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Tensor network study of the light-induced
phase transitions in vanadium dioxide
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Vanadium dioxide (VO2) is a prototypical material that undergoes a structural phase transition (SPT)
from a monoclinic (M1) to rutile (R) structure and an insulator-to-metal transition (IMT) when heated
above 340 K or excited by an ultrafast laser pulse. Due to the strong electron–electron and
electron–lattice interactions, modeling the ultrafast IMT in VO2 has proven challenging. Here, we
develop an efficient theoretical approach to the light-induced phase transitions by combining a tensor
network ansatz for the electronswith a semiclassical description of the nuclei. Ourmethod is based on
a quasi-one-dimensional model for the material with the important multiorbital character,
electron–lattice coupling, and electron–electron correlations being included. We benchmark our
method by showing that it qualitatively captures the ground state phase diagram and finite-
temperature phase transitions of VO2. Then, we use the hybrid quantum-classical tensor network
approach to simulate the dynamics following photoexcitation.We find that the structure can transform
faster than the harmonic phonon modes of the M1 phase, suggesting lattice nonlinearity is key in the
SPT.Wealso find separate timescales in the evolution of dimerization and tilt lattice distortions, aswell
as the loss and subsequent partial restoration behavior of the displacements, explaining the complex
dynamics observed in recent experiments. Moreover, decoupled SPT and IMT dynamics are
observed, with the IMT occurs quasi-instantaneously. Our model and approach, which can be
extended to a wide range of materials, reveal the unexpected non-monotonic transformation
pathways in VO2 andpave theway for future studies of non-thermal phase transformations in quantum
materials.

The strong interactions within and between the electronic, lattice, and spin
degrees of freedom in strongly correlated materials lead to a wide range of
emergent properties and phase transitions but also make them difficult to
understand. One of the archetypal strongly correlated materials, vanadium
dioxide (VO2) is a transition-metal compound which undergoes a first-
order transition from the insulating phase to themetallic phase atTc≈340 K
and ambient pressure1–4. Coinciding with this insulator-to-metal transition
(IMT), a structural phase transition (SPT) also occurs from the low-
temperature distorted monoclinic (M1) phase to the high-temperature
undistorted rutile (R) stucture5–7. Due to the strong correlations between the
internal charge, orbital, and lattice degrees of freedom, the underlying
mechanismof these transitions inVO2 is still under debate

8–15. In particular,

it remains unclear whether the transition is best described as a Peierls-like
transition driven by the structure change of lattice16 or as a Mott-like
transition driven by the electron–electron correlations17.

On the other hand, nonequilibrium phase transitions in materials
induced by ultrafast light pulses are attracting considerable attention and
represent a rapidly developingfield in condensedmatter physics18–25, as they
offer an efficient way to tune and control material properties on ultrafast
timescales. In VO2, intense laser pulses can suddenly change the potential
energy surface of the lattice through electronic excitation and drive the
ultrafast SPT and IMT26,27. As, in principle, the lattice and electronic degrees
of freedom can respond on different timescales, the light-induced phase
transition has become one of the key tools to address the nature of IMT28–43.
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Early experiments highlighted the role of lattice distortions in the light-
induced IMT26,44, butmore recent studies suggest that the IMT is faster than
the SPT and emphasize the importance of electron–electron
correlations45–48. In a recent experiment49, the complete structural and
electronic nature of light-induced phase transitions in VO2 have been
resolved at their fundamental timescales using ultra-broadband few-fem-
tosecond spectroscopy. In addition to a quasi-instantaneous IMT, a much
more complex pathway in the light-induced phase transitionswas observed.

However, in contrast to these experimental advances, there have been
very limited theoretical studies on the nonequilibrium phase transition in
VO2. This is naturally due to the complexity of treating even the normal
thermal transition in VO2, and so most studies have used simplified static
models46,47,50 or structural onlymodels37 to interpret the transient signatures.
Only recently has time-dependent density functional theory (TD-DFT)
been applied to the problem51,52, but the use of DFT to describe VO2 has
often been controversial due to the neglect of electron–electron interactions.
The complexity of uncovering the important couplings from DFT has also
motivated the use of simplified models in the past53. Furthermore, these
works predict transformation times that are strongly dependent on the
excitation fraction and initial temperature, an effect not seen in recent
ultrafast X-ray diffraction studies37,54,55.

To overcome these limitations and provide amore transparent model,
here we present a tensor network study of the light-induced phase transi-
tions using a simplified quasi-one-dimensional model for VO2, taking into
account the important physical ingredients: the multiorbital character,
electron–lattice coupling, and electron–electron correlations.We show that
this model qualitatively captures the equilibrium properties of VO2 by
calculating the ground state phase diagram and finite-temperature phase
transitions.When the light pulse is applied to the system, a hybridquantum-
classical tensor-network method is used to simulate the dynamics. We find
that the structure can transform faster than the corresponding harmonic
phonon modes of the M1 phase, suggesting the nonlinearity of lattice
potential is key in the SPT.Wealsofind separate timescales for the evolution
of dimerization and tilt distortions in the lattice dynamics, and that the
displacements exhibit a loss and subsequent partial restoration behavior,
which can provide an explanation for the complex dynamics observed in
ref. 49. Moreover, decoupled SPT and IMT dynamics are observed, where
the initial M1 structure transforms to the R one in tens of femtoseconds,

while the IMT occurs quasi-instantaneously. These results support the
recent experimentalfindings andprovide key insights into the light-induced
phase transitions in VO2. Our model and approach, which treat the elec-
tronicdegrees of freedom in a truemany-bodyway, canbe extended toother
systems like charge-density wave systems or charge transfer salts in which
strong electron–electron and electron–lattice interactions are key, and thus
will advance the study of light-induced phenomena far beyond VO2.

