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The creation of topological quantum gates using Majorana zero modes—an outstanding problem in
the field of topological quantumcomputing—relies on our ability to control the braidingprocess in time
and space. Here, we propose two-dimensional magnet-superconductor hybrid structures as a new
platform for the successful implementation of topologically protected

ffiffiffiffiffi
σz

p
-, σz- and σx-quantum gates

using Majorana zero modes. Employing a novel theoretical formalism to compute the full time-
dependent many-body wave-function and utilizing a braiding protocol motivated by recent advances
in electron-spin-resonance techniques we simulate quantum gates in 2D systems up to 600 sites, on
timescales from a few femto- to nanoseconds. We demonstrate that the braiding process can be
visualized in time and space by computing the non-equilibrium local density of states, which is
proportional to the time-dependent differential conductance measured in scanning tunneling
spectroscopy experiments, allowing us to directly image Majorana world lines.

Majorana zero modes (MZMs) that are realized in topological super-
conductors provide an intriguing platform for the implementation of fault-
tolerant quantum computing1. An important step on this path is the reali-
zation of topological quantum gates, for which various protocols have been
proposed2–18. Common to all of these proposals is that they require the
ability to manipulate the electronic structure at the atomic scale in order to
spatially move MZMs; this can occur by varying the local chemical
potential2–7, coupling constants8–12, magnetic fields13,14, or superconducting
phases15. To test the feasibility of the above proposals, it is necessary to
simulate their implementation in n-qubit quantum gates on experimentally
relevant time and length scales. This, in turn, requires the calculation of the
system’s full time-dependent many-body wave functions, allowing one to
study not only the transitions between the n-qubit Majorana states but also
excitations betweenMZMs and topologically trivial states, as well as quasi-
particle poisoning,whichare detrimental to the implementation of coherent
quantum gates. This goal, however, has remained elusive so far either
because the time dependence of the full many-body wave functions could
only be studied in very small, one-dimensional systems with 16 sites at
most4,14, which are not relevant experimentally, or because only singleMZM
quasi-particle states were considered5–8,15–17. Similarly, despite intense
experimental efforts over the last decade, realizing the lattice scale control of
the electronic structure required by the above proposals—such as manip-
ulating the local, lattice scale chemical potential in Kitaev chain-based
quantum devices2–7—has remained a distant goal.

In this article, we propose solutions to both of these important chal-
lenges by simulating the implementation of topological quantum gates
using Majorana zero modes in magnet-superconductor hybrid (MSH)
systems. This new versatile platform consisting of networks of magnetic
adatoms placed on the surface of s-wave superconductors can be built using
atomic manipulation techniques19,20. By using a novel theoretical
formalism21 to compute the time dependence of the full many-body wave-
function, we demonstrate the simulation of topological

ffiffiffiffiffi
σz

p
-, σz- and σx-

quantum gates in two-dimensional MSH systems with up to 600 sites, on
timescales ranging from a few femto- to nanoseconds, thus spanning six
orders ofmagnitude in time.Moreover, we show that the spatial braiding of
MZMs can be implemented bymanipulating the localmagnetic structure of
theMSHsystemwhich allows one to switch its segments between trivial and
topological phases. The feasibility of this manipulation has recently been
demonstrated in magnetic dimers and trimers22–25 using a combination of
electron-spin resonance and scanning tunneling microscopy (ESR-STM)
techniques. We show that the spatial exchange of MZMs, and the gate
operation in its entirety can be visualized through the time-, energy-, and
spatially resolved non-equilibrium density of states26, which can be
experimentally imaged via the time-dependent differential conductance, dI/
dV, measured in scanning tunneling spectroscopy (STS)27,28. This visuali-
zation also provides unprecedented insight into the success or failure of the
gates' implementation. Finally, we discuss possible schemes to circumvent
detrimental effects arising from the residual (nearly unavoidable)
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hybridization between MZMs by employing the interplay between gate
architecture, symmetry, and braiding protocol. Our results thus demon-
strate the feasibility of MSH systems as a new materials platform for the
realization of topological quantum computing.

Results
Theoretical model
To simulate the braiding of MZMs, and the implementation of topological
quantum gates, we considerMSH structures consisting of one-dimensional
networks of magnetic adatoms placed on the surface of a two-dimensional
(2D) s-wave superconductor (see Fig. 1a, b), described by the Hamiltonian

H ¼ �te
P
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cyr;σcr0;σ � μ
P
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Here, the operator cyr;σ creates an electron with spin σ at site r, te is the
nearest-neighbor hopping amplitude on a 2D square lattice, μ is the
chemical potential, α is the Rashba spin-orbit coupling between nearest-
neighbor sites r and r+ δ, σ is the vector of Pauli matrices, and Δ is the s-
wave superconducting order parameter. The last term in Eq. (22) describes
the coupling between themagnetic adatoms with spin SR(t) of magnitude S
at siteR and time t and the conduction electrons, with exchange coupling J.
Due to the hard superconducting gap, which suppresses Kondo
screening27,29, we can consider the spins of the magnetic adatoms to be
classical in nature.

The successful implementation of topological quantum gates requires
that the hybridization between MZMs be minimized and that thus the
MZM localization length ξl, bemuch smaller than the system size.While we
can compute the time-dependent many-body wave function of MSH sys-
tems with up to 600 sites—which are more than 40 times larger than pre-
viously considered systems4,14—thus allowing for larger values of ξl than
previously considered, this requirement still forces us to employ several
simplifications. In particular, since ξl scales inversely with the super-
conducting gap, ΔSC, we have to assume a larger ratio of ΔSC/te than is
typically found in real materials. Moreover, while the application of ESR-

STM techniques has so far only beendemonstrated in dimers/trimerswhere
themagnetic adatoms are separated by at least 2 lattice sites tominimize the
direct exchange between them, we find that the implementation of such
inter-adatom distances leads to exceedingly large values of ξl. We, therefore,
assume below an arrangement of magnetic adatoms on neighboring sites
while neglecting their direct magnetic exchange. Where possible, we have
checked that these simplifications have no bearing on the qualitative or
quantitative nature of our results (see discussion below).

