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Phonon-mediated spin transport in
quantum paraelectric metals
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The concept of ferroelectricity is now often extended to include continuous inversion symmetry-
breaking transitions in various metals and doped semiconductors. Paraelectric metals near
ferroelectric quantumcriticality,whichwe term ‘quantumparaelectricmetals,’possess soft transverse
optical phonons which can have Rashba-type coupling to itinerant electrons in the presence of spin-
orbit coupling. We find through the Kubo formula calculation that such Rashba electron-phonon
coupling has a profound impact on electron spin transport. While the spin Hall effect arising from non-
trivial electronic band structures has been studied extensively, we find here the presence of the
Rashba electron-phononcoupling can give rise to spin current, including spinHall current, in response
to an inhomogeneous electric field evenwith a completely trivial band structure. Furthermore, this spin
conductivity displays unconventional characteristics, such as quadrupolar symmetry associated with
the wave vector of the electric field and a thermal activation behavior characterized by scaling laws
dependent on the phonon frequency to temperature ratio. These findings shed light on exotic
electronic transport phenomena originating from ferroelectric quantum criticality, highlighting the
intricate interplay of charge and spin degrees of freedom.

The search formaterials combining ferroelectricity/polarity withmetallicity
has been longstanding in condensed matter physics, dating back to the first
proposal by Anderson and Blount over 50 years ago1. This endeavor has
made significant progress, especially in the last decade, resulting in the
accumulation of numerous experimentally confirmed examples2–5, starting
with LiOsO3

6. Other noteworthy examples include doped quantum para-
electrics such as SrTiO3

7–10, IV-VI compounds11,12, and certain transition
metal dichalcogenides13–16. These so-called ferroelectric (or polar) metals,
typically doped ferroelectrics in semimetals and semiconductors, present
the intriguing coexistenceof ferroelectricity andmetallicity, contrary to their
apparentmutual exclusivity. In addition, the possibility of various correlated
electronic phenomena arising from ferroelectric quantum fluctuations near
a ferroelectric quantum critical point, including the augmentation of the
critical temperature for superconductivity, has attracted strong
interest7,8,17–25.

For the displacive ferroelectrics under consideration, the continuous
ferroelectric phase transition involves the softening of transverse optical
(TO) phonon modes associated with the displacement in proximity to the
critical point26,27, as this transition is characterized by a collective displace-
ment of ions from their centrosymmetric positions9,22,28. Given that the TO

mode displacement breaks the inversion symmetry while preserving the
time-reversal symmetry, the interactions between the TO phonons and
itinerant electrons in the presence of any finite atomic spin-orbit coupling
takes the unconventional form of a Rashba-type spin-orbit coupling, which
couples themomentumand spin of itinerant electrons29–32.We refer to these
distinctive interactions as “phonon-mediated spin-orbit coupling” (PM-
SOC). Previous theoretical studies explored the impacts of the PM-SOC on
correlated electronic phenomena in the quantum critical region, such as
non-Fermi liquid behavior32, enhanced superconducting instability23,32,
charge transport32 and optical conductivity33; transport effects of soft TO
phonons have also been investigated for the two-phonon scattering
mechanism25,34. However, the effect of the PM-SOC on spin transport,
particularly when subject to inhomogeneous electric fields, remains unex-
plored so far, remaining a missing piece of the physics near the ferroelectric
quantum critical region.

In this study, we investigate the influence of the PM-SOC on the
electronic transport properties of a centrosymmetric metal (i.e., posses-
sing finite carrier concentration) near the ferroelectric quantum critical
point, which may be termed as a ‘quantum paraelectric metal.’ From the
Kubo formula, we obtain a nonzero spin conductivity, even in the
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centrosymmetric paraelectric phase (Fig. 1), from a single orbital, albeit
contingent on the presence of inhomogeneous external electricfields. This
phenomenon may seem counter-intuitive at first glance since not only is
the Rashba spin-orbit coupling in the electronic band structure, which
results in thefinite spinHall conductivity35,36, symmetry-forbidden in such
a phase, but anyorbitalHall effect37–40 is also absent.However, theRashba-
type spin-orbit coupling to TO phonons41, i.e., the PM-SOC, in con-
junction with inhomogeneous external electric fields, gives rise to an
unconventional type of spin conductivity. Notably, we shall show in
section “Quadrupolar symmetry” that this phonon-mediated spin con-
ductivity exhibits a unique directional dependence on the wave vector of
external electric fields, displaying a quadrupolar symmetry with respect to
the wave vector that is, however, distinct from the quadrupolar symmetry
predicted for electrical Hall resistivity in quantum Hall states42,43 or spin
Hall conductivity in Rashba metals44. Furthermore, we demonstrate in
section “ Thermal activation behavior” that our phonon-mediated spin
conductivity also exhibits peculiar scaling laws as a function of a tuning
parameter and temperature (Fig. 1).Whereasmost theoretical research on
spin transport has been based on band structure considerations, our
findings point to new possibilities in interaction-induced spin transport.
Moreover, our results highlight the intriguing aspect of the emergent
exotic transport phenomena arising from the intricate interplay of charge
and spin degrees of freedom in itinerant electrons in the realm of ferro-
electric quantum criticality.

Results
Model
Quantumparaelectricmetals are characterized by the emergence of soft TO
phononmodes and their distinctive electron-phonon interactions,which, in
combination with atomic spin-orbit coupling, exhibit a Rashba-type spin-
orbit coupling for itinerant electrons21,30,39. The minimal model for a
quantum paraelectric metal is given by the following effective

Hamiltonian31,32:

Ĥ ¼
X
s;p

ξpc
y
s;pcs;p þ

gffiffiffiffi
V

p
X
k

X
s;s0;p

ϕk � ðσss0 × pÞcys;pþk=2cs0;p�k=2 ð1Þ

for electrons, where cys;p is the electron creation operator (s, p denoting the
spin and wave vector of the electron, respectively), the electron energy
dispersion is isotropic, i.e. ξp ¼ _2jpj2

2m � μ (m and μ denoting the electron
effective mass and the chemical potential, respectively), g is the coupling
constant for the electron-phonon interaction, and ϕk is the transverse
phonondisplacementfield, whose dynamics, in the free limit, is given by the
action

Sph ¼
Mph

_2
X
iνn

X
k

X
ij

ϕið�iνm;�kÞðν2n þ ω2
kÞPijðkÞϕjðiνm; kÞ; ð2Þ

wherePijðkÞ � δij � ðêi � k̂Þðêj � k̂Þ is the transverse projection operator, νn
is the bosonMatsubara frequency,Mph is the phonon effectivemass, and the
phonon energy dispersion is given by ω2

k ¼ ð_cjkjÞ2 þ E2
g , where c and Eg

denote the phonon velocity and energy gap, respectively.
Whereas previous studies of the Eq. (1) quantum paraelectric metal

model focused on its instability to superconductivity31,32 or optical
conductivity33, we calculate in this work its spin conductivity, denoted as
σαijðω; qÞ, using the Kubo formula:

