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The creation of topological quantum gates using Majorana zero modes —an outstanding problem in
the field of topological quantum computing —relies on our ability to control the braiding process in time
and space. Here, we propose two-dimensional magnet-superconductor hybrid structures as a new
platform for the successful implementation of topologically protected , /a,-, 0.- and o,-quantum gates
using Majorana zero modes. Employing a novel theoretical formalism to compute the full time-
dependent many-body wave-function and utilizing a braiding protocol motivated by recent advances
in electron-spin-resonance techniques we simulate quantum gates in 2D systems up to 600 sites, on
timescales from a few femto- to nanoseconds. We demonstrate that the braiding process can be
visualized in time and space by computing the non-equilibrium local density of states, which is
proportional to the time-dependent differential conductance measured in scanning tunneling
spectroscopy experiments, allowing us to directly image Majorana world lines.

Majorana zero modes (MZMs) that are realized in topological super-
conductors provide an intriguing platform for the implementation of fault-
tolerant quantum computing'. An important step on this path is the reali-
zation of topological quantum gates, for which various protocols have been
proposed”™®. Common to all of these proposals is that they require the
ability to manipulate the electronic structure at the atomic scale in order to
spatially move MZMs; this can occur by varying the local chemical
potential’”, coupling constants®™, magnetic fields'*", or superconducting
phases”. To test the feasibility of the above proposals, it is necessary to
simulate their implementation in n-qubit quantum gates on experimentally
relevant time and length scales. This, in turn, requires the calculation of the
system’s full time-dependent many-body wave functions, allowing one to
study not only the transitions between the n-qubit Majorana states but also
excitations between MZMs and topologically trivial states, as well as quasi-
particle poisoning, which are detrimental to the implementation of coherent
quantum gates. This goal, however, has remained elusive so far either
because the time dependence of the full many-body wave functions could
only be studied in very small, one-dimensional systems with 16 sites at
most*", which are not relevant experimentally, or because only single MZM
quasi-particle states were considered”®"*"”. Similarly, despite intense
experimental efforts over the last decade, realizing the lattice scale control of
the electronic structure required by the above proposals—such as manip-
ulating the local, lattice scale chemical potential in Kitaev chain-based
quantum devices”’—has remained a distant goal.

In this article, we propose solutions to both of these important chal-
lenges by simulating the implementation of topological quantum gates
using Majorana zero modes in magnet-superconductor hybrid (MSH)
systems. This new versatile platform consisting of networks of magnetic
adatoms placed on the surface of s-wave superconductors can be built using
atomic manipulation techniques™. By using a novel theoretical
formalism®' to compute the time dependence of the full many-body wave-
function, we demonstrate the simulation of topological Vo 0 and o,-
quantum gates in two-dimensional MSH systems with up to 600 sites, on
timescales ranging from a few femto- to nanoseconds, thus spanning six
orders of magnitude in time. Moreover, we show that the spatial braiding of
MZM:s can be implemented by manipulating the local magnetic structure of
the MSH system which allows one to switch its segments between trivial and
topological phases. The feasibility of this manipulation has recently been
demonstrated in magnetic dimers and trimers”* using a combination of
electron-spin resonance and scanning tunneling microscopy (ESR-STM)
techniques. We show that the spatial exchange of MZMs, and the gate
operation in its entirety can be visualized through the time-, energy-, and
spatially resolved non-equilibrium density of states™, which can be
experimentally imaged via the time-dependent differential conductance, dI/
dV, measured in scanning tunneling spectroscopy (STS)*"*. This visuali-
zation also provides unprecedented insight into the success or failure of the
gates' implementation. Finally, we discuss possible schemes to circumvent
detrimental effects arising from the residual (nearly unavoidable)
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Fig. 1 | Topological tuning in MSH networks. a
Schematic representation of (a) a T-structure MSH
system, and (b) a single loop MSH system. ¢ A 1D
MSH network can be tuned locally between a
topological and trivial phase by changing the local
magnetic structure from an out-of-plane ferro-
magnetic to an in-plane antiferromagnetic align-
ment. The MZM is localized at the end of the
network’s topological region.
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hybridization between MZMs by employing the interplay between gate
architecture, symmetry, and braiding protocol. Our results thus demon-
strate the feasibility of MSH systems as a new materials platform for the
realization of topological quantum computing.

Results

Theoretical model

To simulate the braiding of MZMs, and the implementation of topological

quantum gates, we consider MSH structures consisting of one-dimensional

networks of magnetic adatoms placed on the surface of a two-dimensional

(2D) s-wave superconductor (see Fig. 1a, b), described by the Hamiltonian
H= —t, Z CI.uCr’,a
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Here, the operator cT creates an electron with spin o at site r, £, is the
nearest-neighbor hoppmg amplitude on a 2D square lattice, y is the
chemical potential, & is the Rashba spin-orbit coupling between nearest-
neighbor sites r and r + 6, ¢ is the vector of Pauli matrices, and A is the s-
wave superconducting order parameter. The last term in Eq. (22) describes
the coupling between the magnetic adatoms with spin Sg(#) of magnitude S
at site R and time t and the conduction electrons, with exchange coupling J.
Due to the hard superconducting gap, which suppresses Kondo
screening””’, we can consider the spins of the magnetic adatoms to be
classical in nature.