Moreover, the above parameters are chosen such that the networks (see
Fig. 1a, b) are topological superconductors when the magnetic adatoms are
aligned ferromagnetically out-of-plane, but are trivial (gapped) super-
conductors when the moments are aligned antiferromagnetically in-plane,
as schematically shown in Fig. 1c. Alternatively, we could also consider an
antiferromagnetic out-of-plane alignment of the moments to create a trivial
gapped superconductor.However, since such an alignment can also give rise
to ungappedmetallic phases, wewill focus on the antiferromagnetic in-plane
alignment here. Thus, the topological nature of these networks can be
changed locally through a position-dependent rotation of magnetic
moments between in- and out-of-plane, which, in turn, allows us to move
MZMs through thenetwork as they are localized at the endof the topological
regions (see Fig. 1c). As mentioned above, the necessary local control to
rotate individualmagneticmoments in assemblies ofmagnetic adatomswas
recently demonstrated using ESR-STM techniques22–25 with spin-lattice
relaxation times of the order of tens of nanoseconds, which are 4–5 orders of
magnitude longer than the electronic time scales considered here, such that
themotionof themagneticmoments canbe considered coherent.Moreover,
in the ESR-STM experiments, the rotation of individual magnetic moments
in spin trimers was achieved remotely, with the rotated moments being
located at distances of ~ 0.6 nm (about 2–3 lattice constants) away from the
STM tip23. To rotate different magnetic moments independently, they need
to possess different resonance frequencies, which can be achieved either by
creating different magnetic environments for the same type of magnetic
moment, as was done in ref. 23, or by using different types of magnetic
adatoms. To demonstrate that such a remote driving via ESR-STM could in
principle also be implemented in theMSHsystems consideredhere,we show
below that topological MSH networks consisting of two different types of
magnetic adatoms characterized by different values of JS, can be created.

Atomic-scale and time-resolved insight into the dynamics of gate
operations can be gained via the time-dependent and spatially resolved
differential conductance, dI(V, r, t)/dV, measured in scanning tunneling
spectroscopy experiments27,28. We previously showed that similar to the

Fig. 1 | Topological tuning in MSH networks.
Schematic representation of (a) a T-structure MSH
system, and (b) a single loop MSH system. c A 1D
MSH network can be tuned locally between a
topological and trivial phase by changing the local
magnetic structure from an out-of-plane ferro-
magnetic to an in-plane antiferromagnetic align-
ment. The MZM is localized at the end of the
network’s topological region.

https://doi.org/10.1038/s41535-024-00703-w Article

npj Quantum Materials |            (2024) 9:99 2

www.nature.com/npjquantmats


equilibrium case, dI(V, r, t)/dV is proportional to the local non-equilibrium
density of states Nneqðω ¼ eV ; r; tÞ ¼ � 1

π Im Grðω; r; tÞ½ �26. Here, the
retarded Green’s function matrix Ĝr is obtained by solving the differential
equation26

i
d
dt

þ ωþ iΓ� ĤðtÞ
� �

Ĝr t;ωð Þ ¼ 1̂ ; ð2Þ

with the detailed time dependence of the gate operation being encoded in
the time-dependent matrix form Ĥ of the Hamiltonian in Eq. (22). The
rotation of the magnetic moments is characterized by two time scales: the
rotation time TR to rotate a single moment by π/2 between in- and out-of-
plane alignment, and the delay time ΔTR between the start of rotations on
neighboring sites. Note that below all times are given in units of τe = ℏ/te
which implies that for typical values of te of a few hundredmeV, τe is of the
order of a few femtoseconds.

To ascertain the adiabaticity of the gate process, we compute the time-
dependent fidelity

FiðtÞ ¼ j ΨiðtÞjΨiðt0Þ
	 
j ð3Þ

(i = e, o) of the even (∣ΨeðtÞ


) and odd-parity (∣ΨoðtÞ



) many-body wave

functions of the entire 2D system2,4,30. Employing a novel formalism we

developed21, we compute the time dependence of the full many-body wave
functions for MSH systems with up to 600 sites (for details, see Methods
Section). Finally, to demonstrate the fractional statistics of MZMs, one
computes the time-dependent geometric phase, ϕi(t)(i = e, o), of the even
and odd-parity ground state wave function using the gauge- and
parametrization-invariant functional31,32

ϕiðtÞ ¼ arghΨiðt0ÞjΨiðtÞi � Im
Z t

t0

hΨiðt0Þj _Ψiðt0Þidt0 ; ð4Þ

where the exchange of two MZMs leads to a change of Δϕ = ϕe − ϕo by an
odd multiple of π/22,4,33.