Results
Model
Ourmodel forVO2 is inspiredby the earlier staticmodel of ref. 53. InVO2, the
vanadium 3d orbitals hybridize and split under the action of the crystal field.
The relevant orbitals to the IMT and SPT are the a1g singlet and eπg doublet
(equivalently and often referred to as such in the literature, d∣∣ singlet, and π

*

doublet). Since the crucial aspect is the distinction between a1g and eπg orbitals
based on their bonding character with the ligands and response to the atomic
displacements, like ref. 53, we consider only one eπg orbital to simplify the
theoretical model without losing the important physics of VO2. As the Peierls
instability of VO2 mainly occurs along the cR axis connecting adjacent
vanadiumions throughthedimerizationand tiltingdisplacement,which splits
the a1g orbital into subbands and shifts the eπg orbital, it is widely accepted that
VO2 can be described by a one-dimensional a1g band embedded in a three-
dimensional backgroundof eπg states

17. For instance, it has been shown that for
the optical response,VO2behaves like an effective one-dimensional electronic
compound56,57, while structural studies also support that the transition can be
described in this reduced state37,58. Thus, wemodel the vanadium dioxide as a
quasi-one-dimensional system, forwhich the latticedisplacementX≡ (X1,X2)
is introduced to capture the dimerizing displacement along the cR axis and the
band-splitting tilting displacement perpendicular to the cR axis, respectively;
see Fig. 1. The total Hamiltonian for this simplified model of VO2 with the
coupling to lattice degrees of freedom is given by

H ¼ He þHe�X þΦðXÞ: ð1Þ

The quasi-one-dimensional treatment of the eπg states may renormalize the
interaction strength due to the changed density of states, but will not affect
the underlying important interactionswith the lattice and a1g orbitals. Aswe
will shortly show, we treat the electronic component fully quantum
mechanically, while treating the nuclei classically, leading to a “semi-
quantum” approach.

Concretely, the purely electronic component reads

He ¼ �P
i
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ð2Þ

where a = 1, 2 denotes the a1g and eπg orbital, respectively, and ca,σ,i is the
annihilation operator for electron at site i with orbital a and spin σ. The
nearest-neighbor intra-orbital hopping is given by ta, while t12 is the onsite
inter-orbital hopping.Here, εa andUdescribe theonsite energypotential and
Hubbard repulsive interaction, respectively. We have the particle-number
operator ni =∑a=1,2na,i and na,i =∑σ=↑,↓na,σ,i with na;σ;i � cya;σ;ica;σ;i. The
system is at quarter-filling.

The lattice distortion can be modeled through the classical potential
energy53

ΦðXÞ ¼ L α
2 ðX2

1 þ X2
2Þ þ β1

4 ð2X1X2Þ2
h
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4 ðX2

1 � X2
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6 ðX2
1 þ X2

2Þ3
i
;

ð3Þ

which is obtained from the Landau functional for improper ferroelectrics
expanded up to the sixth order in the lattice displacements to accurately

Fig. 1 | Crystal structure of VO2. Here the red (blue) spheres represent vanadium
(oxygen) atoms. In the rutile R phase (left), the vanadium atoms are located at the
center of the octahedrons made of oxygen atoms. The finite X1 and X2 lattice dis-
tortions characterize the monoclinic M1 phase (right), where the X1 component
captures the dimerization along the cR axis, and the X2 component acts as a tilting
perpendicular to the cR axis.
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recover the first-order nature of the transition. Here, L is the number of
lattice sites. The first term and the last term are fully rotationally symmetric
in the X1-X2 plane. On the other hand, the term proportional to β1 favors a
lattice distortion only along one of these two directions, whereas the term
proportional to β2 favors a distortion with ∣X1∣ = ∣X2∣. In the case of VO2,
both the displacements X1 and X2 are nonzero (i.e., there are both
dimerization and tilt in the displacements), hence we should have β2 > β1.

Finally, for the electron–lattice coupling, we have

He�X ¼ �gX1

X
i

ð�1Þin1;i �
δ

2
X2
2

X
i

ðn1;i � n2;iÞ: ð4Þ

The first term describes the dimerization induced by the displacement X1

along the cR axis and is controlled by the coupling constant g, while the
second termwith strength δ represents the crystalfield splitting generatedby
the tilting displacement X2. The coupling to X1 is linear at leading order,
whereas the coupling to X2 is quadratic since the opposite variations of the
hybridizationbetween the eπg orbital and the closer/further oxygen ligands at
linear order in X2 cancel each other, but their sum is nonzero at second
order53. Note that the total Hamiltonian is invariant under the transfor-
mations X1,2 → − X1,2 and possesses a Z2 × Z2 symmetry.

