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Majorana modes in striped two-
dimensional inhomogeneous topological
superconductors
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Majorana zeromodes have gained significant interest due to their potential applications in topological
quantum computing and in the realization of exotic quantumphases. These zero-energy quasiparticle
excitations localize at the vortex cores of two-dimensional topological superconductors or at the ends
of one-dimensional topological superconductors. Here we describe an alternative platform: a two-
dimensional topological superconductor with inhomogeneous superconductivity, where Majorana
modes localize at the ends of topologically nontrivial one-dimensional stripes induced by the spatial
variations of the order parameter phase. In certain regimes, these Majorana modes hybridize into a
single highly nonlocal state delocalized over spatially separated points, with exactly zero energy at
finite systemsizes andwith emergent quantum-mechanical supersymmetry.We thenpresent detailed
descriptions of braiding and fusion protocols and showcase the versatility of our proposal by
suggesting possible setups that can potentially lead to the realization of Yang-Lee anyons and the
Sachdev-Ye-Kitaev model.

Majorana modes (MMs) localized at the vortex cores of two-dimensional
(2D) or at the ends of one-dimensional (1D) topological superconductors
(TSs)1–7 are potential building blocks for topological quantumcomputing8–11

and other exotic quantum systems that effectively simulate high-energy
theories such as supersymmetry (SUSY)12–19 and synthetic horizons in the
Sachdev-Ye-Kitaev (SYK) model20–22 (see also refs. 23–36). Specifically, 2D
TSs1 realizedwith topological insulator (TI) or quantumspinHall insulator/
superconductor heterostructures3, transitionmetal dichalcogenides37,38, iron
pnictides39–41 or other oxypnictide superconductors42, or magnet-
superconductor hybrid systems43–46 may provide a flexible platform to
exploit the nonabelian exchange statistics of MMs8, due to the ability to
manipulate vortex cores in a 2D space, and detect them through scanning
tunneling microscopy. Conversely, 1D TSs2, e.g., proximitized quantum
wires6,7,47–49 arranged in 2Dnetworks, offer a simplified but lessflexible setup
to perform braiding50–52.

To combine the flexibility of braiding in 2D with the conceptual
simplicity of 1D platforms and overcome their limitations, here we intro-
duce topologically nontrivial stripes (TNSs) induced by inhomogeneous
superconducting states53–55 where the gauge-invariant phase rotates in a
regular pattern. The rotating phase effectively generates quasi-1D structures
within the 2D system, where the topological invariant assumes alternatively

trivial and nontrivial values as a function of the phase. This results into a
striped 2D TS with emergent TNSs equivalent to 1D TSs, localized at 1D
lines where the order parameter phase is homogeneous and the topological
invariant is nontrivial, so that a quasi-1D topological superconducting state
emerges. Here, pointlike (0D)MMs localize at the ends of the TNSs, whose
distance and direction can be manipulated by varying the in-plane field
magnitude and direction. These highly nonlocal MMs offer multiple and
flexible ways to implement braiding due to the possibility of moving and
rotating the stripes in a 2D space.

Specifically, we consider a TI film in a magnetic field56–58 where the
surface states are gapped out by proximity with a conventional super-
conductor, allowing the realization of second-order TSs59 with Majorana
hinge modes. We show that these (1D) Majorana hinge modes transmute
into pointlike (0D) Majorana corner modes localized at the end of TNSs
induced by an inhomogeneous superconducting order. Hence, we describe
braiding and fusion protocols implemented by joining, splitting, and
moving stripes via external gates ormagnetic forcemicroscopy, and rotating
them by rotating the magnetic field. Furthermore, we show how config-
urations with several stripes induce a regularly-spaced array of MMs, rea-
lizing emergent quantum mechanical SUSY, zero-energy multi-locational
MMs60 delocalized on multiple spatially separated points, Yang-Lee
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anyons61 with non-unitary and nonabelian statistics, and the SYK model22

reproducing the maximally-chaotic dynamics of black holes.

