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Symmetry and minimal Hamiltonian
of nonsymmorphic collinear
antiferromagnet MnTe
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Koichiro Takahashi1,3, Hong-Fei Huang2,3, Jie-Xiang Yu2 & Jiadong Zang1

α-MnTe, an A-type collinear antiferromagnet, has recently attracted significant attention due to its
pronounced spin splitting despite having net zero magnetization, a phenomenon unique for a new
class of magnetism dubbed altermagnetism. In this work, we develop aminimal effective Hamiltonian
for MnTe based on realistic orbitals near the Fermi level at both the Γ and A points based on group
representation theory, first-principles calculations, and tight-binding modeling. The Hamiltonian
exhibits qualitatively distinct electron transport characteristics between these high-symmetry points
and for different in-plane Néel vector orientations along the ½11�20� and ½1�100� directions. Although the
spin–orbit coupling (SOC) is believed to be not important in altermagnets, we show the dominant role
of SOC in the spin splitting and valence electrons ofMnTe. These findings provide critical insights into
altermagnetic electron transport in MnTe and establish a model playground for future theoretical and
experimental studies.

Manipulation and detection of magnetic order parameters in antiferro-
magnets have been a challenge in spintronics for decades1,2. The main dif-
ficulty is that most collinear antiferromagnets respect a combination
symmetry operation of a half-translation transformation t1/2 or an inversion
operation P with a time-reversal transformation T , called the t1=2T or the
PT symmetry, leading to trivial transport properties, such as the absence of
intrinsic anomalous Hall effect and spin-transfer torque. Besides conven-
tional antiferromagnets, altermagnets, as a newvariant of antiferromagnets,
possess collinear Néel order parameters with zero net magnetization but
break the t1=2T andPT symmetry3–5. The non-relativistic spin group of an
altermagnet is distinct from that of both ferromagnetism and conventional
antiferromagnetism6–10, so that it leads to the bands of the opposite-spin
sublattices in reciprocal space not coinciding and can only be connected
through a real-space rotation transformation. Thus, altermagnets are fun-
damentally distinct from conventional collinear antiferromagnets. The
combination of the zero net magnetization of antiferromagnets with the
spin-splitting characteristics of ferromagnets enables altermagnets not only
to generate T -odd spin transport characteristics, including intrinsic
anomalous Hall effect2,11–17, spin-splitting torque18–21, and tunneling
magnetoresistance22, but also to achieve magnetic stability due to the
absence of demagnetizing fields and ultrafast spin dynamic features at ter-
ahertz scales23–25.

Spin–orbit coupling (SOC) is often considered to be irrelevant or
insignificant for the electronic and magnetic properties in an altermagnet

because the non-relativistic spin splitting with zero net magnetization is
regarded as themain characteristic therein4,16,18. The type of spin splitting in
altermagnets, such as planer or bulk d-, g-, and i-wave, should be uniquely
determined by the type of collinear antiferromagnetic ordering and the
crystal symmetry in an altermagnet26.However, SOCdoes play a crucial role
in many antiferromagnets not only for the topological non-trivial band
structures27–30 but also for the detection andmanipulation of theNéel-vector
orientation3,31–34. SOC is known to induce spin mixing and band splitting,
such as Rashba-Dresselhaus effect35,36 in non-magnetic materials with the
inversion symmetry breaking. The locking between electron spin and
momentum under SOC leads to spin-galvanic effect with uniform spin
accumulation. In an antiferromagnet, this effect can generate opposite spin-
orbital torques on the opposite-spin sublattices, achieving the control of
antiferromagnetism31,33. Furthermore, magnetic anisotropy brought about
by SOCcan alter the symmetry originally determined by the non-relativistic
antiferromagnetic system. To this end, analyzing the non-relativistic mag-
netic ordering and crystal symmetry is not sufficient to catch the full features
of the spin splitting in the band structure. Both the strength of SOC and
magnetic anisotropy is important in antiferromagnetic and altermagnetic
spintronics.

α-MnTe possesses both the altermagnetic characteristics with the
absenceof t1=2T /PT symmetry and the strongSOCoriginating fromtheTe
atoms, so that it has recently garnered widespread attention. Early
studies37–41 indicated that bulkMnTe is a p-type semiconductor and layered
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in-plane antiferromagnetic ordering with the Néel temperature TN ≈ 310K.
Recently, numerous interesting electronic, magnetic and transport phe-
nomena have been found in MnTe, including large spin splitting12,42–45,
lifting of Kramers spin degeneracy3,44,46,47, the controllable magnetic
anisotropy42,48, large anisotropic magnetoresistance and planer Hall
effect3,49–52, and intrinsic anomalous Hall effect12,17. These diverse properties
of MnTe have attracted significant attention in both fundamental physics
and device applications. However, the connection between these spintronic
phenomena and the physicalmechanism is unclear. Themain reason is that
in the Brillouin zone of the hexagonal α-MnTe, the valence bands at the Γ
and A point display quite distinct behaviors and are both very close to the
valence band maximum or the Fermi level3,53. Therefore, the transport
properties, mainly determined by the electrons near the Fermi level, can be
completely different under different conditions.

In this article, we systematically analyzed the band structures of α-
MnTenear the Fermi level at the Γpoint and theApoint, respectively, based
on the first-principles band structures, analytical tight-binding models, and
group theory discussion. The analytical k ⋅ p effective Hamiltonians with
SOC at the Γ point and the A point were obtained under two different in-
plane Néel vector directions ½11�20� and ½1�100� respectively. The derived
effective Hamiltonian fits well to the first-principles band structures, and all
the independentparameters indicatedby thegroup theoryweredetermined.
The strong anisotropic Fermi surfaces at the Γ point, originating from the
SOC are distinct with different Néel vector orientations.

