

<https://doi.org/10.1038/s41538-024-00363-x>

Enhancing blueberry wine quality and antioxidant capacity through mixed fermentation with *S. cerevisiae* and *O. oeni*

Check for updates

Kai Liu^{1,2}, Yinyin Lian^{1,2}, Xingyun Xie^{1,2}, Yuyang Gao^{1,2}, Jiajia Song^{1,2}, Huayi Suo^{1,2} & Yu Zhang^{1,2}✉

This study investigates the impact of *O. oeni* on the quality of blueberry wine, employing various analytical methods to determine parameters such as alcohol content, antioxidant capacity, organic acids, amino acids, and volatile components. The results demonstrated that co-inoculation with *O. oeni* significantly decreased the titratable acidity of blueberry wine. Among the organic acids, the malic acid content of ST and SE groups decreased by (26.24 ± 1.24)% and (35.75 ± 4.02)%, respectively. The main consumed amino acids were aspartate, lysine, and arginine after co-inoculation with *O. oeni*. Additionally, co-inoculation with *O. oeni* significantly increased the content of medium-chain fatty acid ethyl esters, especially isoamyl acetate content. The antioxidant capacity of blueberry wine was significantly enhanced by co-inoculation with *O. oeni*, particularly in terms of measurement of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) clearance. The findings of this study provide a solid basis for improving the quality of blueberry wine and promoting the growth of blueberry wine industry.

Blueberry (*Vaccinium spp.*) is a perennial shrub fruit tree belonging to the Ericaceae family¹. Blueberries are rich in vital nutrients, including vitamins, anthocyanins, phenolic acids, and other bioactive compounds. These nutrients offer significant health benefits such as neuroprotection, cardiovascular support, and immune enhancement². Recognized by the International Blueberry Organization as one of the top five healthiest fruits globally, blueberries in China have a processing rate of 53.85%, surpassing the global average. However, most processed blueberry products on the market have low added value and limited competitiveness, including fruit juice, dried fruits, and jams. Fermenting blueberries into wine can address storage challenges and enhance the product's shelf life and value.

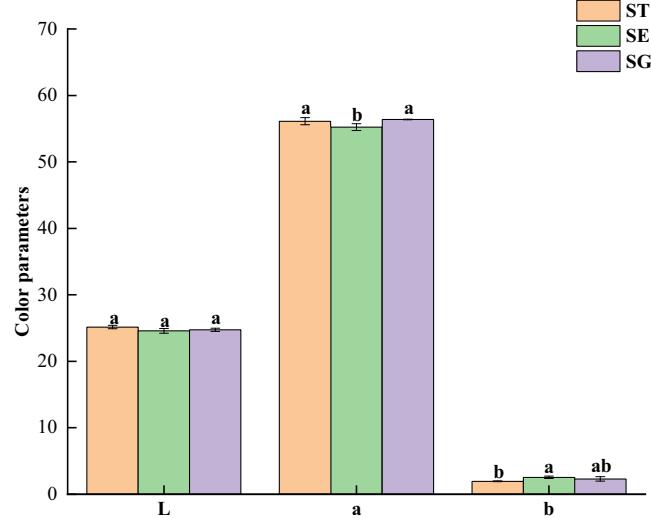
Currently, blueberry wine fermentation mainly uses commercially available brewing yeast strains³. The high organic acid content in blueberries often leads to elevated levels of malic and tartaric acids in the resulting wines, contributing to an excessively acidic taste profile. Therefore, it is essential to develop methods to reduce acidity in blueberry wine. The primary approaches for mitigating acidity in fruit wine are chemical, biological, and physical acid reduction⁴. Chemical methods can introduce excessive metal ions, causing wine turbidity⁵. Physical methods reduce organic acid content while adsorbing pigments, negatively affecting sensory quality⁶. Biological methods use lactic acid bacteria to facilitate malo-lactic fermentation (MLF), converting malic acid into lactic acid, thereby reducing acidity with minimal impact on wine quality and stability⁵. MLF also enhances aroma complexity and balances acidity and sweetness⁶. Various lactic acid bacteria conduct

MLF with *O. oeni* being the most suitable strain due to its adaptability to low pH (<3.5), high alcohol concentration (>13% v/v), and a glucose/fructose environment in wines. Limited studies have explored lactic acid bacteria for acidity mitigation in fruit wines or juices, with most research focusing on apple juice, cider, and wine rather than blueberry wine. Therefore, investigating the influence of *O. oeni* on blueberry wine quality is crucial.

