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Vanadium dioxide (VO,) is a prototypical material that undergoes a structural phase transition (SPT)
from a monoclinic (M1) to rutile (R) structure and an insulator-to-metal transition (IMT) when heated
above 340 K or excited by an ultrafast laser pulse. Due to the strong electron—electron and
electron-lattice interactions, modeling the ultrafast IMT in VO, has proven challenging. Here, we
develop an efficient theoretical approach to the light-induced phase transitions by combining a tensor
network ansatz for the electrons with a semiclassical description of the nuclei. Our method is based on
a quasi-one-dimensional model for the material with the important multiorbital character,
electron-lattice coupling, and electron—electron correlations being included. We benchmark our
method by showing that it qualitatively captures the ground state phase diagram and finite-
temperature phase transitions of VO,. Then, we use the hybrid quantum-classical tensor network
approach to simulate the dynamics following photoexcitation. We find that the structure can transform
faster than the harmonic phonon modes of the M1 phase, suggesting lattice nonlinearity is key in the
SPT. We also find separate timescales in the evolution of dimerization and tilt lattice distortions, as well
as the loss and subsequent partial restoration behavior of the displacements, explaining the complex

dynamics observed in recent experiments. Moreover, decoupled SPT and IMT dynamics are
observed, with the IMT occurs quasi-instantaneously. Our model and approach, which can be
extended to a wide range of materials, reveal the unexpected non-monotonic transformation
pathways in VO, and pave the way for future studies of non-thermal phase transformations in quantum

materials.

The strong interactions within and between the electronic, lattice, and spin
degrees of freedom in strongly correlated materials lead to a wide range of
emergent properties and phase transitions but also make them difficult to
understand. One of the archetypal strongly correlated materials, vanadium
dioxide (VO,) is a transition-metal compound which undergoes a first-
order transition from the insulating phase to the metallic phase at T, =340 K
and ambient pressure' ™. Coinciding with this insulator-to-metal transition
(IMT), a structural phase transition (SPT) also occurs from the low-
temperature distorted monoclinic (M1) phase to the high-temperature
undistorted rutile (R) stucture’”. Due to the strong correlations between the
internal charge, orbital, and lattice degrees of freedom, the underlying
mechanism of these transitions in VO, is still under debate® . In particular,

it remains unclear whether the transition is best described as a Peierls-like
transition driven by the structure change of lattice'® or as a Mott-like
transition driven by the electron-electron correlations'”.

On the other hand, nonequilibrium phase transitions in materials
induced by ultrafast light pulses are attracting considerable attention and
represent a rapidly developing field in condensed matter physics'® ™, as they
offer an efficient way to tune and control material properties on ultrafast
timescales. In VO,, intense laser pulses can suddenly change the potential
energy surface of the lattice through electronic excitation and drive the
ultrafast SPT and IMT**”. As, in principle, the lattice and electronic degrees
of freedom can respond on different timescales, the light-induced phase
transition has become one of the key tools to address the nature of IMT****.
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Early experiments highlighted the role of lattice distortions in the light-
induced IMT***, but more recent studies suggest that the IMT is faster than
the SPT and emphasize the importance of electron—electron
correlations”™, In a recent experiment, the complete structural and
electronic nature of light-induced phase transitions in VO, have been
resolved at their fundamental timescales using ultra-broadband few-fem-
tosecond spectroscopy. In addition to a quasi-instantaneous IMT, a much
more complex pathway in the light-induced phase transitions was observed.

However, in contrast to these experimental advances, there have been
very limited theoretical studies on the nonequilibrium phase transition in
VO,. This is naturally due to the complexity of treating even the normal
thermal transition in VO,, and so most studies have used simplified static
models***”* or structural only models” to interpret the transient signatures.
Only recently has time-dependent density functional theory (TD-DFT)
been applied to the problem®"”, but the use of DFT to describe VO, has
often been controversial due to the neglect of electron—electron interactions.
The complexity of uncovering the important couplings from DFT has also
motivated the use of simplified models in the past™. Furthermore, these
works predict transformation times that are strongly dependent on the
excitation fraction and initial temperature, an effect not seen in recent
ultrafast X-ray diffraction studies’***.

To overcome these limitations and provide a more transparent model,
here we present a tensor network study of the light-induced phase transi-
tions using a simplified quasi-one-dimensional model for VO,, taking into
account the important physical ingredients: the multiorbital character,
electron-lattice coupling, and electron-electron correlations. We show that
this model qualitatively captures the equilibrium properties of VO, by
calculating the ground state phase diagram and finite-temperature phase
transitions. When the light pulse is applied to the system, a hybrid quantum-
classical tensor-network method is used to simulate the dynamics. We find
that the structure can transform faster than the corresponding harmonic
phonon modes of the M1 phase, suggesting the nonlinearity of lattice
potential is key in the SPT. We also find separate timescales for the evolution
of dimerization and tilt distortions in the lattice dynamics, and that the
displacements exhibit a loss and subsequent partial restoration behavior,
which can provide an explanation for the complex dynamics observed in
ref. 49. Moreover, decoupled SPT and IMT dynamics are observed, where
the initial M1 structure transforms to the R one in tens of femtoseconds,

Cr Cr

R phase M1 phase

Fig. 1 | Crystal structure of VO,. Here the red (blue) spheres represent vanadium
(oxygen) atoms. In the rutile R phase (left), the vanadium atoms are located at the
center of the octahedrons made of oxygen atoms. The finite X; and X, lattice dis-
tortions characterize the monoclinic M1 phase (right), where the X; component
captures the dimerization along the ¢y axis, and the X, component acts as a tilting
perpendicular to the cg axis.

while the IMT occurs quasi-instantaneously. These results support the
recent experimental findings and provide key insights into the light-induced
phase transitions in VO,. Our model and approach, which treat the elec-
tronic degrees of freedom in a true many-body way, can be extended to other
systems like charge-density wave systems or charge transfer salts in which
strong electron-electron and electron-lattice interactions are key, and thus
will advance the study of light-induced phenomena far beyond VO,.

