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Salience network segregation and symptom profiles in
psychosis risk subgroups among youth and early adults
Aditya Iyer1, William Stanford2, Eran Dayan3 and Rose Mary Xavier 4✉

Understanding neurobiological similarities among individuals with psychosis risk symptoms can improve early identification and
intervention strategies. We aimed to (i) identify neurobiologically similar psychosis risk subgroups by integrating resting-state
functional connectivity and psychosis risk symptom data and (ii) discern discriminating symptom profiles and brain connectivity
patterns in the identified sub-groups. Our sample (N= 922) was extracted from the Philadelphia Neurodevelopmental Cohort, a
community group of individuals aged 12–21 years, with fMRI and self-reported psychopathology data. Analyses were conducted
separately for youth and early adults. We constructed a two-layer network using pair-wise similarity distances between participants
based on resting-state fMRI and psychosis risk symptoms measured with the PRIME screen. We then performed community
detection via a multiplex stochastic block model to identify subject clusters. We identified 2 blocks or communities for both the
youth (n= 458 and 179) and early adult (n= 173 and 112) groups. Connection parameter estimates of the neuroimaging layer were
nearly identical between blocks for both age groups whereas there was significant variation for the symptom layer. Psychopathology
symptom and brain system segregation profiles were consistent across age groups. The youth block (n= 458) with higher salience
network segregation values had higher mean psychosis risk symptom scores while the early adult block (n= 173) with lower salience
network segregation had higher mean psychosis risk symptom scores. By integrating global similarities in brain connectivity and
psychosis risk symptoms, we identified distinct subgroups. These groups exhibit different symptom profiles and network segregation
in youth and early adults, suggesting variations in developmental paths for psychosis spectrum.
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INTRODUCTION
The psychosis prodrome, a period that can range from a few weeks
to several years, precedes the full onset of schizophrenia1. Several
attempts have been made to predict the prodromal period and the
prognosis of schizophrenia in high-risk individuals leveraging models
incorporating clinical, environmental, or neurocognitive factors2–4. In
studies that examine the neurobiological underpinnings of schizo-
phrenia, patients with schizophrenia exhibit structural deficits in gray
matter regions, with cortical thinning in the frontal, temporal,
anterior cingulate, and insular cortices4–6. These regions either
comprise the salience network, which is involved in the selection of
relevant stimuli7, or they play a significant role in facilitating and
modulating the network’s activation and connectivity. Structural
deficits in these regions have also been observed in individuals with
high risk for developing psychosis5,6. However, such deficits are not
specific to schizophrenia and can be indicative of other neuropsy-
chiatric disorders5.
Functional neuroimaging studies of schizophrenia have

revealed abnormal connectivity patterns within the salience
network and its closely associated regions, including those that
comprise the default mode network (DMN), frontoparietal network
(FPN), and dorsal attention network (DAN5,6,8–13). There is
evidence that impaired salience network-driven switching
between these networks is specifically dysfunctional in high risk
(HR) subjects and in prodromal subjects, especially those with
attenuated psychotic symptoms10,14,15. In essence, the salience
network acts as a “gatekeeper” or “switch” between networks that
reflect internally and externally directed attention. Furthermore,

anti-correlation between the DMN and the salience network was
found to be reduced10,13, which can be indicative of the confusion
of internally and externally focused states and the disruption of
cognition—a hallmark of psychotic disorders13.
Studies have employed network analyses to investigate

psychopathology symptoms16–19. Graph-based models from such
studies consist of nodes that represent psychopathological
variables and edges that represent the conditional dependencies
between two given variables. These models are effective at
specifying symptoms that convey the highest level of clinical
information, and they can explain phenomena such as psychiatric
comorbidities through the topology of their networks20. However,
they do not identify psychiatric subtypes or participant groups
that are most at risk of psychopathology.
Robust evidence shows that unsupervised, data-driven methods

—especially cluster and latent class analyses—successfully iden-
tify reproducible cognitive and symptom subgroups within youth
and young adults at clinical high risk (CHR) or in early psychosis,
with the most consistent and clinically meaningful distinction
observed between “cognitively impaired” and “spared” subtypes
that frequently predict functional outcomes but inconsistently
predict psychosis conversion21–26. Data-driven latent class/profile
models focused on symptom-based subgrouping reliably identify
emotional vs. motivational deficit patterns, and these are
predictive of broader clinical severity and poorer functional
outcomes24–26. Recent approaches such as multilevel clustering
show promise in incorporating both neuroimaging and clinical
data to reveal neurobiological subgroups with distinct functional
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connectivity, gray matter patterns, and symptom correlates,
especially within large cohorts27,28.
Community detection is a possible approach for discovering

psychiatric subtypes within larger participant groups. In this
approach, clustering is performed on network (or graph)
structures with nodes that represent individual participants and
edges that represent a measure of similarity between a given
subject pair. Compared to traditional clustering methods, com-
munity detection has not received as much attention in
psychiatric literature29. Existing work using community detection
has observed that early onset schizophrenia patients lack a default
mode intrinsic connectivity network present in age matched
controls30, but the small sample size of the study (n= 26) limited
the conclusions that could be drawn from their results30,31.
Community detection has also shown promise in distinguishing
between healthy individuals and those with schizophrenia using
functional magnetic resonance imaging (fMRI) data32, although
this method does not allow for the examining of the functional
patterns underlying this separation. A study by Taya and
colleagues demonstrates that community detection using
resting-state fMRI can be effective even when there is no
underlying “ground truth” communities to which results can be
compared33. We build upon this by evaluating the use of
community detection on fMRI data coupled with psychopathology
symptoms to elucidate psychosis risk subtypes from data without
“ground truths”.
The goal of our study was to identify neurobiologically similar

participant groups by integrating data spanning resting state
functional connectivity and self-reported psychosis risk symptoms.
We further aimed to discern the discriminating symptom profiles
and resting state brain connectivity patterns in the communities
we identified. To mitigate the sample size constraints encountered
in several neuroimaging studies31, we leveraged the Philadelphia
Neurodevelopmental Cohort (PNC) as our subject pool; the PNC
dataset contains fMRI and psychopathology history data from over
1000 youth participants34.

METHODS AND MATERIALS
Participants
The PNC consists of adolescents and early adults35. Since late
adolescence is a critical period in brain development, it is
particularly vulnerable for the onset of psychosis and other
psychopathology symptoms36,37. To better encapsulate this crucial
phase in our subject network, we conducted our analyses
separately for youth (ages 12–17) and early adults (ages 18–21).

These age groups were established during the collection of the
PNC data, as recruitment was conducted differently for each
group. Full details of the recruitment procedure are described
elsewhere38. We obtained the PNC data from the database of
Genotypes and Phenotypes (dbGaP) after required data access
and IRB approvals. This study was exempt approved by UNC IRB
#19-1935. The data obtained included information from 9498
participants ages 8–21 who underwent a detailed cognitive and
psychopathology assessment35. At enrollment, 1445 of these
participants also underwent multimodal neuroimaging34. Our
sample (N= 1158) consists of participants ages 12–21, for whom
self-reported subject informant data was acquired. Participants
ages 8–11 were excluded from our sample as only collateral
informant data was acquired35. We partitioned our data into two
subsets: a youth sample consisting of 833 participants ages 12–17
and an early adult sample consisting of the remaining 325
participants ages 18–21 years. For our study, we integrated
resting-state functional magnetic resonance imaging (fMRI;
neuroimaging layer) and positive psychosis risk symptoms
(symptom layer) into a multi-layer network to identify commu-
nities that were similar.
Demographic and psychopathology symptoms in the PNC were

assessed using GOASSESS, a structured computerized instrument
developed from a modified version of the Kiddie-Schedule for
Affective Disorders and Schizophrenia35. Psychosis risk symptoms
were measured using the ordinally structured, 12 item revised
PRIME screen39 which measures positive sub-psychosis symptoms
on a 7-point scale ranging from “0” (definitely disagree) to “6”
(definitely agree). Psychopathology symptom data consists of 115
individual item-level responses for 16 major psychopathology
domains; response options were binary: either positive (the
participant answered “yes”) or negative (the participant answered
“no”).
We excluded participants with missing data for the psychosis

risk items, contributing to a final sample size of 922 (637 youth
subjects and 285 early adult subjects). This is approximately a
20.4% reduction on our initial sample size. Table 1 presents
demographic summary statistics for the final sample, including a
breakdown of the youth and early adult subsets. There were 87
participants with psychopathology symptom responses that were
reported as “unknown” in our final sample. All unknown responses
belonged to one of the 15 domains with binary response values,
with none belonging to the psychosis risk symptom items. We
assumed each unknown response to be negative; this was shown
to have minimal effect on validity40.