σαijðω; qÞ ¼
i
ω
πα
ijðiωn; qÞjiωn!ωþiδ: ð3Þ

Here, the indices i and j denote the directions of the spin and charge cur-
rents, respectively, while ω and q denote the frequency and wave vector of
the external electric field. πα

ijðiωn; qÞ represents the current-current
correlation function, defined as

πα
ijðiωn; qÞ ¼ � 1

V

Z β

0
dτeiωnτ jαspin;iðτ; qÞjjð0;�qÞ

D E
; ð4Þ

where jαspin;iðqÞ and jj(q) denote the spin and charge current operators,
respectively, and ωn the fermion Matsubara frequency. The average 〈⋯ 〉
denotes the ensemble average over the quantum partition function. The
charge and spin current operators are explicitly given by

jαspin;iðqÞ ¼
_2

m

X
s;s0;p

êi � pþ 1
2
q

� �� �
ðσαÞss0cys;pþqcs0;p; ð5Þ

jjðqÞ ¼
e_
m

X
s;p

êj � pþ 1
2
q

� �� �
cys;pþqcs;p: ð6Þ

Here, the unit vectors êi and êj denote the directions of the spin and charge
currents, respectively. We compute σαijðω; qÞ through a diagrammatic
expansion in g. Further details can be found in Supplementary Note 1. As a
result, we obtain the following expression for σαijðω; qÞ45:

σαijðω; qÞ ¼ e_4

m2

R d3p
ð2πÞ3 êj � p� 1

2 q
� � R1

�1
dϵ
2π

1
ω nFðϵÞ � nFðϵþ ωÞ	 


×Gretðϵþ ω; pþ qÞGadvðϵ; pÞγαi ðϵþ ωþ iδ; ϵ� iδ; pþ q; pÞ:
ð7Þ

Here, nF(ϵ) denotes the Fermi-Dirac distribution function and
Gret(ϵ+ω, p+ q), Gadv(ϵ, p) the retarded and advanced propagators for
the electron and hole states, respectively.We focus on the paraelectric phase
just outside the quantum critical region. In this case, wemay posit that both

Fig. 1 | Spin conductivity in quantum paraelectric metals. Schematic phase dia-
gram of quantum paraelectric metals with spin-orbit coupling near the ferroelectric
quantum critical point (δ, T) = (0, 0) and distinct scaling laws of spin conductivity
(σαij) in each phase. In these quantum paraelectric metals, an inhomogeneous electric
field induces a spin current. In the paraelectric phase (yellow area), the phonon-
mediated spin conductivity possesses a thermal-activated form:
σαij ∼ expð�Eg=kBTÞ, where Eg ~ δ is the energy gap of soft transverse optical (TO)
phonons associated with the phase transition. In contrast, within the gapless-
phonon region (red area), the spin conductivity adopts a power-law behavior:
σαij ∼T2. This power law of spin conductivity may undergo modifications in the
quantum critical (QC) region (blue area) below a specific crossover temperature
scale T* (indicated by the dashed line), wherein phonons or electrons lose their
coherence due to significant self-energy effects. δ and T are, respectively, the tuning
parameter and temperature, while α, i, j denote the direction of spin quantization
axis, spin current, and electric field, respectively.
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electron and phonon propagators possess well-defined quasiparticle peaks:
Gretðϵþ ω; pþ qÞ ¼ 1

ϵþω�ξpþqþi_=2τ, Gadvðϵ; pÞ ¼ 1
ϵ�ξp�i_=2τ, and

Dijðω; kÞ ¼ PijðkÞ 2ωk

ðωþiδÞ�ðωkÞ2
. Here, τ represents the quasiparticle lifetime

stemming from elastic disorder scattering present in realistic macroscopic
materials and is phenomenologically introduced without explicit modeling
for the relevant disorder scattering.

Phonon-mediated spin conductivity
From the yet unelucidated vertex term γαi , we can show that the spin con-
ductivity of Eq. (7) vanishes in lieu of the virtual TO phonon exchange. At
the tree level as shown in Fig. 2a, where such exchange is absent, it arises
entirely from jαspin;iðqÞ and takes the form of
γαi ðϵ� iδ; ϵþ ωþ iδ; p; pþ qÞ ¼ êi � ðpþ 1

2 qÞtrðσαÞ, where “tr” repre-
sents a trace over spin matrices, and hence vanishes. At the one-loop order,
there are three diagrams, as shown by Fig. 2b–d.We note that two of these,
Fig. 2c, d (the “self-energydiagrams”), vanish andhencedonot contribute to
the PMSP due to the Pauli matrix algebra (see Supplementary Note 3 for
details). However, the “vertex-correction diagram” of Fig. 2b allows for a
non-vanishing form of the vertex function through the PM-SOC in this
system:

γαi ðϵ� iδ; ϵþ ωþ iδ; p; pþ qÞ ¼ g2_2

Mph

Z
d3k

ð2πÞ3
1

2ωk
êi � pþ k þ 1

2
q

� �
~γαðp; k; qÞSðϵ; p; k;ω; qÞ:

ð8Þ

Here, Sðϵ; p; k;ω; qÞ accounts for the creation of a virtual phonon with a
wave vector k, leading to the transition of the electron and hole states into
(p+ q+ k) and (p+ k), respectively. Such a factor is a commonoccurrence
in conventional electron-phonon systems45. To derive this factor, we
perform a Matsubara frequency summation in γαi ðϵ� iδ; ϵþ ωþ
iδ; p; pþ qÞ using a contour integral, following standard transport theory
calculations45 (see Supplementary Note 2 for details). Sðϵ; p; k;ω; qÞ is
explicitly given by

Sðϵ; p; k;ω; qÞ ¼ nBðωkÞ þ 1
2 nFðϵþ ωkÞ þ 1

2 nF ϵþ ωð	
þωk

�

Gadvðϵþ ωk; pþ kÞGretðϵþ ωþ ωk; pþ k þ qÞ

þ nBðωkÞ þ 1� 1
2 nFðϵ� ωkÞ � 1

2 nFðϵþ ω� ωkÞ
	 


Gadv ϵð
�ωk; pþ k

�
Gretðϵþ ω� ωk; pþ k þ qÞ:

ð9Þ

~γαðp; k; qÞ now includes the effects of the PM-SOC vertex pair as shown in
Fig. 2b:

~γαðp; k; qÞ ¼
X
k;l

PklðkÞtr σαêk � ðσ × ðpþ qþ k=2ÞÞêl � ðσ × ðpþ k=2ÞÞ	 

:

ð10Þ
Parts of this trace arise from the annihilation and the creation of a virtualTO
phonon through the Rashba-type spin-orbit interactions, which result in
êk � ðσ × ðpþ qþ k=2ÞÞ and êl � ðσ × ðpþ k=2ÞÞ respectively. Their pro-
duct can be written as:

êk � ðσ × ðpþ qþ k=2ÞÞêl � ðσ × ðpþ k=2ÞÞ
¼ ððpþ qþ k=2Þ � ðpþ k=2ÞÞðêk � êlÞ � ððpþ qþ k=2Þ � êlÞððpþ k=2Þ � êkÞ
þiðpþ qþ k=2Þ � ðêk × êlÞððpþ k=2Þ � σÞ þ iêk � ðq× ðpþ k=2ÞÞðêl � σÞ:

ð11Þ
In this expression, the first two terms vanish after taking the trace over spin
due to σα. The third term vanishes after averaging over all phonon polar-
izations (k and l) due to antisymmetry in k↔ l, as the transverse projection
operator PklðkÞ is symmetric. However, the last term may survive in both
tracing over spin and summing over the phonon polarizations, leaving a
nonzero spin polarization,

~γαðp; k; qÞ ¼ 2i êα � q× ðpþ k=2Þ	 
� ðêα � k̂Þk̂ � q× ðpþ k=2Þ	 
n o
;

ð12Þ

in contrast to the tree level, where êα denotes the unit vector in the
direction of α. This quantity is termed “phonon-mediated spin polariza-
tion” (PMSP).