Results
First principles band structures
α-MnTe hasNiAs-type lattice structure. It is a nonsymmorphic space group
G ¼ P63=mmc

(No. 194). The lattice structure and the Brillouin zone ofMnTe

are shown inFig. 1a, b. BothMnandTe formhexagonal lattices in the plane.
A-type collinear antiferromagnetic order is built by Mn. Easy plane aniso-
tropy is suggested experimentally49,50, and the anisotropy in the plane is
negligibly small (<0.05meV per unit cell). Each local moment on the
magnetic Mn atom thus can point along ½11�20� direction (the x direction)
(Fig. 1c) or ½1�100� direction (the y direction) (Fig. 1d) with close probability.
Due to the opposite direction of Mn’s magnetization in neighboring layers,
two Te atoms, labeled as TeA and TeB, and marked by green and brown,
respectively, to be distinguished from each other.

The band structures for MnTe are shown in Fig. 2. The band gap is
about 0.7 eV, indicating the semiconducting behavior. The WF-based
Hamiltonian has the same eigenvalues as those obtained by first-
principles calculations from 0.5 eV below the Fermi energy to the valence
band maximum (VBM). This also indicates that electrons from Mn are
away from the Fermi energy, so that only p-orbitals of the Te electrons
need to be taken into account when we study spintronic properties. The Γ
and A points are both close to VBM. In addition, bands with the Néel
vector aligned along the x and y directions have distinct behaviors when
SOC is included, shown in Fig. 2b, c.We should separately discuss them in
detail.

Non-SOC paramagnetic phase
The quotient group G/T of MnTe’s space group G with respect to its
translation groupT is isomorphic toD6h. It has 24 symmetry operations with
the generators f3�0001j0g, {20001∣1/2}, {2110∣0}, and I ¼ f�1j0g. According to
the orbital-resolved band structure plot in Fig. 3a, the valence band around
the Γ-point at the Fermi surface is dominated by the single pz orbital. In this
paramagnetic state, real spin s is irrelevant, so that sub-Hilbert space is two-
dimensional expanded by A/B pseudospin, which is labeled as σ. In this

Fig. 1 | The lattice structure of α-MnTe under a the main view and c, d top views.
b the Brillouin zone of MnTe with all high-symmetric k-points. Purple balls
represent Mn atoms. Green and yellow balls represent Te atoms in A and B

sublattices, respectively. In a, the local magnetic moments on Mn with layered
antiferromagnetic ordering lie in the xy-plane. In c, d, the Néel vectors are along x
and y directions, respectively.
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representation, these generators are f3�0001j0g ¼ σ0, {20001∣1/2} = σx,
f211�20j0g ¼ �σx , and I ¼ �σx.

Representation is different at the point A = (0, 0, 1/2) which sits right
on top of the Γ point. The little group ofA is stillD6h, so they share the same
generators. But the fractal translations in this nonsymmorphic group
matters away from the Γ point. Furthermore, the DOS around the A point
[Fig. 3a] shows dominance from the px and py orbitals. Using τ to represent
the px/py pseudospin, representations of these generators are
f3�0001j0g ¼ σ0ð� 1

2 τ0 þ
ffiffi
3

p
2 iτyÞ, {20001∣1/2} = iσyτ0, f211�20j0g ¼ σxτz ,

and I ¼ �σx .
The band structure of the paramagnetic state without spin–orbit

coupling can be derived. The full table irreducible representation is in the
Table I of the SupplementaryMaterials. It is, however, worthwhile to discuss
the one-dimensional trivial representation A1g: DA1g

ðgÞ ¼ 1 for any
operation g. At theΓpoint, other than the trivial representation σ0s0, another
irreducible representation is σx. The fourfold degeneracy of
∣pzA "�; ∣pzB "�; ∣pzA #�; ∣pzB #� is thus lifted, with each identified by the
eigenvalues ±1 of σx. These correspond to the symmetrized (∣Si) and anti-
symmetrized (∣Ai) states between A and B sublattices; ∣SðAÞ� ¼ pzA ± pzB.
Each band has a twofold spin degeneracy. This is consistent with the DFT
calculations. The valence band top at the Γ point is the spin-degenerate anti-
bonding states with the symmetrized ∣Si. In contrast, only the identity
matrixσ0τ0s0 expands the trivial irreducible representationat theApoint.As
a result, all eight bands are degenerate in the paramagnetic state without
spin–orbit coupling. Using the full irreducible representation Table I in the
Supplementary Materials, one can easily construct the full non-magnetic
Hamiltonian of MnTe effective around the Γ andA points, but they are not
the main goal here.

Non-SOC AFM phase
The band structure changes when the A-type antiferromagnetic order is
introduced. Without spin–orbit coupling, spin and the orbital space can be
rotated independently, so that this magnetic state satisfies spin point group
26/2m2m1m. This group is isomorphic to D6h group, but the generators are
f3�0001j0g; f211�20j0g; f20001j1=2gRπ , and I . Here Rπ is the spin flip
operator. At the absence of spin–orbit coupling, one has the liberty of

choosing an arbitrary spin quantization axis and the physics is unchanged.
For simplicity, let’s use z as the spin quantization axis of Mn layer, thenRπ

canbe eitherR1 ¼ e�iπsx=2 ¼ �isx orR2 ¼ e�iπsy=2 ¼ �isy . Its irreducible
representations are listed in Table 1.