The simplified quasi-one-dimensional model (1) allows us to study
both the equilibrium properties and light-induced nonequilibrium quan-
tum dynamics of VO2 within the well-established tensor network frame-
work. We emphasize that, with this model, our goal is to qualitatively
reproduce the physics of VO2, especially the light-induced nonequilibrium
phase transitions,without any ambition forquantitative agreement.For this,
like ref. 53, we assume that the bands for a1g and eπg orbitals have the same
bandwidth and center of gravity (i.e., ε1 = ε2 = 0) to reduce the number of
Hamiltonian parameters. We set the half-bandwidth to 1 eV, i.e.,
t1 = t2 = 0.5 eV, and the inter-orbital hopping coefficient as t12 = 0.1 eV,
which is small compared with the intra-orbital hopping and allows for the
redistribution of orbital populations during the light-induced quantum
dynamics. For the Hubbard interaction, we chooseU = 0.6 eV to generate a
zero-temperature energy landscape that is similar to the one shown in ref. 53
with two localminimaand theglobalminimumatfiniteX. A too largeor too
small Hubbard interaction will lead to an energy landscape with either only
one localminimumor thewrong globalminimum.Compared to ref. 53, our
Hubbard interaction is smaller due to the quasi-one-dimensional nature of
our model with a correspondingly different density of states. However, we
again note that our model treats the electron correlations exactly, which is
essential for a robust description of the light-induced dynamics. For the
lattice potential parameters, we use the same values as proposed in ref. 53,
i.e., α = 0.155 eV, β1 = 1.75 × 10−3 eV, β2 = 2β1, and γ = 6.722 × 10−4 eV.
Finally, we choose the electron–lattice coupling strength as g = 0.528 eV and
δ = 0.2 eV, such that the transition temperature from theM1 phase to the R
phase is close to the experimental value. These values are close to the
electron–lattice couplings used in ref. 53.

We note that our definition of lattice potential parameters and
electron–lattice couplings in units of energy implies that the displacements
X1 and X2 are expressed in a dimensionless way, as only the product of
displacement and the (unknown) couplings affect the overall energy. For-
tunately, the underlying length scale (on the order of 0.1 Å) is not relevant
for distinguishing the R phase (X1 =X2 = 0) and the M1 phase (X1 ≠ 0
and X2 ≠ 0).

Ground-state phases
Having introduced the simplified quasi-one-dimensional model, we now
present the corresponding equilibrium properties both at zero and finite
temperature. These results show that our model captures the essential
physics of VO2, justifying the later dynamics studies.We first determine the
ground state phases. We solve the model Hamiltonian (1) using tensor
network methods within the Born–Oppenheimer approximation. To
determine the ground state phases, we calculate the zero-temperature
adiabatic potential Φeff(X) for each fixed displacement X, which is

renormalized by the electronic energy

Φeff ðXÞ ¼ ΦðXÞ þ hHe�Xi þ hHei: ð5Þ

Here the electronic energy (i.e., the last two terms) is obtained by employing
the infinite densitymatrix renormalization group (iDMRG)method59,60; see
Methods. The quarter-filling is ensured in the numerical simulation by
introducing good quantum numbers. Due to the Z2 × Z2 symmetry of the
system under transformations X1,2→− X1,2 (domain inversion), we focus
on the region with X1, X2 > 0.

The results are shown in Fig. 2. There are two minima in the zero-
temperature energy landscape (due to the Z2 × Z2 symmetry, the local
minima at finite X are actually fourfold degenerate). One local mini-
mum is located at the origin point X1 = X2 = 0 and corresponds to the
undistorted R phase. On the other hand, the global minimum is located
at X1 ≈ 2.05 and X2 ≈ 1.65, describing the distorted M1 insulating
ground state at zero temperature. From this, we conclude that the
simplified quasi-one-dimensional model (1) captures the essential
physics of VO2 and provides a good playground to qualitatively study
its properties.

Phase transition at finite temperature
The key defining feature of VO2 is, of course, the transition from the low-
temperature M1 phase to the high-temperature R phase, but reproducing
this thermal transition theoretically is nontrivial. Here we use the matrix
product operator (MPO) time evolution technique61,62 in combination with
the purification method63 to show that the simplified quasi-one-
dimensional Hamiltonian (1) can reproduce this finite-temperature phase
transition and estimate the corresponding transition temperature. We note
that in this method, the finite-temperature state is obtained from the
infinite-temperature state by imaginary time evolution; see Methods. To
ensure the quarter-filling, we use good quantum numbers in the numerical
simulation and start from a canonical infinite-temperature ensemble with
fixed particle-number density and finite system size64. While lattice entropy
has been suggested to be important to the phase transition in VO2

Fig. 2 | The zero-temperature internal energy density Φeff as a function of the
lattice distortions X1 and X2. Due to the Z2 × Z2 symmetry of the system, we only
show the results for the region with X1, X2 > 0, where the internal energy has two
minima, one located at X1 = X2 = 0 corresponding to the undistorted R phase, and
another located at X1 ≈ 2.05 and X2 ≈ 1.65 corresponding to the distortedM1 phase.
Here themaximal bond dimension 1000 is used to produce this energy landscape, for
which the converged internal energy density of the insulating M1 phase (global
minimum) is ≈−0.71941 eV, and we haveΦeff(0, 0) ≈− 0.71804 eV for the R phase
(this value can be further improved by increasing the maximal bond dimension due
to its metallic nature, but the local minimum property of the point X = 0 is unaf-
fected; see the Supplementary Information).
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previously37,58, for simplicity here we ignore this factor and focus on the
electronic contribution when studying the thermal phase transition.
Including lattice entropy would, however, serve to further reduce the
transition temperature.