Results

Model

Our model for VO, is inspired by the earlier static model of ref. 53. In VO,, the
vanadium 3d orbitals hybridize and split under the action of the crystal field.
The relevant orbitals to the IMT and SPT are the a;, singlet and e doubleE
(equivalently and often referred to as such in the literature, d) singlet, and 7
doublet). Since the crucial aspect is the distinction between a;,and eg orbitals
based on their bonding character with the ligands and response to the atomic
displacements, like ref. 53, we consider only one e; orbital to simplify the
theoretical model without losing the important physics of VO,. As the Peierls
instability of VO, mainly occurs along the cp axis connecting adjacent
vanadium ions through the dimerization and tilting displacement, which splits
the a,, orbital into subbands and shifts the e orbital, it is widely accepted that
VO, can be described by a one-dimensional a;, band embedded in a three-
dimensional background of €7 states'”. For instance, it has been shown that for
the optical response, VO, behaves like an effective one-dimensional electronic
compound™*”, while structural studies also support that the transition can be
described in this reduced state”*. Thus, we model the vanadium dioxide as a
quasi-one-dimensional system, for which the lattice displacement X = (X3, X;)
is introduced to capture the dimerizing displacement along the ¢ axis and the
band-splitting tilting displacement perpendicular to the cx axis, respectively;
see Fig. 1. The total Hamiltonian for this simplified model of VO, with the
coupling to lattice degrees of freedom is given by

H=H,+H, 5+ ®X). 1)

The quasi-one-dimensional treatment of the ey states may renormalize the
interaction strength due to the changed density of states, but will not affect
the underlying important interactions with the lattice and a; ; orbitals. As we
will shortly show, we treat the electronic component fully quantum
mechanically, while treating the nuclei classically, leading to a “semi-
quantum” approach.

Concretely, the purely electronic component reads

H, = _Z Z Z tacz,a,ica.mi-%—l

i a=120=1,]

—tp Z Z¢ CIJ,;’CZ,UJ +H.c 2)

i o=t

+ Z ZZ €My + %Z ni(ni - 1)7
i

i a=l1,

where a=1, 2 denotes the a;, and €7 orbital, respectively, and ¢, is the
annihilation operator for electron at site i with orbital a and spin ¢. The
nearest-neighbor intra-orbital hopping is given by ¢#,, while ¢, is the onsite
inter-orbital hopping. Here, ¢, and U describe the onsite energy potential and
Hubbard repulsive interaction, respectively. We have the particle-number
operator 1; = 1 oMa; and #g; =D ooy, My e With 1, . = Cl; 5.i€ The
system is at quarter-filling. '

The lattice distortion can be modeled through the classical potential

energy”’

a,0,i*

O(X) = L|$ (0 + X3 + 5 2x,X,) .
&XZ_XZZ Xx2 X23 ()
+4( 1 2) +6( 1+ 2) ’

which is obtained from the Landau functional for improper ferroelectrics
expanded up to the sixth order in the lattice displacements to accurately
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recover the first-order nature of the transition. Here, L is the number of
lattice sites. The first term and the last term are fully rotationally symmetric
in the X;-X, plane. On the other hand, the term proportional to f3; favors a
lattice distortion only along one of these two directions, whereas the term
proportional to 3, favors a distortion with |X;| = |X;|. In the case of VO,,
both the displacements X; and X, are nonzero (i.e., there are both
dimerization and tilt in the displacements), hence we should have 8, > f3;.
Finally, for the electron-lattice coupling, we have

: 1)
H,_x =—-gX, Z (=D'ny; — 5X§ Z(”Li — 1y;)- 4)

The first term describes the dimerization induced by the displacement X;
along the ¢y axis and is controlled by the coupling constant g, while the
second term with strength & represents the crystal field splitting generated by
the tilting displacement X,. The coupling to X; is linear at leading order,
whereas the coupling to X, is quadratic since the opposite variations of the
hybridization between the e orbital and the closer/further oxygen ligands at
linear order in X, cancel each other, but their sum is nonzero at second
order”. Note that the total Hamiltonian is invariant under the transfor-
mations X; , — — X, and possesses a Z, x Z, symmetry.