The successful implementation of topological quantum gates requires
that the hybridization between MZMs be minimized and that thus the
MZM localization length &, be much smaller than the system size. While we
can compute the time-dependent many-body wave function of MSH sys-
tems with up to 600 sites—which are more than 40 times larger than pre-
viously considered systems*'“—thus allowing for larger values of & than
previously considered, this requirement still forces us to employ several
simplifications. In particular, since & scales inversely with the super-
conducting gap, Asc, we have to assume a larger ratio of Agc/t, than is
typically found in real materials. Moreover, while the application of ESR-

STM techniques has so far only been demonstrated in dimers/trimers where
the magnetic adatoms are separated by at least 2 lattice sites to minimize the
direct exchange between them, we find that the implementation of such
inter-adatom distances leads to exceedingly large values of &. We, therefore,
assume below an arrangement of magnetic adatoms on neighboring sites
while neglecting their direct magnetic exchange. Where possible, we have
checked that these simplifications have no bearing on the qualitative or
quantitative nature of our results (see discussion below).

Moreover, the above parameters are chosen such that the networks (see
Fig. 1a, b) are topological superconductors when the magnetic adatoms are
aligned ferromagnetically out-of-plane, but are trivial (gapped) super-
conductors when the moments are aligned antiferromagnetically in-plane,
as schematically shown in Fig. lc. Alternatively, we could also consider an
antiferromagnetic out-of-plane alignment of the moments to create a trivial
gapped superconductor. However, since such an alignment can also give rise
to ungapped metallic phases, we will focus on the antiferromagnetic in-plane
alignment here. Thus, the topological nature of these networks can be
changed locally through a position-dependent rotation of magnetic
moments between in- and out-of-plane, which, in turn, allows us to move
MZMs through the network as they are localized at the end of the topological
regions (see Fig. 1c). As mentioned above, the necessary local control to
rotate individual magnetic moments in assemblies of magnetic adatoms was
recently demonstrated using ESR-STM techniques™ ™ with spin-lattice
relaxation times of the order of tens of nanoseconds, which are 4-5 orders of
magnitude longer than the electronic time scales considered here, such that
the motion of the magnetic moments can be considered coherent. Moreover,
in the ESR-STM experiments, the rotation of individual magnetic moments
in spin trimers was achieved remotely, with the rotated moments being
located at distances of ~ 0.6 nm (about 2-3 lattice constants) away from the
STM tip”. To rotate different magnetic moments independently, they need
to possess different resonance frequencies, which can be achieved either by
creating different magnetic environments for the same type of magnetic
moment, as was done in ref. 23, or by using different types of magnetic
adatoms. To demonstrate that such a remote driving via ESR-STM could in
principle also be implemented in the MSH systems considered here, we show
below that topological MSH networks consisting of two different types of
magnetic adatoms characterized by different values of JS, can be created.

Atomic-scale and time-resolved insight into the dynamics of gate
operations can be gained via the time-dependent and spatially resolved
differential conductance, dI(V, r, t)/dV, measured in scanning tunneling
spectroscopy experiments”**, We previously showed that similar to the
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Fig. 2 | Simulation of a /o -gate in an MSH T-structure. a-d Spatial plot of the
zero-energy N,.q during consecutive times in the gate operation. White arrows
(dots) indicate antiferromagnetic in-plane (ferromagnetic out-of-plane) alignment
of the magnetic moments. Blue area indicates the superconducting substrate.
e Majorana world lines obtained from a projection of the zero-energy N,,.q onto the
real space x-axis. f Time dependence of the fidelity F, ,(f) for the even and odd parity
states and of the geometric phase difference A¢. g Time- and energy-dependent N;,cq
at a site of the MSH network (see yellow arrow in (a)). h Fidelity F as a function of T

2000
T

0 1000

e

0.2

energy [t ]
! o
o

o
[N)

50 75 100 125 150

10 Tr[1,]

and ATg. Parameters are (4, a, A, JS) = (—3.993, 0.9, 2.4, 5.2)t, with a difference of A]
= 0.26t, in the magnetic coupling between alternating sites on the T-structure,
(Tw, ATR) = (500, 50)7, and I" = 0.01¢, for the inverse quasi-particle lifetime. These
parameters, resulting in a topological superconducting gap of A, = 0.4t,, were chosen
in order to minimize (i) the localization length of the MZMs along the network, and
thus (ii) the hybridization between the MZMs. Total system size for all results is
600 sites with dimension (20a, x 30ay).

equilibrium case, dI(V, r, t)/dV is proportional to the local non-equilibrium
density of states N, (w=eV,r,t) = —LIm[G'(w,r,1)]". Here, the
retarded Green’s function matrix G” is obtained by solving the differential
equation™

i%+w+ir—ﬁ(t) Gtwy=1, Q)

with the detailed time dependence of the gate operation being encoded in
the time-dependent matrix form H of the Hamiltonian in Eq. (22). The
rotation of the magnetic moments is characterized by two time scales: the
rotation time Tf to rotate a single moment by 71/2 between in- and out-of-
plane alignment, and the delay time ATy between the start of rotations on
neighboring sites. Note that below all times are given in units of 7. = A/t,
which implies that for typical values of #, of a few hundred meV, 7. is of the
order of a few femtoseconds.