We calculate the adiabatic potentialΦeff at temperatureT and study the
temperature evolution of the free energies

FðX;TÞ ¼ Φeff ðX;TÞ � TSðX;TÞ ð6Þ

for the two local minima we obtained at zero temperature53. Since the
imaginary time evolution starts from the infinite temperature at which the
entropies S∞ are the same for both R and M1 phases, the entropy at tem-
perature T can be calculated through

SðX;TÞ ¼ S1 �
Z 1

T
dT 0 1

T 0
∂Φeff ðX;T 0Þ

∂T 0 : ð7Þ

Here the infinite-temperature entropy S∞ can be further eliminated by
considering the difference between the free energies of R and M1 phases:

ΔFðTÞ ¼ ΔΦeff ðTÞ � TΔSðTÞ ð8Þ

with ΔΦeff(T) ≡ Φeff(XR, T) − Φeff(XM1, T) and ΔSðTÞ ¼ �R1
T dT 0 ð1=T 0Þ∂ΔΦeff ðT 0Þ=∂T 0. This quantity is what we are actually

interested in.
The finite-temperature results are presented in Fig. 3, where the ima-

ginary time evolution is carried outwith time step δβ = 0.05 eV−1 (β = 1/kBT
is the inverse temperature). Since the calculation for the entropy difference
ΔS requires us to perform the differential and integrationwith respect to the
temperature, we interpolate the adiabatic potential ΔΦeff(β) using poly-
nomial functions. The obtained free energy difference from MPO time
evolutionwithmaximal bonddimensionD = 2000 for the systemsizeL = 20
is shown in Fig. 3a. The negative ΔF at high temperature indicates that the

system is in the R phase, and there is a transition from the low-temperature
M1 phase (ΔF > 0), with the transition temperature Tc ≈ 1131 K being
identified byΔF = 0 for the used system size andmaximal bond dimension.

We perform an extrapolation in L and D to estimate the transition
temperature Tc for large system size and maximal bond dimension; see
Fig. 3b, c. In the extrapolation of system size with fixed maximal bond
dimension D = 2000, the change in transition temperature, as in the usual
cases, decreases as we increase the system size, justifying the extrapolation
function, fromwhich the Tc for L→∞ is only lowered by ≈76 K compared
with the value for L = 20. On the other hand, the maximal bond dimension
D has a more notable influence on Tc, as the changes of ΔF are very slow in
low temperatures, i.e., the temperature ismore sensitive toΔF in this region.
For the system size L = 20, the transition temperature forD→∞ is lowered
by ≈321 K compared with the value for D = 2000. Combining these two
effects, we obtain an estimation for the transition temperature for our used
parameters as Tc ≈ 734 K.

We would like to mention that the above estimated transition tem-
perature actually shouldbehigher than the exact value.Ontheonehand, the
MPO imaginary time evolution method may lose its accuracy in the long
time limit (i.e., the low-temperature region), which makes it hard to obtain
the exact transition temperature; seeMethods. Choosing a smaller time step
or larger bond dimension would increase the accuracy, but it is muchmore
computationally costly. On the other hand, including the lattice entropy
would also substantially reduce the transition temperature.Hence, the above
estimated value gives only a rough estimation of the transition temperature,
but shows that the overall energetic trends are captured correctly. We note
that themainobject of thiswork is to investigate the physics of light-induced
phase transitions in VO2. Although the estimated value for Tc is around a
factor of two higher when compared with the experimental value, our
simplifiedmodel (1) still qualitatively captures the phase transition from the
low-temperature M1 phase to the high-temperature R phase, hence pro-
viding the foundation for studying the light-induced phase transitions.
Moreover, as we show in Supplementary Information, the light-induced
quantum dynamics for our parameters, which lead to an estimation of
Tc ≈ 734 K, are almost the same as compared to a systemwithTc = 0.Hence,
in this parameter range, the deviation in transition temperature from the
experimentally realized value will not affect the light-induced phase tran-
sitions qualitatively.

Light-induced quantum dynamics
Having shown that our quasi-one-dimensional model can qualitatively
capture the essential physics of VO2, especially the finite-temperature phase
transition, we next study the light-induced phase transition from the initial
M1 insulating phase to the long-time R metallic phase. We start from the
equilibrium M1 phase at zero temperature as numerous experiments have
shown a negligible change in the photoinduced dynamics upon changing
the initial temperature45,55, while static measurements also show minimal
changes in the overall structure when cooled65.

We excite the system using a pump pulse with the electric field

EpumpðtÞ ¼ E0;pumpe
�ðt�t0;pumpÞ2=2σ2pump cos½ωpumpðt � t0;pumpÞ�; ð9Þ

which is centered at time t0,pump and has central frequency ωpump and
temporal width σpump. The pump pulse couples to the electronic degrees of
freedom through the Peierls substitution tα ! tαe

iApumpðtÞ with the phase

ApumpðtÞ ¼ �ðed=_Þ
Z t

dt0 Epumpðt0Þ

¼ A0;pumpσpumpe
�σ2pumpω

2
pump=2½erf ðt�Þ � erf ðtþÞ�;

ð10Þ

where d is the lattice constant, erf ðzÞ ¼ ð2= ffiffiffi
π

p Þ R z
0 dt e

�t2 is the error
function, and we have t ± ¼ ½iσ2pumpωpump ± ðt � t0;pumpÞ�=

ffiffiffi
2

p
σpump. With

the pump pulse, the displacement X also becomes time-dependent due to
the electron–lattice coupling.