Simulation of a
ffiffiffiffiffi
σz

p
-gate

Two basic gate architectures have previously been proposed to implement
topological quantumgates in 1D systems: a T-structure2 (Fig. 1a) and a loop
structure14 (Fig. 1b). We demonstrate the feasibility of implementing gate
protocols in both of these architectures inMSH systems, which can be built
using atomic manipulation techniques on the surface of a 2D
superconductor19, beginning with a

ffiffiffiffiffi
σz

p
-gate—realizing the exchange of

two MZMs—in a T-structure network of magnetic adatoms placed on the
surface of a 2D superconductor, as indicated by white arrows and the blue
area in Fig. 2a, respectively [the system consists of 600 sites with dimension

Fig. 2 | Simulation of a
ffiffiffiffiffi
σz

p
-gate in an MSH T-structure. a–d Spatial plot of the

zero-energy Nneq during consecutive times in the gate operation. White arrows
(dots) indicate antiferromagnetic in-plane (ferromagnetic out-of-plane) alignment
of the magnetic moments. Blue area indicates the superconducting substrate.
eMajorana world lines obtained from a projection of the zero-energy Nneq onto the
real space x-axis. fTime dependence of the fidelity Fe,o(t) for the even and odd parity
states and of the geometric phase difference Δϕ. gTime- and energy-dependentNneq

at a site of theMSH network (see yellow arrow in (a)). h Fidelity F as a function of TR

and ΔTR. Parameters are (μ, α, Δ, JS) = (−3.993, 0.9, 2.4, 5.2)tewith a difference of ΔJ
= 0.26te in the magnetic coupling between alternating sites on the T-structure,
(TR, ΔTR) = (500, 50)τe and Γ = 0.01te for the inverse quasi-particle lifetime. These
parameters, resulting in a topological superconducting gap ofΔt≈ 0.4te, were chosen
in order to minimize (i) the localization length of theMZMs along the network, and
thus (ii) the hybridization between the MZMs. Total system size for all results is
600 sites with dimension (20a0 × 30a0).
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(20a0 × 30a0)]. To reveal the fractional statistics ofMZMs, it is necessary for
the gate process to be adiabatic, thus avoiding excitations between the
MZMsand topologically trivial bulk states. To this end,we choose a rotation
time TR ≫ ℏ/Δt, where Δt is the topological gap in the system (the time-
dependent gate protocol is given in the Methods Section), and present in
Figs. 2a–d, the resulting zero-energyNneq at successive times during the gate
process together with the magnetic structure, shown as white arrows (the
full time dependence of the entire gate process is shown in Supplementary
Movie 1). At the initial time t = 0, twoMZMs are localized at the ends of the
topological horizontal segment of the T-structure (cf. Figs. 1a and 2a), while
the vertical segment is trivial. The exchange of the two MZMs is then
facilitated in three steps, as schematically shown in Figs. 2b–d. A compar-
ison between the spatial form of Nneq and that of the magnetic structure,
reveals as expected, that the spatial location of the MZMs follows the
boundary between the network’s topological and trivial regions, as sche-
matically shown in Fig. 1c. Once the braiding process is completed, Nneq

exhibits the same spatial structure as in the initial state (see Fig. 2a). The
resultingMajoranaworld lines (see Fig. 2e), obtainedby projecting the zero-
energy Nneq onto the real space x-axis, visualize the entire gate process in
time and space (a 3D rendering of the world lines is presented in Supple-
mentary Movie 2).

The time dependence of the fidelity Fe,o(t) during the entire gate pro-
cess is shown in Fig. 2f. Due to the evolving magnetic structure, Fe,o(t)
deviates fromunity after the start of the gate process, quickly reachingnearly
zero due to the approximate orthogonality between the initial many-body
state at t = 0 and that at t. However, at the end of the gate process, when the
initial magnetic structure is re-established, the fidelity returns to unity,
demonstrating the adiabaticity of the braiding process. As a result, the
geometric phase Δϕ reaches 3π/2 at the end of the process (see Fig. 2f),
establishing the fractional statistics of the MZMs. The adiabaticity of the
process is also reflected in the energy- and time-resolvedNneq at a given site
in the system (see Fig. 2g), which demonstrates that as the MZM moves
through a site, it remains well separated in energy from the bulk states, thus
ensuring a fidelity of unity. Finally, in Fig. 2h, we present the fidelity as a
function of rotation time TR and delay time ΔTR, which defines the time
regime necessary to observe an adiabatic process. We note that while a
measurement of dI(V, r, t)/dV visualizes the spatial braiding of the MZMs,
the actual gate process for the purpose of implementing quantum algo-
rithms should of course be realizedwithout a simultaneousmeasurement of
dI(V, r, t)/dV, as the presence of a tunneling current will likely lead to quasi-
particle poisoning and decoherence. In contrast, the use of an ESR-STM tip
to rotate the spins is not expected to lead to quasi-particle poisoning and
decoherence as no tunneling current is required34, and the tip can be located
a few lattice spacings away from the rotated spin and hence from the
MZM22–25.

Simulation of a σz-gate
Wenext implement a σz-gate, using theMSH loop structure of Fig. 1b. In the
initial (t = 0) configuration, the MZMs are localized in the upper right and
lower left corners of the loop (see Fig. 3a), at the ends of the topological
(ferromagnetic) segment in the loop’s lower right half. We realize a σz-gate
by moving the MZMs once around the entire loop structure (the time-
dependent gate protocol is given in the Methods Section). The resulting
zero-energyNneq togetherwith the correspondingmagnetic configuration is
shown in Figs. 3a–d for consecutive times during the gate operation (the full
time dependence of Nneq during the entire gate process is shown in Sup-
plementary Movie 3). After the end of the gate process, Nneq exhibits the
same spatial structure as in the initial configuration (seeFig. 3a).TheMZMs’
world lines (see Fig. 3e), shown as a projection of the zero-energyNneq onto
the diagonal axis (see dashed yellow line in Fig. 3a), reveal the double
exchange of theMZMs in space and time (a 3D rendering of the world lines
is presented in Supplementary Movie 4). The adiabaticity of the process, as
demonstrated byFo reachingunity at the endof the gate process (see Fig. 3f),
then implies a change in the geometric phaseofΔϕ=π.Note that after half of
the gate operation at time t1/2, the two MZMs have been exchanged, which