At the Γ point, according to the discussion above, anti-bonding states
with eigenstate−1 of σx are split from bonding states; the latter are far from
the Fermi level and many other Mn and Te bands are sandwiched in
between. We are thus only interested in the minimal Hamiltonian in the
two-dimensional sub-Hilbert space expanded by anti-bonding states
f∣S "�; ∣S #�g. This is consistent with the result obtained by the tight-
binding theory in Supplementary Materials. Projection to the correspond-
ing eigenstates, σysz and σzsz, both vanish since they are relevant only in the
transition between bonding and anti-bonding states. As a result, only the
trivial irreducible representationA1g is relevant, and theHamiltonian of this
valence state is given by

HΓ
non�SOC ¼ c1 k2x þ k2y

� �
þ c2k

2
z þ c3 k2x þ k2y

� �2

þc4 4 k2x � k2y

� �3
� 3 k2x � k2y

� �
k2x þ k2y

� �2
� � ð1Þ

Here, terms c1,2,3 are directly constructed from Table 1. Although imme-
diately next to theΓpoint, theDFT results in Fig. 2a canbe capturedby these
three terms, the band structure shows non-quadratic non-monotonous
band along the Γ−K/M line away from the Γ point. This is an important
feature since the real Fermi surface might cut the valence band top away
from the Γ point. Along Γ−K/M line the little group symmetry is much
reduced than the Γ point, so the higher-order k corrections cannot rely on
the irreducible representation in Table 1. We notice that on the Γ−K−M
plane the band exhibits a 6-fold rotational symmetry. Therefore c4 term is
included, which is identical to k6sin6θ cos 6ϕ in the spherical coordinate.
This is a spinless Hamiltonian, meaning the band is degenerate. This fact is
consistent with the band structure in Fig. 2a. Along any direction from the Γ
point, bands are always spin degenerate. If altermagnet is narrowly defined
as the spin splitting in the absence of spin–orbit coupling, MnTe is not an
altermagnet, at least from the transport perspective, once the Γ point is
dominant.

At A point, σxτ0sz term of A1g irreducible representation splits the
8-fold degenerate bands into two 4-fold degenerate manifolds, depending
on the eigenvalues of this matrix. px and py pseudospins are always
degenerate due to thepresenceof f3�0001j0g operation.Theanti-symmetrized
A–B sublattices with up spin (∣A "�) and the symmetrized A–B sublattices
with down spin (∣S #�) are degenerate. On the other hand, symmetrized
A–B sublattices with up spin (∣S "�) and the anti-symmetrized A– B sub-
lattices with down spin (∣A #�) are also degenerate, but significantly split
from the former. The latter is close to the Fermi energy as indicated by the
DFT result. Under A-type antiferromagnetic ordering, the mixture of
sublattice and spindegrees of freedom is a key feature of bands at theApoint
due to alternatingphases ofp-orbitals along 0001½ �directionas shown inFig.
3d. The symmetrized A–B sublattices within the unit cell is identical to the
anti-symmetrized state between Te atoms from two neighboring unit cells
along 0001½ �. However the spin state of these two equivalent interpretations
are opposite due to alternating Mn spins along 0001½ �. Let’s use a new
pseudospinω to indicate this two-folddegeneracy between ∣S "� and ∣A #�.
Although not exactly the real spin operator, it is still a pseudo-vector like the
real spin. The minimal Hamiltonian is expanded by four-dimensional
matricesωiτj. Projecting onto this sub-Hilbert space, only terms commuting
with σzτ0sz could stay. All other terms enable interband transitions to the
cluster of bands far below the valence band top. The resulting effective
Hamiltonian is therefore

HA
non�SOC ¼ c1 k2x þ k2y

� �
þ c2k

2
z þ c3 k2x � k2y

� �
τz þ 2kxkyτx

h i

þ c4ωz kykzτz þ kxkzτx
� � ð2Þ
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Fig. 2 | The band structures of A-type antiferromagnetic MnTe. a Without
spin–orbit coupling (SOC), with SOC included and with the Néel vector aligned
along b the x direction and c the y direction, respectively. Insert in (a) shows the k-
point path in a hexagonal Brillouin zone for the plotting band structure. The Fermi
energy, which is the valence band maximum (VBM), is set to zero.
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This effective Hamiltonian is consistent with the DFT result. At A–Γ line,
kx = ky = 0 so no splitting is expected. As shown in Fig. 3b, at A–L3 line,
kx = kz = 0, the Hamiltonian is reduced to HA�L3

non�SOC ¼ c1k
2
y � c3k

2
yτz , so

that splitting between px and py is observed. The same is expected along
A–H1 line with ky = kz = 0, where HA�H1

non�SOC ¼ c1k
2
x þ c3k

2
xτz . Along all

these high-symmetry lines, spin splitting is absent due to the irrelevance ofω
in the Hamiltonian. DFT shows bulk g − wave spin splitting only at low
symmetry areas in the Brillouin zone [Fig. 3e, f]. One should note that the
spin-dependent second-ordered c4 term is not enough to describe the bulk
g − wave spin splitting with three-fold symmetry. Since the spin splitting
next to A point does not push the bands above the energy of the A point,
apparently, it may not impact transport properties effectively. In addition,
SOC and the corresponding in-plane magnetic anisotropy can reduce the
symmetry, and the higher-order terms are not as significant. Therefore, we
did not further introduce higher-order terms here.

From the tight-binding theory, we analytically derived all the terms
permitted by the symmetry constraints in Eqs. (1) and (2) (see Supple-
mentary Materials for details). In the absence of SOC, the valence band
maximum at the Γ point is an anti-bonding state between the A and B
sublattices and remains spin-degenerate. At the A point, the states become
degenerate, corresponding to ∣S "� and ∣A #� states of both px and py
orbitals. These findings are all consistent with the symmetry analysis,
thereby validating our tight-binding model.