Fig. 3 | Phase transition at finite temperature. a Free energy difference ΔF between
the R andM1 phases as a function of the inverse temperature β for system size L= 20.
The corresponding transition temperature Tc = 1/kBβc ≈ 1131 K is obtained by sol-
ving the equationΔF(β) = 0. The insert shows the bare adiabatic potential difference
ΔΦeff, where the dots are obtained from the numerical simulation, while the line is
the interpolation via polynomial function. We set the maximal bond dimension as
D = 2000 in this plot. b Finite size extrapolation for transition temperature Tc using
the function Tc(L) = a+ b/Lc with a ≈1055 K, b ≈57292 K, and c ≈2.2170. The
maximal bond dimension is fixed as D = 2000. c Extrapolation of transition tem-
perature Tc in the maximal bond dimension D for system size L = 20 using the
function Tc(D) = a+ b/Dc with a ≈810 K, b ≈ 122306 K, and c ≈0.7819. Here the
imaginary time step in the numerical simulation is set as δβ = 0.05 eV−1.
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We use the hybrid quantum-classical tensor-network method to
simulate the dynamics of the system; see Methods. In this method, within
each time step δt, the quantumelectronic degrees of freedom jψi are evolved
according to the many-body Schrödinger equation using the infinite time-
evolving block decimation (iTEBD) method66,67, while the lattice degrees of
freedomX are treated classically using the Ehrenfest theorem. For the lattice
evolution, we also introduced a phenomenological damping term propor-
tional to the velocity _X to model the lattice disordering observed in recent
X-ray diffraction experiments37,54,55. The damping strength is controlled by
the coefficient ξ; seeMethods.We note that treating the quantum electronic
and classical lattice degrees of freedom separately is similar to the real-time
TD-DFT68 used recently to model VO2

51,52. However, in our hybrid
quantum-classical tensor-network method, the electron–electron correla-
tions are handled in a truemany-bodyway, which enables capturing the full
interaction effects.

Photoinduced structural phase transition
We first study the structural phase transition of VO2 induced by the pump
pulse.Weconsider apulsewithwavelength800 nm,width6 fs, and centered
at 20 fs. The electric field strength ranges from 0.5 to 1 V/Å. Note that for
VO2with lattice constant d ≈ 3 Å, the electricfield of strengthE0,pump = 1 V/
Å corresponds to a Peierls substitution phase of strength A0,pump = 1.88. In
the following, we will use A0,pump to represent the pulse strength.

Figure 4 shows the time evolution of lattice displacements X1 and X2

with damping coefficient ξ = 1.316 eV ⋅ fs, chosen as aminimal value which
removes the unphysical structural revivals beyond 100 fs delay, corre-
sponding to the resolution of the best diffraction measurements55. The
responses reflectwell themeanultrafast lattice dynamics observed inVO2 in
both ultrafast X-ray diffraction37,54,55 and ultrafast electron diffraction69.
Especially, for the considered pulse strength the displacements X1 and X2

quickly transform to zero within the total simulation time ~80 fs, indicating
the ultrafast photoinduced SPT from the distorted M1 phase to the undis-
torted R phase.

However, there are also several interesting features in the structural
dynamics at short timescales not previously observed. Thefirst is the overall
timescale of the structural transition appears unrelated to the corresponding
phonon modes when the system is excited below the transition threshold
(see theSupplementary Information). Inparticular,X1 transformsat around
the same time as the phonon mode would suggest (half period ≈21 fs,
crossing expected at ≈41 fs), but X2 transforms considerably faster (half
period ≈44 fs, crossing expected at ≈64 fs). We note that the introduced
phenomenological damping, applied inboth cases, is necessary to accurately

describe the dynamics of the transition as observed with X-ray diffraction37

but is not observed for phonons in theM1phase27, and sowe artificially slow
the phononmode here. Thus the transition likely outpaces the phonon even
more. This suggests that, in contrast to assumptions in numerous
studies44,47,48, the structural transition timescale is not limited by the normal
phonon mode frequencies but, in fact, samples a significant portion of the
nonlinear lattice potential. This nonlinearity means the common approach
of using the timescale of the transition alone to assign a structural or elec-
tronic origin by comparison to known Raman modes could be highly
misleading, not only for VO2 but for light-induced phase transitions
generally.

The second notable effect is that X1 relaxes faster than X2, i.e., the
dimerization also relaxes prior to the tilt. This is broadly in-line with the
two-step structural phase transition mechanism proposed by Baum et al.28,
but while the pico-to-nanosecond timescale proposed there is at odds with
later diffraction measuremens37,54,69, here the change occurs many orders of
magnitude faster and is consistent with these recent diffraction measure-
ments. This separation is also consistentwith recent TD-DFT calculations51.

Another remarkable feature of the lattice dynamics is that the dis-
placementsX1 andX2 undergo a transient revival with opposite signs for
significant excitation levels. These findings can provide an explanation
for the complex dynamics observed in ref. 49, one of the only studies with
a resolution sufficient to resolve dynamics significantly below 100 fs. In
this work, the a1g band was found to exhibit a double-peak oscillatory
structure at tens of femtoseconds in the time evolution. It was pointed
out that the oscillation cannot be explained by the coherent electronic
effect since the scattering time for electrons is much faster than this
behavior, leaving these coherent lattice effects as the leading explanation,
in good agreementwith our results here.Wenote that for larger damping
coefficient ξ, a stronger light pulse is required to observe the transient
revival behavior of lattice displacements, but overall the dependence on
pulse energy is quite weak, in contrast to recent TD-DFT calculation51,52

but in agreement with recent X-ray diffraction measurements54.

Photoinduced electronic insulator-metal transition
We now turn our attention to the IMT. Since it is hard to track the time-
dependent occupations of single-particle states and the corresponding
closure of the gap in amany-bodymethod like iTEBD,herewe instead study
this phenomenon using the time-dependent optical conductivity and look
for the collapse of the optical band gap. To calculate the time-dependent
optical conductivity, in addition to the pump pulse, we further apply a weak
probe pulse AprobeðtÞ ¼ A0;probe exp½�ðt � t0;probeÞ2=2σ2probe� cos½ωprobe
ðt � t0;probeÞ� centered at time t0,probe = t* and track the variation of the
current due to the presence of probe pulse, i.e., 〈Jprobe(t)〉, using the pump-
probe basedmethod proposed in ref. 70, which identifies the response of the
system with respect to the later probe pulse; see Methods. Then the time-
dependent optical conductivity at time t* is given by

σðωÞ ¼ JprobeðωÞ
iðωþ iηÞLAprobeðωÞ

; ð11Þ

where Jprobe(ω) and Aprobe(ω) are the Fourier transformations of
〈Jprobe(t)〉 and Aprobe(t), respectively. Numerically, a damping factor
expð�ηtÞ is introduced in the Fourier transformations, which effectively
eliminates the long-time data and is also necessary to distinguish the
Drude component of the spectral weight. With this term, a finite-time
simulation of the probe current within a sufficient time window is
enough to observe the behavior of optical conductivity; see the
Supplementary Information for the justification of our calculation of
optical conductivity.We also note that if there is no pump pulse, Eq. (11)
gives the optical conductivity at equilibrium.