realizes a
ffiffiffiffiffi
σz

p
-gate, similar to the case of Fig. 2. However, while the geo-

metric phase Δϕ at this point has as expected changed by π/2 (Fig. 3f), the
corresponding fidelity is zero. The latter, however, is not a reflection of the
non-adiabaticity of the process, but of the fact that the initial spin config-
uration (Fig. 3a), and that at time t1/2 differ significantly (Fig. 3c). Indeed, the
adiabaticity of the gate process is again reflected in the energy and time
dependence of Nneq at a site in the loop (see Fig. 3g), which demonstrates
that theMZMand thebulk states remainwell separated in energyduring the
gate process. To contrast this, we consider a 10-times faster gate operation:
while in this case, the fidelity Fo = 0.98 is only slightly reduced from unity
(Fig. 3h), the geometric phase deviates already strongly from the expected
value of ± π, clearly revealing the breakdown of adiabaticity. This is further
confirmed by a plot of Nneq (see Fig. 3i) that reveals a strong overlap in
energybetween theMZMandbulk states.We thus conclude that in addition
to the fidelity, Nneq reflects the adiabaticity, or lack thereof, of the gate
operation, thus providing an experimentally measurable signature of the
success or failure of the gate process, even without the readout of the
qubit state.

Simulation of a σx-gate
Finally, to implement a one-qubit σx-gate we consider an MSH system
consisting of two intersecting loops of magnetic adatoms, as schematically
shown in Fig. 4a. In each loop, a pair of MZMs, labeled α, β and γ, δ, are
localized at the ends of their respective ferromagnetic, and hence topolo-
gical, segments (shown in green). The many-body wave functions in the
even and odd parity sector are built as schematically shown in Fig. 4b with
∣Ωigs being the many-body ground state wave function. Due to the finite
hybridization of the MZMs within each pair, their respective energies are
small, but non-zero (see Fig. 4b). The σx-gate operation, transforming the
two states within each parity sector into one another, is implemented as
shown in Figs. 4c–h, where we present spatial plots of the zero-energyNneq

for consecutive times during the gate process (the time-dependent gate
protocol is given in the Methods section, and the full time dependence of
Nneq is shown in Supplementary Movie 5). The resulting Majorana world
lines (Fig. 4i), obtained by projecting the zero-energy Nneq onto the real
space axis indicated by the dashed yellow line in Fig. 4c, visualize the gate
operation, and in particular the double exchange of the β and γ MZMs in
time and space (a simplifiedbraidingdiagramof the gate process is shown in
the inset, and a 3D rendering of the world lines is presented in Supple-
mentary Movie 6). To evaluate whether the braiding of MZMs shown in
Figs. 4c–h indeed constitutes a σx-gate, we compute the success probabilities
for a successful completion of the gate process (i.e., at the final time t= tf) via

psij ¼ jhijðtf Þjσxjijij2 ð5Þ

with i, j = 0, 1, ∣ijðtÞ
 is the time-evolved many-body wave-function with
∣ijðtiÞ


 ¼ ∣ij


at the beginning of the gate process, i.e., at initial time t = ti,

and psij ¼ 1 implies a successful implementation of the σx-gate (∣ijðtÞ


is the

fullmany-bodywave functionof the entire systemwith 484 sites). In Figs. 4j,
k, we present psij as a function of the rotation time TR in the even and odd
parity sectors, respectively (the small TR limit is shown in Supplementary
Note 1). Itwas previously suggested5,15,33,35 that the oscillatory dependenceof
psij on TR is due to a finite energy splitting, ΔE, between the twomany-body
states within each parity sector (see Supplementary Note 2) arising from a
non-zero hybridization between the MZMs, and not related to transitions
between the Majorana zero modes and trivial bulk states. The latter is
supported by the observation that the total transition probability within the
Majorana sector ptotij ¼ psij þ pfij, where pfij ¼ jhijðtf Þjijij2 is the failure
probability, is unity (see dotted lines in Figs. 4j, k). Thus, the maximum
success probabilities of ps00 ¼ 0:993 and ps01 ¼ 0:999 (see black arrows in
Figs. 4j, k) can only be achieved for specific rotation times, TR. Since the
corresponding failure rates of pf00 ¼ 0:007 and pf01 ¼ 0:001, respectively,
are below the threshold Pauli error rates pth ≈ 0.01 for error correction36,37,
these cases nevertheless represent successful realizations of a topological σx-
gate. Finally, assuming a typical value of te = 100meV, we find that the total
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gate operation times (see upper x-axes in Figs. 4j, k) extend into the 100
picosecond range, reaching one nanosecond for some gate operations (see
below). Thus, the theoretical formalism employed here (see Methods
Section and ref. 21) allows us to study the realizations of quantum gate
operations from a few femto- to the nanosecond range, thus spanning six
orders of magnitude in time.

Spatial symmetries and the σx-gate
The oscillatory behavior of psij, which is not unique to the MSH system
discussed here, but has also been reported in the study of vortex systems15,33

and semi-conducting nano-wires5,35, represents a significant experimental
challenge in the realization of topological quantumgates, as it would require
the fine-tuning of the rotation time.