The simplified quasi-one-dimensional model (1) allows us to study
both the equilibrium properties and light-induced nonequilibrium quan-
tum dynamics of VO, within the well-established tensor network frame-
work. We emphasize that, with this model, our goal is to qualitatively
reproduce the physics of VO,, especially the light-induced nonequilibrium
phase transitions, without any ambition for quantitative agreement. For this,
like ref. 53, we assume that the bands for a,, and eg orbitals have the same
bandwidth and center of gravity (i.e., &; =&, =0) to reduce the number of
Hamiltonian parameters. We set the half-bandwidth to 1eV, ie,
f=t,=0.5eV, and the inter-orbital hopping coefficient as ¢, =0.1eV,
which is small compared with the intra-orbital hopping and allows for the
redistribution of orbital populations during the light-induced quantum
dynamics. For the Hubbard interaction, we choose U = 0.6 eV to generate a
zero-temperature energy landscape that is similar to the one shown in ref. 53
with two local minima and the global minimum at finite X. A too large or too
small Hubbard interaction will lead to an energy landscape with either only
one local minimum or the wrong global minimum. Compared to ref. 53, our
Hubbard interaction is smaller due to the quasi-one-dimensional nature of
our model with a correspondingly different density of states. However, we
again note that our model treats the electron correlations exactly, which is
essential for a robust description of the light-induced dynamics. For the
lattice potential parameters, we use the same values as proposed in ref. 53,
ie, a=0.155¢eV, B =175x10"eV, f,=2f;, and y=6.722x 10" eV.
Finally, we choose the electron-lattice coupling strength as g = 0.528 eV and
§=0.2 eV, such that the transition temperature from the M1 phase to the R
phase is close to the experimental value. These values are close to the
electron-lattice couplings used in ref. 53.

We note that our definition of lattice potential parameters and
electron-lattice couplings in units of energy implies that the displacements
X; and X, are expressed in a dimensionless way, as only the product of
displacement and the (unknown) couplings affect the overall energy. For-
tunately, the underlying length scale (on the order of 0.1 A) is not relevant
for distinguishing the R phase (X; =X,=0) and the M1 phase (X; #0
and X, #0).

Ground-state phases

Having introduced the simplified quasi-one-dimensional model, we now
present the corresponding equilibrium properties both at zero and finite
temperature. These results show that our model captures the essential
physics of VO,, justifying the later dynamics studies. We first determine the
ground state phases. We solve the model Hamiltonian (1) using tensor
network methods within the Born-Oppenheimer approximation. To
determine the ground state phases, we calculate the zero-temperature
adiabatic potential ®.¢(X) for each fixed displacement X, which is

Deri(X1, X2) = Pert(0, 0) (eV)

0.525
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Fig. 2 | The zero-temperature internal energy density ®. as a function of the
lattice distortions X; and X,. Due to the Z, x Z, symmetry of the system, we only
show the results for the region with X;, X, > 0, where the internal energy has two
minima, one located at X; = X, = 0 corresponding to the undistorted R phase, and
another located at X; = 2.05 and X, = 1.65 corresponding to the distorted M1 phase.
Here the maximal bond dimension 1000 is used to produce this energy landscape, for
which the converged internal energy density of the insulating M1 phase (global
minimum) is = —0.71941 eV, and we have ®.(0, 0) =~— 0.71804 eV for the R phase
(this value can be further improved by increasing the maximal bond dimension due
to its metallic nature, but the local minimum property of the point X = 0 is unaf-
fected; see the Supplementary Information).

renormalized by the electronic energy
(X) = O(X) + (H,_x) + (H,)- (©)

Here the electronic energy (i.e., the last two terms) is obtained by employing
the infinite density matrix renormalization group (iDMRG) method™*; see
Methods. The quarter-filling is ensured in the numerical simulation by
introducing good quantum numbers. Due to the Z, x Z, symmetry of the
system under transformations X; , — — X; , (domain inversion), we focus
on the region with X;, X, > 0.

The results are shown in Fig. 2. There are two minima in the zero-
temperature energy landscape (due to the Z, x Z, symmetry, the local
minima at finite X are actually fourfold degenerate). One local mini-
mum is located at the origin point X; = X, = 0 and corresponds to the
undistorted R phase. On the other hand, the global minimum is located
at X; =2.05 and X, = 1.65, describing the distorted M1 insulating
ground state at zero temperature. From this, we conclude that the
simplified quasi-one-dimensional model (1) captures the essential
physics of VO, and provides a good playground to qualitatively study
its properties.

Phase transition at finite temperature

The key defining feature of VO, is, of course, the transition from the low-
temperature M1 phase to the high-temperature R phase, but reproducing
this thermal transition theoretically is nontrivial. Here we use the matrix
product operator (MPO) time evolution technique®"** in combination with
the purification method” to show that the simplified quasi-one-
dimensional Hamiltonian (1) can reproduce this finite-temperature phase
transition and estimate the corresponding transition temperature. We note
that in this method, the finite-temperature state is obtained from the
infinite-temperature state by imaginary time evolution; see Methods. To
ensure the quarter-filling, we use good quantum numbers in the numerical
simulation and start from a canonical infinite-temperature ensemble with
fixed particle-number density and finite system size**. While lattice entropy
has been suggested to be important to the phase transition in VO,
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Fig. 3 | Phase transition at finite temperature. a Free energy difference AF between
the Rand M1 phases as a function of the inverse temperature § for system size L = 20.
The corresponding transition temperature T, = 1/kgf. ~ 1131 K is obtained by sol-
ving the equation AF(f) = 0. The insert shows the bare adiabatic potential difference
A® g, where the dots are obtained from the numerical simulation, while the line is
the interpolation via polynomial function. We set the maximal bond dimension as
D =2000 in this plot. b Finite size extrapolation for transition temperature T, using
the function T.(L) = a + b/L° with a =1055 K, b =57292 K, and ¢ =2.2170. The
maximal bond dimension is fixed as D = 2000. ¢ Extrapolation of transition tem-
perature T, in the maximal bond dimension D for system size L = 20 using the
function T.(D) = a 4 b/D° with a =810 K, b =~ 122306 K, and ¢ ~0.7819. Here the
imaginary time step in the numerical simulation is set as 63 = 0.05 eV "

previously””*, for simplicity here we ignore this factor and focus on the
electronic contribution when studying the thermal phase transition.
Including lattice entropy would, however, serve to further reduce the
transition temperature.