A physical picture of PMSP can be obtained through a simple re-
writing of our PMSP. The first step is to take the vector product of the two
momenta associatedwith the electron and hole states, namely (p+ q+ k/2)
and (p+ k/2):P = q × (p+ k/2). The next step is to take the k̂ rejection ofP,
i.e. P? ¼ P � k̂ðk̂ � PÞ, as illustrated in Fig. 3a. The final step is to take the
scalar product of P⊥ and êα, resulting in ~γαðp; k; qÞ ¼ 2îeα � P?. From
êα � P ¼ q � ½ðpþ k=2Þ× σ�, we can regard~γαðp; k; qÞ as aRashba-like term
with q, the wave vector of the external electric field, plays a role analogous to
inversion-symmetry breaking fields in conventional Rashba spin-orbit
coupling. This in turn induces a non-vanishing spin polarization propor-
tional to q, namely the PMSP. Also, we can easily see now conditions under
which ~γαðp; k; qÞ would vanish. A simplest example is determined by the
orientations of k̂:

k̂ k ± êα ) ~γαðp; k; qÞ ¼ 0; ð13Þ

as depicted by the cyan lines in Fig. 3b–d. In other words, TO phonons with
momenta parallel to êα do not contribute to the PMSP and, ultimately, to
spin conductivity. Additionally, there exists a more general vanishing
condition:

êα ? P? ) ~γαðp; k; qÞ ¼ 0; ð14Þ

as illustrated by themagenta lines inFig. 3(b-d).Consequently, TOphonons
that result in P⊥ being perpendicular to êα also do not contribute to the
generation of the PMSP.

FromthePMSPwehaveobtained,wefind that the lowest order term in
q of the DC spin conductivity, i.e.

σαijðqÞ ¼ lim
ω!0

σαijðω; qÞ;

is quadratic, which means that the spin current will arise in response to an
inhomogeneous electric field. By substituting Eqs. (8), (9) and (12) into

Fig. 2 | Relevant Feynman diagrams for the computation of phonon-mediated
spin conductivity. a The correlation function involving charge and spin currents at
the tree level. b–d The correlation functions at the one-loop order. The black solid
and blue wavy lines represent electron and phonon propagators, respectively. The
black vertex points denote the electron-phonon interactions that result in Rashba-
type spin-orbit coupling for electrons. The red lines represent external electric fields.
In each diagram, p, k, and q represent the wave vectors for electrons, phonons, and
external electric fields, respectively.
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Eq. (7) and taking the limit ω→ 0, we obtain

σαijðqÞ ¼ i
π

g2e_6

m2Mph

R d3p
ð2πÞ3

R
d3k
ð2πÞ3

nBðωkÞþnF ðωkÞ
2ωk

êi � pþ k þ 1
2 q

� �
êj � p� 1

2 q
� �

× êα � ½q × ðpþ k=2Þ� � k̂ k̂ � ½q× ðpþ k=2Þ�
� �n o

× Gretð0; pþ qÞGadvð0; pÞGretðωk; pþ k þ qÞGadvðωk; pþ kÞ þ ðωk $ �ωkÞ
	 


:

ð15Þ

Given that our PMSP factor is proportional to ∣q∣, σαijðqÞ obviously vanishes
as ∣q∣→ 0.However, σαijðqÞ turns out to be even, not odd, in q. Given that the
electron dispersion is even in momentum, i.e. ξ−p = ξp, we expect the elec-
tron and the hole propagators to be even in their momenta. Since the
phonon dispersion is likewise even in momentum, i.e. ω−k =ωk, it is
straightforward to show that Eq. (15) is unchanged by reversing the sign of
all its momenta, i.e. p↔− p, k↔− k and q↔− q. Consequently, if we
expand σαijðqÞ in the powers of q, the first non-vanishing term is quadratic,
hence the predominant q-dependence of σαijðqÞ. Our numerical integration
on Eq. (15) confirms this quadratic behavior within a low-∣q∣ regime (Fig.
4b). Assuming EF = 1 eV and τ = 10−14 s, we determined that the quartic
term is significantly smaller than the quadratic term for
jqj≪ _

EFτ
kF≈0:0212kF , where kF denotes the Fermi wave vector. Further

details can be found in Supplementary Note 5.
To obtain this first non-vanishing term of σαijðqÞ,

σαijðqÞ ’ i
π

g2e_6

m2Mph

R d3p
ð2πÞ3

R
d3k
ð2πÞ3

nBðωkÞþnF ðωkÞ
2ωk

× p2i �q � ðêi × êαÞðq � êjÞ þ q � ðêj × êαÞðq � êiÞ
h i

ð1� k̂
2

αÞjGretð0; pÞj4

þ i
π

g2e_6

m2Mph

R d3p
ð2πÞ3

R
d3k
ð2πÞ3

nBðωkÞþnF ðωkÞ
2ωk

× pipj q � ðp× êαÞ
	 
ð1� k̂

2

αÞ 4_
2

m ðp � qÞjGretð0; pÞj4Gretð0; pÞ þOðq4Þ;
ð16Þ

we need to consider how the electron propagator should be expanded in the
powers of q and how the dependence on k should be approximated; given
that we are interested in the long wavelength limit, our expansion will
assume ∣q∣l≪ 1, where l = vFτ is the mean-free-path (see Supplementary
Note 6 for further details). In this equation, the first term is derived from

Eq. (15) by substituting q= 0 into the electron propagators and collecting
non-vanishing even terms inq. This termcontributes to the imaginarypart of
the spin conductivity as the integrand is purely real. But there is also the
second term arising from expanding the electron propagators in q. This
expansion leads to the additional factor 4_2p�q

m Gretð0; pÞ. Conventionally, this
term is disregarded because it is of higher order in q. However, in our case,
both this term and the first term are quadratic in q, and hence, bothmust be
retained. The second termcontributes to the real part of the spin conductivity
as the additional propagator Gret(0, p) in the integrand introduces a purely
imaginary factor �i EFτ_

� �
. It is noteworthy that this real part predominates in

typical metals as EFτ
_ ≫1 is required for having well-defined quasiparticles;

conversely, close to the ferroelectric quantumcriticality, the predominance of
the real part cannot be taken for granted. It needs to be noted here that, in
deriving Eq. (16), the phonon momentum k is set to be zero except for
[nB(ωk)+ nF(ωk)]/ωk that effectively constrains ∣k∣ at small values
∣k∣≪ ∣p∣ ~ kF in the k-integral45. Further details can be found in Methods.