To overcome this challenge, it is necessary to reduce or eliminate
the energy splitting between themany-body states, which would hence
increase the oscillation period ~ ℏ/ΔE and thus render psij much less
sensitive to changes in TR. We propose two different approaches to
achieve this goal. The first and obvious approach is to increase the
distance between the MZMs, as the hybridization and hence the
energy splitting ΔE, decreases exponentially with the distance between
the MZMs, with the characteristic length scale set by the

superconducting coherence length, ξc, along the network direction.
While we cannot consider 2D MSH system sizes that are larger than
the ones shown in Fig. 4, we can test this idea by implementing a
σx-gate in a 1D T-structure, as shown in Fig. 5a, with the world lines
shown in Fig. 5b reflecting the gate protocol. We find that the oscil-
lation period of psij significantly increases with increasing distance d
(and hence decreasing hybridization) between theMZMs, as shown in
Fig. 5c for the even parity sector, and as exemplified for d = 36a0 in
Fig. 5d (we note that for this case, the total gate operation time exceeds
1ns). In particular, by changing the distance from d = 11a0 in the gate
architecture of Fig. 4 to a distance of d = 36a0 in the gate architecture of
Fig. 5a, the oscillation period is increased from Tosc ≈ 14τe to Tosc ≈
7000τe, i.e., by a factor of 500 (a similar increase is also found in the
odd parity sector). While this approach is thus quite successful in
increasing the oscillation period, given the large coherence length of
many s-wave superconductors38, this approach would likely require to
build and coherently control gate sizes of the order of hundreds of
nanometers, which, by itself, represents a significant experimental
challenge. We thus propose a second approach to eliminating the
energy splitting ΔE that utilizes the spatial symmetries of an MSH
system, such as the box-and-whisker structure shown in Fig. 5e. Such a

Fig. 3 | Simulation of a σz-gate in a loop MSH structure. a–d Spatial plot of the
zero-energy Nneq during consecutive times in the gate operation. eMajorana world
lines, as obtained from a projection of the zero-energy Nneq onto the dashed yellow
line in (a). f Fidelity of the odd paritymany-bodywave function and geometric phase
as a function of time. g Time- and energy-dependent Nneq at a site in the MSH

network (see yellow arrow in (a)). For all results (TR,ΔTR) = (500, 100)τe.h, i Same as
(f, g) but for a 10 times faster gate operation with (TR, ΔTR) = (50, 10)τe. Parameters
are (μ, α, Δ, JS) = (−3.993, 0.9, 2.4, 5.2)te, and Γ = 0.01te. Total system size for all
results is 441 sites with dimensions (21a0 × 21a0).
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system allows one to preserve a spatial point symmetry around C (see
Fig. 5e) at any point during the gate process, as reflected in the sym-
metric world lines shown in Fig. 5f. This point symmetry guarantees
that the energy splitting between the odd parity ∣01i and ∣10i states is
identically zero, thus completely eliminating the oscillatory behavior
in psij of the odd parity sector, as shown in Fig. 5g.While preserving the

point symmetry does not affect the oscillations in the even parity
sector (Fig. 5h), this approach provides the proof of concept that
invoking additional symmetries of the MSH system can facilitate the
realization of topological quantum gates. Clearly, future studies are
required to further elucidate the role played by spatial or other sym-
metries in the effective implementation of gate protocols.

Fig. 4 | Simulation of a σx-gate in a double-loop MSH structure. a Schematic
picture of the σx-gate in an MSH system, consisting of two intersecting loops of
magnetic adatoms, and two pairs of MZMs. b Effect of the σx-gate on the even and
odd parity many-body wave functions. c–h Spatial plot of the zero-energy Nneq at
successive times during the gate process. iMajorana world lines of MZMs α - δ (see
(a)), as obtained from a projection of the zero-energy Nneq onto the axis depicted by

the dashed yellow line in (c). Whenever two Majorana world lines cross, the one in
front is indicated by a thick line. The inset shows the corresponding (simplified)
braiding diagram of the gate process. Success and failure probabilities within the (j)
even parity sector with μ =−3.5te, ΔTR = 0.2TR, and (k) odd parity sector for
μ =−3.45805te,ΔTR = 0.1TR. For all other panels, parameters are (μ, α,Δ, JS) = (-3.5,
0.9, 2.4, 5.2)te, (TR, ΔTR) = (100, 20)τe, and Γ = 0.01te.
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Discussion
Wehave demonstrated the feasibility ofMSH systems as a new platform for
the implementation of topological

ffiffiffiffiffi
σz

p
-, σz-gates, and σx-quantum gates.

Using a novel theoretical formalism we recently developed21, we computed
the time-dependent many-body wave functions in MSH systems with as
many as 600 sites, allowing us to obtain the gates’ success probabilities in
experimentally relevant 2D systems for total gate operation times ranging
from the few femto- to the nanosecond scale, thus spanning six orders of
magnitude in time. We proposed a novel braiding mechanism in which the
spatial motion of MZMs is achieved through a manipulation of the MSH
system’smagnetic structure. The feasibility of such amagneticmanipulation
at the required lattice scale has recently been demonstrated in magnetic
dimers and trimers22–25 using ESR-STM techniques. Moreover, we showed
that quantum gates in MSH systems can be realized in different MSH

architectures such as the
ffiffiffiffiffi
σz

p
-, and σz-gates in the architectures of Figs.