In Fig. 5, we show the optical conductivity with andwithout the pump.
For the initial M1 phase at equilibrium, we apply a weak and narrow probe
pulse of frequency ℏωprobe = 10 eV centered at t0,probe = 0.658 fs with width
σprobe = 0.0658 fs and amplitude A0,probe = 0.01 (i.e., a near-delta function),

Fig. 4 | Lattice dynamics for pump pulses with different amplitudeA0,pump.Other
parameters for the pulses are ℏωpump = 1.5498 eV, σpump = 6 fs, and t0,pump = 20 fs.
Here we set the iTEBD time step as δt = 1.645 × 10−3 fs, and the maximal bond
dimension is 1000.
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which does not change the properties of the system qualitatively. Due to the
finite time step in the iTEBDnumerical simulation, there is a small deviation
from zero for the current, even in the absence of external fields. For this, we
also subtract this fictitious current from 〈Jprobe(t)〉. The resulting current
density induced by the probe pulse is shown in Fig. 5a, giving an optical
conductivitywith no amplitude at low frequencies and afirst peak located at
ℏω ≈ 1.1 eV, which identifies the insulating nature of the initial M1 phase;
see Fig. 5c.

On the other hand, the optical conductivity exhibits a sharply different
behavior following excitation by the pump pulse. Fig. 5b shows the current
density 〈jprobe(t)〉 for the probe pulses centered at t0,probe = 26 and 39 fs,
times at which the lattice of VO2 is still distinct from the R structure
(cf. Fig. 4). Other parameters of the probe pulses remain the same as in the
pump-free case. The collapse of the optical band gap [Fig. 5d] shows the
metallicity of the system by at least t = 26 fs. This photoinduced electronic
IMT is much faster than the SPT and can be considered as a quasi-
instantaneous transformation, which is consistent with both 60-fs resolu-
tion time-and-angle resolved photoemission experiments46 and with more
recent ultrafast reflectivity/absorption studies, which show electronic tran-
sitions as fast as 10 fs47–49. The decoupling nature of SPT and IMT in the
light-induced nonequilibrium states also highlights the important role of
electron–electron correlations in driving the electronic transitions, which
are indeedMott-like instead of driven by the Peierls instability. This effect is
equally treated in the simplified quasi-one-dimensional model (1) with the
electron–lattice coupling and handled in a many-body way.

Discussion
In conclusion, we have performed a tensor network study of the light-
induced phase transitions in VO2. A simplified quasi-one-dimensional

model was proposed to capture the corresponding essential physics, with all
the important ingredients such as multiorbital character, electron–lattice
coupling, and electron–electron correlations being included. We have
shown that this model can qualitatively describe the equilibrium properties
ofVO2, such as the zero-temperature ground statephasediagramandfinite-
temperature phase transitions,which canprovide insights into the studiesof
vanadium dioxide.

Under the action of an ultrafast light pulse, we found a number of
interesting structural and electronic behaviors. In agreementwith a range of
recent studies,we found that the electronic transitionprecedes the structural
transitions47–49, supporting a Mott-like origin for the transition. However,
we also found that the structure transforms faster than the harmonic
phonon modes of the M1 phase, suggesting the nonlinearity of lattice
potential is key in the SPT, and the simple timescale arguments used to
assign a structural or electronic nature to the transition from the previous
studies26,47,48 do not necessarily apply for the more extreme case of light-
induced phase transitions. This may have ramifications for light-induced
phase transitions far beyond VO2. Additionally, we found separate time-
scales for the evolution of dimerization and tilt distortions in the lattice
dynamics, in broad agreement with older models of VO2

28 but here several
orders of magnitude faster, in agreement with the timescales observed in
more recentX-raydiffraction studies54,55. Finally, we also observeda loss and
subsequent restoration behavior of the structural displacements, which can
provide an explanation for the complex dynamics recently found in the
highest time-resolution studies to date49. Overall our results are fully con-
sistent with the most recent and highest time-resolution studies of both the
electronic27,46–49 and structural37,54,55,69 components of the transition, despite
only explicitly treating themean displacements of the dimers and including
ultrafast disordering37,55 throughaphenomenological damping term. Future
work will include systematic studies to find whether or not the IMT can be
induced without also introducing the associated SPT33, which would be a
clear marker of theMott behavior, and examining to what degree the phase
transition can be controlled using optical pulses54. Our work sheds impor-
tant light on the nature of the light-induced phase transition in VO2 at the
shortest timescales, and challenges assumptions about signatures of
decoupled electronic and structural phase transitions more generally.