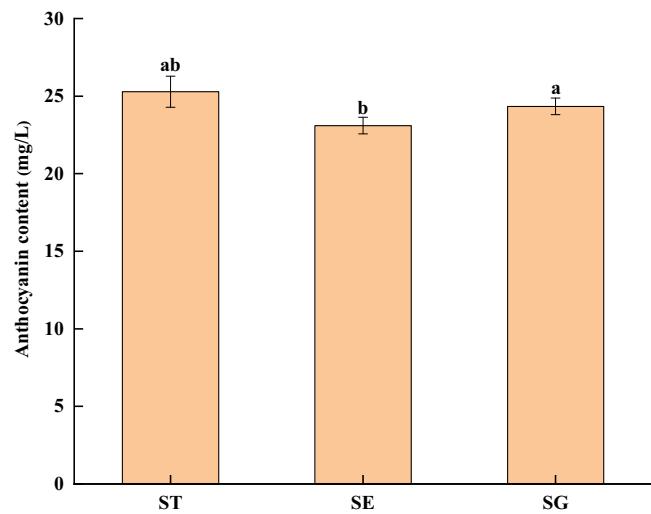
Many studies suggest that *O. oeni* OI can mitigate the sour taste of fruit during fermentation^{7,8}. However, its impact on overall blueberry wine quality remains uncertain. This study employed simultaneous or sequential inoculated fermentation with *S. cerevisiae* FR and *O. oeni* OI to analyze various parameters, including ethanol content, titratable acidity, pH level, soluble solids, reducing sugar concentration, color intensity, anthocyanin content, total phenolic compounds, and flavonoids levels as well as in vitro antioxidant capacity. Additionally, organic acid profiles, amino acids, and volatile components were analyzed to investigate the influence of *O. oeni* on enhancing blueberry wine quality.

Result and discussion

Basic physical and chemical indices


Table 1 demonstrates the ethanol content, soluble solids, reducing sugars, titratable acids, pH values, and malic acids of blueberry wine under different inoculation groups. Compared to the SG group, the ST and SE groups exhibited a slight increase in the pH and a reduction in titratable acid. Titratable acids in the ST and SG groups were significantly lower than those

¹School of Food Science, Southwest University, Chongqing, China. ²National Teaching Demonstration Center of Food Science and Engineering of Southwest University, Southwest University, Chongqing, China. ✉e-mail: zhangyu_512@sina.cn


Table 1 | Basic physical and chemical indices of blueberry wine

Indexes	Ethonal (%v/v)	Soluble solid (°Bx)	Titratable acid (g/L)	pH	Reducing sugar (g/L)	Malic acid (mg/mL)
ST	12.05 ± 0.26 ^b	8.03 ± 0.06 ^a	8.33 ± 0.04 ^b	2.80 ± 0.01 ^a	22.62 ± 2.58 ^b	2.51 ± 0.08 ^b
SE	11.75 ± 0.13 ^b	6.97 ± 0.06 ^b	7.08 ± 0.06 ^c	2.81 ± 0.01 ^a	35.64 ± 2.57 ^a	2.18 ± 0.11 ^c
SG	13.63 ± 0.29 ^a	8.10 ± 0.10 ^a	10.25 ± 0.05 ^a	2.65 ± 0.02 ^b	38.43 ± 1.29 ^a	3.40 ± 0.06 ^a

Note: ST: *S. cerevisiae* FR and *O. oeni* OI were inoculated simultaneously; SE: *S. cerevisiae* FR and *O. oeni* OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR; Different lowercase letters in the same column in the table indicate significant differences ($p < 0.05$).

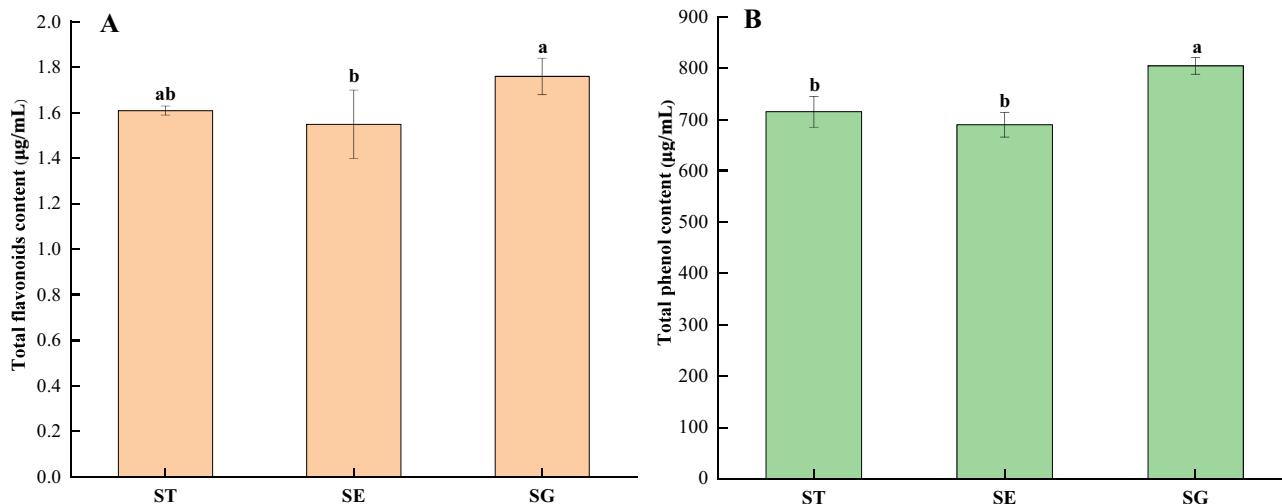
Fig. 1 | The color parameters of blueberry wine. Note: ST: *S. cerevisiae* FR and *O. oeni* OI were inoculated simultaneously; SE: *S. cerevisiae* FR and *O. oeni* OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR; L (lightness), a (green to red), and b (blue to yellow). Different lowercase letters in the figure indicate significant differences ($p < 0.05$).