Table 1. Demographic summary statistics of final sample (N= 922).

Sample subgroup Total

Youth Early
adults

N 637 285 922

Sex Female Count (%) 342 (53.7) 168 (58.9) 510 (55.3)

Male 295 (46.3) 117 (41.1) 412 (44.7)

Racea Black 299 (46.9) 108 (37.9) 407 (44.1)

White 275 (43.2) 146 (51.2) 421 (45.7)

Mixed race (including hispanic ethnicity) 48 (7.5) 29 (10.2) 77 (8.4)

Other 15 (2.4) 2 (0.7) 17 (1.8)

Age at enrollment Mean
(S.D.)

14.51
(1.93)

18.79
(0.92)

15.83
(2.60)

aWe structured the race variable to fit into one of four youth categories: Black, White, mixed race (which includes the Hispanic ethnicity), and an “other”
category for participants that do not fit into the previous three descriptions.
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Image acquisition and preprocessing
Imaging data for PNC subjects were acquired on a 3 Tesla Siemens
TIM Trio whole-body scanner. The image acquisition parameters
are described elsewhere34. We preprocessed the neuroimaging
data obtained from dbGAP using the CONN toolbox (CONN 21a)
running on MATLAB version R2018a41. Structural images under-
went segmentation into gray matter, white matter, and cere-
brospinal fluid. Preprocessing of the functional images included
realignment and unwarping, slice-timing correction, co-
registration to structural images, spatial normalization, and motion
outlier identification. White matter, cerebrospinal fluid, ART-based
scrubbing, six realignment parameters, and the experimental
conditions were included as confound regressors. A temporal
band-pass filter was used to remove BOLD frequencies below
0.01 Hz or above 0.1 Hz. These bounds are pragmatic defaults to
account for scanner drift and physical aliasing while maintaining
the brain signal of interest, especially when the repetition time is
short42–44. Outlier volumes were defined as having greater
movement than 0.9 mm or a global signal z-score greater than
3.0. We excluded subjects with more than 20% of volumes
removed from subsequent analyses, resulting in a filtered sample
of 926 subjects (640 youth and 286 early adults).

Matrix construction
Functional time series were obtained using the Gordon parcella-
tion. The cerebral cortex was divided into 333 functionally defined
regions of interest (ROIs), which were then partitioned into
multiple resting-state networks45. Weighted FC matrices were
constructed for each subject, with edges representing the Fisher
z-transformed correlations between the functional time series for
each ROI pair.

Multiplex network construction
We constructed a two-layer multiplex network based on pair-wise
similarity distances between subjects. The two possible links
(connections) between subjects are their similarities in resting-
state FC (neuroimaging layer) and responses to the psychosis risk
symptom assessment (symptom layer); altered coordination
between the salience network and other brain regions may be
associated with prodromal symptoms10. The construction of each
network, including descriptions of the distance measures used, is
detailed in the Supplementary Methods. Separate networks were
constructed for the youth and early adult subgroups.

Community detection
We fit a multiplex stochastic block model (SBM) to each multi-layer
network. The SBM is a generative model used to describe the
structure of random graphs, finding practical use in community
detection46. It assumes that nodes in a network can be partitioned
into multiple blocks (communities). Unlike other commonly used
community detection techniques, such as hierarchical clustering
and modularity optimization methods, the SBM provides prob-
ability distributions to parameterize the connections (edge
weights) between and within each community. A formulation of
the multiplex SBM and its estimation process are described in the
Supplementary Methods.

Statistical analyses
We used the estimateMultiplexSBM function from the sbm R
package to fit our models47, and we subsequently analyzed the
participant groups obtained from this procedure. All analyses were
performed using Python (v3.9.7) and Jupyter Notebooks (v6.4.5)
on the Longleaf computer cluster at the University of North
Carolina at Chapel Hill. The NumPy (v1.22.4), pandas (v1.3.4), SciPy
(v1.7.1), scikit-learn (v0.24.2), statsmodels (v0.14.4), and pingouin

(v0.5.5) libraries were used for data preprocessing and statistical
computation. The Matplotlib (v3.8.1), seaborn (v0.11.2), and Plotly
(6.3.0) libraries were used for data visualization.

Brain system segregation. A measure of system segregation, a
promising biomarker for psychopathology48–50, was computed to
examine the level of distinction between different functional
networks in the brain51–53. Brain system segregation quantifies the
degree to which brain regions within the same network are more
strongly connected to each other than to regions in other
networks. In line with previous implementations51,54, we mea-
sured segregation as the difference between mean within-system
(Zw) and mean between-system (Zb) connectivity divided by mean
within-system connectivity:

brain system segregation ¼ Zw � Zb

Zw

As such, a high system segregation value indicates that the
brain networks each tend to partake in unique and specialized
functions53. Conversely, a low system segregation value suggests
that the networks are functionally integrated, often partaking in
similar tasks or tasks that are interdependent upon another53. We
calculated Zw and Zb using correlations from participants’ FC
matrices. We excluded negative functional connectivity values by
setting them to zero, as this has been shown to improve the
reliability of graph measures55–58. Segregation was evaluated for
all participants in both age groups. We first computed segrega-
tion values for each of the salience network, DMN, FPN, and DAN.
These four core networks are closely linked, and abnormal
segregation between the salience network and the other three
networks is associated with psychosis symptoms10. In our
computation, Zw represents the mean of all pairwise edges
(correlations) between nodes (ROIs) of the same network, and Zb
represents the mean of all edges between nodes of the
respective network and all other nodes. We later computed
pairwise measures between all possible pairings of the four core
networks. In this scenario, Zw represents the mean of all edges
within each of the two separate networks, and Zb represents the
mean of all edges connecting nodes between the two target
networks.

Psychopathology symptom analyses. Responses to psychosis risk
symptom items were averaged for each subject. Cross-validation
of the clustering was conducted using psychopathology symptom
responses. Since psychiatric comorbidities are common in patients
with psychosis/schizophrenia, successful clustering of the partici-
pants should yield significant differences in psychopathology
symptoms that do not directly measure psychosis risk between
blocks59. Supplementary Table S1 presents mean psychopathol-
ogy symptom scores in the study sample. We examined block-
wise means to identify any differences in symptom scores using
appropriate statistical tests (Supplementary Tables S2 and S3).

RESULTS
Youth sample
Block demographics. Table 2 presents demographic summary
statistics broken down by block. Distributions of race and gender
across age groups and blocks are presented in Supplementary Fig.
S1. Youth Block 1 contains considerably more Black participants
than White participants, but this is reversed in Block 2. We found a
significant association between gender, age group (youth and
early adults), and community (χ2 = 15.96, p= 1.15 × 10–3 < 0.05;
Supplementary Fig. S1). Among youth, associations between
gender and community (χ2 = 3.38, p= 6.61 × 10–2 ≥ 0.05; Supple-
mentary Fig. S1) and race and community were not significant
(χ2 = 3.26, p= 3.53 × 10–1 ≥ 0.05).
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Parameter estimates. As presented in Fig. 1C, the within-block
parameter estimates (means and variances) for the neuroimaging
layer are nearly identical for the two youth blocks (μ � 0:30 and
σ2 � 0:04). These values are also close to the estimate for the
connection parameter between blocks 1 and 2 (μ � 0:29 and
σ2 � 0:04). In contrast, there is considerably more variation in the
symptom layer, suggesting that the clustering by the variational
EM algorithm (please see Supplementary Methods) was influenced
more by the symptom layer than the neuroimaging layer.

Sensitivity analyses. We fit a simple SBM using only the symptom
layer (please see Supplementary Methods) and compared
estimates for the connection means of the simple SBM and the
multiplex SBM. The simple SBM connection means still show
considerable variation (Supplementary Fig. S6), indicating that the
variation among the symptom layer parameter estimates in the
multiplex SBM is not strongly influenced by the joint community
detection of the two layers. However, the simple SBM consisted of
several more blocks (Q= 29) than the multiplex SBM.
To examine if community detection results from the multiplex

SBM are robust to the distance metric used in the construction of
the neuroimaging layer, we fit a multiplex SBM to a neuroimaging
layer constructed using pairwise Euclidean distances. We found
that it produced the same connection parameter estimates for the
symptom layer as the original multiplex SBM fit to a neuroimaging
layer constructed using pairwise Pearson dissimilarities (Supple-
mentary Fig. S7). The two multiplex SBM models also produced
identical block assignments for the youth subjects.