To ascertain the adiabaticity of the gate process, we compute the time-
dependent fidelity

Fi(t) = |<\Pi(t)|\yi(t0)>| (3)

(i = €, 0) of the even (]¥,(t))) and odd-parity (]¥,(¢))) many-body wave
functions of the entire 2D system™**’. Employing a novel formalism we

developed™', we compute the time dependence of the full many-body wave
functions for MSH systems with up to 600 sites (for details, see Methods
Section). Finally, to demonstrate the fractional statistics of MZMs, one
computes the time-dependent geometric phase, ¢(£)(i = e, 0), of the even
and odd-parity ground state wave function using the gauge- and
parametrization-invariant functional’"*

@m=mmwmw—m/wﬂwau @)

where the exchange of two MZMs leads to a change of A¢ = ¢, — ¢, by an
odd multiple of /2%

Simulation of a _/5,-gate

Two basic gate architectures have previously been proposed to implement
topological quantum gates in 1D systems: a T-structure’ (Fig. 1a) and a loop
structure™ (Fig. 1b). We demonstrate the feasibility of implementing gate
protocols in both of these architectures in MSH systems, which can be built
using atomic manipulation techniques on the surface of a 2D
superconductor”’, beginning with a ,/,-gate—realizing the exchange of
two MZMs—in a T-structure network of magnetic adatoms placed on the
surface of a 2D superconductor, as indicated by white arrows and the blue
area in Fig. 2a, respectively [the system consists of 600 sites with dimension
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(2049 x 30ay)]. To reveal the fractional statistics of MZMs, it is necessary for
the gate process to be adiabatic, thus avoiding excitations between the
MZMs and topologically trivial bulk states. To this end, we choose a rotation
time Tg > h/A, where A, is the topological gap in the system (the time-
dependent gate protocol is given in the Methods Section), and present in
Figs. 2a—d, the resulting zero-energy N;,.q at successive times during the gate
process together with the magnetic structure, shown as white arrows (the
full time dependence of the entire gate process is shown in Supplementary
Movie 1). At the initial time ¢ = 0, two MZMs are localized at the ends of the
topological horizontal segment of the T-structure (cf. Figs. la and 2a), while
the vertical segment is trivial. The exchange of the two MZMs is then
facilitated in three steps, as schematically shown in Figs. 2b-d. A compar-
ison between the spatial form of Ny,eq and that of the magnetic structure,
reveals as expected, that the spatial location of the MZMs follows the
boundary between the network’s topological and trivial regions, as sche-
matically shown in Fig. 1c. Once the braiding process is completed, Nyeq
exhibits the same spatial structure as in the initial state (see Fig. 2a). The
resulting Majorana world lines (see Fig. 2e), obtained by projecting the zero-
energy Npeq onto the real space x-axis, visualize the entire gate process in
time and space (a 3D rendering of the world lines is presented in Supple-
mentary Movie 2).

The time dependence of the fidelity F, ,(¢) during the entire gate pro-
cess is shown in Fig. 2f. Due to the evolving magnetic structure, F, ,(f)
deviates from unity after the start of the gate process, quickly reaching nearly
zero due to the approximate orthogonality between the initial many-body
state at t = 0 and that at £. However, at the end of the gate process, when the
initial magnetic structure is re-established, the fidelity returns to unity,
demonstrating the adiabaticity of the braiding process. As a result, the
geometric phase A¢ reaches 371/2 at the end of the process (see Fig. 2f),
establishing the fractional statistics of the MZMs. The adiabaticity of the
process is also reflected in the energy- and time-resolved N;,.q at a given site
in the system (see Fig. 2g), which demonstrates that as the MZM moves
through a site, it remains well separated in energy from the bulk states, thus
ensuring a fidelity of unity. Finally, in Fig. 2h, we present the fidelity as a
function of rotation time Ty and delay time ATy, which defines the time
regime necessary to observe an adiabatic process. We note that while a
measurement of dI(V, r, £)/dV visualizes the spatial braiding of the MZMs,
the actual gate process for the purpose of implementing quantum algo-
rithms should of course be realized without a simultaneous measurement of
dI(V,r, t)/dV, as the presence of a tunneling current will likely lead to quasi-
particle poisoning and decoherence. In contrast, the use of an ESR-STM tip
to rotate the spins is not expected to lead to quasi-particle poisoning and
decoherence as no tunneling current is required*, and the tip can be located
a few lattice spacings away from the rotated spin and hence from the
MZ 22723.