2 and 3, or the σx-gate in the double-loop, T-, or box-and-whisker archi-
tectures shown in Figs. 4 or 5.We note that the implementation of quantum
gates in the above double-loop structure, or generalizations thereof, pos-
sesses the great advantage that any two MZMs can be braided directly (in
contrast to the previously considered T-structures), which could be of
potential benefit for the realizations of more complex quantum algorithms.
We identified experimentally relevant challenges in the implementation of
topological gates, such as the oscillatory dependence of the gates’ success
probabilities on the characteristic timeTR, arising fromafinite hybridization
between the MZMs, and proposed solutions which, e.g., make use of the
spatial symmetries of the gate process. Finally, we showed that the gate
operation canbe visualized via the time-, energy-, and spatially resolvednon-
equilibrium density of states26, Nneq, which can be measured via the time-

Fig. 5 | Effect of spatial symmetry on the gate process. a Spatial plot of the zero-
energy Nneq at t = 0 in the MSH T-structure, showing the two topological regions, left
and right of a trivial T-segment, with d denoting the spatial distance between the
Majorana zero modes within one pair. Blue and gray areas indicate the presence and
absence, respectively, of a superconducting substrate. bMajorana world lines, as
obtained from a projection of the zero-energyNneq onto the x-axis. cOscillation period
of the success and failure probabilities within the even parity sector as a function of
distance d between the twoMZMswithin each pair (see panel (a)). d Success and failure

probabilities within the even parity sector as a function of TR with ΔTR = 0.2TR for d =
36a0.For (a–d), parameters are (μ,α,Δ, JS) = (−4, 0.45, 1.2, 2.6)te, and for (b) (TR,ΔTR)=
(100, 20)τe. e Spatial plot of the zero-energy Nneq at t = 0 in the MSH box-and-whisker
structure, showing the two topological regions, left and right of the box. fMajorana
world lines, as obtained from a projection of the zero-energy Nneq onto the x-axis.
Success and failureprobabilities in the (g) odd and (h) evenparity sectors as a functionof
TR with ΔTR = 0.2TR. For (e–h), parameters are (μ, α, Δ, JS) = (-3.97, 0.9, 2.4, 5.2)te, and
for (f) (TR, ΔTR) = (120, 24)τe and Γ = 0.01te.
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dependentdifferential conductance,dI(V, t)/dV in STS experiments27,28. This
also allowed for the first time to image theMajorana world lines in time and
space. Our results thus represent the proof of concept that a combination of
atomicmanipulation techniques to quantum engineerMSH structures, and
of ESR-STM techniques to implement gate protocols, yields a versatile
platform for realizing topological quantum gates in MSH systems.

An important question remains as to the experimental realization of the
braiding scheme proposed here. In order to experimentally execute the
braiding process described above, it is necessary that the ESR-STM spin-flip
time be much smaller than the spin coherence times, i.e., the time scale over
which the spins remain in a coherent magnetic alignment. For spin dimers,
the time scale for spin-flip processes in ESR-STMexperiments is currently on
the order of 20ns, while the spin coherence time is approximately 86ns22.
However, the spin-flip time can plausibly be further reduced by factors of 10-
100 by increasing local magnetic fields, for example, through the use of
additional magnetic impurities34. Such a reduction would still preserve the
adiabaticity for the gate operation (see above). In addition, it was shown that
the spin coherence times can be increased by 4-5 orders of magnitude for
spins located on superconducting surfaces39 (rather than onmetallic surfaces
as in refs. 22–25) since the lowenergy fermionicdegreesof freedomgiving rise
to decoherence are gapped out. This could plausibly render the spin coher-
ence anywhere between 5 and 7 orders ofmagnitude larger than the spin-flip
time, which would be sufficient to perform the gate operations discussed
above.Moreover, the rotation of individual magnetic moments in ESR-STM
experiments was achieved remotely over distances of several lattice
constants23. The spatial extent of this remote driving is in general only limited
by the extent of theRFfield,Lrf: if it is sufficiently large, i.e., comparable to the
spatial size of theMSHnetworks discussed, itmight be possible toperforman
entire gate operation without the necessity to move the STM tip. This of
coursewould require that themagnetic adatoms in theMSHnetwork possess
different resonance frequencies (which can be realized by using different
magnetic adatomsor creating differentmagnetic environments23–25) and thus
can be independently rotated. While details concerning the efficient balance
between moving the STM tip, the extent of Lrf, and the ability to realize
different resonance frequencies are beyond the scope of our theoretical study,
we demonstrated above that topological MSH networks consisting of more
thanone typeofmagnetic adatomscanbecreated, thusproviding theproofof
concept for the applicability of remote driving in MSH networks.

Finally, several open theoretical questions remain as well. First, how can
one initialize these topological gates in specific qubit states, and read out qubit
states after the endof the gate operation? Second, howare the resultsdescribed
above, and in particular the transition probabilities, affected by quasi-particle
poisoning and/or disorder? And finally, is it possible to implement quantum
gates inmore dilutemagnetic networks?The latterwould eliminate the effects
of a direct exchange interaction between the magnetic adatoms and likely
facilitate theuseofESR-STMtechniques22–25 tomanipulate the local electronic
structure. While preliminary work investigating these questions further
supports the feasibility ofMSH systems for the implementation of topological
quantum gates and algorithms, their answers require some detailed discus-
sions and will therefore be reserved for forthcoming publications.

Methods
Theoretical formalism
Construction of ground-state wave-functions. The Hamiltonian in
Eq. (1) of the main text can be recast into the Bogoliubov de Gennes
(BdG) form

HðtÞ ¼ 1
2

X
i;j

cyi ci
� � HijðtÞ Δij

Δ�
ji �H�

ijðtÞ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HBdG

cj

cyj

 !
; ð6Þ

with HBdG possessing a particle-hole symmetry, as reflected in
HBdG ¼ �τxH

�
BdGτx, where τx is a Pauli matrix. At t = 0, the Bogoliubov

transformation,

cj

cyj

 !
¼
X
n

Ujn V�
jn

Vjn U�
jn

 !
dn
dyn

� 

; ð7Þ

diagonalizes the Hamiltonian as

Hð0Þ ¼
X
n

En dyndn �
1
2

� 

; ð8Þ

where En≥0. The ground state is the quasiparticle vacuum, ∣Ωi, such that
dn∣Ωi ¼ 0 for all n. We construct the quasiparticle vacuum as a product
state2,30,40. This is done by annihilating all quasiparticles from the true c-
particle vacuum.