Brain system segregation. We evaluated brain system segrega-
tion for four different pairings of functional networks: (pairing 1)
the salience network and all other ROIs, (pairing 2) the DMN and
all other ROIs, (pairing 3) the FPN and all other ROIs, (pairing 4)
the DAN and all other ROIs. All mean segregation values were
positive (Benjamini–Hochberg-adjusted [BH-adj.] p < 0.05; Fig.
2), indicating that within-network connectivity tended to be
stronger than between-network connectivity for the evaluated
functional network pairings. Group comparisons of the four
measures were significant in both communities (Block 1:
F= 31.88, p= 4.39×10–20 < 0.05; Block 2: F= 8.32,
p= 1.90 × 10–5 < 0.05; Fig. 2). Segregation for the salience
network was the highest (Fig. 2). All pairwise post-hoc
comparisons (two-tailed t-tests) involving the salience network
were significant (BH-adj. p < 0.05) for Block 1, but only the
comparison between the salience network and DAN (SAL-DAN)
was significant for Block 2 (Fig. 2C). Permutation tests (please

see Supplementary Methods) for these comparisons were not
statistically significant at p < 0.05 for any of the segregation
measures (Supplementary Table S4).
We further examined segregation values for pairwise group-

ings of the four core networks. This resulted in comparisons of
an additional six network pairings: (pairing 5) the salience
network and the DMN, (pairing 6) the salience network and the
FPN, (pairing 7) the salience network and the DAN, (pairing 8)
the DMN and the FPN, (pairing 9) the DMN and the DAN, and
(pairing 10) the FPN and the DAN (Supplementary Fig. S4). These
comparisons were not statistically significant (Supplementary
Table S4).

Psychopathology symptoms. For the two youth communities,
psychopathology symptoms scores were higher for the attention
deficit hyperactive domain (ADD), depression (DEP), the general-
ized anxiety domain (GAD), mania (MAN), the oppositional defiant
domain, specific phobias (PHB), and the social anxiety domain
(SOC; Fig. 3A). Of these seven domains, four (DEP, GAD, MAN, and
SOC) are known to be closely linked with psychosis59. Block 1 had
higher values for all symptom measures assessed. The two blocks
exhibited the strongest differences in ADD (BH-adj.
p= 5.47 × 10–13), MAN (p= 6.54 × 10–11), and the psychosis
domain (PSY; BH-adj. p= 4.65 × 10–11), but 14 out of the 15
psychopathology domains assessed showed significant differ-
ences (BH-adj. p < 0.05), with the exception of agoraphobia
(Supplementary Table S2).
Youth in Block 1 (n= 458) had a mean value of 1.2 (SD= 1.1) for

psychosis risk symptoms (Fig. 5B), whereas for Block 2 (n= 179)
the mean was 0.0 (SD= 0). This difference was significant based
on permutation tests (p= 2.00 × 10–4 < 0.05; Supplementary
Methods). The simple SBM (fit only to the symptom layer) partially
reproduces this block-wise distribution of psychosis risk symp-
toms, as Block 29 (n= 179) of the simple SBM is identical to Block
2 of the multiplex SBM. However, unlike the multiplex SBM, the
simple SBM does not consolidate the remainder of its commu-
nities into a single block with a positive mean psychosis risk score
(Supplementary Fig. S7). Overall, there is a relatively strong
concordance between the block assignments of the simple and
multiplex SBMs, as reflected by a significant Adjusted Rand Index
(ARI) based on permutation tests (ARI= 0.343; p≪ 0.001 < 0.05).
Block 1 of the multiplex SBM had higher salience network

segregation than Block 2 (Fig. 2) as well as significant post-hoc
segregation comparisons involving the salience network (Fig. 2C),
suggesting an association between psychosis risk symptoms and
abnormal salience network segregation among youth.

Table 2. Demographic summary statistics for each block (N= 922).

Sample subgroup

Youth Early adults

Block 1 2 1 2

n 458 179 173 112

Sex Female Count (%) 235 (51.3) 107 (59.8) 98 (56.6) 70 (62.5)

Male 223 (48.7) 72 (40.2) 75 (43.4) 42 (37.5)

Racea Black 225 (49.1) 74 (41.3) 74 (42.8) 34 (30.4)

White 189 (41.3) 86 (48.0) 83 (48.0) 63 (56.3)

Mixed race (including hispanic ethnicity) 34 (7.4) 14 (7.8) 15 (8.7) 14 (12.5)

Other 10 (2.2) 5 (2.8) 1 (0.6) 1 (0.9)

Age at enrollment Mean
(S.D.)

14.45 (1.95) 14.64 (1.87) 18.76 (0.94) 18.84 (0.90)

aWe structured the race variable to fit into one of four youth categories: Black, White, mixed race (which includes the Hispanic ethnicity), and an “other”
category for participants that do not fit into the previous three descriptions.
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Early adult sample
Block demographics. There is a higher proportion of African
Americans in Block 1 than Block 2 in the early adult group (Table 2;
Supplementary Fig. S1). However, the association between race and

community is not significant (χ2 = 4.75, p= 1.91 × 10–1≥ 0.05;
Supplementary Fig. S1). Consistent with youth, we did not find a
significant association between gender and community among early
adults (χ2 = 0.74, p= 3.91 × 10–1≥ 0.05; Supplementary Fig. S1).
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Parameter estimates. Similar to our findings within the youth
subgroup, all connection parameters for the neuroimaging layer
are nearly identical (μ � 0:30 and σ2 � 0:04; Fig. 1C). The early
adult connection parameters are also close to those observed in
the youth subgroup, suggesting a lack of change in salience
network functional activity between youth and early adulthood.
Once more, we found considerably more variation in the mean
and variance of the symptom layer edge weights, which was also
supported by a sensitivity analysis fitting a simple SBM to only the
symptom layer (please see Supplementary Methods). The
estimates for the connection means of the simple SBM still show
considerable variation (Supplementary Fig. S6) but with several
more blocks (Q= 14). We also fit a multiplex SBM to a
neuroimaging layer constructed using pairwise Euclidean dis-
tances for the early adult subgroup and found that it did not alter
the connection parameter estimates for the symptom layer
(Supplementary Fig. S7), consistent with the results from the
youth subset.

Brain system segregation. Group comparisons of the four
segregation measures were significant in both early adult
communities (Block 1: F= 2.89, p= 3.49 × 10–2 < 0.05; Block 2:
F= 5.65, p= 8.29 × 10–4 < 0.05; Fig. 4). The segregation patterns of
the early adult communities closely mirror those of the youth
communities: salience network segregation tended to be higher
than the segregation values for each of the DMN, FPN, and DAN
(Fig. 4). Consistent with the observation among youth, the four
segregation measures have positive means for the early adults
(BH-adj. p < 0.05; Fig. 4). However, all pairwise post-hoc compar-
isons (two-tailed t-tests) involving the salience network were not
significant (BH-adj. p ≥ 0.05), apart from the comparison between
the salience network and DAN in Block 2 (BH-adj.
p= 4.96 × 10–2 < 0.05; Fig. 4C). In fact, only three of the 12 post-
hoc comparisons were significant for the early adult communities,
a departure from the trend observed among youth (Fig. 4C).
However, permutation tests of between-community differences in
mean brain system segregation were not statistically significant
(Supplementary Table S5).
We also examined between-community differences in mean

segregation for the six additional network pairings, as described for
the youth. The difference between Blocks 1 and 2 for the salience
network and FPN pairing was negative and statistically significant
based on permutation testing, though it did not survive multiple
comparisons correction (observed difference= –0.06, p= 0.02 < 0.05,
BH-adj. p= 0.38 ≥ 0.05). All other network comparisons were not
statistically significant (Supplementary Fig. S5 & Table S5).