BeyondVO2, ourmodel and the tensor-network approach to solve the
many-body electronic wavefunctions coupled to classic nuclei can also be
extended to study light-induced phenomena in other quantum materials.
Naturally, it is applicable to other dioxide compounds (e.g., CrO2, TiO2,
NbO2, and so on), which exhibit interesting light-induced behaviors71 but
also to cases like one-dimensional charge-density wave systems72 or cuprate
ladder systems73. It could thus be used to shed light, for instance, on the
mechanismbehind the structural coherent control recently observed inone-
dimensional charge-density wave systems where two-independent distor-
tions are believed to be important74. The main constraints of our approach
are that the correlated electron system is treated as one-dimensional and the
coupling to lattice locally, but additional bands and other lattice potentials
can easily be included. This means themodel is directly applicable to a wide
rangeof systems likemixedvalencyplanar transition-metal compounds and
charge transfer salts75. We especially note that, for some organic super-
conductors, our ability to treatnonlinearphononics couldbehighly valuable
in studying effects like light-induced superconductivity76. These possibilities
demonstrate the generality of our approach and form promising lines for
study in the future.

Methods
DMRG simulation of the zero-temperature adiabatic
potential energy
We employ the iDMRG algorithm proposed in ref. 60 to calculate the zero-
temperature adiabatic potential energy (5), which initializes the DMRG
environments and performs the updates using the finite-size DMRG algo-
rithm for a unit cell of L sites at the beginning. Then the system size is
increased between theDMRGsweeps by inserting a unit cell into each of the
environments. The translation invariance is recovered when the iDMRG

Fig. 5 | Optical conductivity with and without the pump. a, b The current density
〈jprobe(t)〉 due to the presence of probe pulse with frequency ℏωprobe = 10 eV, width
σprobe = 0.658 fs, and amplitude A0,probe = 0.01. The center time t0,probe of the probe
pulse is 0.0658 fs for (a) and 26 fs (blue) or 39 fs (orange) for (b). For the cases with
pump, we only plot the current up to time ~20 fs after the probe pulse centered at t*.
For longer times, the numerical errors are not ignorable (see Supplementary
Information). c, d The real part of the optical conductivity obtained from 〈jprobe(t)〉
shown in (a) and (b), respectively. For the pump pulse, the amplitude is chosen as
A0,pump = 1.88, and other parameters are the same as in Fig. 4. The iTEBD simulation
is performed using a time step δt = 3.29 × 10−3 fs and maximal bond dimension
D = 1000, and we set η = 0.15 fs−1 in the numerical Fourier transformation.
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iteration of sweeps and growing environments converges to a fixed point, at
which the environments describe infinite half-chains.

In our numerical simulation of themodel (1), we consider a unit cell of
four sites, and each site contains one a1g orbital electron and one eπg orbital
electron. The particle-number andmagnetization U(1) symmetries are also
considered to enhance the performance of iDMRG numerical simulations.
We use the product state j"a1g

#eπg
#a1g

"eπg
i as the initial trial wave function

for the unit cell in the iDMRG simulation and gradually increase the bond
dimension during sweeps. The maximal bond dimension used to produce
Fig. 2 is 1000, for which the energies atmost displacementsX are converged
very well except for those nearX = 0 due to themetallic nature of the phase.
However, as we show in the Supplementary Information, further increasing
the maximal bond dimension will not change the result that the zero-
temperature energy landscape has a globalminimumatX1 ≈ 2.05,X2 ≈ 1.65
and a local minimum at X = 0. Hence the results obtained in this work are
unaffected.

Finite-temperature simulation
To study the finite-temperature phase transition of VO2, we need to cal-
culate the equilibrium state of the system in the (here, unnormalized)
canonical ensemble

ρβ;N � e�βHN ð12Þ

with HN being the projection of Hamiltonian onto the Hilbert subspace
HN � fjni¼ N

ijniij
P

ini ¼ Ng with total particle number N. For the
quarter-filling considered in this work, we have N being the system size L.
We consider a purification of the density matrix ρβ,N for numerical
facilitation63

jρβ=2;Ni �
X
n;n0

hnjρβ=2;N jn0ijni � ∣n0
�
aux; ð13Þ

which is defined in the doubled Hilbert space HN �HN;aux and
satisfies Trauxjρβ=2;Nihρβ=2;N j ¼ ρβ;N . Here the auxiliary Hilbert space
HN;aux is isomorphic to the physical Hilbert space HN . Starting from
the purification jρ0;Ni of the infinite-temperature ensemble, we can
employ the imaginary time evolution to obtain the purification for the
finite-temperature state ρβ,N:

jρβ=2;Ni ¼ ðe�βH=2 � 1auxÞjρ0;Ni: ð14Þ

Then the thermal expectation value of an observable O is given by

hOiβ ¼
Trðe�βHNOÞ
Trðe�βHN Þ ¼

hρβ=2;N jOjρβ=2;Ni
hρβ=2;N jρβ=2;Ni

: ð15Þ

Since it is impossible to calculate the exponential e−βH/2 directly,
we need to divide the total imaginary time evolution into a lot of small
time steps δβ and calculate the exponential e−δβH approximately in
each time step. In this work, we use the MPOWII method proposed in
refs. 61,62 to perform this task. As the imaginary time evolution does
not change the particle number, we can ensure the quarter-filling of
the system by considering the infinite-temperature state in the
canonical ensemble

jρ0;Ni ¼
X

fnj
P

i
ni¼Ng

jni � ∣niaux: ð16Þ

Matrix product-state (MPS) methods to construct this canonical infinite-
temperature ensemble were proposed in ref. 64. Compared to the grand-
canonical infinite-temperature ensemble that is simply described by the
identity matrix, the resulting MPS representation of jρ0;Ni is highly
nontrivial and the correspondingmaximumbonddimension increaseswith
the system size, which limits the system size we can simulate efficiently.