We calculate the adiabatic potential @.gat temperature T'and study the
temperature evolution of the free energies

F(X,T) = Oe(X, T) — TS(X, T) ©6)

for the two local minima we obtained at zero temperature™. Since the
imaginary time evolution starts from the infinite temperature at which the
entropies S.. are the same for both R and M1 phases, the entropy at tem-
perature T can be calculated through

1 00(X, T')

o0
SX,T)=§ —/ ar’ - , @)
( > J LS T T

Here the infinite-temperature entropy S., can be further eliminated by
considering the difference between the free energies of R and M1 phases:

AF(T) = AD4(T) — TAS(T) (8)

with Aq)eﬂ(’r) = cDeff(X}b T) (Deff(XMb T) and AS( T) =
J7 dT’ (1/T")0AD&(T')/0T'. This quantity is what we are actually
interested in.

The finite-temperature results are presented in Fig. 3, where the ima-
ginary time evolution is carried out with time step 88 = 0.05 eV ™" (8 = 1/ksT
is the inverse temperature). Since the calculation for the entropy difference
AS requires us to perform the differential and integration with respect to the
temperature, we interpolate the adiabatic potential AD.g() using poly-
nomial functions. The obtained free energy difference from MPO time
evolution with maximal bond dimension D = 2000 for the system size L = 20
is shown in Fig. 3a. The negative AF at high temperature indicates that the

system is in the R phase, and there is a transition from the low-temperature
M1 phase (AF>0), with the transition temperature T.= 1131 K being
identified by AF = 0 for the used system size and maximal bond dimension.

We perform an extrapolation in L and D to estimate the transition
temperature T, for large system size and maximal bond dimension; see
Fig. 3b, c. In the extrapolation of system size with fixed maximal bond
dimension D = 2000, the change in transition temperature, as in the usual
cases, decreases as we increase the system size, justifying the extrapolation
function, from which the T for L — oo is only lowered by =76 K compared
with the value for L = 20. On the other hand, the maximal bond dimension
D has a more notable influence on T, as the changes of AF are very slow in
low temperatures, i.e., the temperature is more sensitive to AF in this region.
For the system size L = 20, the transition temperature for D — oo is lowered
by =321 K compared with the value for D =2000. Combining these two
effects, we obtain an estimation for the transition temperature for our used
parameters as T. = 734 K.

We would like to mention that the above estimated transition tem-
perature actually should be higher than the exact value. On the one hand, the
MPO imaginary time evolution method may lose its accuracy in the long
time limit (i.e., the low-temperature region), which makes it hard to obtain
the exact transition temperature; see Methods. Choosing a smaller time step
or larger bond dimension would increase the accuracy, but it is much more
computationally costly. On the other hand, including the lattice entropy
would also substantially reduce the transition temperature. Hence, the above
estimated value gives only a rough estimation of the transition temperature,
but shows that the overall energetic trends are captured correctly. We note
that the main object of this work is to investigate the physics of light-induced
phase transitions in VO,. Although the estimated value for T, is around a
factor of two higher when compared with the experimental value, our
simplified model (1) still qualitatively captures the phase transition from the
low-temperature M1 phase to the high-temperature R phase, hence pro-
viding the foundation for studying the light-induced phase transitions.
Moreover, as we show in Supplementary Information, the light-induced
quantum dynamics for our parameters, which lead to an estimation of
T, = 734 K, are almost the same as compared to a system with T.. = 0. Hence,
in this parameter range, the deviation in transition temperature from the
experimentally realized value will not affect the light-induced phase tran-
sitions qualitatively.

Light-induced quantum dynamics

Having shown that our quasi-one-dimensional model can qualitatively
capture the essential physics of VO,, especially the finite-temperature phase
transition, we next study the light-induced phase transition from the initial
M1 insulating phase to the long-time R metallic phase. We start from the
equilibrium M1 phase at zero temperature as numerous experiments have
shown a negligible change in the photoinduced dynamics upon changing
the initial temperature*>*, while static measurements also show minimal
changes in the overall structure when cooled”.

We excite the system using a pump pulse with the electric field

E, ()=E

— (=t umj ’ 2 2LI|“ f—
ump o~ (= topump)” /205, "C()Sl:(’-)]mr11la(lL tOApump)]v ©

0,pump

which is centered at time fo,ump and has central frequency wpump and
temporal width 0},mp. The pump pulse couples to the electronic degrees of
freedom through the Peierls substitution t, — t,e“rm(®) with the phase

Apump(t) = _(ed/h)/ dt’ Epump(t,) (10)

= Ao pumpTpump€ P hm2lerf(t_) — erf(t,)],

where d is the lattice constant, erf(z) = (2/+/7) [, dt e is the error
function, and we have te = (107 oy @puamp £ (£ = tO,Rump)] / V26 - With
the pump pulse, the displacement X also becomes time-dependent due to
the electron-lattice coupling.
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Fig. 4 | Lattice dynamics for pump pulses with different amplitude Ag pymp. Other
parameters for the pulses are Awpump = 1.5498 €V, Opump = 6 fs, and tg pump = 20 fs.
Here we set the iTEBD time step as 8t = 1.645 x 10> fs, and the maximal bond
dimension is 1000.