Psychopathology symptoms. The psychopathology symptom
profiles of the early adult communities resemble those of the
youth communities, with blocks 1 and 2 showing the strongest
differences in ADD (BH-adj. p= 2.06 × 10–5), MAN (p= 1.40 × 10–5),
and PSY (BH-adj. p= 2.06 × 10–5). All 15 of the psychopathology
domains assessed exhibited significant differences between the
two blocks (BH-adj. p < 0.05; Supplementary Table S3). As
observed among the youth, multiple participants clustered in

Block 1 (n= 173) reported psychosis risk symptoms (mean 0.9, SD
0.9; Fig. 5B), whereas participants in Block 2 (n= 112) reported no
psychosis risk symptoms (mean 0, SD 0). This difference was
statistically significant based on permutation tests
(p= 2.00 × 10–4 < 0.05; Supplementary Methods).
The community detection results from the simple SBM (fit only

to the symptom layer) are relatively concordant with the results
from the multiplex SBM, reflected by a significant ARI based on
permutation tests (ARI= 0.140; p≪ 0.001 < 0.05). Block 14
(n= 112) of the simple SBM is also identical to Block 2 of the
multiplex SBM (Supplementary Fig. S7), but the communities from
the simple SBM with positive mean psychosis risk scores are not
consolidated. The agreement between the simple and multiplex
SBM block assignments—in both the youth and early adult
subgroups—further indicates that the clustering was influenced
more by the symptom layer than the neuroimaging layer.
Contrary to the pattern among youth, Block 1—which has

higher mean psychosis risk symptom scores—has lower salience
network segregation than Block 2 (Fig. 4). Additionally, none of the
pairwise post-hoc comparisons for Block 1 that involve the
salience network are significant (Fig. 4C).

DISCUSSION
To identify neurobiologically similar participant sub-groups, we fit
multiplex SBMs to two-layer networks constructed using PNC
participants’ psychopathology histories and resting state FC within
the salience network. Overall, we find consistent patterns in brain
system segregation and responses to psychopathology symptom
items between youth aged 12–17 and early adults aged 18–21.
Furthermore, for both the youth and early adults, we find stark
between-subgroup differences in psychopathology symptom item
responses but minimal differences in brain system segregation.

Psychopathology history is more influential than functional
brain activity for psychiatric subtyping
Among both the youth and early adults, community detection was
driven more by psychopathology history over pair-wise distance
measures of resting state functional activity. This imbalance can
possibly be attributed to the sources of data used to construct
each network layer; fMRI data used to construct the neuroimaging
layer is susceptible to several sources of noise: subject motion,
instrumentation artifacts such as magnetic field fluctuations, and
physiological noise such as variations in heart rate and respira-
tion60–63. Head motion, for example, induces non-neural fluctua-
tions that inflate or distort apparent correlations between regions.
This has been shown to degrade resting state network detect-
ability and reliability of FC maps in clinical cohorts with substantial
movement61,62. Cardiorespiratory fluctuations also modulate
BOLD signals and can differ systematically between patients and
controls; without modeling, these differences have been shown to
project onto FC estimates, possibly mimicking or masking disease
effects61,63. Optimal quality control methods that aim to mitigate
these sources of noise can be specific not just to data quality but

Fig. 1 Training of the multiplex stochastic block models (SBMs). A diagram of the data pipeline is shown in (A). We integrated participant
data spanning1 resting state functional connectivity (FC) within the salience brain network and2 responses to the psychosis risk symptom
assessment items. Pair-wise similarity distance measures were computed between participants to produce a weighted graph (network) with a
neuroimaging layer and a (psychosis risk) symptom layer. A multiplex SBM was fit to the multi-layer network via a variational expectation-
maximization (EM) algorithm. This process was conducted twice, once for the youth and again for the early adults. The selection process for
the optimal number of blocks (Q) is shown in (B). We selected the optimal Q for each subject group (youth and early adults) using the
Integrated Completed Likelihood (ICL) criterion. We evaluated values of Q ranging from one to seven and selected the models that converged
with the highest ICL. Convergence was not reached when Q was greater than five for the youth and three for the early adults. We found Q
:= 2 to be optimal for both the youth and early adults, producing ICLs of –231,381.11 and 40,699.73, respectively. A connection parameter
estimates table for the multiplex SBMs is shown in (C). We report the mean and variance of the within- and between-block estimates for each
layer in each age group’s model. We also report the log-likelihoods of the models.
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Fig. 2 Brain system segregation values for youth participants (n= 637) broken down by block (Block 1: n= 458; Block 2: n= 179). A
visualization of the block-wise distributions of segregation values is shown in (A). Statistically significant comparisons between pairs of
segregation measures within a given block are indicated by asterisks (*, **, or ***). A single asterisk (*) denotes a p-value within the interval,
(0.05, 0.01]. A double asterisk (**) denotes a p-value within the interval, (0.01, 0.001]. A triple asterisk (***) denotes a p-value less than 0.001. A
table with block-wise segregation statistics (means and standard deviations) is shown in (B). A symmetric matrix with post-hoc comparison
(two-tailed t-test) results for one-way ANOVAs that assess differences between the four segregation measures is shown in (C). An ANOVA was
conducted separately for Block 1 (F= 31.88, p= 4.39 × 10–20) and Block 2 (F= 8.32, p= 1.90 × 10–5) of the youth. Significant pair-wise t-test
results (BH-adj. p) are bolded and italicized. These significant pair-wise comparisons are denoted by the asterisks (*, **, or ***) in (A).
Significance was determined based on a threshold of 0.05. The Benjamini–Hochberg method was used to adjust for multiple comparisons.
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also to disease type64,65. These methods can also hamper any
detectable signal61–63,66, affecting the SNR. A low SNR reduces the
reliability of FC estimates, attenuating true disease effects60,67,68.
This presents a challenge for the use of functional neuroimaging
in clinical subtyping, as the contamination from various sources of
noise may deem it too global of a biomarker for identifying
individual differences relevant to psychopathology.
Our model incorporated fMRI data in the form of pairwise

distance measures comprising a multigraph layer. These distances
were either Pearson dissimilarity scores or Euclidean distances
computed using resting state functional connectivity from all ROIs
associated with the salience network. Our community detection
results were mostly invariant to the type of distance measure, but
both the Pearson dissimilarity and Euclidean distance measure the
linear relationship between two vectors. In addition, we com-
pressed the entirety of a network’s functional activity into a single
scalar quantity ranging from zero to one, which may not
adequately encapsulate a present signal. It is possible that use
of a more sophisticated distance measure or embedding scheme
could better capture the fMRI signal. Geodesic distance measures,
for example, have found success in improving participant
identification from fMRI data69,70. Furthermore, methods that
incorporate task-based fMRI or dynamic fMRI—hypothesis-driven
acquisition techniques that capture changes in brain interactions
over time—have demonstrated accurate individual identification

using brain state-specific FC “fingerprints”71–73. These approaches
can provide an improved SNR over resting-state fMRI and enhance
the discriminability of distinct subject groups74, ultimately yielding
deeper insights into the neurobiological characteristics of
psychosis spectrum disorders.
It is important to note that, although the identified subject

communities (blocks) in our study showed little variation in
functional brain activity relative to psychosis risk symptoms,
incorporating the neuroimaging layer added value to the
community detection process. In both age groups, removing the
neuroimaging layer resulted in the identification of vastly many
blocks. This was in stark contrast to the two blocks identified when
both the neuroimaging and symptom layers were included. The
results obtained from using both layers align more with findings
from previous neuropsychiatric studies that cluster participants,
which report two to four subtypes75–79. Therefore, the global
signal from functional brain activity potentially anchors a latent
structure to biologically plausible constraints, serving as a form of
regularization that prevents model overfitting to unmeaningful
variations in symptoms.
The stronger influence of psychopathology histories over the

clustering has implications for clinical diagnostics. Though modest
effect sizes of neuroimaging markers has been suggested as a
limiting factor for reliable classification of individual cases80, the
joint application of psychopathology symptoms and functional

Fig. 3 Psychopathology symptom scores for youth participants (n= 637) broken down by block (Block 1: n= 458; Block 2: n= 179). The
mean positive (“yes”) response count per subject for each of the 15 psychopathology domains that do not directly measure psychosis risk is
shown in (A). The means are scaled to range from 0 to 1 to better visualize the differences between blocks. A red “X” is placed next to the label
for the Agoraphobia (AGR) domain, as it was the only psychopathology domain to not show a significant difference in symptom scores
between the two blocks. The comparisons for all other psychopathology domains were statistically significant (BH-adj. p < 0.05;
Supplementary Table S2). The distributions of the mean response values for the psychosis risk items are shown in (B). As presented in the
plot, there is a significant difference in mean psychosis risk response between the two blocks based on permutation tests
(p= 2.00 × 10–4 < 0.05; Supplementary Methods). A table displaying the abbreviation, number of item-level responses, and response value
type (binary or ordinal) for each psychopathology domain is shown in (C).
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imaging can aid in the discovery of psychosis risk subtypes as
proven in other forms of psychopathology like attention-deficit/
hyperactivity disorder and depression81. Functional imaging in
conjunction with psychopathology symptoms can thus serve as a
pathognomonic “fingerprint” for clinical diagnosis.