Results
Creation of topologically nontrivial stripes
The boundary mean-field Hamiltonian describing the proximitized surface
states at the top and bottom of a TI in amagnetic field as sketched in Fig. 1a
is56–58,62

H ¼ R
drψyðrÞHψðrÞ �P

τ
ΔτðrÞψτ#ðrÞψτ"ðrÞ þ h:c:

� �

þ 1
U

R
dr

P
τ
jΔτðrÞj2;

ð1Þ

where ψðrÞ ¼ ψ1;"ðrÞ;ψ1;#ðrÞ;ψ2;"ðrÞ;ψ2;#ðrÞ
h i⊺

are the electron field

operators with ↑↓ indexes for spin, τ = 1, 2 for pseudospin (i.e., top and
bottom surfaces) and

H ¼ ðm0p2 þmÞτx � vp× στz � μþ b � σ; ð2Þ

where m and m0 are the tunneling parameters depending on the layer
thickness56,63, v the Dirac cone velocity, p the momentum on xy plane, b the
Zeeman field, μ the chemical potential, and σi, τi the Pauli matrices in spin
and pseudospin space. Here, Δτ(r) is the mean-field order parameter of the
surface states, i.e., at the interface between the superconductor and the TI,
and which can be calculated self-consistently58,64,65 as
ΔτðrÞ ¼ �U 0h ∣ψτ#ðrÞψτ"ðrÞ∣0i,where U the superconducting pairing
strength describing the on-site electron-electron attractive interaction
within the surface states. In the normal regimewith unbroken time-reversal
symmetry (i.e., Δ = b = 0), the Hamiltonian is unitarily equivalent56,63 to the
Bernevig, Hughes, and Zhang model for a 2D quantum spin Hall TI66 with
energy dispersion having two spin-degenerate branches with gap 2∣m∣ at
zero momentum and a topologically nontrivial phase for mm0 < 0. The TI
surface states exhibit a gap 2(b− ∣m∣) at zero momentum for b ≠ ∣m∣ and
remain gapped at finite momenta for finite out-of-plane fields bz > 0.

Superconductivity emerges when the Cooper instability opens a gap at
the Fermi level lying within the conduction band, assuming ∣μ∣ > b− ∣m∣.
The symmetry between the top and bottom surfaces mandates ∣Δ1(r)∣ =
∣Δ2(r)∣. Hence, by choosing a gaugewhere the phases of the order parameter
on the top and bottom surfaces are opposite, one canwriteΔ1(r) = Δ2(r)

* up
to a gauge transformation. We can thus write Δ1(r) =Δ(r) = ∣Δ(r)∣eiϕ(r) and
Δ2(r) = Δ(r)* = ∣Δ(r)∣e−iϕ(r), where 2ϕ(r) is the gauge-invariant phase

difference between top and bottom surfaces. Themean-field Bogoliubov-de
Gennes Hamiltonian isHBdG ¼ 1

2

R
drΨyðrÞ � HBdG � ΨðrÞ with

HBdG ¼ ðm0p2 þmÞτx � vp× στz � μ
� �

υz þ b � σ
þ ∣ΔðrÞ∣ cosðϕðrÞÞ υx þ sinðϕðrÞÞ τzυy

h i
;

ð3Þ

where ΨðrÞ ¼ ψðrÞ; σyψyðrÞσy
h i⊺

, and υi the Pauli matrices in particle-
hole space.

Let us first assume uniform superconducting pairing Δ(r) = Δeiϕ with
Δ > 0. Topologically nontrivial phases with particle-hole symmetry and
broken time-reversal symmetry (class D) in 2D are labeled by the Chern
number of the quasiparticle excitation gap c 2 Z. The gap closes when

jm2 þ μ2 þ Δ2 � b2j ¼ 2jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2sin2ϕ

p
, and remains open at finite

momenta for bz ≠ 0 and ϕ ≠ 0. For ϕ = π/2, the quasiparticle excitation gap

2minðjjmj � jb±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
jjÞ closes at zero momentum with a quantum

phase transition each time that any of the quantities b±m±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
change sign. This condition divides the parameter space into topologically
distinct phases separated by the closing of the quasiparticle excitation gap,
wherewe calculate theChern numbernumerically67:We thus found a trivial

phase at weak fields, where jmj>bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
>bþ jmj, a

nontrivial phase with ∣c∣ = 2 at strong field b>jmj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
, and a

nontrivial intermediate phase with ∣c∣ = 1where no energy scale dominates,

i.e., when jmj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
>b>jjmj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
j, or equivalently

bþ jmj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
>jb� jmjj, or bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
>jmj>jb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

p
j.