The lowest-order q-dependence and the temperature dependence of
σαijðqÞ can be obtained analytically by performing the Eq. (16) integration,
details ofwhichcanbe found in theMethods.The result canbewritten in the
form

σαijðqÞ ¼ χ0 ναijðqÞ þ ναjiðqÞ
� �

þ iκ0 �ναijðqÞ þ ναjiðqÞ
� �

; ð17Þ

where ναijðqÞ is a quadratic function of q, defined as:

ναijðqÞ ¼ q � ðêi × êαÞðq � êjÞ: ð18Þ

χ0 and κ0 are q-independent constants, which are defined as

χ0 �
ne_τ
m

� �
g2

_Mphc3

 !
kBTτ
_

� �2 EFτ

_

� �
8
5π2

I
Eg

kBT

� �
; ð19Þ

κ0 �
ne_τ
m

� �
g2

_Mphc3

 !
kBTτ
_

� �2 2
3π2

I
Eg

kBT

� �
; ð20Þ

Fig. 3 | Phonon-mediated spin polarization.
a Schematic illustration of the vector calculations
involved in computing phonon-mediated spin
polarization. The outcome, êα � P? , represents the
value of the desired spin polarization. b–d Plots of
êα � P? as a function of the azimuthal (ϕk) and polar
(θk) angles of k̂ ¼ ðsin θk cos ϕk; sin θk sin ϕk; cos θkÞ.
b Plot forP k êα , where êα ¼ ẑ andP ¼ jPjẑ. (c) Plot
for êα ¼ ẑ and P ¼ jPjð ffiffiffi

2
p

=2; 0;
ffiffiffi
2

p
=2Þ. (d) Plot for

P ? êα, where êα ¼ ẑ and P ¼ jPjx̂. The unit vectors
êα and k̂ denote the directions of the spin polarization
and the phonon wave vector, respectively. P = q × (
p+ k/2) denotes the vector product of q and p+ k/2.
P? ¼ P � k̂ðk̂ � PÞ represents the vector rejection of
P from k̂. (b-d) The color scale denotes the value of
êα � P?. Specific relative orientations between êα and
P are utilized in each plot. The cyan andmagenta lines
indicate the conditions under which êα � P? vanishes,
corresponding to k̂jj± êα and êα ? P?, respectively.
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which confirms χ0/κ0 = 4EFτ/15ℏ≫ 1 when the quasiparticles are well-

defined. In this expression, n ¼ k3F
3π2 and EF ¼ _2k2F

2m denote the electron
density and the Fermi energy, respectively. Eg denotes the phonon energy

gap. I
Eg

kBT

� �
denotes an integral function representing the integral over ∣k∣,

which is given by:

IðyÞ ¼
Z 1

0
dx

x2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p	 
≈ π2

8
exp �ayb
� �

; ð21Þ

where a ≈ 0.75 and b ≈ 1.05.

Quadrupolar symmetry
The non-vanishing components of rank-3 tensor σαijðqÞ exhibit the
unconventional quadrupolar symmetry in q. In principle, σαijðqÞ could have
twenty-seven distinct components, among various combinations of (i, j, α)
where i, j, α = {x, y, z}. However, three longitudinal components with i =
j = α vanish, remaining only six components with i = j ≠ α. Moreover, we
can see from Eq. (17) that each pair of transverse components with i ≠ j is
related by a symmetric relation in the permutation i↔ j:

σαijðqÞ ¼ ½σαjiðqÞ��; ð22Þ

where * denotes a complex conjugation. The symmetry of Eq. (22) also
reduces the number of independent components to nine for the transverse
components. The six longitudinal and nine transverse components are
summarized in Table 1 and Table 2, respectively. These response functions
collectively characterize the spin conductivity in the quantum paraelectric
metal. Among these non-vanishing components, of particular interest are
σzxyðqÞ and σzyxðqÞ. These transverse spin conductivity components are

explicitly given, in accordance with Eq. (22) as:

σzxyðqÞ ¼ χ0ðq2x � q2yÞ þ iκ0ðq2x þ q2yÞ; ð23Þ

σzyxðqÞ ¼ χ0ðq2x � q2yÞ � iκ0ðq2x þ q2yÞ: ð24Þ

Note here the quadrupolar dependence on q characterized by q2x � q2y for
the real parts of these components. Our numerical computation on Eq. (16)
confirms this quadrupolar behavior within a low-∣q∣ regime (Fig. 4a).

The quadrupolar symmetry can be understood as a long-wavelength
property dictated by the symmetry of the system. The absence of any odd
power of q can be attributed to the inversion symmetry. Combinedwith the
aforementioned absence of any spin conductivity constant in q, this means
that the spin conductivity in the long-wavelength limit q→ 0 should be
quadratic in q. In addition, the rotational invariance of our model dictates
that its response function,σαijðqÞ should also exhibit the rotational invariance
around êα. As an illustration of how our quadrupolar symmetry satisfies the
rotational invariance, let us consider the twocomponents shown inEqs. (23)
and (24). The invariance under the π/2 rotation around the z-axis requires
σzxyðqx; qy; qzÞ ¼ �σzyxð�qy; qx; qzÞ. The quadrupolar symmetry of the real

part proportional to q2x � q2y generates the additional sign change under the

π/2 rotation rotation of the wave vector q (qx→− qy and qy→ qx). This
compensates for the signbetween the two sides, ensuring the transformation
rule is satisfied. The phonon-mediated spin conductivity can also bewritten
as the sum of very distinct responses to the longitudinal and the transverse
electric field, respectively, allowing us to clarify its quadrupolar symmetry
further. This can be derived by using σαijðqÞ in Eq. (17) to calculate spin

Fig. 4 | Quadrupole symmetry of the spin con-
ductivity. a Real part of the spin conductivity
(Re½σzxyðqÞ�) as a function of q = (qx, qy, 0) (in units of
qx/kF and qy/kF) obtained from a numerical inte-
gration using the formula in Eq. (15). b Re½σzxyðqÞ�
along the line qy = 0, showcasing the quadratic
dependence on q2x . a The color scale indicates the
magnitude of the spin conductivity divided by the
overall factor g2e_6

m2Mph
. bThe parameter values used are

as follows: EF = 3eV, vF = 106m/s, τ = 10−14s,
c = 104m/s, Eg = 1meV, and T = 1K.

Table 1 | Non-vanishing components of longitudinal
conductivity

i α σαiiðqÞ
y x χ0(−2qzqy)

z x χ0(2qyqz)

x y χ0(2qzqx)

z y χ0(−2qxqz)

x z χ0(−2qyqx)

y z χ0(2qxqy)

σαii ðqÞ for i, α = {x, y, z} denotes the longitudinal conductivity for spin currents, as defined in Eq. (17).
Here, idenotesboth the spin current and the external electric field direction,while αdenotes the spin
quantization axis direction. q = (qx, qy, qz) denotes a wave vector of external electric fields. χ0 is a q-
independent constant, as defined in Eq. (19).