Simulation of a 0,-gate

We next implement a 0,-gate, using the MSH loop structure of Fig. 1b. In the
initial (t = 0) configuration, the MZMs are localized in the upper right and
lower left corners of the loop (see Fig. 3a), at the ends of the topological
(ferromagnetic) segment in the loop’s lower right half. We realize a o,-gate
by moving the MZMs once around the entire loop structure (the time-
dependent gate protocol is given in the Methods Section). The resulting
zero-energy Ny,.q together with the corresponding magnetic configuration is
shown in Figs. 3a—d for consecutive times during the gate operation (the full
time dependence of N,,.q during the entire gate process is shown in Sup-
plementary Movie 3). After the end of the gate process, N,,.q exhibits the
same spatial structure as in the initial configuration (see Fig. 3a). The MZMs’
world lines (see Fig. 3e), shown as a projection of the zero-energy N,,.q onto
the diagonal axis (see dashed yellow line in Fig. 3a), reveal the double
exchange of the MZMs in space and time (a 3D rendering of the world lines
is presented in Supplementary Movie 4). The adiabaticity of the process, as
demonstrated by F, reaching unity at the end of the gate process (see Fig. 3f),
then implies a change in the geometric phase of A¢ = 7. Note that after half of
the gate operation at time #,,, the two MZMs have been exchanged, which

realizes a /0 -gate, similar to the case of Fig. 2. However, while the geo-
metric phase A¢ at this point has as expected changed by 7/2 (Fig. 3f), the
corresponding fidelity is zero. The latter, however, is not a reflection of the
non-adiabaticity of the process, but of the fact that the initial spin config-
uration (Fig. 3a), and that at time ,, differ significantly (Fig. 3c). Indeed, the
adiabaticity of the gate process is again reflected in the energy and time
dependence of N;,.q at a site in the loop (see Fig. 3g), which demonstrates
that the MZM and the bulk states remain well separated in energy during the
gate process. To contrast this, we consider a 10-times faster gate operation:
while in this case, the fidelity F, = 0.98 is only slightly reduced from unity
(Fig. 3h), the geometric phase deviates already strongly from the expected
value of * , clearly revealing the breakdown of adiabaticity. This is further
confirmed by a plot of Npq (see Fig. 3i) that reveals a strong overlap in
energy between the MZM and bulk states. We thus conclude that in addition
to the fidelity, Nj,q reflects the adiabaticity, or lack thereof, of the gate
operation, thus providing an experimentally measurable signature of the
success or failure of the gate process, even without the readout of the
qubit state.

Simulation of a o,-gate

Finally, to implement a one-qubit o,-gate we consider an MSH system
consisting of two intersecting loops of magnetic adatoms, as schematically
shown in Fig. 4a. In each loop, a pair of MZMs, labeled «,  and y, 6, are
localized at the ends of their respective ferromagnetic, and hence topolo-
gical, segments (shown in green). The many-body wave functions in the
even and odd parity sector are built as schematically shown in Fig. 4b with
|€2)g, being the many-body ground state wave function. Due to the finite
hybridization of the MZMs within each pair, their respective energies are
small, but non-zero (see Fig. 4b). The o,-gate operation, transforming the
two states within each parity sector into one another, is implemented as
shown in Figs. 4c-h, where we present spatial plots of the zero-energy Nyeq
for consecutive times during the gate process (the time-dependent gate
protocol is given in the Methods section, and the full time dependence of
Nhpeq is shown in Supplementary Movie 5). The resulting Majorana world
lines (Fig. 4i), obtained by projecting the zero-energy Nyq onto the real
space axis indicated by the dashed yellow line in Fig. 4c, visualize the gate
operation, and in particular the double exchange of the f and y MZMs in
time and space (a simplified braiding diagram of the gate process is shown in
the inset, and a 3D rendering of the world lines is presented in Supple-
mentary Movie 6). To evaluate whether the braiding of MZMs shown in
Figs. 4c-h indeed constitutes a 0,-gate, we compute the success probabilities
for a successtul completion of the gate process (i.e., at the final time ¢ = #;) via

P, = 14t i) ®)

with 4, j=0, 1, |ij(t)> is the time-evolved many-body wave-function with
lij(t;)) = |ij) at the beginning of the gate process, i.e., at initial time t =1,
and pj; = 1 implies a successful implementation of the 0,-gate (| ij(t)) is the
full many-body wave function of the entire system with 484 sites). In Figs. 4j,
k, we present p}; as a function of the rotation time Tk in the even and odd
parity sectors, respectively (the small T limit is shown in Supplementary
Note 1). It was previously suggested™' > that the oscillatory dependence of
pjj on T s due to a finite energy splitting, AE, between the two many-body
states within each parity sector (see Supplementary Note 2) arising from a
non-zero hybridization between the MZMs, and not related to transitions
between the Majorana zero modes and trivial bulk states. The latter is
supported by the observation that the total transition probability within the
Majorana sector pf}” =pj+ p{j, where p{] = [{ij(t,)lif) > is the failure
probability, is unity (see dotted lines in Figs. 4j, k). Thus, the maximum
success probabilities of pj, = 0.993 and pj; = 0.999 (see black arrows in
Figs. 4j, k) can only be achieved for specific rotation times, Tg. Since the
corresponding failure rates of p(f)o = 0.007 and p{n = 0.001, respectively,
are below the threshold Pauli error rates py;, = 0.01 for error correction®”,
these cases nevertheless represent successful realizations of a topological o,-
gate. Finally, assuming a typical value of f, = 100 meV, we find that the total
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(f, g) but for a 10 times faster gate operation with (T, ATg) = (50, 10)7,. Parameters

are (y, o, A, JS) =(—3.993, 0.9, 2.4, 5.2)t,, and I' = 0.01¢,. Total system size for all
results is 441 sites with dimensions (21a, x 21ay).