The nontrivial phases persist for ϕ ≠ π/2 as long as the quasiparticle exci-
tation gap remains open (see also Supplementary Note 2). The parity of the

topological invariant68,69ν ¼ cmod 2 is given by ð�1Þν ¼
Q

k sgn pf HBdGðkÞσyυy
� �� �

whereHBdG(k) is theHamiltonian density as

a function of the momentum eigenvalues kwith the product spanning over
the time-reversal symmetry points of the Brillouin zone, giving

ð�1Þν ¼ sgn ∣m2 þ μ2 þ Δ2 � b2∣� 2jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2sin2ϕ

q� �
: ð4Þ

Since the effective boundary Hamiltonian in Eq. (2) describes the surface
states of a 3D TI, these nontrivial gapped phases are 3D second-order TS
withMajorana hingemodes, i.e., gaplessmodes on the hinges59, as in Fig. 1b.

For zero magnetic fields or fields parallel to the z-axis, the SO(2)
rotational symmetry in the xy plane is unbroken: this allows the creation of

Fig. 1 | Topological insulator film with top and
bottom surfaces proximitized by conventional
superconductors. a Topological insulator film
sandwiched between two conventional super-
conductors. bMajorana hinge modes in the non-
trivial phase at finite field and uniform pairing (we
removed the superconductors for clarity).
c Topologically nontrivial stripes and Majorana
corner modes in the nonuniform superconducting
phase. The LO order parameter is modulated asΔ(r)
∝ eiQ⋅r. The Cooper pairs momentum Q is perpen-
dicular to the in-plane magnetic field bxy.
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Cooperpairswith zeromomentumQ=0 formedby electronswith opposite
spin and opposite momenta. However, in the presence of a finite spin-orbit
coupling term∝ p × σ, a finite in-plane magnetic field b ⋅ σ (Zeeman term)
shift electrons with opposite spin in opposite directions k→ k ±Q/2, with
themomentumQperpendicular to the in-plane field andQ≈ 2bxy/v at large
fields. In the Pauli limit, neglecting the orbital pair-breaking mechanism,
this allows the creation ofCooper pairswithfinitemomentumQ, formedby
electrons with opposite spin and momentum eigenvalues k and − k + Q,
described by a nonuniform order parameter Δ(r) that depends periodically
in space with a wavelength λ = 2π/Q. The simplest spatial dependence
compatible with the symmetries of the system considered here58 is

ΔðrÞ ¼ Δ0 cos θ cosðQ � rÞ þ i sin θ sinðQ � rÞ½ �; ð5Þ

withΔ0 > 0 and 0 ≤ θ≤ π/2 (up to a gauge transformation) determined by the
minimum of the free energy F ¼ hHi at zero temperature. The order

parameterhas a totalmagnitude jΔðrÞj ¼ Δ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cosð2θÞ cosð2Q � rÞÞ=2

p
,

havingminimaandmaxima for anyθ≠π/4 along the1Dplanesparallel to the
in-plane field, which we call respectively nodal and antinodal lines, satisfying
Q ⋅ r= nπ/2 forn 2 Z. Its phaseϕðrÞ ¼ argΔðrÞ is spatiallymodulated if θ≠
0, π/2, being tanðϕðrÞÞ ¼ tan θ tanðQ � rÞ giving sin2ðϕðrÞÞ ¼ 0; 1 forQ ⋅ r=
nπ/2. One can verify thatΔ(r,− θ) =Δ(r, θ)*,Δ(r, π/2− θ) =−Δ(r, π/2+θ)*,
and that Δðr; π=4� θÞ ¼ iΔðr0; π=4þ θÞ� with r0 ¼ πQ=2Q2 � r. Con-
sequently,H(α+ θ) andH(α− θ) are unitarily equivalent and thus have the
same energy spectra, which mandatesF ðαþ θÞ ¼ F ðα� θÞ for α = 0, π/4,
π/2.Thismandates thepresenceof stationarypointsδF ðθÞ ¼ 0 forθ=0,π/2,
and π/4 (see also Supplementary Note 3). The cases θ = 0, π/2 correspond to
Larkin-Ovchinnikov (LO) orders with a constant phase ϕ(r) = 0, π/2 and
magnitude Δ0j cosðQ � rÞj and Δ0j sinðQ � rÞj, respectively, which becomes
zero at the nodal lines and reaches itsmaximumΔ0 at the antinodal lines. The
case θ = π/4 instead corresponds to a Fulde-Ferrel (FF) order with a constant
magnitude Δ0=