Consistency of functional brain activity between adolescents
and young adults
Both the youth and early adults have a similar pattern of brain
system segregation distributions for the four between-network
measures assessed, possibly indicating a lack of change in the
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specialization of functional brain activity during the transition
from adolescence to very early adulthood. It is well documented
that brain networks become more segregated during normal
adolescent development, more closely resembling the functional
activity patterns observed in young adults82–85. This is particularly
the case for networks associated with higher cognitive or
emotional functions, such as the salience network, DMN, FPN,
and DAN83–85. Previous studies involving the PNC have detected
increases in both brain system segregation and the modularity of
structural networks from youth to early adulthood83,86. However,
these studies incorporated participants of all ages (8–22 years) in
the analysis without separating the sample into discrete age
groups. These studies did not assess differences in sub-
populations among participants of a similar age range.

Subgroup identification of the youth and early adult samples
underscores differences in functional neurodevelopment between
psychosis risk subgroups. In both age groups, Block 1 contains
higher mean scores for psychosis risk symptoms, indicating a
possible psychosis HR sub-population. When assessing segrega-
tion measures for each of the four major networks, we find that—
among youth—the HR block exhibits higher salience network and
FPN segregation, lower DMN segregation, and similar DAN
segregation compared to the other subgroup (Block 2). However,
among early adults, the HR block exhibits lower salience network
and FPN segregation and higher DMN segregation; the DAN
segregation is still similar compared to Block 2. These results
suggest different neurodevelopmental trajectories for different
subpopulations that are dependent on psychosis risk. As such, not
all networks may become more segregated during maturation

Fig. 4 Brain system segregation values for early adult participants (n= 285) broken down by block (Block 1: n= 173; Block 2: n= 112). A
visualization of the block-wise distributions of segregation values is shown in (A). Statistically significant comparisons between pairs of
segregation measures within a given block are indicated by asterisks (*, **, or ***). A single asterisk (*) denotes a p-value within the interval,
(0.05, 0.01]. A double asterisk (**) denotes a p-value within the interval, (0.01, 0.001]. A triple asterisk (***) denotes a p-value less than 0.001. A
table with block-wise segregation statistics (means and standard deviations) is shown in (B). A symmetric matrix with post-hoc comparison
(two-tailed t-test) results for one-way ANOVAs that assess differences between the four segregation measures is shown in (C). An ANOVA was
conducted separately for Block 1 (F= 2.89, p= 3.49 × 10–2 < 0.05) and Block 2 (F= 5.65, p= 8.29 × 10–4 < 0.05) of the early adults. Significant
pair-wise t-test results (BH-adj. p) are bolded and italicized. These significant pair-wise comparisons are denoted by the asterisks (*, **, or ***) in
(A). Significance was determined based on a threshold of 0.05. The Benjamini–Hochberg method was used to adjust for multiple comparisons.

Fig. 5 Psychopathology symptom scores for early adult participants (n= 285) broken down by block (Block 1: n= 173; Block 2: n= 112).
The mean positive (“yes”) response count per subject for each of the 15 psychopathology domains that do not directly measure psychosis risk
is shown in (A). The means are scaled to range from 0 to 1 to better visualize the differences between blocks. All 15 of the assessed domains
showed significant differences in psychopathology symptom scores between the two blocks (BH-adj. p < 0.05; Supplementary Table S3). The
distributions of the mean response values for the psychosis risk items are shown in (B). As presented in the plot, there is a significant
difference in mean psychosis risk response between the two blocks based on permutation tests (p= 2.00 × 10–4 < 0.05; Supplementary
Methods). A table displaying the abbreviation, number of item-level responses, and response value type (binary or ordinal) for each
psychopathology domain is shown in (C).
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from adolescence to adulthood; a given network could become
more segregated, or—conversely—more integrated, depending
on an individual’s psychiatric subtype. Therefore, psychosis risk
symptoms may confound the relationship between brain system
segregation and the development from adolescence to early
adulthood.

The salience network and psychosis
Among youth, the block with higher salience network segregation
had higher psychosis risk symptoms. However, among early
adults, it was the block with lower salience network segregation
that had higher psychosis risk symptoms. These findings suggest
that the role of the salience network in psychosis risk may evolve
during adolescence and early adulthood. Aberrant interactions
between the salience network and other regions are a hallmark of
psychosis5,6,8–14. In our youth subgroup, between-community
comparisons of brain system segregation for the salience network
paired with other networks were not significant. However, in the
early adult subgroup, we observed that the comparison for
segregation between the salience network and FPN was
significant and had the strongest effect size between the two
detected communities. Altered functional connectivity of the FPN
is known in first episode psychosis and is a trait-specific marker in
schizophrenia87, warranting further study of the interaction
between these two brain networks. Given the wide range of
experiences associated with the pre-psychotic and prodromal
stages in psychosis1,88, there may be multiple distinct neurobio-
logical patterns with which abnormal salience network segrega-
tion coincides. One such pattern in adolescence may involve
heightened salience network segregation, which—when coupled
with psychopathology symptoms—may serve as a biomarker for a
particular psychosis risk subtype.
Our findings are consistent with a growing body of research

indicating that under-segregation of the triple networks—the
DMN, salience network, and FPN—is associated with progression
into early stages of psychosis during adolescence. In the general
population, brain networks tend to become more modular and
segregated from adolescence to early adulthood53,89–91. However,
in CHR converters, the DMN progressively declines in local
efficiency92. Moreover, individuals with first episode psychosis
exhibit DMN hypoconnectivity and dyscoupling of the salience
network with the DMN and FPN10,14,15. These patterns align with
our findings, in which the early adult block with lower salience
network segregation also had higher psychosis risk symptoms.
Additionally, youth with subthreshold symptoms are reported to
exhibit “older-like” brain patterns of increased functional specia-
lization90,91,93. This is reflected in our sample, where youth with
higher salience network segregation exhibited higher psychosis
risk symptoms.
Overall, while further investigation may be required to validate

the patterns observed in our results, our study adds to the
growing body of evidence for the vital role of the salience network
and the differences in neurodevelopmental trajectories in
psychosis. Considering the infrequent use of community detection
for clinical subtyping in psychiatric literature29, our study
showcases the potential of community detection for identification
of HR sub-populations.

Limitations and future directions
The limitations of our study primarily arise from our use of the PNC
as a subject pool. The PNC is a community sample rather than a
clinical sample, so it is unclear whether the clustering and
subsequently observed block-wise patterns are generalizable to
clinical populations. The presence of increased psychosis risk
symptoms alone does not classify the sample as CHR. However,
the psychopathology symptom patterns observed within sub-
groups identified in our study—specifically comorbid symptoms

in communities with higher psychosis risk symptoms—mirror
those observed within established CHR cohorts such as Youth
Mental Health Risk and Resilience Study (YouR-Study21), the North
American Prodrome Longitudinal Study (NAPLS94–96), and the
PSYSCAN project97. For example, in these CHR cohorts, the
prevalence of depressive disorders is notably high at 41%, which is
greater than the prevalence within healthy controls97. In our study,
the block identified with elevated psychosis risk symptoms
exhibited higher mean scores for depressive symptoms, which
were almost twice as high compared to the other block in both
the youth (Supplementary Table S2) and early adult subgroups
(Supplementary Table S3). Future studies should focus on
examining CHR samples to further validate these findings.
We were unable to perform analyses on participants ages 8–11

due to the lack of self-reported symptoms. We also did not have
access to psychiatric diagnoses for any of the participants. Access
to such data can help refine community detection by discerning
HR sub-populations based on positive clinical diagnoses. Without
access to these ground truth labels, we used responses to
assessment items that did not directly measure psychosis risk for
validation of our community detection. This is not an ideal
approach, as psychiatric comorbidities are not always present in
HR individuals, and it is possible that participants may not have
disclosed certain symptoms due to stigma. Lastly, our investiga-
tion did not evaluate genetics as a risk factor for psychopathology
symptoms. Genomic variables of psychosis risk can potentially be
used to construct a third layer in our multiplex network to further
delineate biological subtypes of psychosis and psychiatric
comorbidities, as psychiatric disorders manifest along genetic
continua and share common sources of genetic risk98.