Fig. 2 | The anthocyanin of blueberry wine. Note: ST: *S. cerevisiae* FR and *O. oeni* OI were inoculated simultaneously; SE: *S. cerevisiae* FR and *O. oeni* OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR; Different lowercase letters in the figure indicate significant differences ($p < 0.05$).

in the SG group; indicating that *O. oeni* OI can effectively reduce the titratable acids through MLF. The titratable acid in the ST group (8.33 ± 0.04 g/L) was significantly higher than in the SE group (7.08 ± 0.06 g/L) ($p < 0.05$). This can be attributed to factors such as the

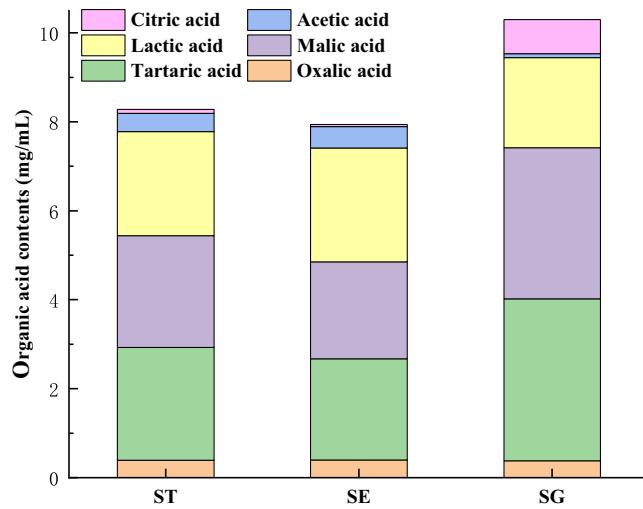
difference in fermentation temperature, the gradual increase of ethanol content, the decrease of dissolved oxygen, the yeast concentration was higher than the bacteria concentration at the beginning of the fermentation, and interactions between strains inhibiting the growth of *O. oeni* OI during fermentation, affecting its acid-reducing ability^{9,10}. Blueberry wine fermented by the ST and SE groups had significantly lower ethanol contents (12.05 ± 0.26 v/v and 11.75 ± 0.13 v/v) than the SG group. The addition of *O. oeni* OI likely inhibited the uptake or utilization of amino acids by *S. cerevisiae* FR, thereby reducing yeast growth, as well as the competition for sugars between the two strains, both affecting alcohol fermentation¹¹. Reducing sugar in the three different treatment groups ranged from 22.62 ± 2.58 g/L to 38.43 ± 1.29 g/L, meeting the requirement for semi-sweet wine. The ST group's reducing sugar (22.62 ± 2.58 g/L) was significantly lower compared to the SE and SG groups ($p < 0.05$). This study confirmed that MLF can occur in the presence of fermentable sugars, leading to a significant reduction in reducing sugar during simultaneous alcohol fermentation and MLF^{9,12-14}. Compared with the SG group, the malic acid content of the ST group and SE group decreased by (26.24 ± 1.24)% and (35.75 ± 4.02)%, respectively.

Color analysis


Chromaticity parameters, including L (lightness), a (green to red), and b (blue to yellow), which can be affected by several factors such as pH, processing and storage temperature, chemical structure, and pigment concentrations, were measured¹⁵. Figure 1 demonstrates no significant difference in L value between the three groups ($p > 0.05$). However, the a value of the SE group (55.24 ± 0.51) was significantly lower than the other two groups ($p < 0.05$). This result is related to the anthocyanin content and total phenols content in SE group in Figs. 2 and 3. This result aligns with previous studies reporting that acetaldehyde-producing *O. oeni* can restore color loss associated with MLF^{16,17}. The b value of the SE group (2.54 ± 0.18) was significantly higher than that of the ST group (1.95 ± 0.05) ($p < 0.05$), possibly due to the pH increase during MLF, shifting anthocyanin towards a blue color¹⁷.