ffiffiffi
2

p
and a phase ϕ(r) = Q ⋅ r giving sin2ðϕðrÞÞ ¼ 0; 1

respectively for Q ⋅ r = nπ and Q ⋅ r = π/2 + nπ. The 1D lines defined by
constantQ ⋅ rhave constant orderparameterΔ=Δ(r) andaredescribedbyan

effective 1D Hamiltonian H1DðrÞ ¼ �vpxσyτz þ ðm0p2x þmÞτx
h i

υz

þb � σ � Δ0 τzυyjΔjðcos ϕ υx þ sin ϕ τzυyÞ, for in-plane fields in the x
direction, which is equivalent to Eq. (3) when one takes py = 0. In symmetry
class D in 1D, topologically inequivalent phases are labeled by a ν 2 Z2
topological invariant. By dimensional reduction, ν must coincide with the
parityof the topological invariant in2Ddefined inEq. (4):Hence, there isonly
one nontrivial phase in 1D, realized when ν = 1 in Eq. (4), as long as the
quasiparticle excitationgap remainsopenat allmomenta (see Supplementary
Fig. 3).

TNSs are realized when 1D lines Q ⋅ r = nπ/2 become topologically
inequivalent. For θ=0,π/2, the order parameter phase is constantϕ=0,π/2:
for θ = ϕ = 0, the gap closes at finite momenta in the regime where ν = 1,
preventing the realization of a nontrivial gapped phase; for θ = ϕ = π/2
instead, the gap is always open for bz ≠ 0, and TNSs may emerge when
nontrivial phases are realized on the antinodal lines Δ(r) = Δ0 for

bþ jmj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 þ μ2

q
>jb� jmjj, and trivial phases on the nodal lines

Δ(r) = 0 for ∣b− ∣m∣∣ > ∣μ∣ (nodal lines areΔ(r) = 0 and thus cannot realize a
nontrivial TS). However, this phase is not physical since the super-
conductivity can only be realized when the Fermi level lies within the
conduction band, i.e., for ∣μ∣ > b− ∣m∣. For θ ≈ π/4 instead, the order
parameter is ΔðrÞ≈Δ0=

ffiffiffi
2

p
which corresponds to trivial and nontrivial

phases with ϕðrÞ ¼ Q � r ¼ 0; π=2mod π, respectively, provided that

2jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ Δ2

0=2
q

> jm2 þ μ2 þ Δ2
0=2� b2j>2jmjjμj; ð6Þ

as it follows from Eq. (4). The resulting TNSs are quasi-1D nontrivial
regions close to the 1D lines Q ⋅ r = πn parallel to the in-plane field and
effectively equivalent to 1D TSs. If stripes extend along the whole surface,
reaching the hinges, therewill be aMMat each endof the stripe, as inFig. 1c.

These endmodes can also be seen as the corner modes of the effectively 2D
TSs obtained by extending the 1D lines along the z direction, resulting in
2D planes parallel to the in-plane field and the z-axis, cutting the 3DTI into
2D slices. Hence, the confinement of the 2D boundary Hamiltonian into a
1DHamiltoniandescribing theTNSs corresponds to the confinement of the
surface states of a 3D second-order topological phase (with hinge modes)
into the edge states of a 2D second-order topological phase with corner
modes defined by the planes withQ ⋅ r = πn.

The formation of quasi-1D topological superconducting stripes
and pointlike MMs at their ends is a consequence of dimensional
reduction70. The quasi-1D stipes are indeed narrow 2D regions which
are topologically nontrivial, with a length determined by the system
size (or by the presence of domain walls) and a width d < λ/2 coin-
ciding with the width of the region where the phase of the order
parameter ϕ is such that ν = 1 in Eq. (4). If their width is comparable
with their length, these 2D nontrivial regions will exhibit 1D edge
modes at their border on all four sides; however, when their width
becomes narrow enough, the edge states along two opposite sides will
come closer and begin to overlap in space, opening a finite energy
gap as a result of their finite overlap. In particular, if the width is
smaller or comparable to the Majorana localization length d ≲ ξ, only
a single quantization channel will become available. In this regime,
only a single pointlike mode may exist at each end of the stripe. The
dimensional reduction from a 2D to a 1D topological state requires
stripes with a width smaller than their length and smaller than the
Majorana localization length so that only one single 1D channel is
present. On the other hand, their spatial separation, given by the
distance between neighboring stripes, must be larger than or com-
parable to the Majorana localization length λ/2 ≳ ξ so that MMs
remain spatially separated. Generally, one has ξ ~ b/Δ for 1D TSs71,72.