SOC AFM with Néel vector along ½11--20�
Significant spin splitting in MnTe is actually facilitated by the spin–orbit
coupling. When the spin–orbit coupling is turned on, due to the co-rotation
of both orbital and spin coordinates, the lattice symmetry is reduced and
different antiferromagnetic orderings give distinct band structures. Accord-
ing to the DFT calculation, two antiferromagnetic orders with different in-
plane directions of theNéel vectors should be considered.When theNéel lies
in ½11�20� direction (x direction in Fig. 1c, d), the inversion I is still a

symmetry, butC3 andC6 symmetries arebroken.The little groupsat theΓand
Apoints are both isomorphic toD2h =D2⊗Z2, whereZ2 ¼ fE ¼ f1j0g; Ig,
andD2 ¼ ff211�20j0g; f20001j1=2g; f21�100j1=2g; E ¼ f1j0gg.Usually once the
magnetic ordering is concerned, the time-reversal operationT would appear
in the space group. Interestingly, in the current case, T is not a symmetry
operation even in combination with other unitary rotations. So themagnetic
space group is the same as the conventional Fedorov space group. Absence of
the time-reversal symmetry thus naturally leads to the Hall effect in the
absence of the external magnetic field or net magnetization3.

At the Γ point acting on the pz orbitals, the symmetry operations are
{20001∣1/2} = σxsz, f211�20j0g ¼ σxsx , I ¼ �σx . While at the A point acting
on the px,y orbitals, {20001∣1/2} = iσyτ0sz, f211�20j0g ¼ σxτzsx , and I ¼ �σx .
The character table is given in Table 2. For simplicity, only terms commute
with σx and σxτ0sx at the Γ and A points, respectively, are listed. These
operations keep the Hilbert space within the subspace given by the degen-
erate eigenstates required by their trivial irreducible representations.

At the Γ point, all remaining terms keep the anti-bonding state
invariant, thus the σ-component can be neglected. Only the spin rotations
are relevant. As a result, all allowed terms in addition to the non-SOC
effective Hamiltonian are kxkysz, kykzsx, and kxkzsy. They are contributions
from the SOC. The tight-binding calculation indicates that only kxkysz term
is relevant when kz is tiny. The effective Hamiltonian is thus given by

HΓ
½11�20� ¼ HΓ

non�SOC þ γ1kxkysz þ δ1k
3
xky þ δ2k

3
ykx

� �
sz ð3Þ

Here, as suggested in the authors’ earlier work3, a quartic SOC term

δ1k
3
xky þ δ2k

3
ykx

� �
sz is included to enable the non-monotonous band

around the Γ point. This result is consistent with the spin-resolved band
fromDFT calculation. All terms with sz are combined with kxky, so that the
valence band around the Γ point is spin polarized alongþẑ direction in the

Fig. 3 | The detailed band structure of the valence
bands without SOC. a, b The band structures with
Te(5p) orbital component near a the Γ point and
b the A point, respectively. The k-point path is
shown in c. d Two degenerate states at A point, the
symmetrizedA–B sublattices with up spin ∣S "� and
the anti-symmetrized A–B sublattices with down
spin ∣A #�. e the band structure in the kxky plane
where kz ¼ 0:45 2π

c (near ~A ¼ ð0; 0; 0:45Þ) in the
reciprocal space. Red and blue curves represent spin
up and down bands, respectively. f The energy sur-
face for the valence band in kx-ky plane near ~A point.
The red and blue dots represent the spin up and
down, respectively. The units of k-points is Å−1.
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II/IVquadrants andalong�ẑ in the I/III quadrants, as shown inFig. 4b.The
degenerate lines with zero are for all the sz terms are two lines kx = 0 and
ky = 0. Fig. 4b also shows that the subvalence band has the opposite spin
direction. Importantly, the tight-binding calculation shows that γ1 term is a
first-order correction in SOC. The large SOC of 0.5 eV in Te thus explains
the large spin splitting around the Γ point. The energy maximum is located
at four points symmetrically in four quadrants. Considering its p-type
semiconductor nature, the Fermi surface formed by the valence band forms
four hole pockets, which are mirror symmetric with each other and exhibit
strong anisotropic characteristics as well as spin orientation, leading to a
wealth of anisotropic transport properties. This result has been well
discussed in the authors’ earlier work3.

We employed the conjugate gradientmethod54 to fit all the coefficients
of the effective Hamiltonian obtained from our analysis. DFT bands in an
ellipsoidal region of the Brillouin zone around the Γ orA point were chosen
for the fitting. Considering that the SOC bands from DFT are obtained
through self-consistent field calculations, the non-SOC potentials for dif-
ferent Néel vectors may vary slightly. Therefore, we performed separate
fittings for the coefficients of the non-SOC part of the bands for different
Néel vectors. Inparticular, due to the significant impact of SOCon thebands
and the presence of important spin-splitting features apart from the Γ point,
we adopted the transformation of kx ! 1

a sin kxa; ky ! 1
a sin kya to fit the

coefficients of the part of SOC near the Γ point. The fitting parameters were
obtained as c1/a

2 = 0.0306 eV, c2/c
2 =−0.492 eV, c3/a

4 =−0.0497 eV,
c4/a

6 = 0.0047 eV, γ1/a
2 = 0.353 eV, δ1/a

4 =−0.381 eV, δ2/a
4 = 0.0870 eV.