We use the hybrid quantum-classical tensor-network method to
simulate the dynamics of the system; see Methods. In this method, within
each time step 6t, the quantum electronic degrees of freedom | ) are evolved
according to the many-body Schrodinger equation using the infinite time-
evolving block decimation (iTEBD) method**", while the lattice degrees of
freedom X are treated classically using the Ehrenfest theorem. For the lattice
evolution, we also introduced a phenomenological damping term propor-
tional to the velocity X to model the lattice disordering observed in recent
X-ray diffraction experiments”****. The damping strength is controlled by
the coefficient & see Methods. We note that treating the quantum electronic
and classical lattice degrees of freedom separately is similar to the real-time
TD-DFT® used recently to model VO,”>. However, in our hybrid
quantum-classical tensor-network method, the electron—-electron correla-
tions are handled in a true many-body way, which enables capturing the full
interaction effects.

Photoinduced structural phase transition

We first study the structural phase transition of VO, induced by the pump
pulse. We consider a pulse with wavelength 800 nm, width 6 fs, and centered
at 20 fs. The electric field strength ranges from 0.5 to 1 V/A. Note that for
VO, with lattice constant d = 3 A, the electric field of strength Eopump=1V/
A corresponds to a Peierls substitution phase of strength Ag pump = 1.88. In
the following, we will use A pump to represent the pulse strength.

Figure 4 shows the time evolution of lattice displacements X; and X,
with damping coefficient £ = 1.316 eV - fs, chosen as a minimal value which
removes the unphysical structural revivals beyond 100 fs delay, corre-
sponding to the resolution of the best diffraction measurements™. The
responses reflect well the mean ultrafast lattice dynamics observed in VO, in
both ultrafast X-ray diffraction”*> and ultrafast electron diffraction®.
Especially, for the considered pulse strength the displacements X; and X,
quickly transform to zero within the total simulation time ~80 fs, indicating
the ultrafast photoinduced SPT from the distorted M1 phase to the undis-
torted R phase.

However, there are also several interesting features in the structural
dynamics at short timescales not previously observed. The first is the overall
timescale of the structural transition appears unrelated to the corresponding
phonon modes when the system is excited below the transition threshold
(see the Supplementary Information). In particular, X; transforms at around
the same time as the phonon mode would suggest (half period =21 fs,
crossing expected at =41 fs), but X, transforms considerably faster (half
period ~44 fs, crossing expected at ~64 fs). We note that the introduced
phenomenological damping, applied in both cases, is necessary to accurately

describe the dynamics of the transition as observed with X-ray diffraction”
but is not observed for phonons in the M1 phase”, and so we artificially slow
the phonon mode here. Thus the transition likely outpaces the phonon even
more. This suggests that, in contrast to assumptions in numerous
studies*****, the structural transition timescale is not limited by the normal
phonon mode frequencies but, in fact, samples a significant portion of the
nonlinear lattice potential. This nonlinearity means the common approach
of using the timescale of the transition alone to assign a structural or elec-
tronic origin by comparison to known Raman modes could be highly
misleading, not only for VO, but for light-induced phase transitions
generally.

The second notable effect is that X relaxes faster than X,, i.e., the
dimerization also relaxes prior to the tilt. This is broadly in-line with the
two-step structural phase transition mechanism proposed by Baum et al.”,
but while the pico-to-nanosecond timescale proposed there is at odds with
later diffraction measuremens®”***, here the change occurs many orders of
magnitude faster and is consistent with these recent diffraction measure-
ments. This separation is also consistent with recent TD-DFT calculations’".

Another remarkable feature of the lattice dynamics is that the dis-
placements X; and X, undergo a transient revival with opposite signs for
significant excitation levels. These findings can provide an explanation
for the complex dynamics observed in ref. 49, one of the only studies with
a resolution sufficient to resolve dynamics significantly below 100 fs. In
this work, the a;, band was found to exhibit a double-peak oscillatory
structure at tens of femtoseconds in the time evolution. It was pointed
out that the oscillation cannot be explained by the coherent electronic
effect since the scattering time for electrons is much faster than this
behavior, leaving these coherent lattice effects as the leading explanation,
in good agreement with our results here. We note that for larger damping
coefficient &, a stronger light pulse is required to observe the transient
revival behavior of lattice displacements, but overall the dependence on
pulse energy is quite weak, in contrast to recent TD-DFT calculation™*
but in agreement with recent X-ray diffraction measurements™.