Table 2 | Non-vanishing components of transverse
conductivity

i j α σαijðqÞ ¼ ½σαji ðqÞ��

x y x χ0(−qxqz)+ iκ0(−qxqz)

y z x χ0ðq2
y � q2

z Þ þ iκ0ðq2
y þ q2

z Þ
z x x χ0(qxqy)+ iκ0(−qxqy)

x y y χ0(qyqz)+ iκ0(−qyqz)

y z y χ0(−qxqy)+ iκ0(−qxqy)

z x y χ0ðq2
z � q2

x Þ þ iκ0ðq2
z þ q2

x Þ
x y z χ0ðq2

x � q2
y Þ þ iκ0ðq2

x þ q2
y Þ

y z z χ0(qxqz)+ iκ0(−qxqz)

z x z χ0(−qyqz)+ iκ0(−qyqz)

σαij ðqÞ for i, j, α = {x, y, z} denotes the spin conductivity, as defined in Eq. (17). Here, i denotes the spin
current direction, j denotes the external electric field direction, and α denotes the spin quantization
axis direction. q = (qx, qy, qz) denotes a wave vector of external electric fields. χ0 and κ0 are q-
independent constants, as defined in Eqs. (19) and (20), respectively.
* denotes complex conjugation.
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currents generated by external electric fields, which are expressed as:

JαspinðqÞ ¼
X
i;j

êiσ
α
ijðqÞEjðqÞ: ð25Þ

Here, Ej(q) denotes an electric field applied in the j direction. Substituting
Eq. (17) into Eq. (25), we obtain the first of our main results, an explicit
expression of JαspinðqÞ:

JαspinðqÞ ¼ ðχ0 � iκ0Þðêα × qÞ½q � EkðqÞ� þ ðχ0 þ iκ0Þq½êα � ðq×E?ðqÞÞ�:
ð26Þ

Here,E⊥(q) and E∥(q) represent longitudinal and transverse components of
E(q) with respect to q, respectively, which are defined as

EkðqÞ ¼
qðq � EðqÞÞ

jqj2 ; ð27Þ

E?ðqÞ ¼ EðqÞ � qðq � EðqÞÞ
jqj2 : ð28Þ

Wenote that the spin current of Eq. (26)will be non-uniform in general, e.g.
when κ0/χ0 can be ignored, it can be written in the real space approximately
as

Jαspin ¼ �χ0 ðêα ×∇Þð∇ � EÞ þ ∇fêα � ð∇×EÞg	 

:

Eq. (26) tells us that E∥ generates the spin Hall current perpendicular to the
spin polarization direction êα whereas E⊥ generates the q-parallel spin Hall
current whose magnitude is maximized for êα ? q. For an example of
responsewhenE = E∥, we can considerq ¼ qx̂,EðqÞ ¼ E0x̂, and êα ¼ ẑ, for
which the resulting spin Hall current flows in the y direction (Fig. 5a):

JzspinðqÞ ¼ ðχ0 � iκ0Þŷq2E0: ð29Þ

In fact, this spin current is of the form analogous to the charge current in
quantum Hall states induced by inhomogeneous electric field42,43,46,47; the
spin analog in the quantum spinHall state48 and the Rashbametal44 has also

been discussed. For an example of response when E = E⊥, we can consider
q ¼ qx̂, EðqÞ ¼ E0ẑ, and êα ¼ ŷ, for which the resulting spin current flows
in the x direction (Fig. 5b):

JyspinðqÞ ¼ ðχ0 þ iκ0Þð�x̂Þq2E0: ð30Þ

This q-parallel Hall spin current induced by E⊥ has, to the best of our
knowledge, no analog reported in the transport of either theRashbametal or
the quantumHall state and can be considered as themost distinct feature of
the phonon-mediated spin conductivity.

The above separation of the two components of the spin con-
ductivity is physically relevant as a metal exhibits different responses
to E∥ and E⊥. Briefly, E∥ is screened below the plasma frequency,
whereas, as dictated by the Faraday effect, E⊥ is necessarily dynamic;
note that the coupling of electric field to the TO phonon, omitted in
our analysis, can be adequately treated with the static dielectric
constant for frequency far below Eg/ℏ. Indeed, the response to E⊥ can
be interpreted as the generation of spin current in response to an
electromagnetic wave if we additionally take into account the fre-
quency dependence of the spin conductivity. For instance, we have
derived in Supplementary Notes 4 and 7 the approximate relation,
valid for the low frequency ωτ≪ 1, between the static and dynamic
conductivity in the first order in ω:

σαijðω; qÞ ¼ 1þ 3
2
iωτ

� �
σαijðqÞ: ð31Þ

Physically, large differences between ∣E∥∣ and ∣E⊥∣ is required for obtaining a
nearly pure spin Hall current; ∣E∥(q)∣ ≠ 0 and ∣E⊥(q)∣ ≠ 0, on the other
hands, will give us a nonzero longitudinal spin current. For instance, with
Eðq ¼ qx̂Þ ¼ E0

x̂þẑffiffi
2

p and êα ¼ ŷ, the spinHall and longitudinal currents are
given by

JysHðq ¼ qx̂Þ ¼ �iκ0
x̂ � ẑffiffiffi

2
p q2E0; ð32Þ

Jylonðq ¼ qx̂Þ ¼ �χ0
x̂ þ ẑffiffiffi

2
p q2E0: ð33Þ

Fig. 5 | Schematic illustration of spin currents generated by external electric
fields. a The longitudinal electric field (E∥(r)) and its wave vector (q) align in the
same x direction. A sinusoidal form EkðrÞ ¼ E0x̂ sinðq � rÞ is assumed where
translation symmetry is assumed in the other directions. The spin current (JαspinðrÞ)
and the spin quantization axis (êα) point in the y and z directions, respectively. bThe
transverse electric field (E⊥(r)) and its wave vector (q) point in the different z and x
directions. A sinusoidal form E?ðrÞ ¼ E0 ẑ sinðq � rÞ is assumed. The spin current
(JαspinðrÞ) and spin quantization axis (êα) point in the y and z directions, respectively.

In each plot, the thin black line guides the real-space modulation of E∥(r) and E⊥(r)
along the x direction. The sizes of the black and red arrows indicate the magnitudes
of the electric field and the spin current, respectively. aThe longitudinal electric field
and its wave vector are indicated by the black and green arrows, respectively. The
spin current and the spin quantization axis are shown, respectively, by the red and
blue arrows. b The transverse electric field and its wave vector are denoted by the
black and green arrows, respectively. The spin current and the spin quantization axis
are denoted by the red and blue arrows, respectively.
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Likewise, for any of the longitudinal spin conductivity components of Table
1 to be nonzero, both ∣E∥∣ ≠ 0 and ∣E⊥∣ ≠ 0 need to hold.

One relevant parameter for assessing the magnitude of the spin con-

ductivity in Eq. (17) is the ‘spinHall angle’ defined as θsH � 2e
_

jJαspinðqÞj
jJeðqÞj , where

Je(q) = σe(q)E(q) is the electric current induced by the same external electric
field E(q). Using the Drude conductivity σeðqÞ ¼ ne2τ

m with assuming σe(q)

independent of q, we obtain θsH ¼ 2e
_

ffiffiffiffiffiffiffiffiffi
χ20þκ20

p
σe

q2Fαðq̂; ÊÞ or

θsH ¼ g2q2

_Mphc3

� �
kBTτ
_

� �2
I

Eg
kBT

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
5π2
� �2 EFτ

_

� �2 þ 2
3π2
� �2q

Fαðq̂; ÊÞ; ð34Þ

where the directional factor Fαðq̂; ÊÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq̂ � ÊÞ2 þ ððq̂× êαÞ � ÊÞ

2
q

is order
of unity. To provide a rough numerical estimate, we consider SrTiO3 as an
example despite its deviations from our model, including its multi-orbital
electronic structure. Employing the following parameter values:
g ≈ 30meVa3/2, with a ≈ 5.5 Å being the lattice constant of tetragonal
SrTiO3

49,Eg ≈ 2meVandEF ≈ 10meV forn = 4 × 1019cm−3 50, τ = 10−11 s for
T = 10 K51, and assumingMph ≈ 4 × 10−26 kg and c = 103 m/s for the TO1

49,
we obtain θsH ≈ 8.36 × 10−16q2m2. Specifically, for q ¼ ð3× 10�7mÞ�1, this
yields θsH ≈ 0.0093, which is comparable to that of Pt at the same
temperature. It’s notable that the relatively high value of kBTτ/ℏ ≈ 13 and its
quadratic dependence are primarily responsible for the substantial θsH.