However, with this state, we can simply focus on the numerical time
evolution and does not need to tune the chemical potential to guarantee the
desired particle filling. Moreover, the phase transition between M1 and R
phases then can be directly identified by comparing the Helmhotz free
energy F =Φeff − TS.

The errors in our finite-temperature simulation come from the finite
imaginary time step, maximal bond dimension, and system size. For the
finite time step δβ, the error per site of the MPOWII method in each time
step is independent of the system size and is given byOðδβ2Þ for the evolved
purification state61,62. Therefore, the free energy F has an error Oðδβ4Þ in
each time step, and the corresponding accumulated error for the total
evolved time β/2 is given by ~βδβ3, which may have a notable influence in
the low-temperature region and affect the transition temperature. On the
other hand, Fig. 3b, c give us insights into the errors from finite maximal
bond dimension and system size, which can be estimated via the extra-
polation. Compared to the system size, the maximal bond dimension is
more relevant for the transition temperature. Therefore, to improve the
accuracy of the finite-temperature simulation, we need to consider smaller
time steps and larger bond dimensions, which increases the computational
challenges.

As the transition temperature of VO2 is not so high, the minimally
entangled typical thermal state (METTS)77,78 could be a possible alter-
native method for improving the finite-temperature calculation, which,
however, requires many samples to converge to a precise result and
needs remarkable computational resources. Including the ignored lattice
entropy in this work by considering the phonon-phonon interactions
could also improve the finite-temperature results, which is more com-
plicated and is beyond the goal of this work for studying light-induced
phase transitions.

Hybrid quantum-classical tensor-network method
To simulate the light-induced quantum dynamics, we decompose the
time evolution of the system into two parts, i.e., the quantum elec-
tronic and classical lattice degrees of freedom. For the evolution of
electronic state jψi, we use the Born–Oppenheimer approximation
within each time step δt, i.e., the lattice distortions are approximated
as fixed, while the electronic degrees of freedom are treated dyna-
mically. The use of the Born–Oppenheimer approximation is justified
via the extremely fast electron–electron scattering in VO2

49,56, which
allows the electron distribution to equilibrate far faster than the lat-
tice motion. Then the electronic equation of motion is given by the
Schrödinger equation and can be written as

jψðt þ δtÞi ¼ e�iH½t;XðtÞ�δt=_jψðtÞi; ð17Þ

which can be simulatednumerically by the iTEBDmethod.Wenote thatwe
used the natural units in the numerical simulation, for which some of the
simulation parameters, like the time step δt, become irrational numbers in
the international system of units.

On the other hand, for the lattice dynamics, we use the classical
approximation and invoke the Ehrenfest theorem for the lattice degrees of
freedom

M
d2Xi

dt2
¼ FiðtÞ � ξ

dXi

dt
; ð18Þ

whereM is the effectivemassof ions,which is set as 10.8241 eV ⋅ fs2, and ξ is a
damping coefficient tuned to model the lattice disordering observed in
recent X-ray diffraction experiments37,54,55. The forces Fi are obtained
through the Hellmann–Feynman theorem and explicitly read

F1 ¼ g
2

P
i¼1;2

cosðQiÞhψjn1;ijψi � αX1 � 2β1X1X
2
2

�β2X1ðX2
1 � X2

2Þ � γX1ðX2
1 þ X2

2Þ2
ð19Þ
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and

F2 ¼ δ
2X2

P
i¼1;2

hψjðn1;i � n2;iÞjψi � αX2 � 2β1X
2
1X2

þβ2X2ðX2
1 � X2

2Þ � γX2ðX2
1 þ X2

2Þ2;
ð20Þ

see the Supplementary Information for details. With the equations of
motion (17) and (18), both the light-induced structural and electronic
dynamics of VO2 can be simulated. The convergence and robustness of our
results is provided in the Supplementary Information.

Calculation of optical conductivity
Given the knowledge of the time-evolved electronic wave function jψðtÞi
under the action of an external field A(t), the temporal evolution of the
current, defined as hJðtÞi ¼ hψðtÞjJðtÞjψðtÞi with

JðtÞ � δHðtÞ
δAðtÞ ¼ �i

X
a;σ;i

ta½eiAðtÞcya;σ;ica;σ;iþ1 �H:c:�; ð21Þ

canbe readily obtained, andwecanextract theoptical conductivity fromthis
current.

For the systems at equilibrium, we can set the external field A(t) to be
the weak probe pulseAprobe(t), and the corresponding current is denoted as
〈Jprobe(t)〉. Since thewave function jψðtÞi describes the influenceofAprobe on
the ground state, the optical conductivity at equilibrium can be calculated
through this current using Eq. (11).

This scheme can be extended to calculate the optical conductivity for a
nonequilibrium system driven by the pump pulse. To this end, we employ
the pump-probe-based method proposed in ref. 70, where the temporal
evolution of the system is traced twice in order to identify the response of the
system with respect to the later probe pulse. The procedure is as follows.
First, the time-evolution process induced by the pump pulseApump(t) in the
absence of probe pulse is evaluated, which describes the nonequilibrium
development of the system, and we have the current 〈Jpump(t)〉. Second, in
addition to the pumppulse, we also introduce theweakprobepulseAprobe(t)
centered at time t*, which leads to the current 〈Jtotal(t)〉. The subtraction of
〈Jpump(t)〉 from 〈Jtotal(t)〉 produces the variation of the current due to the
presence of probe pulse, i.e., 〈Jprobe(t)〉, with which the time-dependent
optical conductivity at time t* can be calculated through Eq. (11).

Data availability
The data supporting the results in this work is available from the corre-
sponding author upon reasonable request.

Code availability
The code supporting the results in this work is available from the corre-
sponding author upon reasonable request.
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