Photoinduced electronic insulator-metal transition

We now turn our attention to the IMT. Since it is hard to track the time-
dependent occupations of single-particle states and the corresponding
closure of the gap in a many-body method like iTEBD, here we instead study
this phenomenon using the time-dependent optical conductivity and look
for the collapse of the optical band gap. To calculate the time-dependent
optical conductivity, in addition to the pump pulse, we further apply a weak
prObe pulse Aprobe(t) = AO,probe exp[—(t — tOAprobe)z/ Zolz;’robe] COs[wprobe
(t — o probe)] centered at time forobe = £+ and track the variation of the
current due to the presence of probe pulse, i.e., (Jorobe(f)), using the pump-
probe based method proposed in ref. 70, which identifies the response of the
system with respect to the later probe pulse; see Methods. Then the time-
dependent optical conductivity at time ¢« is given by

J probe(w)

M) = o T LA

(11

where Jorope(®) and Apcope(w) are the Fourier transformations of
(Jprobe(t)) and Aprobe(t), respectively. Numerically, a damping factor
exp(—#t) is introduced in the Fourier transformations, which effectively
eliminates the long-time data and is also necessary to distinguish the
Drude component of the spectral weight. With this term, a finite-time
simulation of the probe current within a sufficient time window is
enough to observe the behavior of optical conductivity; see the
Supplementary Information for the justification of our calculation of
optical conductivity. We also note that if there is no pump pulse, Eq. (11)
gives the optical conductivity at equilibrium.

In Fig. 5, we show the optical conductivity with and without the pump.
For the initial M1 phase at equilibrium, we apply a weak and narrow probe
pulse of frequency /iwp,qhe = 10 €V centered at £y prope = 0.658 fs with width
Oprobe = 0.0658 fs and amplitude Agprope = 0.01 (ie., a near-delta function),
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Fig. 5 | Optical conductivity with and without the pump. a, b The current density
(jprobe(t)) due to the presence of probe pulse with frequency /wp,obe = 10 €V, width
Oprobe = 0.658 fs, and amplitude Ag prope = 0.01. The center time £y probe 0f the probe
pulse is 0.0658 fs for (a) and 26 fs (blue) or 39 fs (orange) for (b). For the cases with
pump, we only plot the current up to time ~20 fs after the probe pulse centered at t+.
For longer times, the numerical errors are not ignorable (see Supplementary
Information). ¢, d The real part of the optical conductivity obtained from (jprobe(t))
shown in (a) and (b), respectively. For the pump pulse, the amplitude is chosen as
Ag pump = 1.88,and other parameters are the same as in Fig. 4. The iTEBD simulation
is performed using a time step &t =3.29 x 10~* fs and maximal bond dimension

D =1000, and we set 7 =0.15 fs"' in the numerical Fourier transformation.

which does not change the properties of the system qualitatively. Due to the
finite time step in the iTEBD numerical simulation, there is a small deviation
from zero for the current, even in the absence of external fields. For this, we
also subtract this fictitious current from (Jp,;ope(t)). The resulting current
density induced by the probe pulse is shown in Fig. 5a, giving an optical
conductivity with no amplitude at low frequencies and a first peak located at
hw = 1.1 eV, which identifies the insulating nature of the initial M1 phase;
see Fig. 5c.

On the other hand, the optical conductivity exhibits a sharply different
behavior following excitation by the pump pulse. Fig. 5b shows the current
density (jprobe(t)) for the probe pulses centered at £y prope = 26 and 39 fs,
times at which the lattice of VO, is still distinct from the R structure
(cf. Fig. 4). Other parameters of the probe pulses remain the same as in the
pump-free case. The collapse of the optical band gap [Fig. 5d] shows the
metallicity of the system by at least t = 26 fs. This photoinduced electronic
IMT is much faster than the SPT and can be considered as a quasi-
instantaneous transformation, which is consistent with both 60-fs resolu-
tion time-and-angle resolved photoemission experiments*® and with more
recent ultrafast reflectivity/absorption studies, which show electronic tran-
sitions as fast as 10 fs*~*’. The decoupling nature of SPT and IMT in the
light-induced nonequilibrium states also highlights the important role of
electron—electron correlations in driving the electronic transitions, which
are indeed Mott-like instead of driven by the Peierls instability. This effect is
equally treated in the simplified quasi-one-dimensional model (1) with the
electron-lattice coupling and handled in a many-body way.

Discussion
In conclusion, we have performed a tensor network study of the light-
induced phase transitions in VO,. A simplified quasi-one-dimensional

model was proposed to capture the corresponding essential physics, with all
the important ingredients such as multiorbital character, electron-lattice
coupling, and electron—electron correlations being included. We have
shown that this model can qualitatively describe the equilibrium properties
of VO,, such as the zero-temperature ground state phase diagram and finite-
temperature phase transitions, which can provide insights into the studies of
vanadium dioxide.