Thermal activation behavior
The second of our main results is the scaling laws with respect to tem-
perature governing the phonon-mediated spin conductivity, as represented
by:

σαijðqÞ / jqj2 kBTτ
_

� �2

exp �a
Eg

kBT

� �b
" #

; ð35Þ

where a ≈ 0.75 and b ≈ 1.05, as obtained in Eq. (21). Importantly, σαijðqÞ
becomes zero at absolute zero temperature (T = 0). Conversely, the spin
conductivity undergoes enhancement as the temperature increases. This
behavior stems from the mediation of thermally excited TO phonons. This

thermal activation behavior stands in stark contrast to the previous intrinsic
spin Hall conductivity, which maintains a nonzero value at the zero
temperature35. It also represents a significant departure from the impact of
acoustic phonons, which lead to the degradation of electrical conductivity52.
It is worth noting that the quadratic temperature dependence in the scaling

formula originates from the phase volume factor k3cutoff ¼ kBT
_c

� �3
divided

by an additional factor of kBT stemming from the phonon energy ωk.
Roughly speaking, this factor accounts for the density of thermally excited
TO phonons that give rise to the generation of the PMSP. Additionally, the
presence of four electron propagators results in a cubic dependence on the
electron’s scattering time τ, another crucial departure from the usual linear
dependence observed in conductivity.

When Eg≪ kBT, as indicated by the red region in Fig. 1, TO phonons
exhibit gapless behavior, and thermal effects dominate. In this gapless-
phonon regime, the exponential factor can be disregarded, simplifying the
scaling formula in Eq. (35) as follows:

σαijðqÞ / jqj2 kBTτ
_

� �2

; ðEg≪kBTÞ: ð36Þ

Our numerical results confirm this power-law relationship, as depicted in
Fig. 6a, b. This quadratic temperature scaling is a distinctive feature of the
phonon-mediated spin conductivity, specifically in the gapless-phonon
regime.

However, it needs to be recognized that as temperatures decrease, the
system eventually enters the quantum critical regime (Eg≪ kBT≲ kBT*), as
indicated by the blue region in Fig. 1. In this regime, our results may not be
applicable due to the significant impact of phonon self-energy corrections,
invalidating the usage of the free phonon propagator, which forms the basis
of our calculations. Our analysis of phonon self-energy corrections provides

an estimate of T� ∼
EF
kB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π
2

g2n
E2
F

mc
MphvF

q
(see Supplementary Note 9 for the

derivation of T*). Consequently, the quadratic scaling law for phonon-
mediated spin conductivity remains valid within a limited temperature
range T > T*.

Fig. 6 | Scaling laws in spin conductivity. a Real
part of the spin conductivity (Re½σzxyðqÞ�) as a func-
tion of temperature (T). b Imaginary part of the spin
conductivity (Im½σzxyðqÞ�) as a function of T. Dif-
ferent curves represent distinct values of the energy
gap (Eg). c Real part of the spin conductivity
(Re½σzxyðqÞ�) as a function of Eg. d Imaginary part of
the spin conductivity (Im½σzxyðqÞ�) as a function ofEg.
Different curves represent distinct values of T. In
each plot, the dashed line represents the theoretical
curve for the spin conductivity based on the analy-
tical formula in Eq. (15). Additionally, the magni-
tude of the spin conductivity is normalized by the
overall factor g2e_6

m2Mph
. The parameter values used are as

follows: EF = 3eV, vF = 106m/s, τ = 10−14s, c = 104m/
s, and q = (0.001kf, 0, 0).
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Conversely, when Eg≫ kBT, the exponential factor dominates, and the
power-law component can be neglected. In such cases, the scaling formula
in Eq. (35) can be expressed simply as:

σαijðqÞ / jqj2 exp �a
Eg

kBT

� �b
" #

; ðEg ≫ kBTÞ: ð37Þ

Our numerical results confirm this exponential behavior in the gapped-
phonon regime, as shown in Fig. 6c, d. This thermal activation behavior
emphasizes that the spin Hall effect is facilitated by thermally excited TO
phonons, and the presence of TO phonons becomes increasingly favorable
as their energy gap diminishes, enhancing the spin conductivity.We suggest
that this scaling law is applicable in the “classical”paraelectric phasenear the
quantum critical point where Eg≫ kBT, as depicted by the yellow region in
Fig. 1.

In principle, our calculations can be extended to the quantum critical
regime by accounting for self-energy effects. In this scenario, the detailed
characteristics of the spin conductivity, such as the quadratic scaling law,
may undergo potentialmodifications. Nevertheless, the presence of the spin
conductivity remains robust since themediation of the spin conductivity by
TO phonons, as described by the PMSP in Eq. (10), sorely relies on Rashba-
type spin-orbit coupling, which is a fundamental aspect of the system,
irrespective of the specificphononor electronpropagator.Consequently,we
argue that the spin conductivity persists even in the quantumcritical regime,
though itmaynot necessarily adhere to the specific form, as presented inEq.
(35), and could manifest with a different temperature dependence char-
acterized by a different exponent and numerical coefficients.

Anisotropy effects
Many metals near the ferroelectric phase transition exhibit quasi-two-
dimensional behavior or belong to the category of two-dimensional (2D)
materials2–4; the possibility in van der Waals materials is attracting wide-
spread interest in recent years53 with the discovery of WTe2 metallic
ferroelectricity14,15 and the prediction of strain-tunable ferroelectricity in β-
GeSe54 being just two of many examples. The crystalline anisotropy in such
systems significantly impacts the energy dispersion of TO phonons, leading
to either an easy-plane or easy-axis behavior. Additionally, the anisotropic
character can be experimentallymanipulated using external stimuli, such as
strain55. Furthermore, the electron-phonon coupling effect on the electrons’
dynamics is quite different in 2D anisotropic systems compared to 3D
isotropic systems32.Hence, it’s crucial to consider anisotropywhen applying
our theoretical model to the candidate materials for the quantum para-
electric metal.

Under these considerations,we extendourprevious three-dimensional
(3D) isotropic results, as presented in Eqs. (15) and (17), to encompass
anisotropic 2D scenarios, including easy-plane and easy-axis cases. The
primary modification arises in the factor ~γαðp; k; qÞ in Eq. (10), which is
adjusted as follows:

~γα;EPðp; k; qÞ ¼ ð1� δαzÞ~γαðp; k; qÞ; ð38Þ

~γα;EAðp; ;k; qÞ ¼ δαz~γ
αðp; k; qÞ: ð39Þ

Here, the superscripts “EP” and “EA” denote “easy-plane” and “easy-axis,”
respectively. In comparison to the isotropic case, ~γαðp; k; qÞ now exhibits
directional preferences denoted by projection factors such as (1− δαz) and
δαz. These projection factors constrain the direction of the spin polarization
to the easy-plane α = {x, y} or to the easy-axis α = z in each case. This spin
polarization constraint clearly differentiates the spin conductivity in
anisotropic systems from that of isotropic systems.