As explained, symmetry arguments alone restrict the possible states to
θ = 0,π/2 (LO states) and θ=π/4 (FF state), but only theFF statewith θ=π/4
can exhibit TNSs. We find numerical evidence that the state that fulfills the
self-consistence equation at zero temperature has an order parameter which
is approximately equal to Eq. (5)with θ=π/4. Indeed, we calculate the order
parameter self-consistently at zero temperature and as a function of the
spatial coordinate as ΔτðrÞ ¼ �U 0h ∣ψτ#ðrÞψτ"ðrÞ∣0i using Eq. (5) with
several choices of θ and with Q = 2bxy/v as the initial guess of the self-
consistent calculation for realistic choices of the system parameters for
Bi2Te3

73, proximitized with NbTiN or NbSe2, compatible with Eq. (6). The
resulting order parameter obtained self-consistently at zero temperature is
approximately equal to Eq. (5) with θ = π/4, corresponding to an FF order
with almost constant magnitude and nonuniform phase, excluding regions
close to the boundaries of the system, where the magnitude of the order
parameter is slightly suppressed. This result is in agreement with the results
of ref. 58, which found that FFLO states with θ ≈ π/4 are stable also at finite
temperature and for large in-plane magnetic fields bxy (The ansatz for the
order parameter in Eq. (5), which describes a generic FFLO state inter-
polating between an FF state (for θ = 0, π/2) and an LO state (for θ = π/4)
coincides with the ansatz in ref. 58, where the order parameter is para-
meterized in terms of b ¼ cosðθÞ. In ref. 58, it is found b = 0.77, which is
approximately equal to b ¼ cosðθÞ ¼ cosðπ=4Þ ¼ 1=

ffiffiffi
2

p
≈0:707, indicating

an LO state although, in that paper, the state is always called an FF state for
any choice of b). Therefore, the superconducting order self-tunes to support
the TNS phase, which is therefore a self-organized topological state, in this
regard analogous to magnetic adatom chains with a spin helical order self-
tuned to support the topological phase74. Figure 2a shows the local densityof
states (LDOS) at zero energy in the TNSs regime calculated numerically.
Thepeaks in theLDOS indicateMMs localized at the ends of the 1DTNSs at
ϕ(r) = ±π/2.

Manipulation of topologically nontrivial stripes
TNSs can be manipulated in several ways. Rotating the magnetic field
around the z-axis (perpendicular to the surface) changes the in-plane field
direction and hence the stripes direction, while rotating the field in the xy-
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plane changes the in-plane field magnitude and hence the distance λ/2
between the stripes.Moreover, topologically trivial regions ν = 0 can behave
as domain walls or pointlike defects that confine the stripes or split a single
stripe into two. Trivial regions can be created by locally increasing the
tunnelingm between the two TI surfaces (by locally modifying the TI layer
thickness), such that ∣m∣ ≫ ∣μ∣, ∣Δ∣, ∣b∣ or, alternatively, decreasing the
chemical potential ∣μ∣ < b− ∣m∣ by using external gates, driving the Fermi
level out of the conduction band and thus suppressing the superconducting
order, so that the first term in Eq. (4) dominates. Trivial regions can also be
created by suppressing the magnetic field since Eq. (4) yields ν = 0 for
b = 0. Furthermore, isolated stripes are obtained by tuning the distance λ/2
such that only a single stripe fits within the TNS phase (confined by the
system edges or by domain walls), as in Fig. 2b.