Under the action of an ultrafast light pulse, we found a number of
interesting structural and electronic behaviors. In agreement with a range of
recent studies, we found that the electronic transition precedes the structural
transitions” ", supporting a Mott-like origin for the transition. However,
we also found that the structure transforms faster than the harmonic
phonon modes of the M1 phase, suggesting the nonlinearity of lattice
potential is key in the SPT, and the simple timescale arguments used to
assign a structural or electronic nature to the transition from the previous
studies”*** do not necessarily apply for the more extreme case of light-
induced phase transitions. This may have ramifications for light-induced
phase transitions far beyond VO,. Additionally, we found separate time-
scales for the evolution of dimerization and tilt distortions in the lattice
dynamics, in broad agreement with older models of VO, but here several
orders of magnitude faster, in agreement with the timescales observed in
more recent X-ray diffraction studies™*. Finally, we also observed aloss and
subsequent restoration behavior of the structural displacements, which can
provide an explanation for the complex dynamics recently found in the
highest time-resolution studies to date”. Overall our results are fully con-
sistent with the most recent and highest time-resolution studies of both the
electronic”**’ and structural”***>* components of the transition, despite
only explicitly treating the mean displacements of the dimers and including
ultrafast disordering””* through a phenomenological damping term. Future
work will include systematic studies to find whether or not the IMT can be
induced without also introducing the associated SPT*, which would be a
clear marker of the Mott behavior, and examining to what degree the phase
transition can be controlled using optical pulses™. Our work sheds impor-
tant light on the nature of the light-induced phase transition in VO, at the
shortest timescales, and challenges assumptions about signatures of
decoupled electronic and structural phase transitions more generally.

Beyond VO,, our model and the tensor-network approach to solve the
many-body electronic wavefunctions coupled to classic nuclei can also be
extended to study light-induced phenomena in other quantum materials.
Naturally, it is applicable to other dioxide compounds (e.g., CrO,, TiO,,
NbO,, and so on), which exhibit interesting light-induced behaviors” but
also to cases like one-dimensional charge-density wave systems’ or cuprate
ladder systems”. It could thus be used to shed light, for instance, on the
mechanism behind the structural coherent control recently observed in one-
dimensional charge-density wave systems where two-independent distor-
tions are believed to be important’. The main constraints of our approach
are that the correlated electron system is treated as one-dimensional and the
coupling to lattice locally, but additional bands and other lattice potentials
can easily be included. This means the model is directly applicable to a wide
range of systems like mixed valency planar transition-metal compounds and
charge transfer salts”. We especially note that, for some organic super-
conductors, our ability to treat nonlinear phononics could be highly valuable
in studying effects like light-induced superconductivity’. These possibilities
demonstrate the generality of our approach and form promising lines for
study in the future.

Methods

DMRG simulation of the zero-temperature adiabatic

potential energy

We employ the iDMRG algorithm proposed in ref. 60 to calculate the zero-
temperature adiabatic potential energy (5), which initializes the DMRG
environments and performs the updates using the finite-size DMRG algo-
rithm for a unit cell of L sites at the beginning. Then the system size is
increased between the DMRG sweeps by inserting a unit cell into each of the
environments. The translation invariance is recovered when the iDMRG
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iteration of sweeps and growing environments converges to a fixed point, at
which the environments describe infinite half-chains.

In our numerical simulation of the model (1), we consider a unit cell of
four sites, and each site contains one a,, orbital electron and one eg orbital
electron. The particle-number and magnetization U(1) symmetries are also
considered to enhance the performance of iIDMRG numerical simulations.
We use the product state |1, |, o da, Ter) as the initial trial wave function
for the unit cell in the IDMRG simulation and gradually increase the bond
dimension during sweeps. The maximal bond dimension used to produce
Fig. 2 is 1000, for which the energies at most displacements X are converged
very well except for those near X = 0 due to the metallic nature of the phase.
However, as we show in the Supplementary Information, further increasing
the maximal bond dimension will not change the result that the zero-
temperature energy landscape has a global minimum at X; = 2.05, X, ~ 1.65
and a local minimum at X = 0. Hence the results obtained in this work are
unaffected.

Finite-temperature simulation

To study the finite-temperature phase transition of VO,, we need to cal-
culate the equilibrium state of the system in the (here, unnormalized)
canonical ensemble

ppn =€ (12)

with Hy being the projection of Hamiltonian onto the Hilbert subspace
Hy = {In)= &;In) > n; } with total particle number N. For the
quarter-filling considered in thls work we have N being the system size L.
We consider a purification of the density matrix pg, for numerical
facilitation®

=3 lpganln)im) @),

n,n’

lPg/2.n) (13)

which is defined in the doubled Hilbert space Hy ® Hy .. and
satisfies Tr,, |pg/> n)(Pg/on| = pp - Here the auxiliary Hilbert space
Hy aux 18 isomorphic to the physical Hilbert space Hy. Starting from
the purification lpo n) of the infinite-temperature ensemble, we can
employ the imaginary time evolution to obtain the purification for the
finite-temperature state PB.N:

IPgan) = (€2 @ 1u)lpo ). (14)
Then the thermal expectation value of an observable O is given by
Tr(e"gHN 0) (Pﬁ/Z,N|O|P[S/2,N)
( B= —BHyY . (15)
Tr(e=Pfiv) (PgranlPg/aN)

Since it is impossible to calculate the exponential e #*2 directly,
we need to divide the total imaginary time evolution into a lot of small
time steps 88 and calculate the exponential e *** approximately in
each time step. In this work, we use the MPO W" method proposed in
refs. 61,62 to perform this task. As the imaginary time evolution does
not change the particle number, we can ensure the quarter-filling of
the system by considering the infinite-temperature state in the
canonical ensemble

>
{ny " =N}

Matrix product-state (MPS) methods to construct this canonical infinite-
temperature ensemble were proposed in ref. 64. Compared to the grand-
canonical infinite-temperature ensemble that is simply described by the
identity matrix, the resulting MPS representation of |p, ) is highly
nontrivial and the corresponding maximum bond dimension increases with
the system size, which limits the system size we can simulate efficiently.

|P0AN> = |n) ® |n)aux‘

(16)

However, with this state, we can simply focus on the numerical time
evolution and does not need to tune the chemical potential to guarantee the
desired particle filling. Moreover, the phase transition between M1 and R
phases then can be directly identified by comparing the Helmhotz free
energy F= O — TS.