gate operation times (see upper x-axes in Figs. 4j, k) extend into the 100
picosecond range, reaching one nanosecond for some gate operations (see
below). Thus, the theoretical formalism employed here (see Methods
Section and ref. 21) allows us to study the realizations of quantum gate
operations from a few femto- to the nanosecond range, thus spanning six
orders of magnitude in time.

Spatial symmetries and the o,-gate

The oscillatory behavior of p}, which is not unique to the MSH system
discussed here, but has also been reported in the study of vortex systems'*’
and semi-conducting nano-wires™”’, represents a significant experimental
challenge in the realization of topological quantum gates, as it would require
the fine-tuning of the rotation time.

To overcome this challenge, it is necessary to reduce or eliminate
the energy splitting between the many-body states, which would hence
increase the oscillation period ~ #/AE and thus render pj; much less
sensitive to changes in Tr. We propose two different approaches to
achieve this goal. The first and obvious approach is to increase the
distance between the MZMs, as the hybridization and hence the
energy splitting AE, decreases exponentially with the distance between
the MZMs, with the characteristic length scale set by the

superconducting coherence length, ¢, along the network direction.
While we cannot consider 2D MSH system sizes that are larger than
the ones shown in Fig. 4, we can test this idea by implementing a
o.-gate in a 1D T-structure, as shown in Fig. 5a, with the world lines
shown in Fig. 5b reflecting the gate protocol. We find that the oscil-
lation period of pj; significantly increases with increasing distance d
(and hence decreasing hybridization) between the MZMs, as shown in
Fig. 5¢ for the even parity sector, and as exemplified for d =364, in
Fig. 5d (we note that for this case, the total gate operation time exceeds
1ns). In particular, by changing the distance from d = 114, in the gate
architecture of Fig. 4 to a distance of d = 364, in the gate architecture of
Fig. 5a, the oscillation period is increased from T,y = 147, to Tys =
70007,, i.e., by a factor of 500 (a similar increase is also found in the
odd parity sector). While this approach is thus quite successful in
increasing the oscillation period, given the large coherence length of
many s-wave superconductors®, this approach would likely require to
build and coherently control gate sizes of the order of hundreds of
nanometers, which, by itself, represents a significant experimental
challenge. We thus propose a second approach to eliminating the
energy splitting AE that utilizes the spatial symmetries of an MSH
system, such as the box-and-whisker structure shown in Fig. 5e. Such a
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Fig. 4 | Simulation of a o,-gate in a double-loop MSH structure. a Schematic
picture of the o,-gate in an MSH system, consisting of two intersecting loops of
magnetic adatoms, and two pairs of MZMs. b Effect of the o,-gate on the even and
odd parity many-body wave functions. c-h Spatial plot of the zero-energy Npq at
successive times during the gate process. i Majorana world lines of MZMs « - § (see

(a)), as obtained from a projection of the zero-energy N,q onto the axis depicted by

the dashed yellow line in (c). Whenever two Majorana world lines cross, the one in
front is indicated by a thick line. The inset shows the corresponding (simplified)
braiding diagram of the gate process. Success and failure probabilities within the (j)
even parity sector with y = —3.5¢,, AT = 0.2Ty, and (k) odd parity sector for

y = —3.45805t,, ATy = 0.1 Tx. For all other panels, parameters are (4, a, 4, JS) = (-3.5,
0.9, 2.4, 5.2)t,, (Tg, ATg) = (100, 20)7,, and I'= 0.01¢,.

system allows one to preserve a spatial point symmetry around C (see
Fig. 5e) at any point during the gate process, as reflected in the sym-
metric world lines shown in Fig. 5f. This point symmetry guarantees
that the energy splitting between the odd parity [01) and |10) states is
identically zero, thus completely eliminating the oscillatory behavior
in pj; of the odd parity sector, as shown in Fig. 5g. While preserving the

point symmetry does not affect the oscillations in the even parity
sector (Fig. 5h), this approach provides the proof of concept that
invoking additional symmetries of the MSH system can facilitate the
realization of topological quantum gates. Clearly, future studies are
required to further elucidate the role played by spatial or other sym-
metries in the effective implementation of gate protocols.