∣Ωi ¼ 1ffiffiffiffiffi
N

p d1 . . . dN ∣0i: ð9Þ

The normalization is given byN ¼ j detðVÞj. The degenerate ground states
are thus

∣00i ¼ ∣Ωi;
∣01i ¼ dy2∣Ωi;
∣10i ¼ dy1∣Ωi;
∣11i ¼ dy1d

y
2∣Ωi:

ð10Þ

Time evolution of states. We define

dnðtÞ ¼ UðtÞdnU�1ðtÞ ð11Þ
where UðtÞ is the unitary time evolution operator,

UðtÞ ¼ T exp � i
_

Z t

0
dt0Hðt0Þ

� �
: ð12Þ

Using the time-dependent BdG equations8,15,33, the time-evolved operators
are given by

dynðtÞ dnðtÞ
� � ¼X

i

cyi ci
� � UinðtÞ V�

inðtÞ
VinðtÞ U�

inðtÞ

� 

; ð13Þ

where

UðtÞ V�ðtÞ
VðtÞ U�ðtÞ

� 

¼ T exp � i

_

Z t

0
dt0HBdGðt0Þ

� �
U V�

V U�

� 

: ð14Þ

We can now write the time-evolved ground states

∣00ðtÞ
 ¼ ∣ΩðtÞ
;
∣01ðtÞ
 ¼ dy2ðtÞ∣ΩðtÞ



;

∣10ðtÞ
 ¼ dy1ðtÞ∣ΩðtÞ


;

∣11ðtÞ
 ¼ dy1ðtÞdy2ðtÞ∣ΩðtÞ
:
ð15Þ

The time-evolved quasiparticle vacuum is given by

∣ΩðtÞ
 ¼ eiαðtÞffiffiffiffiffiffiffiffiffiffi
N ðtÞ

p Y
k

dkðtÞ∣0i: ð16Þ

The normalization is given by N ðtÞ ¼ j detðVðtÞÞj. The phase α(t) arises
from the evolution of the true vacuum. However, this phase is gauged away
in our gauge-invariant formulation of physical quantities, such as the
geometric phase.
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Overlaps between states. For states ∣ψ


; ∣ψ0
 2 f∣00i; ∣01i; ∣10i; ∣11ig,

the overlaps have the form

hψ0ð0ÞjψðtÞi ¼ ð�1Þs eiαðtÞffiffiffiffiffiffiffiffiffiffi
NN ðtÞ

p

× h0jQ
k
dykðd1Þn

0
1 ðd2Þn

0
2 ðdy1ðtÞÞ

n1 ðdy2ðtÞÞ
n2 Q

k
dkðtÞj0i :

ð17Þ

The minus sign is due to reversing the order of the operators in ψ0	
∣ and

s ¼ ðn01 þ n02Þðn01 þ n02 � 1Þ=2þ NðN � 1Þ=2. The vacuum overlap can
now be calculated using Wick’s theorem41,42,

hψ0ð0ÞjψðtÞi ¼ ð�1Þs eiαðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NN ðtÞ

p pf ðMÞ: ð18Þ

The matrix M is an anti-symmetric matrix constructed from the
contractions between operators, and pf( ⋅ ) is the Pfaffian. The resulting
matrix is41,43,44

M ¼

VT ð0ÞUð0Þ VT ð0ÞV�ð0Þ VT ð0ÞUðtÞ VT ð0ÞV�ðtÞ
Uyð0ÞV�ð0Þ Uyð0ÞUðtÞ Uyð0ÞV�ðtÞ

VT ðtÞUðtÞ VT ðtÞV�ðtÞ
UyðtÞV�ðtÞ

0
BBB@

1
CCCA :

ð19Þ

Note that rows and columns corresponding to unoccupied modes must be
truncated41. The lower triangle is found using anti-symmetry. For transition
probabilities, Eq. (18) simplifies to

jhψ0ð0ÞjψðtÞi j2 ¼ 1
NN ðtÞ j detðMÞj: ð20Þ

Time-dependent gate protocols
To implement time-dependent gate protocols, we introduce the function

sðt; t0Þ ¼
π

2

0; t<t0

sin2 t�t0
TR

� �
; t0 ≤ t ≤ t0 þ TR

1; t>t0 þ TR

8><
>: ð21Þ

which (as shownbelow)describes the rotation of a spin fromapolar angle of
θ = 0 to π/2 over a rotation time TR, starting at time t0. This function was
chosen as it guarantees a smooth evolution of the polar angle from 0 to π/2.
Here, we use spherical coordinates to describe each spin’s orientation in
space, such that

SRðtÞ ¼
cos ϕðR; tÞ� � sinðθðR; tÞÞ
sin ϕðR; tÞ� � sinðθðR; tÞÞ

cosðθðR; tÞÞ

0
B@

1
CA : ð22Þ

The azimuthal angle ϕ is measured with respect to the x-axis. Below,
we also introduce ΔTR as the delay time between the start of a spin
rotation at one site, and that on the next site, and ΔTwait denotes a
pause at certain steps in the gate process, which allows the system to
equilibrate.

