = W ) (53)
f—oooo dplGret(O7P)|4Gret(07p) = hv;(:/rfr)“ )
and
Jao,[{@ @ pa-oxe)}—{i< ]
=@ - @xe))—{io ], 58
[ a0, p)e-p)[a- Bxe)] (-9
=i [{@ pfa-@xe)]}+iio]
The remaining integral for k is represented as:
anp(@p) +np(wy) 1 (kgT E
[z L (2Y(5)

where I(y) is defined in Eq. (21). Substituting Egs. (53) to (55) into Eq. (52),
we obtain Eq. (17).
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Numerical integration method

To produce the results depicted in Figs. 4 and 6, we performed numerical
integration of the 07(q) formula given in Eq. (15) using a Riemann sum
approach. The discretization of the electron wave vector p = (ps p)» pz)
spanned the Fermi surface region, defined as

\/k}z, —9.95. (h/21')<|p|<\/k12D +9.95 - (h/27). At the boundaries of this

region, we ensured that the electron spectral function, —1Im[G,,], des-
cended below 1% of its maximum value occurring at |p| = kr. Consequently,
contributions from outside this region were deemed negligible. Addition-
ally, we established a mesh for the phonon wave vector k = (k,, k,, k) within
the range |k| <k o = 10 kg—cT At the boundaries of this region, we ensured
that the distribution factor ng(wy) + np(wy) fell below a few percent of its
maximum value occurring at |k| =0 (the ratio was maintained at 1% for
E, = 0and less than 10% for E, ~ 10kT). Consequently, contributions from
outside this region were also considered negligible. For the computation, we
used a grid size of (51 x 51 x 51) for both (p,, p,, p.) and (k,, k,, k.) within
the specified regions for numerical integration. Our analyses confirmed that
the numerical integration results were well-converged and reliable for our
intended purposes.

Data availability

The data for the results presented in the paper and Supplementary Infor-
mation are available from the corresponding author upon reasonable
request.
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