npj Quantum Materials | (2024)9:99


www.nature.com/npjquantmats

https://doi.org/10.1038/s41535-024-00703-w

Article

20 >
15 =
2 10 =
© =
= ~
5 -
< ¢ > z

0- T EAA A AT AT AT NAVAY A AVA Vo

-40 -20 x[a] © 20 40
c " d total gate operation time [ns]
i ® 0 0.2 0.4 0.6 0.8
6000
:” w
9
E 4000 %
g ©
o / o)
" 2000 . e}
SN, 7 fu
AN ¢ o
S v
0
20 25 30 35 500 1000 1500 2000 2500
d [a,] Te [z
e 10
5
—
[=
O, 6
>
-5
-10
g1o S
0.8 01
0.6 .
odd parity
0.4
0.2
f
0.0 p01 o
100 200 300 400 100 200 300 400 0
TR [Te] TR [Te] X[ao]

Fig. 5 | Effect of spatial symmetry on the gate process. a Spatial plot of the zero-
energy Npeq at t =0 in the MSH T-structure, showing the two topological regions, left
and right of a trivial T-segment, with d denoting the spatial distance between the
Majorana zero modes within one pair. Blue and gray areas indicate the presence and
absence, respectively, of a superconducting substrate. b Majorana world lines, as
obtained from a projection of the zero-energy Ni,.q onto the x-axis. ¢ Oscillation period
of the success and failure probabilities within the even parity sector as a function of
distance d between the two MZM:s within each pair (see panel (a)). d Success and failure

probabilities within the even parity sector as a function of Ty with AT = 02T for d =
36ap.For (a-d), parameters are (4, «, A, JS) = (—4, 045, 1.2, 2.6)t,, and for (b) (Tx, AT) =
(100, 20)1... e Spatial plot of the zero-energy N,q at t = 0 in the MSH box-and-whisker
structure, showing the two topological regions, left and right of the box. f Majorana
world lines, as obtained from a projection of the zero-energy Nj,.q onto the x-axis.
Success and failure probabilities in the (g) odd and (h) even parity sectors as a function of
Tg with ATy = 0.2Tg. For (e-h), parameters are (i, a, 4, JS) = (-3.97, 0.9, 2.4, 5.2)t,, and
for (f) (Tr, ATR) = (120, 24)7, and I = 0.01¢,.

Discussion

We have demonstrated the feasibility of MSH systems as a new platform for
the implementation of topological /o -, 0-gates, and o,-quantum gates.
Using a novel theoretical formalism we recently developed”', we computed
the time-dependent many-body wave functions in MSH systems with as
many as 600 sites, allowing us to obtain the gates’ success probabilities in
experimentally relevant 2D systems for total gate operation times ranging
from the few femto- to the nanosecond scale, thus spanning six orders of
magnitude in time. We proposed a novel braiding mechanism in which the
spatial motion of MZMs is achieved through a manipulation of the MSH
system’s magnetic structure. The feasibility of such a magnetic manipulation
at the required lattice scale has recently been demonstrated in magnetic
dimers and trimers™** using ESR-STM techniques. Moreover, we showed
that quantum gates in MSH systems can be realized in different MSH

architectures such as the /-, and o,-gates in the architectures of Figs.
2 and 3, or the o,-gate in the double-loop, T-, or box-and-whisker archi-
tectures shown in Figs. 4 or 5. We note that the implementation of quantum
gates in the above double-loop structure, or generalizations thereof, pos-
sesses the great advantage that any two MZMs can be braided directly (in
contrast to the previously considered T-structures), which could be of
potential benefit for the realizations of more complex quantum algorithms.
We identified experimentally relevant challenges in the implementation of
topological gates, such as the oscillatory dependence of the gates’ success
probabilities on the characteristic time Tk, arising from a finite hybridization
between the MZMs, and proposed solutions which, e.g., make use of the
spatial symmetries of the gate process. Finally, we showed that the gate
operation can be visualized via the time-, energy-, and spatially resolved non-
equilibrium density of states™, Npeq» Which can be measured via the time-
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dependent differential conductance, dI(V, £)/dV in STS experiments’”*, This
also allowed for the first time to image the Majorana world lines in time and
space. Our results thus represent the proof of concept that a combination of
atomic manipulation techniques to quantum engineer MSH structures, and
of ESR-STM techniques to implement gate protocols, yields a versatile
platform for realizing topological quantum gates in MSH systems.