At the A point, the same ω matrices are used to represent the pseu-
dospin of the degenerate basis ∣Sþi and ∣A�i. Different as the non-SOC
AFMcase, here the spin space itself is no longerSU(2) invariant. ∣þi and ∣�i
states are determined by the eigenstates of sx instead, i.e., sx∣± i ¼ ± ∣± i.
Allowed independent SOC terms are τz, k

2
x;y;zτz , kxkyτx,y, kzτx,yωy, kykzτ0,z,

kxτ0,zωx, kxkzτx,y, and kyτx,yωx. The tight-binding calculation indicates the
Hamiltonian given by

HA
½11�20� ¼ HA

non�SOC þ γ0τz þ γ1 kxτz � kyτx
� �

ωx þ γ2kyτyωx

þγ3kzτyωy þ γ4kxkyτy þ γ5kxkzτyωz

ð4Þ

An interesting term is τz,whichopens up a gap at theApoint betweenpx and
py orbitals. That is a result of the brokenC3 symmetry. px and py orbitals are
independent. But tight-binding shows that the gap 2γ0 is of the secondorder

of SOC. DFT bands identify this gap as 3meV, shown in Fig. 4d. It is thus
negligibly small. The fitting parameters from the DFT band results were
obtained as c1/a

2 =−1.089 eV, c2/c
2 =−0.120 eV, c3/a

2 =−0.615 eV,
c4/ac =−0.312 eV, γ0 = 0.0013 eV, γ1/a =−0.110 eV, γ2/a =−0.0161 eV,
γ3/c = 0.0663 eV, γ4/a

2 =−0.217 eV, γ5/ac =−0.116 eV.

SOC AFM with Néel vector along ½1--100�
Once the Néel vector is along ½1�100� direction (or y direction), the SOC
terms would be different. The fundamental difference compared to ½11�20�
case is the symmetry group. In this case, the quotient group G/T =M is a
magnetic point group. M ¼ C2h � T ðD2h � C2hÞ ¼ m0m0m. It contains
{1∣0},I , {20001∣1/2}, {m0001∣1/2}, f211�20j0gT , f21�100j1=2gT , fm11�20j0gT , and
fm1�100j1=2gT . Generators of the groups are f211�20j0gT , {20001∣1/2} and I .

In this case, at the Γ point, {20001∣1/2} = σxsz, f211�20j0gT ¼ σxsxisy
K ¼ �σxszK , I ¼ �σx. ; at the A point, {20001∣1/2} = iσyτ0sz,
f211�20j0gT ¼ σxτzsxisyK ¼ �σxτzszK , and I ¼ �σx . The character table
is shown inTable 3. Remarkably, the trivial irreducible representation at the
Γpoint contains SOCcorrections of σ0sz and σxsz. The effectiveHamiltonian
in theHilbert space expanded by the anti-bonding state thus contains terms
such as k2xsz , k

2
ysz , k

2
z sz . Other allowed SOC terms include kykzsy and kxkzsx.

The tight-binding model suggests that only k2xsz and k2ysz are relevant.

HΓ
½1�100� ¼ HΓ

non�SOC þ γ01 k2x � λ1k
2
y

� �
sz

þ δ01k
2
x k2x � λ2k

2
y

� �
þ δ02k

2
y k2x � λ2k

2
y

� �h i
sz

ð5Þ

Spins around are thus again polarized along ± ẑ direction. Tight-binding
results suggest thatγ1 ¼ 2γ01 andλ1 = 1, indicatingaπ/4 rotationof theband
structure relating toHΓ

½11�20�. The energy surfaces shown in Fig. 5b generally
match this rotational relationship. However, the ½1�100� case follows
different group symmetry with the ½11�20� case at the Γ point, so that there is
no constraint of the values of γ1; γ

0
1 and λ1. Thus, in detail, the fitting

parameters based on DFT band results were obtained as c1/a
2 = 0.0178 eV,

c2/c
2 =−0.513 eV, c3/a

4 =−0.0480 eV, c4/a
6 = 0.0045 eV,

γ01=a
2 ¼ 0:153 eV, δ01=a

4 ¼ 0:0571 eV, δ02=a
4 ¼ 0:0273 eV, λ1 = 1.31

and λ2 = 6.15. λ1 is not 1 and λ2 is not equal to λ1. This indicates that the
degenerate lines with zero for all the sz term are not the simple straight lines
kx = ±ky, but arcs with mirror symmetries along kx = 0 and ky = 0.

At theA point, ∣þi and ∣�i states, the spin part for the two basis forω
matrices are now determined by the eigenstates of sy instead, i.e.,

Table 2 | Irreducible representations of D2h

E {20001∣1/2} f2
11
--
20
j0g I Γ A

Ag 1 1 1 1 x2, y2, z2, const. σ0, σx σ0τ0,z, σxτ0,zsx

Au 1 1 1 -1 σyτ0,zsz, σzτ0,zsy

B1g 1 1 -1 1 xy σ0sz, σxsz τx,y, σxτx,ysx

B1u 1 1 -1 -1 z σyτx,ysz, σzτx,ysy

B3g 1 -1 1 1 yz σ0sx, σxsx σxτ0,z, σ0τ0,zsx

B3u 1 -1 1 -1 x σyτ0,zsy, σzτ0,zsz

B2g 1 -1 -1 1 xz σ0sy, σxsy σxτx,y, σ0τx,ysx

B2u 1 -1 -1 -1 y σyτx,ysy, σzτx,ysz

Table 1 | Irreducible representations of spin group 26/2m2m1m, corresponding to AFM phase without SOC included