Conclusions
Our study subtyped PNC participants using an approach used
sparsely in psychiatric literature. The results offer insights into the
joint use of psychopathology history and functional brain activity
in the identification of psychiatrically at-risk youth. Our findings
also add nuance to the changes in functional activity from
adolescence to early adulthood and suggest a significant role for
the salience brain network in psychosis. However, direct implica-
tions for psychosis itself require further investigation.

DATA AVAILABILITY
PNC data used for the analyses described in this manuscript were obtained from the
U.S. National Institutes of Health database of Genotypes and Phenotypes (dbGaP) at
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap through dbGaP accession
phs000607.v3.p2. Data from dbGaP are available to qualified researchers upon
obtaining relevant data access approvals. The code for the analyses can be accessed
via the following GitHub repository: https://github.com/iyeraditya26/
psychosis_risk_subgroups_pnc.git.

Received: 28 June 2025; Accepted: 14 October 2025;

REFERENCES
1. Larson, M. K., Walker, E. F. & Compton, M. T. Early signs, diagnosis and ther-

apeutics of the prodromal phase of schizophrenia and related psychotic dis-
orders. Expert Rev. Neurother. 10, 1347–59 (2010).

2. Montemagni, C., Bellino, S., Bracale, N., Bozzatello, P. & Rocca, P. Models pre-
dicting psychosis in patients with high clinical risk: a systematic review. Front.
Psychiatry 11, 223 (2020).

3. Strobl, E. V., Eack, S. M., Swaminathan, V. & Visweswaran, S. Predicting the risk of
psychosis onset: advances and prospects: predicting the risk of psychosis onset.
Early Interv. Psychiatry 6, 368–79 (2012).

4. Glahn, D. C. et al. Meta-analysis of gray matter anomalies in schizophrenia:
application of anatomic likelihood estimation and network analysis. Biol. Psy-
chiatry 64, 774–81 (2008).

A. Iyer et al.

11

Published in partnership with the Schizophrenia International Research Society Schizophrenia (2025)   142 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap
https://github.com/iyeraditya26/psychosis_risk_subgroups_pnc.git
https://github.com/iyeraditya26/psychosis_risk_subgroups_pnc.git


5. Palaniyappan, L. & Liddle, P. F. Does the salience network play a cardinal role in
psychosis? An emerging hypothesis of insular dysfunction. J. Psychiatry Neurosci.
37, 17–27 (2012).

6. Chung, Y. & Cannon, T. D. Brain imaging during the transition from psychosis
prodrome to schizophrenia. J. Nerv. Ment. Dis. 203, 336–41 (2015).

7. Menon, V. Salience network. in Brain Mapping. 597–611 (Elsevier, 2015). https://
linkinghub.elsevier.com/retrieve/pii/B978012397025100052X.

8. Bulbul, O., Kurt, E., Ulasoglu-Yildiz, C., Demiralp, T. & Ucok, A. Altered resting state
functional connectivity and its correlation with cognitive functions at ultra high
risk for psychosis. Psychiatry Res. Neuroimaging 321, 111444 (2022).

9. Del Fabro, L. et al. Functional brain network dysfunctions in subjects at high-risk
for psychosis: a meta-analysis of resting-state functional connectivity. Neurosci.
Biobehav. Rev. 128, 90–101 (2021).

10. Bolton, T. A. W. et al. Triple network model dynamically revisited: lower salience
network state switching in pre-psychosis. Front. Physiol. 11, 66 (2020).

11. Anticevic, A. et al. Amygdala connectivity differs among chronic, early course, and
individuals at risk for developing schizophrenia. Schizophr. Bull. 40, 1105–16
(2014).

12. Fryer, S. L. et al. Deficient suppression of default mode regions during working
memory in individuals with early psychosis and at clinical high-risk for psychosis.
Front. Psychiatry 4, 92 (2013).

13. Wotruba, D. et al. Aberrant coupling within and across the default mode, task-
positive, and salience network in subjects at risk for psychosis. Schizophr. Bull. 40,
1095–104 (2014).

14. Kim, A. et al. Triple-network dysconnectivity in patients with first-episode psy-
chosis and individuals at clinical high risk for psychosis. Psychiatry Investig. 19,
1037–45 (2022).

15. O’Neill, A., Mechelli, A. & Bhattacharyya, S. Dysconnectivity of large-scale func-
tional networks in early psychosis: a meta-analysis. Schizophr. Bull. 45, 579–90
(2019).

16. Chung, Y. C. et al. Network analysis of trauma in patients with early-stage psy-
chosis. Sci. Rep. 11, 22749 (2021).

17. Isvoranu, A. M., Borsboom, D., Van Os, J. & Guloksuz, S. A Network approach to
environmental impact in psychotic disorder: brief theoretical framework. SCHBUL
42, 870–3 (2016).

18. Murphy, J., McBride, O., Fried, E. & Shevlin, M. Distress, impairment and the
extended psychosis phenotype: a network analysis of psychotic experiences in an
us general population sample. Schizophr. Bull. 44, 768–77 (2018).

19. Schlesselmann, A. J. et al. A network approach to trauma, dissociative symptoms,
and psychosis symptoms in schizophrenia spectrum disorders. Schizophr. Bull. 49,
559–68 (2023).

20. Contreras, A., Nieto, I., Valiente, C., Espinosa, R. & Vazquez, C. The study of psy-
chopathology from the network analysis perspective: a systematic review. Psy-
chother. Psychosom. 88, 71–83 (2019).

21. Haining, K. et al. Characterising cognitive heterogeneity in individuals at clinical
high-risk for psychosis: a cluster analysis with clinical and functional outcome
prediction. Eur. Arch. Psychiatry Clin. Neurosci. 272, 437–48 (2022).

22. Healey, K. M. et al. Latent profile analysis and conversion to psychosis: char-
acterizing subgroups to enhance risk prediction. Schizophr. Bull. 44, 286–96
(2018).

23. Wenzel, J. et al. Cognitive subtypes in recent onset psychosis: distinct neuro-
biological fingerprints? Neuropsychopharmacology 46, 1475–83 (2021).

24. Gupta, T., Cowan, H. R., Strauss, G. P., Walker, E. F. & Mittal, V. A. Deconstructing
negative symptoms in individuals at clinical high-risk for psychosis: evidence for
volitional and diminished emotionality subgroups that predict clinical pre-
sentation and functional outcome. Schizophr. Bull. 47, 54–63 (2021).

25. Valmaggia, L. R. et al. Negative psychotic symptoms and impaired role func-
tioning predict transition outcomes in the at-risk mental state: a latent class
cluster analysis study. Psychol. Med. 43, 2311–25 (2013).

26. Zhang, T. et al. Clinical subtypes that predict conversion to psychosis: a canonical
correlation analysis study from the ShangHai At Risk for Psychosis program. Aust.
N. Z. J. Psychiatry 54, 482–95 (2020).

27. Tang, X. et al. Identifying neurobiological heterogeneity in clinical high-risk
psychosis: a data-driven biotyping approach using resting-state functional con-
nectivity. Schizophrenia 11, 13 (2025).

28. Dwyer, D. B. et al. Clinical, brain, and multilevel clustering in early psychosis and
affective stages. JAMA Psychiatry 79, 677 (2022).

29. Agelink Van Rentergem, J. A., Bathelt, J. & Geurts, H. M. Clinical subtyping using
community detection: limited utility?. Int. J. Methods Psych. Res. 32, e1951 (2023).

30. Yang, Z. et al. Brain network informed subject community detection in early-
onset schizophrenia. Sci. Rep. 4, 5549 (2014).

31. Szucs, D. & Ioannidis, J. P. Sample size evolution in neuroimaging research: an
evaluation of highly-cited studies (1990–2012) and of latest practices
(2017–2018) in high-impact journals. NeuroImage 221, 117164 (2020).

32. Nallusamy, K. & Easwarakumar, K. S. Classifying schizophrenic and controls from
fMRI data using graph theoretic framework and community detection. Netw.
Model Anal. Health Inf. Bioinform. 12, 19 (2023).

33. Taya, F., De Souza, J., Thakor, N. V. & Bezerianos, A. Comparison method for
community detection on brain networks from neuroimaging data. Appl Netw. Sci.
1, 8 (2016).