Multilocationalmodes, SUSY, SYKmodel, and Yang-Lee anyons
MMs at the ends of TNSs hybridize within a low-energy manifold of
dimension 2N, forming highly nonlocal modes delocalized over spatially
separated points described by the effective Hamiltonian

Heff ¼ iw
XN�1

n¼1

X
s¼L;R

γs;nγs;nþ1 þ iw0 XN
n¼1

γL;nγR;n; ð7Þ

with γL,n and γR,n the modes on the left and right ends, w ∝ e−λ/2ξ and
w0 / e�l=ξ the couplings betweenmodes on the same side (at a distance
λ/2) and on opposite sides of the stripes (at a distance l), respectively,
with w;w0>0 up to a gauge transformation. This manifold can exhibit
nonlocal fermionic modes at exactly zero energy, even at finite sizes.
For N → ∞ (or equivalently, in a setup with periodic boundaries), the
MMs realize two translationally invariant lattices which are decoupled
forw0 ¼ 0. In this case, theNMMs of each lattice are degenerate under
translations and hybridize into two MMs eγ1;2 (forming a single fer-
mionic mode) at zero energy, delocalized into N spatially separated
points corresponding to the ends of the TNSs. This results in quantum
mechanical SUSY14 or space-time SUSY in the presence of many-body
interactions12,13,16. For w0>0, the two fermionic modes (one for each
side) hybridize at finite energy. The fractionalization of the fermionic
degrees of freedom and the emergence of quantum-mechanical SUSY
is also observed in finite systemsN <∞with open boundary conditions.
Indeed, we find that if w ¼ w0 and N = 3m + 2 = 2, 5, 8, …, the two

nonlocal modes

eγ1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 2

p
Xm
n¼0

κnðγL;3nþ1 þ γR;3nþ2Þ þ κn�1ðγR;3nþ1 � γL;3nþ2Þ;

ð8Þ

eγ2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 2

p
Xm
n¼0

κnðγR;3nþ1 � γL;3nþ2Þ þ κnþ1ðγL;3nþ1 þ γR;3nþ2Þ;

ð9Þ

with κn ¼ cosðnπ=2Þ, have exactly zero energy, each delocalized into 2(m+
1) = 2(N + 1)/3 spatially separated points. This regime w0 ¼ w is realized
when the length of the stripes is comparable with the distance between
mutual stripes (see SupplementaryNote 6). This setup can be advantageous
when the system dimensions cannot be stretched indefinitely. Also, we find
that if w0 ! 0 and N = 2m+ 1, the two nonlocal modes

eγ1 ¼ 1ffiffiffiffiffiffiffi
mþ1

p
Pm
n¼0

γL;2nþ1;

eγ2 ¼ 1ffiffiffiffiffiffiffi
mþ1

p
Pm
n¼0

γR;2nþ1;

ð10Þ

have exactly zero energy, each delocalized into m+ 1 = (N+ 1)/2 spatially
separated points at the ends of every other stripe. This case is realized in
Fig. 2a since w0≈0 (see Supplementary Fig. 4). The case w0 ¼ 0 is realized
asymptotically when the stripes become infinitely long. Hence, this case
requiresoneof the systemdimensions tobemuch larger than theother.These
two cases are further examples ofmulti-locationalMMs recently predicted to
appear in three-terminal Josephson junctions60. In all these cases, the
groundstate is twofolddegenerate,with twononlocalMMseγ1 andeγ2 forming
a single zero-energy and particle-hole symmetric fermionic mode. One can
thus define two fermionic operators Q1;2 ¼ eγ1;2

ffiffiffiffiffiffiffiffiffiffiffiffi
HSUSY

p
satisfying the

algebra {P, Qi} = 0, {Qi, Qj} = 2δijHSUSY, where HSUSY is the many-body
Hamiltonian with all energy levels positive (obtained by adding a positive
constant) and P the fermion parity operator. This corresponds to
spontaneously broken N ¼ 2 quantum mechanical SUSY75 with super-
charges Q1,2, zero superpotential, and Witten index W = 1. Furthermore,
configurations with several stripes, as in Fig. 2(a), are equivalent to sets of
equally-spaced 1D TSs, which can effectively realize the SYK model when