E f3�0001j0g f20001j1=2gRπ f2
11
--
20
j0g I Γ A

A1g 1 1 1 1 1 x2 + y2, z2 σ0, σx σ0τ0, σxτ0sz

A2u 1 1 1 −1 −1 z σysz, σzsz σyτ0, σzτ0sz

E2g 2 −1 2 0 2 (x2−y2, 2xy) σ0(τz, τx), σx(τz, τx)sz

E1g 2 −1 -2 0 2 (yz, xz) σx(τz, τx), σ0(τz, τx)sz

E1u 2 −1 -2 0 -2 (x, y) σy(τx, τz)sz, σz(τx, τz)sz
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Fig. 4 | With the Néel vector aligned along the ½11�20� (x) direction, The band
structure with Te(5p) orbital component a near the Γ point, c along the Γ-A-Γ k-
point path, and d near A point. b the energy surface for the top two valence bands in

kx-ky plane near the Γ point. The red and blue arrows on each dot represent the+sz
and −sz spin directions, respectively. The units of k-points is Å−1.
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sy∣± i ¼ ± ∣± i. In contrast to the case at the Γ point, many terms are
allowed at theA point, including τy,z, kxkyτx, kykzτ0,y,zωz, kxkzτxωz, kzτ0,y,zωy,
kyτxωx, and kxτ0,y,zωx. The tight-binding suggests the following effective
Hamiltonian

HA
½1�100� ¼ HA

non�SOC � γ00τz þ γ01 kxτz � kyτx
� �

ωx � γ02kxτyωx

þγ03kzτyωy þ γ04=2 k2x � k2y

� �
τy þ γ05kykzτyωz

ð6Þ

The fitting parameters from the DFT bands are c1/a
2 =−1.089 eV,

c2/c
2 =−0.132 eV, c3/a

2 =−0.615 eV, c4/ac=−0.317 eV, γ00 ¼ 0:0013 eVγ0′
=0.0013eV, γ01=a ¼ �0:103 eV, γ02=a ¼ �0:0596 eV, γ03=c ¼ 0:0696 eV,
γ04=a

2 ¼ 0:288 eV, γ05=ac ¼ 0:0061 eV. The zero-ordered term γ0 ¼ γ00 is
confirmed by both the tight-bindingmodel and the DFT bands. γ4 � γ04 also
indicates that HA

½1�100� generally follows a π/4 rotation of the SOC part of the
band structure relating to HA

½11�20�. The first-order coefficients γ2=γ
0
2 and

γ3=γ
0
3 and the second-order one γ5=γ

0
5 determines the anisotropic dispersion

away from non-SOC C3 symmetry. In both cases, the magnitudes of these
coefficients are at least one-order of magnitude smaller than those of the
corresponding ordered coefficients at the Γ point. Both the DFT bands [Fig.
4d and Fig. 5d] and the band fitting results display the tiny anisotropic
behavior within several meV.

Discussion
It is very difficult to determinewhether theVBMofMnTe is located around
theΓor theApoint since their relative energydifference is highly sensitive to
external environments, including strain, impurities, temperature, etc. The
calculated position of VBM is also sensitive to the exchange-correlation
functionals3. Here, we focus on the shape and spin properties of the Fermi
surfaceswhen theVBMis located around theΓ and theApoint, respectively,
under p-doping.

Once the VBM is located around the Γ, the Fermi surfaces look sig-
nificantly different when the Néel vector is aligned along the ½11�20� and
½1�100� direction, as shown in Fig. 6a, b. In the case of ½11�20�, four VBM k-
points are presented according to the energy surfaces shown in Fig. 4b.
Under p-doping environment, four hole pockets are symmetrically dis-
tributed across the four quadrants, mirroring each other with respect to
kx = 0 and ky = 0 [Fig. 6a]. The pockets in I/III quadrants has the opposite
spin direction to those in II/IV quadrants, and all four pockets are spin
polarized along sz direction. The net magnetization of the Fermi surfaces is
zero, but the anisotropic distribution of the Fermi surfaces leads to aniso-
tropic conductivity. The authors’ earlier work3 predicted a giant T -even
planer Hall effect with the maximum Hall angle near 30% for this case of
Fermi surfaces.

In the case of ½1�100�, the energy maximum occur at two points, which
are located on the line ky = 0 and are symmetric with respect to the Γ point,
as shown in Fig. 5b. Thus, only two corresponding hole pockets appears
symmetrically at +x and −x regions along ky = 0 [Fig. 6b]. Surprisingly,
both pockets have the same spin polarization along sz direction so that the
valence electron is fully spin polarized even though it is a collinear

antiferromagnet. This is consistentwith the effectiveHamiltonian inEq. (5).
All spin-dependent terms therein are sz related, and the coefficients are even
functions of both kx and ky. The anisotropic and spin-polarized Fermi
surfaces originate from SOC, and bring about not only the anisotropic
conductivity but also the spin-polarized current. Strong spin-transfer torque
with strong spin scattering between itinerant electrons polarized along sz
given local magnetic moments on Mn along sy are expected. The strong
planer Hall response is also expected in terms of the anisotropic Fermi
surfaces and would be the primary focus in future work. In both cases, the
energy window for the strong anisotropic Fermi surfaces is about 0.08 eV,
which is adequate for the p-doping to against thermal fluctuation.