Gate protocol for implementing a
ffiffiffiffiffi
σz

p
-gate in the T-structure. To

implement a
ffiffiffiffiffi
σz

p
-gate in the MSH T-structure of Fig. 2 in the main text,

we number the sites of the magnetic adatoms from 1 to 2Nx+ 1 along the
horizontal segment, where Nx is the length of one leg of the T-structure
and from 2Nx + 1 to 3Nx along the vertical segment. The time depen-
dence of the azimuthal and polar angles of the spins in the network are
then given by

Gate protocol for implementing a σz-gate in theMSH loop-structure.
In the MSH loop structure, we label the magnetic adatoms starting from
the lower left corner as 1 and go counter-clockwise up until 4Nx, whereNx

+ 1 is the number of adatoms on one side of the square. By rotating a spin
adjacent to the topological region from an in-plane to an out-of-plane
alignment, and then rotating a spin at the other end of the topological
region from an in-plane to an out-of-plane alignment, we move the
topological region by one site, while leaving its length unchanged.
Repeating this until the topological region returns back to its initial
placement in the loop, a σz gate is executed. The azimuthal and polar
angles for the spins of these 4Nxmagnetic adatoms are given as a function
of time by

ðϕi; θiðtÞÞ ¼

π
2

�
; �ð�1Þisðt; ði� 1Þ � ΔTRÞ þ ð�1Þisðt; ð4Nx þ 2� iÞ � ΔTRÞ; 1≤ i≤Nx

π
2 ; 0
� �

; i ¼ Nx þ 1
π
2 ; �ð�1Þisðt; ð4Nx þ 2� iÞ � ΔTRÞ þ ð�1Þisðt; ð4Nx þ 1þ iÞ � ΔTRÞ
� �

; Nx þ 2≤ i≤ 2Nx þ 1

0; ð�1Þisðt; ði� Nx � 1Þ � ΔTRÞ � ð�1Þisðt; ð7Nx þ 3� iÞΔTRÞ
� �

; 2Nx þ 2≤ i≤ 3Nx þ 1

8>>>><
>>>>:

ð23Þ

ðϕi; θiðtÞÞ ¼

π
2 ;�sðt; 0Þ þ sðt; 2Nx � ΔTRÞ
� �

; i ¼ 1
π
2 ; ð�1Þisðt; ði� 1Þ � ΔTRÞ � ð�1Þisðt; ð2Nx � 2þ iÞ � ΔTR þ ΔTwaitÞ
� �

; 1< i≤Nx

0;�ð�1Þisðt; ði� 1Þ � ΔTRÞ þ ð�1Þisðt; ð2Nx � 2þ iÞ � ΔTR þ ΔTwaitÞ
� �

; Nx þ 1≤ i≤ 2Nx

0;�sðt;TR þ 2Nx � ΔTR þ ΔTwaitÞ þ sðt;TR þ ð4Nx � 1Þ � ΔTR þ ΔTwaitÞ
� �

; i ¼ 2Nx þ 1
π
2 ;�ð�1Þisðt; ði� 2Nx � 1Þ � ΔTRÞ þ ð�1Þisðt; ði� 1Þ � ΔTR þ ΔTwaitÞ
� �

; 2Nx þ 1≤ i≤ 3Nx

0; ð�1Þisðt; ði� 2Nx � 1Þ � ΔTRÞ � ð�1Þisðt; ði� 1Þ � ΔTR þ ΔTwaitÞ
� �

; 3Nx þ 1≤ i ≤ 4Nx

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð24Þ
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Gate protocol for implementing a σx-gate in the MSH double loop-
structure. In order to implement a σx-gate in the MSH double loop
structure shown in Fig. 3 in themain text, we label the adatom sites from1
to 8Nx, where Nx + 1 is the number of adatoms along one side of each
square. The sites 1 to 4Nx are on the lower left square, starting from the
lower left corner going counter-clockwise, and the sites 4Nx+ 1 to 8Nx are
on the upper right square, again starting at the lower left corner and going
counterclockwise. The crossings of the two squares occurs at sites Nx +
1+ d and 3Nx+ 1− d in the first square and at sites 5Nx+ 1− d and 7Nx

+ 1+ d in the second square, where d is both the horizontal and vertical
distance from the lower left corner of the first square to the lower left
corner of the second square. Like in the σz-gate, both topological regions
aremoved around their respective loop once; this is achieved by rotating a
spin adjacent to the topological region from an in-plane to an out-of-
plane alignment, and then rotating a spin at the other end of the topo-
logical region from an in-plane to an out-of-plane alignment, thus
moving the topological region by one site, while leaving its length
unchanged. The azimuthal and polar angles of the gate process are then
given by

For the two crossing points of the squares we defined

f Nxþ1þdðtÞ ¼ �ð�1ÞNxþdsðt; ðNx þ dÞ � ΔTRÞ
þð�1ÞNxþdsðt; ð4Nx þ d þ 1Þ � ΔTR þ 2ΔTwaitÞ
�ð�1ÞNxþdsðt; ð6Nx � dÞ � ΔTR þ 3ΔTwaitÞ
þð�1ÞNxþdsðt; ð7Nx � d þ 1Þ � ΔTR þ 3ΔTwaitÞ

f 3Nxþ1�dðtÞ ¼ �ð�1Þ3Nx�dsðt; ð3Nx þ dÞ � ΔTR þ ΔTwaitÞ
þð�1Þ3Nx�dsðt; ð8Nx � d þ 1Þ � ΔTR þ 4ΔTwaitÞ :

Data availability
Original data are available at https://doi.org/10.5281/zenodo.14183247.
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Thecodes thatwere employed in this study are available from the authors on
reasonable request.
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