To precisely quantify the deviations from the isotropic scenario, we
calculate the phonon-mediated for both easy-plane and easy-axis cases,
which are denoted as σα;EPij ðqÞ and σα;EAij ðqÞ, respectively, and find the same
quadrupolar symmetrywith thedifferent response for the transverse and the

longitudinal field, albeit with the spin polarization constraint of Eqs. (38)
and (39). The calculations closely mirror those of the isotropic case; for
furtherdetails, refer to SupplementaryNote 8.As a result,weobtain σα;EPij ðqÞ
and σα;EAij ðqÞ up to quadratic order in q as:

σα;EPij ðqÞ ¼ ð1� δαzÞ χ2D0 ναijðqÞ þ ναjiðqÞ
� �

þ iκ2D0 �ναijðqÞ þ ναjiðqÞ
� �h i

;

ð40Þ

σα;EAij ðqÞ ¼ δαz χ2D0 ναijðqÞ þ ναjiðqÞ
� �

þ iκ2D0 �ναijðqÞ þ ναjiðqÞ
� �h i

: ð41Þ

In contrast to the isotropic case, the spin quantization direction α cannot be
freely adjusted any longer; for the easy-plane case, α is constrained to the
easy-plane directions,while for the easy-axis case, it alignswith the easy-axis
direction as indicated by the factors 1− δαz and δαz, respectively. For the
easy axis case, the spin current response to the longitudinal electric field is
now exactly the same form as that of the Rashba metal44.

The qualitative change due to the 2D nature does occur in the tem-
perature dependence, as can be seen from the coefficients of the spin con-
ductivity,

χ2D0 ¼ n2De_τ
m

� �
g2τ

_Mphc2

 !
kBTτ
_

� �
EFτ

_

� �
3
2π

I2D
Eg

kBT

� �
; ð42Þ

κ2D0 ¼ n2De_τ
m

� �
g2τ

_Mphc2

 !
kBTτ
_

� �
1
2π

I2D
Eg

kBT

� �
; ð43Þ

where n2D ¼ k2F
2π represents the electron density in 2D. It is I2D

Eg
kBT

� �
, an

integral function that encapsulates the integration over ∣k∣,

I2DðyÞ ¼
Z 1

0
dx

x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p	 
 ¼ 1
2
ln coth

y
2

� �
; ð44Þ

that gives rise to the most important qualitative change in the temperature
and the phonon energy gap dependence. In the gapless-phonon regime,
Eg≪ kBT or y≪ 1, (the red region in Fig. 1), I2D(y) can be well-
approximatedas I2DðyÞ≈ 1

2 ln
2
y

� �
, simplifying the scaling formula inEq. (40)

as follows:

σα;EPðEAÞij ðqÞ / jqj2 kBTτ
_

� �
ln

2kBT
Eg

 !
; ðEg ≪ kBTÞ: ð45Þ

Conversely, in the gapped-phonon regime, Eg≫ kBT or y≫ 1, (the yellow
region in Fig. 1), I2D(y) can be approximated as I2DðyÞ≈ expð�yÞ,
simplifying the scaling formula in Eq. (40) as follows:

σα;EPðEAÞij ðqÞ / jqj2 exp � Eg

kBT

� �� �
; ðEg≫kBTÞ: ð46Þ

In both easy-axis and easy-plane cases, the temperature dependence in Eqs.
(45) and (46) may undergo substantial modifications at the QCP where the
effect of self-corrections becomes significant. Nevertheless, our results raise
the possibility of stronger phonon-mediated spin conductivity in
anisotropic 2D materials compared to isotropic 3D materials such as
SrTiO3.

Discussion
In this study, we have demonstrated that quantum paraelectric metals near
ferroelectric quantum criticality can exhibit an unconventional phonon-
mediated spin transport in response to an inhomogeneous electric field, an
example of spin transport arising from interaction rather than band
structure. Our rigorous calculations, employing the Kubo formula and a
perturbative expansion in electron-phonon interaction, have unveiled that
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soft transverse optical phonons, with their intrinsic Rashba-type spin-orbit
coupling to electrons, can serve as unconventional contributors to the spin
conductivity in response to the inhomogeneous electric field. Furthermore,
the resulting spin conductivity displays a couple of intriguing and unique
characteristics. One is that it exhibits unconventional quadrupolar sym-
metry associated with the q-vector, leading to a possible nonzero response,
in contrast to the theoretical prediction for quantumHall states and Rashba
metals, even when ∇ ⋅ E = 0. The resulting spin current is, therefore, non-
uniform, and its observationmay require a local spinprobe suchas theX-ray
magnetic circular dichroism56 or the spin-torque transfer ferromagnetic
resonance57; recent years have seen the successful application of both to the
2DvanderWaalsmaterials58,59. The other is that it follows distinctive scaling
laws in temperature and phonon energy gap; the conductivity increases as
temperature rises or the energy gap diminishes, as it is mediated by ther-
mally excited phonons. Consequently, the proposed spin transport may be
best observed in the vicinity of a ferroelectric quantum criticality, where the
phonon energy gap diminishes while thermal effects amplify, even if how
much of Fermi liquid theory-based temperature dependence would hold in
the quantum critical regime remains to be examined in future research.
Therefore, the recent report of the ferroelectric quantum critical point in the
n-type SrTiO3 may provide one example7,60,61; 2D van der Waals materials
may provide other examples of ferroelectric quantum criticality53,54 and
hence enhanced interaction-induced spin transport. Lastly, we note that the
impurity effect on the spin conductivity is an interesting issue to be
addressed, e.g. whether it would be analogous to that of the Rashba metal
spin Hall conductivity62,63.

Methods
Expansion of spin conductivity to the wave vector of
electric fields
To obtain the quadratic term of σαijðqÞ presented in Eq. (16), we expanded
the full expression of Eq. (15) to the wave vector q of electric fields. Utilizing
the expansion of Gret(0, k+ q) to q:

Gretð0; k þ qÞ ¼ Gretð0; kÞ 1� Gretð0; kÞ _
2k�q
2m � Gretð0; kÞ _

2q2

2m

� ��1

≈Gretð0; kÞ þ _2k � q
2m þ _2q2

2m

� �
Gretð0; kÞ2 þ _2k � q

2m

� �2
Gretð0; kÞ3 þOðq3Þ;

ð47Þ
and a similar expression forGret(ωk, p+ k+ q), we expanded the product of
the electron propagators in Eq. (15) as:

Gretð0; pþ qÞGadvð0; pÞGretðωk; pþ k þ qÞGadvðωk; pþ kÞ þ ðωk $ �ωkÞ
¼ jGretð0; pÞj2jGretðωk; pþ kÞj2 1þ _2p�q

m Gretð0; pÞ þ _2ðpþkÞ�q
m Gretðωk; pþ kÞ

n
þ _2q2

2m Gretð0; pÞ þ _2q2

2m Gretðωk; pþ kÞ þ _2p�q
m

� �2
½Gretð0; pÞ�2 þ _2ðpþkÞ�q

m

� �2
½Gretðωk; pþ kÞ�2

þ _2p�q
m

� �
_2ðpþkÞ�q

m

� �
Gretð0; pÞGretðωk; pþ kÞ þOðq3Þ

o
þ ðωk $ �ωkÞ:

ð48Þ

Substituting Eq. (48) into Eq. (15) and gathering terms of quadratic order in
q, we obtain