The errors in our finite-temperature simulation come from the finite
imaginary time step, maximal bond dimension, and system size. For the
finite time step 8, the error per site of the MPO W" method in each time
step is independent of the system size and is given by O(88%) for the evolved
purification state™ . Therefore, the free energy F has an error O(88*) in
each time step, and the corresponding accumulated error for the total
evolved time f3/2 is given by ~B3f3°, which may have a notable influence in
the low-temperature region and affect the transition temperature. On the
other hand, Fig. 3b, ¢ give us insights into the errors from finite maximal
bond dimension and system size, which can be estimated via the extra-
polation. Compared to the system size, the maximal bond dimension is
more relevant for the transition temperature. Therefore, to improve the
accuracy of the finite-temperature simulation, we need to consider smaller
time steps and larger bond dimensions, which increases the computational
challenges.

As the transition temperature of VO, is not so high, the minimally
entangled typical thermal state (METTS)”””® could be a possible alter-
native method for improving the finite-temperature calculation, which,
however, requires many samples to converge to a precise result and
needs remarkable computational resources. Including the ignored lattice
entropy in this work by considering the phonon-phonon interactions
could also improve the finite-temperature results, which is more com-
plicated and is beyond the goal of this work for studying light-induced
phase transitions.

Hybrid quantum-classical tensor-network method

To simulate the light-induced quantum dynamics, we decompose the
time evolution of the system into two parts, i.e., the quantum elec-
tronic and classical lattice degrees of freedom. For the evolution of
electronic state |y), we use the Born-Oppenheimer approximation
within each time step 6, i.e., the lattice distortions are approximated
as fixed, while the electronic degrees of freedom are treated dyna-
mically. The use of the Born-Oppenheimer approximation is justified
via the extremely fast electron-electron scattering in VO,***°, which
allows the electron distribution to equilibrate far faster than the lat-
tice motion. Then the electronic equation of motion is given by the
Schrodinger equation and can be written as

y(t + 61)) = e~ HEXORy (1)), (17)
which can be simulated numerically by the iTEBD method. We note that we
used the natural units in the numerical simulation, for which some of the
simulation parameters, like the time step &, become irrational numbers in
the international system of units.

On the other hand, for the lattice dynamics, we use the classical
approximation and invoke the Ehrenfest theorem for the lattice degrees of
freedom

d’X; dx;
M—Si=F() — E ==, (18)
qz = RO -4
where M is the effective mass of ions, which is set as 10.8241 ¢V - fs?, and £ is a
damping coefficient tuned to model the lattice disordering observed in
recent X-ray diffraction experiments””***". The forces F; are obtained
through the Hellmann-Feynman theorem and explicitly read

Fy= 85 cos(Qi)ylny ly) — aX, — 28,X,X3
i=1,2
, (19)
2
—B,X, (X3 — X3) — X, (X3 + X2)
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and

§Xz ) (wl(ny; — ny Dly) — aX, — 2B, X1X,
i=1,2 (20)
+HB,X,(X3 = X3) — X, (3 + X3)’;

see the Supplementary Information for details. With the equations of
motion (17) and (18), both the light-induced structural and electronic
dynamics of VO, can be simulated. The convergence and robustness of our
results is provided in the Supplementary Information.

Calculation of optical conductivity
Given the knowledge of the time-evolved electronic wave function |y(t))
under the action of an external field A(f), the temporal evolution of the

current, defined as (J(1)) = (y()[J(1)|y (1)) with

_6H(t)

](t) = 6A(t) - _IZ ta[emmcz.a’icu,mﬂrl - H'C']a
a,o0,i

@1

can be readily obtained, and we can extract the optical conductivity from this
current.

For the systems at equilibrium, we can set the external field A(f) to be
the weak probe pulse Ap,obe(f), and the corresponding current is denoted as
(Jprobe(1))- Since the wave function |y/(t)) describes the influence of Ay, obe 0N
the ground state, the optical conductivity at equilibrium can be calculated
through this current using Eq. (11).

This scheme can be extended to calculate the optical conductivity for a
nonequilibrium system driven by the pump pulse. To this end, we employ
the pump-probe-based method proposed in ref. 70, where the temporal
evolution of the system is traced twice in order to identify the response of the
system with respect to the later probe pulse. The procedure is as follows.
First, the time-evolution process induced by the pump pulse Apymp(f) in the
absence of probe pulse is evaluated, which describes the nonequilibrium
development of the system, and we have the current (J,ump(t)). Second, in
addition to the pump pulse, we also introduce the weak probe pulse Aprope(t)
centered at time £+, which leads to the current (Jioi(f)). The subtraction of
Jpump(8)) from (Jioi(t)) produces the variation of the current due to the
presence of probe pulse, i.e., (Jorobe(t)), With which the time-dependent
optical conductivity at time #+ can be calculated through Eq. (11).

Data availability
The data supporting the results in this work is available from the corre-
sponding author upon reasonable request.

Code availability
The code supporting the results in this work is available from the corre-
sponding author upon reasonable request.
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