34. Satterthwaite, T. D. et al. Neuroimaging of the Philadelphia neurodevelopmental
cohort. NeuroImage 86, 544–53 (2014).

35. Satterthwaite, T. D. et al. The Philadelphia Neurodevelopmental Cohort: a publicly
available resource for the study of normal and abnormal brain development in
youth. NeuroImage 124, 1115–9 (2016).

36. Gogtay, N., Vyas, N. S., Testa, R., Wood, S. J. & Pantelis, C. Age of onset of schi-
zophrenia: perspectives from structural neuroimaging studies. Schizophr. Bull. 37,
504–13 (2011).

37. Leibenluft, E. & Barch, D. M. Adolescent brain development and psychopathol-
ogy: introduction to the special issue. Biol. Psychiatry 89, 93–5 (2021).

38. Calkins, M. E. et al. The Philadelphia Neurodevelopmental Cohort: constructing a
deep phenotyping collaborative. Child Psychol. Psychiatry 56, 1356–69 (2015).

39. Kobayashi, H. et al. A self-reported instrument for prodromal symptoms of psy-
chosis: testing the clinical validity of the PRIME Screen—Revised (PS-R) in a
Japanese population. Schizophr. Res. 106, 356–62 (2008).

40. Rosen, A. F. G., Moore, T. M., Calkins, M. E., Gur, R. C. & Gur, R. E. Effects of skip-
logic on the validity of dimensional clinical scores: a simulation study. Psycho-
pathology 52, 358–66 (2019).

41. Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance
Imaging Methods in CONN (Hilbert Press, 2020). https://www.hilbertpress.org/link-
nieto-castanon2020.

42. Zhang, Y. et al. Shorter TR combined with finer atlas positively modulate topo-
logical organization of brain network: a resting state fMRI study. Netw. Comput.
Neural Syst. 34, 174–89 (2023).

43. Tong, Y., Hocke, L. M. & Frederick, B. B. Low frequency systemic hemodynamic
“noise” in resting state BOLD fMRI: characteristics, causes, implications, mitigation
strategies, and applications. Front. Neurosci. 13, 787 (2019).

44. Huotari, N., et al. Sampling rate effects on resting state fMRI metrics. Front.
Neurosci. 13, 279 (2019).

45. Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from
resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

46. He, M., Lu, D., Xu, J. & Xavier, R. M. Community detection in weighted multilayer
networks with ambient noise. Preprint at https://arxiv.org/abs/2103.00486 (2021).

47. Chiquet. J., Donnet, S. & Barillon P. sbm: Stochastic Blockmodels [Internet].
Available from: https://CRAN.R-project.org/package=sbm (2023).

48. Collin, G. et al. O10.5. Abnormal modular organization of the functional con-
nectome predicts conversion to psychosis in clinical high-risk youth. Schizophr.
Bull. 44, S104–S104 (2018).

49. Duan, J. et al. Dynamic changes of functional segregation and integration in
vulnerability and resilience to schizophrenia. Hum. Brain Mapp. 40, 2200–11
(2019).

50. Iglesias-Parro, S., Ruiz De Miras, J., Soriano, M. F. & Ibáñez-Molina, A. J.
Integration–segregation dynamics in functional networks of individuals diag-
nosed with schizophrenia. Eur. J. Neurosci. 57, 1748–62 (2023).

51. Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E. & Wig, G. S. Decreased
segregation of brain systems across the healthy adult lifespan. Proc. Natl Acad.
Sci. USA 111, https://pnas.org/doi/full/10.1073/pnas.1415122111 (2014).

52. Cohen, J. R. & D’Esposito, M. The segregation and integration of distinct brain
networks and their relationship to cognition. J. Neurosci. 36, 12083–94 (2016).

53. Wig, G. S. Segregated systems of human brain networks. Trends Cogn. Sci. 21,
981–96 (2017).

54. Martin, S., Williams, K. A., Saur, D. & Hartwigsen, G. Age-related reorganization of
functional network architecture in semantic cognition. Cereb. Cortex 33,
4886–903 (2023).

55. Wang, J. H. et al. Graph theoretical analysis of functional brain networks: test-
retest evaluation on short- and long-term resting-state functional MRI data. PLoS
ONE 6, e21976 (2021).

56. Chen, G., Chen, G., Xie, C. & Li, S. J. Negative functional connectivity and its
dependence on the shortest path length of positive network in the resting-state
human brain. Brain Connect. 1, 195–206 (2011).

57. Meunier, D., Achard, S., Morcom, A. & Bullmore, E. Age-related changes in
modular organization of human brain functional networks. NeuroImage 44,
715–23 (2009).

58. Buckner, R. L. et al. Cortical hubs revealed by intrinsic functional connectivity:
mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci.
29, 1860–73 (2009).

59. Buckley, P. F., Miller, B. J., Lehrer, D. S. & Castle, D. J. Psychiatric comorbidities and
schizophrenia. Schizophr. Bull. 35, 383–402 (2009).

A. Iyer et al.

12

Schizophrenia (2025)   142 Published in partnership with the Schizophrenia International Research Society

https://linkinghub.elsevier.com/retrieve/pii/B978012397025100052X
https://linkinghub.elsevier.com/retrieve/pii/B978012397025100052X
https://www.hilbertpress.org/link-nieto-castanon2020
https://www.hilbertpress.org/link-nieto-castanon2020
https://arxiv.org/abs/2103.00486
https://CRAN.R-project.org/package=sbm
https://pnas.org/doi/full/10.1073/pnas.1415122111


60. Liu, T. T. Noise contributions to the fMRI signal: an overview. NeuroImage 143,
141–51 (2016).

61. Weiler, M. et al. Evaluating denoising strategies in resting-state functional mag-
netic resonance in traumatic brain injury (EpiBioS4Rx). Hum. Brain Mapp. 43,
4640–9 (2022).

62. Andronache, A. Impact of functional MRI data preprocessing pipeline on default-
mode network detectability in patients with disorders of consciousness. Front.
Neuroinform. 7, http://journal.frontiersin.org/article/10.3389/fninf.2013.00016/
abstract (2013)

63. Li, Y. T. et al. Impact of physiological noise in characterizing the functional MRI
default-mode network in Alzheimer’s disease. J. Cereb. Blood Flow. Metab. 41,
166–81 (2021).

64. Scheel, N. et al. Evaluation of noise regression techniques in resting-state fMRI
studies using data of 434 older adults. Front. Neurosci. 16, 1006056 (2022).

65. Wunderlich, S. et al. Denoising strategies of functional connectivity MRI data in
lesional and non-lesional brain diseases. Radiol. Imaging http://medrxiv.org/
lookup/doi/10.1101/2025.01.22.25320407 (2015).

66. Lamouroux, A., Coloigner, J., Maurel, P., Farrugia, N. & Lioi, G. Evaluating lesion-
specific preprocessing pipelines for rs-fMRI in stroke patients: Impact on func-
tional connectivity and behavioral prediction. Imaging Neurosci. 3, IMAG.a.6
(2025).

67. Griffanti, L. et al. Effective artifact removal in resting state fMRI data improves
detection of DMN functional connectivity alteration in Alzheimer’s disease. Front.
Hum. Neurosci. 9, http://journal.frontiersin.org/Article/10.3389/fnhum.2015.00449/
abstract (2015).

68. Dipasquale, O. et al. Comparing resting state fMRI de-noising approaches using
multi- and single-echo acquisitions. PLoS ONE 12, e0173289 (2017).

69. Venkatesh, M., Jaja, J. & Pessoa, L. Comparing functional connectivity matrices: a
geometry-aware approach applied to participant identification. NeuroImage 207,
116398 (2020).

70. Abbas, K. et al. Geodesic distance on optimally regularized functional con-
nectomes uncovers individual fingerprints. Brain Connect. 11, 333–48 (2021).

71. Hannum, A., Lopez, M. A., Blanco, S. A. & Betzel, R. F. High-accuracy machine
learning techniques for functional connectome fingerprinting and cognitive state
decoding. Hum. Brain Mapp. 44, 5294–308 (2023).

72. Finn, E. S. et al. Can brain state be manipulated to emphasize individual differ-
ences in functional connectivity? NeuroImage 160, 140–51 (2017).

73. Curic, D., Kalasapura Venugopal Krishna, S., Davidsen, J. Efficacy of functional
connectome fingerprinting using tangent-space brain networks. Neuroscience
http://biorxiv.org/lookup/doi/10.1101/2025.01.17.633606 (2025).