σαijðqÞ ¼ i
π

g2e_6

m2Mph

R d3p
ð2πÞ3

R
d3k
ð2πÞ3

nBðωkÞþnF ðωkÞ
2ωk

q � ðpþ k=2Þ× êα
	 
� ðêα � k̂Þq � ðpþ k=2Þ× k̂

h in o
× jGretð0; pÞj2jGretðωk; pþ kÞj2 1

2 ðêi � qÞðêj � pÞ � 1
2 êi � ðpþ kÞðêj � qÞ

�nh
þêi � ðpþ kÞð̂ej � pÞ _2p�q

m Gretð0; pÞ þ _2ðpþkÞ�q
m Gretðωk; pþ kÞ

� ��o
þ ωk $ �ωk


 �i
:

ð49Þ

This expression is further simplified by approximating (p+ k/2) ≈ p,
(p+ k) ≈ p, and Gret(ωk, p+ k) ≈Gret(0, p)

45. This approximation is
ensuredby thedistribution factor nBðωkÞþnF ðωkÞ

ωk
that exponentially decays for a

large ∣k∣, effectively constraining jkj≪ CkBT
_c , whereC is an arbitrary constant.

In a low-temperature regime T≪ _ckF
CkB

of our interest, this constraint
indicates ∣k∣ ≪ kF ~ ∣p∣, thus validating the stated approximation. Within

this framework, we approximate Eq. (49) as:

σαijðqÞ ¼ i
π

g2e_6

m2Mph

R d3p
ð2πÞ3

R
d3k
ð2πÞ3

nBðωkÞþnF ðωkÞ
2ωk

jGretð0; pÞj4

× q � ðp× êαÞ � ðêα � k̂Þq � ðp× k̂Þ
n o

ðqipj � piqjÞ

þ i
π

g2e_6

m2Mph

R d3p
ð2πÞ3

R
d3k
ð2πÞ3

nBðωkÞþnF ðωkÞ
2ωk

jGretð0; pÞj4Gretð0; pÞ

× q � ðp× êαÞ � ðêα � k̂Þq � ðp× k̂Þ
n o

pipj
4_2p�q
m :

ð50Þ

The requirement of the integrand being even in k and p leads to:

q � ðp× êαÞ � ðêα � k̂Þq � ðp× k̂Þ
n o

ðqipj � piqjÞ ! q � ðêj × êαÞqip2j � q � ðêj × êαÞqjp2i
n o

ð1� k̂
2

αÞ;

q � ðp× êαÞ � ðêα � k̂Þq � ðp× k̂Þ
n o

pipj ! q � ðp× êαÞð1� k̂
2

αÞpipj:

ð51Þ

Substituting Eq. (51) into Eq. (50), we obtain Eq. (16).

Evaluation of the spin conductivity
To obtain the explicit expression for σαijðqÞ presented in Eq. (17), we per-
formed an analytic integration of Eq. (16) by approximating the integrated
as follows: (i) the electron propagator is represented as
Gretð0; pÞ≈ð�_vFpþ i_=2τÞ�1 � Gretð0; pÞ, where p≡ ∣p∣− kF, (ii) the
factors of p are replaced by kF p̂, and (iii) the integral measure is represented
as
R
d3p≈

R1
�1 dpk2F

R
dΩp, where

R
dΩp �

R 1
�1 d cos θp

R 2π
0 dϕp. These

approximations are justified under the condition the condition EFτ≫ ℏ,
ensuring that the integral over p sharply peeks around ∣p∣ ≈ kF. Additionally,
we represent the integral over k as

R
d3k ¼ R10 dkk2

R
dΩk. Within this

framework, we approximate σαijðqÞ in Eq. (16) as:

σαijðqÞ ¼ i
π

g2e_6

m2Mph

k4Fq
2

ð2πÞ6
R1
0 dkk2 nBðωkÞþnF ðωkÞ

2ωk

R
dΩkð1� k̂

2

αÞ

×
R1
�1 dpjGretð0; pÞj4

R
dΩp ðêi � q̂Þðêj � p̂Þq̂ � ðp̂× êαÞ

n o
� i $ j

 �h i

;

þ i
π

g2e_6

m2Mph

4_2k6Fq
2

ð2πÞ6m
R1
0 dkk2 nBðωkÞþnF ðωkÞ

2ωk

R
dΩkð1� k̂

2

αÞ
×
R1
�1 dpjGretð0; pÞj4Gretð0; pÞ

R
dΩpðêi � p̂Þð̂ej � p̂Þ q̂ � ðp̂× êαÞ

	 

:

ð52Þ

The integrals for Ωk, p, and Ωp can be conducted analytically, yielding

R
dΩkð1� k̂

2

αÞ ¼ 8π
3 ;R1

�1 dpjGretð0; pÞj4 ¼ 4π
_vF ð_=τÞ3

;R1
�1 dpjGretð0; pÞj4Gretð0; pÞ ¼ �6πi

_vF ð_=τÞ4
;

ð53Þ

and

R
dΩp ðêi � q̂Þðêj � p̂Þq̂ � ðp̂× êαÞ

n o
� i $ j

 �h i

¼ 4π
3 ðêi � q̂Þq̂ � ðêj × êαÞ
n o

� i $ j

 �h i

;R
dΩpðêi � p̂Þðêj � p̂Þ q̂ � ðp̂× êαÞ

	 
ðp̂ � q̂Þ
¼ 4π

15 ðêi � q̂Þ q̂ � ðêj × êαÞ
h in o

þ fi $ jg
h i

:

ð54Þ

The remaining integral for k is represented as:

Z 1

0
dkk2

nBðωkÞ þ nFðωkÞ
2ωk

¼ 1
kBT

kBT
_c

� �3

I
Eg

kBT

� �
; ð55Þ

where I(y) is defined in Eq. (21). Substituting Eqs. (53) to (55) into Eq. (52),
we obtain Eq. (17).
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Numerical integration method
To produce the results depicted in Figs. 4 and 6, we performed numerical
integration of the σαijðqÞ formula given in Eq. (15) using a Riemann sum

approach. The discretization of the electron wave vector p = (px, py, pz)
spanned the Fermi surface region, defined asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � 9:95 � ð_=2τÞ

q
<jpj<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þ 9:95 � ð_=2τÞ

q
. At the boundaries of this

region, we ensured that the electron spectral function, � 1
π Im½Gret�, des-

cended below 1%of itsmaximumvalue occurring at ∣p∣ = kF. Consequently,
contributions from outside this region were deemed negligible. Addition-
ally, we established amesh for the phononwave vector k = (kx, ky, kz) within

the range jkj≤ kcutoff ¼ 10 kBT
_c . At the boundaries of this region, we ensured

that the distribution factor nB(ωk)+ nF(ωk) fell below a few percent of its
maximum value occurring at ∣k∣ = 0 (the ratio was maintained at 1% for
Eg = 0 and less than 10% for Eg ≈ 10kBT). Consequently, contributions from
outside this regionwere also considered negligible. For the computation, we
used a grid size of (51 × 51 × 51) for both (px, py, pz) and (kx, ky, kz) within
the specified regions for numerical integration.Our analyses confirmed that
the numerical integration results were well-converged and reliable for our
intended purposes.

Data availability
The data for the results presented in the paper and Supplementary Infor-
mation are available from the corresponding author upon reasonable
request.
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