Fig. 2 | Local density of states (LDOS) at zero
energy calculated numerically for a proximitized
topological insulator film in the inhomogeneous
superconducting phase in a systemof size 162 × 54
lattice sites with open boundary conditions.
a Topologically nontrivial stripes corresponding to
the order parameter phase ϕ(r) = ± π/2 with
Majorana modes at their ends separated by a dis-
tance λ/2 = π/Q ≈ πv/2bxy. bA single stripe obtained
by tuning the in-plane field such that λ is approxi-
mately equal to the width of the system. c same as
(b), but with a trivial region in themiddle, acting as a
domain wall splitting the stripe into two. d same as
(c), but with an additional trivial region on the left,
acting as a pointlike defect further splitting the left
stripe into two. e and f same as (c) and (d), but
rotating the in-plane field on the left, (e) rotating the
stripe, and (f) rotating two stripes around each
other. Arrows indicate the direction of the Cooper
pair momentum Q and of the in-plane field bxy.
Areas enclosed by dotted lines indicate regions with
μ = 0 suppressing the superconducting order. The
order parameter, calculated self-consistently, is
compatible with θ = π/4 in Eq. (5).
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coupled to a quantum dot22, or Yang-Lee anyons when coupled to a metallic
bath61, provided that the single-particle couplingsw andw0 are suppressed76.
Finally, note that for N→∞, the two MMs chains at opposite edges form a
pair of 1D chiral Majorana edge modes with finite dispersion17,58,62.

Braiding
MMs at the ends of TNSs can be braided. To do so, we need the ability to i)
rotate stripes to exchange the MMs and ii) split or merge stripes to
implement fusion and read-out. TNSs can be rotated by rotating the in-
plane field. Adiabatically decreasing the chemical potential (thus suppres-
sing superconductivity) on specified regions can create domain walls or
pointlike defects that split single stripes into two stripes with parallel
magnetic fields. The reverse process merges two stripes with parallel fields
into one. Figures 2c, d showhow to adiabatically split a single stripe into two
segments via a domain wall in the middle, and rotate one segment by
rotating the in-planefield inonehalf of the system.Figures2e, f showhow to
rotate two stripes around a central pointlike defect. The lowest energy levels
corresponding to the MMs remained close to zero in all cases (see Sup-
plementary Figs. 6 and 7). Figure 3a illustrates a possible braiding protocol.
Additionally, TNSs can be controlled by moving the domain walls. Alter-
natively, braiding can be performed in parameter space77,78 withoutmoving
the TNSs, e.g., arranging three TNSs around a pointlike defect as in Fig. 3b
and controlling the coupling between MMs on opposite ends of the TNSs
(see Supplementary Fig. 8).

Discussion
In this work, we described an alternative 2D platform to create, manipulate,
and braidMMsvia inhomogeneous superconducting orders in proximitized
TIs. Unlike other 2D platforms, MMs do not localize at the vortex cores of
the order parameter but at the opposite ends of TNSs induced by the
inhomogeneous order. This setup can realize topological quantumgates and
other exotic quantum phenomena, such as quantum mechanical SUSY,
Yang-Lee anyons, and the SYKmodel.Moreover, TNSsmay also be induced
by inhomogeneous superconducting orders in Sr2RuO4

79, iron pnictides80,
organic superconductors81–83, SrTiO3/LaAlO3 interfaces

84, KTaO3/EuO or
KTaO3/LaAlO3 interfaces in the inhomogeneous superconducting stripe
phase85, and two-component cold atomic Fermi gases with population
imbalance and effective spin-orbit coupling62,86–90. Finally, the experimental
detection of TNSs would also provide indirect evidence of FFLO inhomo-
geneous superconductivity.

Methods
The numerical results were obtained by discretizing the continuous
Hamiltonian into a lattice model and calculating the energy spectra,
wavefunction, and superconducting order parameter self-consistently at
zero temperature. The LDOSat zero energywas calculateddirectly from the
energy spectra and wavefunction. The parameters used for the numerical
calculations were chosen to be compatible with heterostructures of Bi2Te3

73

proximitized with NbTiN or NbSe2. The topological invariants (Chern
numbers) were calculated numerically using the Fukui-Hatsugai-Suzuki
method67, while the parity of the topological invariantswas calculated as the
sign of the product of the Pfaffians of theHamiltonian in theMajorana basis
with momenta spanning the time-reversal symmetry points in the
Brillouin zone.

Data availability
The code used for the numerical simulations within this paper and the
resulting data are available from the corresponding author upon reasonable
request.
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