An important question remains as to the experimental realization of the
braiding scheme proposed here. In order to experimentally execute the
braiding process described above, it is necessary that the ESR-STM spin-flip
time be much smaller than the spin coherence times, i.e., the time scale over
which the spins remain in a coherent magnetic alignment. For spin dimers,
the time scale for spin-flip processes in ESR-STM experiments is currently on
the order of 20ns, while the spin coherence time is approximately 86ns™.
However, the spin-flip time can plausibly be further reduced by factors of 10-
100 by increasing local magnetic fields, for example, through the use of
additional magnetic impurities™. Such a reduction would still preserve the
adiabaticity for the gate operation (see above). In addition, it was shown that
the spin coherence times can be increased by 4-5 orders of magnitude for
spins located on superconducting surfaces™ (rather than on metallic surfaces
asin refs. 22-25) since the low energy fermionic degrees of freedom giving rise
to decoherence are gapped out. This could plausibly render the spin coher-
ence anywhere between 5 and 7 orders of magnitude larger than the spin-flip
time, which would be sufficient to perform the gate operations discussed
above. Moreover, the rotation of individual magnetic moments in ESR-STM
experiments was achieved remotely over distances of several lattice
constants™. The spatial extent of this remote driving is in general only limited
by the extent of the RF field, L, if it is sufficiently large, i.e., comparable to the
spatial size of the MSH networks discussed, it might be possible to perform an
entire gate operation without the necessity to move the STM tip. This of
course would require that the magnetic adatoms in the MSH network possess
different resonance frequencies (which can be realized by using different
magnetic adatoms or creating different magnetic environments™ ) and thus
can be independently rotated. While details concerning the efficient balance
between moving the STM tip, the extent of L,; and the ability to realize
different resonance frequencies are beyond the scope of our theoretical study,
we demonstrated above that topological MSH networks consisting of more
than one type of magnetic adatoms can be created, thus providing the proof of
concept for the applicability of remote driving in MSH networks.

Finally, several open theoretical questions remain as well. First, how can
one initialize these topological gates in specific qubit states, and read out qubit
states after the end of the gate operation? Second, how are the results described
above, and in particular the transition probabilities, affected by quasi-particle
poisoning and/or disorder? And finally, is it possible to implement quantum
gates in more dilute magnetic networks? The latter would eliminate the effects
of a direct exchange interaction between the magnetic adatoms and likely
facilitate the use of ESR-STM techniques™ ™ to manipulate the local electronic
structure. While preliminary work investigating these questions further
supports the feasibility of MSH systems for the implementation of topological
quantum gates and algorithms, their answers require some detailed discus-
sions and will therefore be reserved for forthcoming publications.

Methods

Theoretical formalism

Construction of ground-state wave-functions. The Hamiltonian in
Eq. (1) of the main text can be recast into the Bogoliubov de Gennes
(BdG) form

. 1 + Hij(t) AIJ Cj
H(t)_i;(cf ‘) ( 5 - )\d) ®
_,_/
HBdG

with Hpgg possessing a particle-hole symmetry, as reflected in
Hyyg = —1,Hiyg T, where 7, is a Pauli matrix. At t = 0, the Bogoliubov

transformation,

Cj an V%‘ dn
(4>:ngmLm>QQ7 @

diagonalizes the Hamiltonian as

H(0) = ZE <de —7> ®)

where E,>0. The ground state is the quasiparticle vacuum, |Q2), such that
d,|Q) = 0 for all n. We construct the quasiparticle vacuum as a product
state>***’. This is done by annihilating all quasiparticles from the true c-
particle vacuum.

1
Q) =—=d,...
|> \/Nl

The normalization is given by N =
are thus

dyl0). (©)

| det(V)|. The degenerate ground states

100) = |€2),
01) = d}|Q),
110) = d}|),

1) = dd}|Q).

Time evolution of states. We define

(10)

d, (1) = UDd,U (1) (11)

where U(t) is the unitary time evolution operator,

Ut) =T exp {—%/Ot dt’H(t’)} . (12)

8,15,33

Using the time-dependent BdG equations
are given by

(di(t)d, (b)) = Z(cj c) (

, the time-evolved operators

i) Vi (t)) 13)

Via(t)  Uj(1)

where

U Vi) it /U
(V(r) U*(t))ZTEXP{_ﬁ/()dtHBdG(”KV U*)’ U

We can now write the time-evolved ground states

100(1) = 10(9),
_4f
01(1)) = di(t)lﬂ(t)% (15)
110()) = di(DI®)),
11(1)) = d} () (DIQAD)).
The time-evolved quasiparticle vacuum is given by
(1)) = H di(£)]0). (16)

The normalization is given by N (¢) = | det(V(¢))|. The phase aff) arises
from the evolution of the true vacuum. However, this phase is gauged away
in our gauge-invariant formulation of physical quantities, such as the
geometric phase.
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Overlaps between states. For states |y/), [y) € {00),]01),]10),]11)},
the overlaps have the form

W' O)ly®) = (_l)s\/%_»(t)

+ n gt N gt o™ a7
><<0|l;[dk(d1) 1(dy)"™(d (1) (d;(1)) l;[dk(t)|0>~

The minus sign is due to reversing the order of the operators in <1//| and
s = (n] + n,)(n] + n, —1)/2 + N(N — 1)/2. The vacuum overlap can

now be calculated using Wick’s theorem™"*,

eia( t)

W O)y(@) = (1) m

The matrix M is an anti-symmetric matrix constructed from the
contractions between operators, and pf( - ) is the Pfaffian. The resulting
matrix is*"**

pf(M). (18)

viU@©) VTO)V*0) VIO)U®) VT(0)V*(r)

Mo utov*©0) Utu®r) UT©0)V*(r)
vVimu) ViV

Ut(tv(o)

(19)

which (as shown below) describes the rotation of a spin from a polar angle of
0 = 0 to 71/2 over a rotation time Ty, starting at time #,. This function was
chosen as it guarantees a smooth evolution of the polar angle from 0 to 71/2.
Here, we use spherical coordinates to describe each spin’s orientation in
space, such that

cos (¢(R, t) - sin(O(R, t))
sin(@(R, 1) - sin(A(R, 1))
cos(0(R, 1))

Sp(t) = (22)

The azimuthal angle ¢ is measured with respect to the x-axis. Below,
we also introduce ATy as the delay time between the start of a spin
rotation at one site, and that on the next site, and AT,,;; denotes a
pause at certain steps in the gate process, which allows the system to
equilibrate.