When theVBMis locatedaroundA, the valencebands for the twocases
of Néel vector appear very similar since the impact from SOC is limited. To
this end, in both cases, the Fermi surface generally exhibits a hexagram
structure, as shown in Fig. 6. The spin component, following the non-SOC
band structure, shows the bulk g-wave spin splitting at low symmetry areas,
and the spin direction follows the Néel vector direction, so that the spin
properties are dominated by the non-relativistic altermagnetic feature.
Figure 6e, f gives the intrinsic anomalous Hall conductivities σAxy based on
both the WF-based tight-binding model and the effective Hamiltonian. In
the case of ½11�20�, σAxy is always zero because of the inversion symmetry and
isomorphic D2h group at the A point. In the case of ½1�100�, σAxy is non-zero
when the chemical potential crosses the bands at the A point. Due to the
extremely weak in-planemagnetic anisotropymentioned in the section, the
Néel vector of MnTe can be aligned by the applied in-plane magnetic field.
The anisotropic anomalous Hall conductivity can thus be verified by
modulating the direction of the in-plane magnetic field. However, the
detectable energy window for non-zero σAxy is only on the order of 0.01 eV,
corresponding to the energy window to establish the altermagnetic spin
splitting feature in spintronicmeasurement, so that it is highly susceptible to
external environmental factors such as thermal fluctuation and impurities.
It is consistent with the experimental measurement of the spontaneous
anomalous Hall conductivity of MnTe as only ~0.02 S/cm12.

In summary,we resolved theband structures ofα-MnTenear theVBM
at the Γ point and the A point. The group representation theory, first-
principles calculations, and the tight-binding theory give a consistent
effective Hamiltonian around high-symmetry points of MnTe. Compared
todirect k ⋅p theory, ourmodelHamiltonian is built upon realistic bases.We
showed that spin–orbit coupling is essential in generating spin splitting at
high-symmetric points and high-symmetric lines. The effective Hamilto-
nian could be used in future studies of electron, spin, and orbital transports
of MnTe and other transition metal chalcogenides with the same structure.
The spin-polarized Fermi pockets could give non-trivial magnetoresistance
and even possible electron pairing states.

Methods
First principles calculations
The electronic band structures of MnTe were obtained based on density-
functional theory (DFT) calculations with projector augmented wave
(PAW) pseudopotentials55,56, implemented in the Vienna ab initio

Table 3 | Irreducible representations of m0m0m magnetic group

E {20001∣1/2} f2
11
--
20
j0gT I Γ A

Ag 1 1 1 1 x2, y2, z2, const. σ0, σx, σ0sz, σxsz τ0,y,z, σxτ0,zsy, σxτysy

Au 1 1 1 -1 z σyτ0,y,zsz, σzτ0,y,zsx

B1g 1 1 -1 1 xy τx, σxτxsy

B1u 1 1 -1 -1 σyτxsz, σzτxsx

B3g 1 -1 1 1 yz σ0sy, σxsy σ0τ0,y,zsy, σxτ0,y,zs0

B3u 1 -1 1 -1 y σyτxsx, σzτxsz

B2g 1 -1 -1 1 xz σ0sx, σxsx σ0τxsy, σxτxs0

B2u 1 -1 -1 -1 x σyτ0,y,zsx, σzτ0,y,zsz

https://doi.org/10.1038/s41535-025-00784-1 Article

npj Quantum Materials |           (2025) 10:70 7

www.nature.com/npjquantmats


M1 1'

-0.2 0.0 0.2

-0.4

-0.2

0.0

K1 1'

pz

E
-E

F
(e
V)

-0.2 0.0 0.2

K3 3'

-0.4

-0.2

0.0

M2 2' M3 3'

( -1)(a) (b)-0.2 0.0 0.2

K2 2'

+sz

-sz
+sz

-sz

-0.05 0.00 0.05

-0.08

-0.04

(c) (d)
-0.05 0.00 0.05 -0.05 0.00 0.05

-0.08

-0.04

AL1 L1'

A A

L2 A L2' L3 A L3'

-0.3

-0.2

-0.1

0.0

E
-E

F
(e
V)

� A �

px

py

H1' H2'H2 H3'H3H1 A

( -1)
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simulation (VASP) package57,58. The generalized gradient approximation in
Perdew, Burke, and Ernzerhof formation59 was used as the exchange-
correlation energy. We employed the Hubbard U method in the Liech-
tenstein implementation60 of U = 4.0 eV, J = 0.9 eV on Mn(3d) orbitals to
include the on-site strong-correlation effects of the localized 3d electrons.
An energy cutoff of 600 eV was used for the plane-wave expansion
throughout the calculations. The Γ-centered 12 × 12 × 8 k-mesh is sampled
in the Brillouin zone for self-consistent calculations. The experimental lat-
tice parameters of a = 4.171Å and c = 6.686Å49 are used. The SOC was
included when we considered the AFM phase with the Néel vectors along
the x and y directions

After we obtained the eigenstates and eigenvalues, a unitary transfor-
mation from the plane-wave basis to the localized Wannier function (WF)
basis was performed to construct the tight-binding Hamiltonian by using
the band disentanglement method61 implemented in the Wannier90
package62. Only Te(5p) orbitals are chosen for the projection.

General group representation theory
To understand all valence bands and facilitate future transport studies, the
effective Hamiltonian ofMnTe will be constructed using the representation
theory of the space group, spin group, and magnetic group. Only Te(5p)
orbitals are taken into account. Each unit cell contains two Te atoms. The
Hilbert space is thus expanded by the basis of atomic orbitals ϕl from A, B
sublattices:

ψk;l
A;BðrÞ ¼

X
j

eik�R
j
ϕlðr� Rj � τA;BÞ ð7Þ

where Rj are Bravais lattice vectors and τα with α =A, B are basis of two
sublattices. For MnTe, τA ¼ 2

3 a1 þ 1
3 a2 � 1

4 a3 and τB ¼ 1
3 a1 þ 2

3 a2 þ 1
4 a3.