74. Lemée, J. M. et al. Resting-state functional magnetic resonance imaging versus
task-based activity for language mapping and correlation with perioperative
cortical mapping. Brain Behav. 9, e01362 (2019).

75. Ellis, C. A., Miller, R. L. & Calhoun, V. D. Identifying neuropsychiatric disorder subtypes
and subtype-dependent variation in diagnostic deep learning classifier perfor-
mance. Bioinformatics http://biorxiv.org/lookup/doi/10.1101/2022.10.27.514124
(2022).

76. Chand, G. B. et al. Two distinct neuroanatomical subtypes of schizophrenia
revealed using machine learning. Brain 143, 1027–38 (2020).

77. Clementz, B. A., et al. Identification of distinct psychosis biotypes using brain-
based biomarkers. AJP 173, 373–84 (2016).

78. Ballem R. et al. Mapping the psychosis spectrum – imaging neurosubtypes from
multi-scale functional network connectivity. Neuroscience https://doi.org/10.1101/
2025.02.11.637551 (2025).

79. Andrés-Camazón, P. et al. Neurobiology-based cognitive biotypes using multi-
scale intrinsic connectivity networks in psychotic disorders. Schizophrenia 11, 45
(2025).

80. First, M. B., et al. Clinical applications of neuroimaging in psychiatric disorders.
AJP 175, 915–6 (2018).

81. Henderson, T. A. et al. Functional neuroimaging in psychiatry—aiding in diag-
nosis and guiding treatment. What the American Psychiatric Association does not
know. Front. Psychiatry 11, 276 (2020).

82. Gu, S., et al. Emergence of system roles in normative neurodevelopment. Proc.
Natl Acad. Sci. USA 112, 13681–6 (2015).

83. Satterthwaite, T. D. et al. Heterogeneous impact of motion on fundamental
patterns of developmental changes in functional connectivity during youth.
NeuroImage 83, 45–57 (2013).

84. Jolles, D. D., Van Buchem, M. A., Crone, E. A. & Rombouts, S. A. R. B. A compre-
hensive study of whole-brain functional connectivity in children and young
adults. Cereb. Cortex 21, 385–91 (2011).

85. Fair, D. A. et al. Development of distinct control networks through segregation
and integration. Proc. Natl. Acad. Sci. USA 104(Aug), 13507–12 (2007).

86. Baum, G. L. et al. Modular segregation of structural brain networks supports the
development of executive function in youth. Curr. Biol. 27, 1561–1572.e8 (2017).

87. Briend, F., Armstrong, W. P., Kraguljac, N. V., Keilhloz, S. D. & Lahti, A. C. Aberrant
static and dynamic functional patterns of frontoparietal control network in
antipsychotic-naïve first-episode psychosis subjects. Hum. Brain Mapp. 41,
2999–3008 (2020).

88. Althwanay, A., AlZamil, N. A., Almukhadhib, O. Y., Alkhunaizi, S., Althwanay, R.
Risks and protective factors of the prodromal stage of psychosis: a literature
review. Cureus. https://www.cureus.com/articles/31577-risks-and-protective-
factors-of-the-prodromal-stage-of-psychosis-a-literature-review (2020).

89. Tooley, U. A. et al. The age of reason: functional brain network development
during childhood. J. Neurosci. 42, 8237–51 (2022).

90. Power, J. D., Fair, D. A., Schlaggar, B. L. & Petersen, S. E. The development of
human functional brain networks. Neuron 67, 735–48 (2010).

91. Rubia, K. Functional brain imaging across development. Eur. Child Adolesc. Psy-
chiatry 22, 719–31 (2013).

92. Cao, H. et al. Progressive reconfiguration of resting-state brain networks as
psychosis develops: Preliminary results from the North American Prodrome
Longitudinal Study (NAPLS) consortium. Neuroscience http://biorxiv.org/lookup/
doi/10.1101/179242 (2017).

93. Di Martino, A. et al. Unraveling the miswired connectome: a developmental
perspective. Neuron 83, 1335–53 (2014).

94. Addington, J. et al. Clinical and functional characteristics of youth at clinical high-
risk for psychosis who do not transition to psychosis. Psychol. Med. 49, 1670–7
(2019).

95. Addington, J. et al. North American Prodrome Longitudinal Study (NAPLS 2): the
prodromal symptoms. J. Nerv. Ment. Dis. 203(May), 328–35 (2015).

96. Addington, J., et al. North American Prodrome Longitudinal Study: a collaborative
multisite approach to prodromal schizophrenia research. Schizophr. Bull. 33,
665–72 (2007).

97. Tognin, S. et al. PSYSCAN multi-centre study: baseline characteristics and clinical
outcomes of the clinical high risk for psychosis sample. Schizophr 11, 66 (2025).

98. Andreassen, O. A., Hindley, G. F. L., Frei, O. & Smeland, O. B. New insights from the
last decade of research in psychiatric genetics: discoveries, challenges and clinical
implications. World Psychiatry 22, 4–24 (2023).

ACKNOWLEDGEMENTS
Our appreciation goes to Dr. Jason Xu from the UCLA Fielding School of Public Health
for his invaluable consultations on the statistical models used in this research. This
project was supported in part through a grant from The Rockefeller University
Heilbrunn Family Center for Research Nursing awarded to R.M.X.

AUTHOR CONTRIBUTIONS
A.I. contributed to the methods, performed data analysis and interpretation, and
drafted the initial version of and subsequent revisions to the manuscript. W.S.
contributed to the data analysis and interpretation, initial drafting and subsequent
revisions to the manuscript. E.D. contributed substantially to the project’s conception,
design and methods, supervised neuroimaging data analysis and interpretation, and
critically revised the manuscript. R.M.X., the senior and corresponding author, secured
project funding, supervised the project and made substantial contributions to its
conception, design, methodology, data acquisition, data analysis and interpretation
as well as drafting and critically revising the manuscript. All authors gave final
approval for publication and agree to be accountable for all aspects of the work.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41537-025-00687-x.

Correspondence and requests for materials should be addressed to
Rose Mary Xavier.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

A. Iyer et al.

13

Published in partnership with the Schizophrenia International Research Society Schizophrenia (2025)   142 

http://journal.frontiersin.org/article/10.3389/fninf.2013.00016/abstract
http://journal.frontiersin.org/article/10.3389/fninf.2013.00016/abstract
http://medrxiv.org/lookup/doi/10.1101/2025.01.22.25320407
http://medrxiv.org/lookup/doi/10.1101/2025.01.22.25320407
http://journal.frontiersin.org/Article/10.3389/fnhum.2015.00449/abstract
http://journal.frontiersin.org/Article/10.3389/fnhum.2015.00449/abstract
http://biorxiv.org/lookup/doi/10.1101/2025.01.17.633606
http://biorxiv.org/lookup/doi/10.1101/2022.10.27.514124
https://doi.org/10.1101/2025.02.11.637551
https://doi.org/10.1101/2025.02.11.637551
https://www.cureus.com/articles/31577-risks-and-protective-factors-of-the-prodromal-stage-of-psychosis-a-literature-review
https://www.cureus.com/articles/31577-risks-and-protective-factors-of-the-prodromal-stage-of-psychosis-a-literature-review
http://biorxiv.org/lookup/doi/10.1101/179242
http://biorxiv.org/lookup/doi/10.1101/179242
https://doi.org/10.1038/s41537-025-00687-x
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,

which permits any non-commercial use, sharing, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if youmodified
the licensed material. You do not have permission under this licence to share adapted
material derived from this article or parts of it. The images or other third partymaterial in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

A. Iyer et al.

14

Schizophrenia (2025)   142 Published in partnership with the Schizophrenia International Research Society

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Salience network segregation and symptom profiles in psychosis risk subgroups among youth and early adults
	Introduction
	Methods and materials
	Participants
	Image acquisition and preprocessing
	Matrix construction
	Multiplex network construction
	Community detection
	Statistical analyses
	Brain system segregation
	Psychopathology symptom analyses


	Results
	Youth sample
	Block demographics
	Parameter estimates
	Sensitivity analyses
	Brain system segregation
	Psychopathology symptoms

	Early adult sample
	Block demographics
	Parameter estimates
	Brain system segregation
	Psychopathology symptoms


	Discussion
	Psychopathology history is more influential than functional brain activity for psychiatric subtyping
	Consistency of functional brain activity between adolescents and young adults
	The salience network and psychosis
	Limitations and future directions
	Conclusions

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