Gate protocol for implementing a ,/o,-gate in the T-structure. To
implement a , /G -gate in the MSH T-structure of Fig. 2 in the main text,
we number the sites of the magnetic adatoms from 1 to 2N, + 1 along the
horizontal segment, where N; is the length of one leg of the T-structure
and from 2N, + 1 to 3N, along the vertical segment. The time depen-
dence of the azimuthal and polar angles of the spins in the network are
then given by

0),

(¢3,6:(1)) =

A~~~
[SIENNSIENNSIEY

=

—(=1)'s(t, (i = 1) - ATy) + (=1)'s(t, (4N, + 2 — i) - ATy),

—(=1)'s(t, (4N, +2 — i) - ATg) + (—=1)'s(t, (4N, + 1 + i) - ATy)), N, +2<i<2N, +1
(—1)'s(t, (i = N, — 1) - ATg) — (—1)'s(t, (7N, + 3 — )ATy)),

1<i<N,

i=N, +1
(23)

2N, +2<i<3N, +1

Note that rows and columns corresponding to unoccupied modes must be
truncated*’. The lower triangle is found using anti-symmetry. For transition
probabilities, Eq. (18) simplifies to

1
NN(t)

(W O)ly) |* = | det(M)]. (20)

Time-dependent gate protocols
To implement time-dependent gate protocols, we introduce the function

0, i<ty
i1 _
s(t,ty) = > sin? (%),

1, >ty + Ty

tost<ty+ Ty (21)

Gate protocol forimplementing a c,-gate in the MSH loop-structure.
In the MSH loop structure, we label the magnetic adatoms starting from
the lower left corner as 1 and go counter-clockwise up until 4N, where N,
+ 1is the number of adatoms on one side of the square. By rotating a spin
adjacent to the topological region from an in-plane to an out-of-plane
alignment, and then rotating a spin at the other end of the topological
region from an in-plane to an out-of-plane alignment, we move the
topological region by one site, while leaving its length unchanged.
Repeating this until the topological region returns back to its initial
placement in the loop, a o, gate is executed. The azimuthal and polar
angles for the spins of these 4N, magnetic adatoms are given as a function
of time by

(Z,—s(t,0) + s(t,2N, - ATy)), i=1
(Z,(—1)s(t, (i — 1) - ATp) — (—=1)'s(t, 2N, — 2+ i) - ATg + AT, ). 1<i<N,
(0, —(=1)'s(t, (i — 1) - ATR) + (=1)'s(t, 2N, — 2 +i) - ATy + AT ) N, +1<i<2N,
(¢, 0,(0) = { (0, —s(t, Tg + 2N, - ATy + AT, ) + s(t, T + (4N, — 1) - AT + AT ) i=2N,+1 (24)
(Z,—(—1)s(t, (i — 2N, — 1) - ATp) + (—1)'s(t,(i — 1) - AT + AT ), 2N, +1<i<3N,
(0, (—1)'s(t, (i — 2N, — 1) - ATg) — (=1)'s(t, (i — 1) - AT + AT ) 3N, 4+ 1<i<4N,
npj Quantum Materials | (2024)9:99 9


www.nature.com/npjquantmats

https://doi.org/10.1038/s41535-024-00703-w

Article

Gate protocol for implementing a c,-gate in the MSH double loop-
structure. In order to implement a o,-gate in the MSH double loop
structure shown in Fig. 3 in the main text, we label the adatom sites from 1
to 8N,, where N, + 1 is the number of adatoms along one side of each
square. The sites 1 to 4N, are on the lower left square, starting from the
lower left corner going counter-clockwise, and the sites 4N, + 1 to 8N, are
on the upper right square, again starting at the lower left corner and going
counterclockwise. The crossings of the two squares occurs at sites N, +
1+ dand 3N, + 1 — din the first square and at sites 5N, + 1 — d and 7N,
+ 1 + d in the second square, where d is both the horizontal and vertical
distance from the lower left corner of the first square to the lower left
corner of the second square. Like in the 0,-gate, both topological regions
are moved around their respective loop once; this is achieved by rotating a
spin adjacent to the topological region from an in-plane to an out-of-
plane alignment, and then rotating a spin at the other end of the topo-
logical region from an in-plane to an out-of-plane alignment, thus
moving the topological region by one site, while leaving its length
unchanged. The azimuthal and polar angles of the gate process are then
given by
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