Under a generic symmetry operation {g∣τ}, a lattice point from one unit cell
could be transferred to another, so that fgjτgτα ¼ gτα þ τ ¼ τβ þ R0. To
ensure fgjτg∣ψk;l

α

�
is a linear superposition of ∣ψk;l

α

�
with the same k, gmust

belong to the little group of k, i.e., gk = k+K, where K is a lattice vector of
the reciprocal space. It can be shown that fgjτg∣ψk;l

α

� ¼ DγðgÞll0
e�ik�R0 ∣ψk;l0

β

E
, where DγðgÞ is the irreducible representation γ of g in the

atomic basis. Therefore, the representation of {g∣τ} is

DðfgjτgÞαl;βl0 ¼ DγðgÞll0e�ik�R0
; ð8Þ

where the factor e�ik�R0
is important in the discussion of nonsymmorphic

crystals63,64 away from the Γ point.
A Hamiltonian H ¼ P

khðkÞ∣ψk
�
ψk
�

∣ must be invariant under a
symmetry operator g such that gψk

�
∣hðgkÞ∣gψk

� ¼ ψk
�

∣hðkÞ∣ψk
�
. Given

the representation of symmetry group under the basis fψk
�g:

∣gψk
� ¼ DðgÞ∣ψk

�
, the invariance indicates D(g)h(g−1k)D−1(g) = h(k). Due

to the group representation homomorphism, only generators of the little
group need to be considered to construct the effective Hamiltonian h(k). If
both the matrices hi and fi(k)—a polynomial of k- expand the same irre-
ducible representation of the little group, their direct product must contain
the trivial irreducible representation satisfied by the Hamiltonian. Therefore,
one can construct the effective Hamiltonian hðkÞ ¼ Pd

i¼1 hdf dðkÞ, where d
is the dimension of the representation.

Once symmetry operations include the time-reversal operation T that
flips the crystal momentum, the condition for invariance is different. For a
generic symmetry operation g ¼ g0T , where g0 is the unitary component,

Fig. 6 | Fermi surfaces in four cases: around the Γ
point, Néel vector along (a) ½11�20� and (b) ½1�100�
respectively; around the A point, Néel vector along
(c) ½11�20� and (d) ½1�100� respectively. The Fermi
energies for all the four cases are 0.01 eV lower than
the VBM. Red and blue color represent the spin
components. e, f The intrinsic anomalous Hall
conductivity for the case of ½11�20� and ½1�100�,
respectively. The energy of VBM is set to zero.
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its representation of can be written asDðgÞ ¼ Dðg0T ÞK . Here,D is unitary
and K is a complex conjugate. Invariance of the Hamiltonian requires
Dðg0T ÞH�ð�g�1

0 kÞD�1ðg0T Þ ¼ HðkÞ instead. Later, wewill show that the
AFM state with the Néel vector along ½1�100� is exactly this case, while the
Néel vector along ½11�20� belongs to the simple case in the above paragraph.

Tight-binding theory
The symmetric analysis provides all allowed terms in the effective Hamil-
tonian. However, some terms might vanish due to accidental degeneracy,
and some terms are tiny due to weak spin–orbit coupling perturbation. To
confirm the band structure with orbital basis predicted by the symmetry
analysis and select relevant terms, a tight-binding Hamiltonian is con-
structed (see Supplementary Materials for details). The full k-dependent
Hamiltonian is

Hk ¼ Hk
Te�Te þ Hk

Te�Mn þ Hk
Mn�Mn þHSOC ð9Þ

whereHk
Te�Te is the hopping betweenall three porbitals of two sublatticesof

Te atoms. Up to third neighbor hopping are taken into account, and the
hopping integrals are determined by the Slater-Koster rules65,66. Hk

Te�Mn is
the nearest neighboring hopping between p–d orbitals. Subjected to the
trigonal crystal field symmetry, d-orbitals ofMn are split to three levels with
degenerate dxz/dyz orbitals, degenerate dx2�y2=dxy orbitals, and a non-
degenerate z2 orbital.Without loss of symmetry, only dz2 is considered in the
tight-binding model. Due to the local magnetic moment of Mn, majority
and minority spins have different spin-preserving hopping amplitudes, but
the Slater-Koster rule for each spin is still respected. In addition, Hk

Mn�Mn
accounts only for the on-site energy of the dz2 orbital, and thus the
dispersion within the dz2 -orbital subspace is neglected. HSOC is the on-site
SOC of Te atoms.

Integrating over the dz2 by the Schrieffer-Wolff transformation67,68, an
effective Hamiltonian solely in terms of p-electrons can be derived as

Hk
p ¼ Hk

Te�Te þ ΔHkð2Þ
Te�Te þHSOC ð10Þ

Here ΔHkð2Þ
Te�Te ¼

Hk
Te�MnH

ky
Te�Mn

ϵp�ϵd
, where εp and εd are the energies of Te p and

Mn d levels, respectively.MinimalHamiltonian at the Γ andA points can be
derived by further application of the Schrieffer-Wolff transformation
Hk

eff ¼ Hk
0 þ Vk 1

ε0�H0k Vky, where H0k is the Hamiltonian of the Hilbert

space to be integrated out. In the previous transformation ΔHkð2Þ
Te�Te above,

dz2 � dz2 hopping is neglected so that dz2 is dispersionless and
H0k ¼ Hk

Mn�Mn ¼ εd . However, now p-orbitals to be integrated out are
dispersive, so H0k has a matrix form. Here we write 1

ε0�H0k as 1
ðε0�ΛÞ�ðH0k�ΛÞ

and Taylor expand ðH0k � ΛÞ, where Λ is the diagonal part of H0k . We
found that in order to derive an effective Hamiltonian with the correct
symmetry, higher-order terms of ðH0k � ΛÞ must be kept. Details of the
tight-binding theory can be found in the Supplementary Materials.
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