Anthocyanin analysis

Anthocyanins contribute to multiple bioactivities, including anti-oxidation, anti-inflammation, anti-cardiovascular disease, anti-skin damage, and reproductive system protection¹⁸. As shown in Fig. 2, the anthocyanin content in the SE group (23.10 ± 0.53 mg/L) was significantly lower than in the SG group ($p < 0.05$), possibly due to cell adsorption by *O. oeni* OI and anthocyanin cleavage¹⁹. *O. oeni* OI can also release SO_2 , which binds with anthocyanins, reducing their concentration²⁰. Interestingly, there was no significant difference in anthocyanin content between the ST group (25.29 ± 1.00 mg/L) and the SG group (24.34 ± 0.54 mg/L) ($p > 0.05$), likely due to acetaldehyde promoting the synthesis of stable ethylene-linked pigments such as pyranoanthocyanins²¹.


Analysis of total flavonoids and total phenols

The content of phenols and flavonoid compounds significantly impacts the color, aroma, taste, and antioxidant effect of wine^{22,23}. As shown in Fig. 3, total flavonoids and phenols decreased with MLF, consistent with previous findings²⁴. Total phenols in the ST group (715.93 ± 30.08 $\mu\text{g/mL}$) and SE group (690.35 ± 24.20 $\mu\text{g/mL}$) were significantly lower than in the SG group

Fig. 3 | The total flavonoids and total phenols content of blueberry wine. The total flavonoids content (A) and total phenols content (B) of blueberry wine. Note: ST: *S. cerevisiae* FR and *O. oeni* OI were inoculated simultaneously; SE: *S. cerevisiae* FR and *O. oeni* OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR.

O. oeni OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR; Different lowercase letters in the figure indicate significant differences ($p < 0.05$).

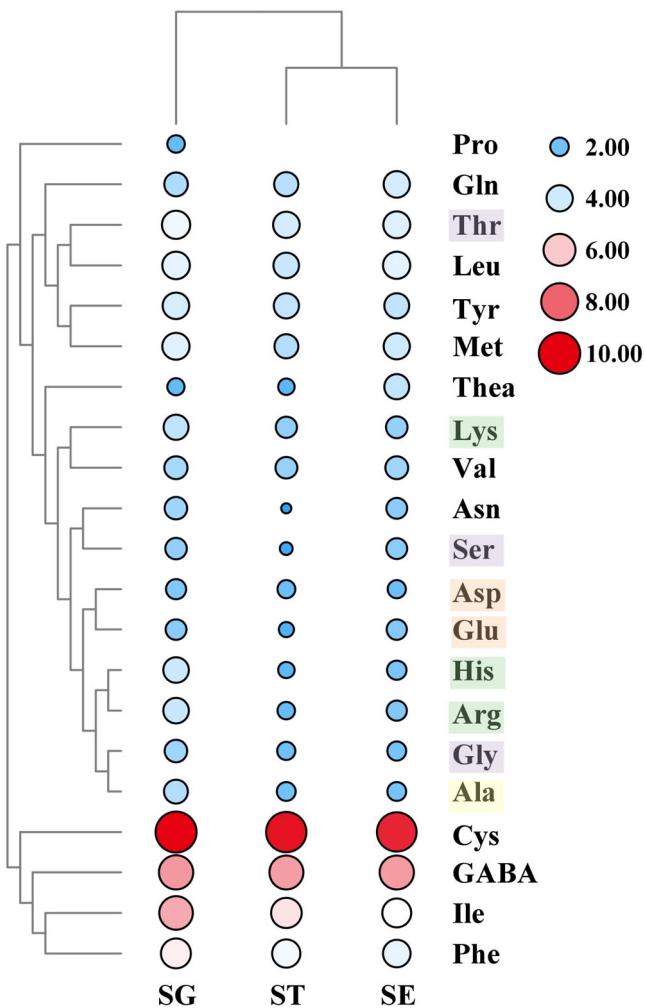
Fig. 4 | The organic acid content of blueberry wine. Note: ST: *S. cerevisiae* FR and *O. oeni* OI were inoculated simultaneously; SE: *S. cerevisiae* FR and *O. oeni* OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR.

($805.08 \pm 18.83 \mu\text{g/mL}$) ($p < 0.05$). The decrease in total flavonoids and phenols may be due to changes in ethanol and pH after adding *O. oeni* OI, leading to the precipitation or oxidation of phenolic substances and flavonoids²⁵. Additionally, *O. oeni* OI can metabolize phenolic compounds by glucosidase, producing important flavor substances in wine²⁶.

Analysis of organic acids

Organic acids significantly influence the sensory characteristics and quality of fruit wine²⁷. As shown in Fig. 4, malic and tartaric acid contents in the ST and SE groups were significantly lower than in the SG group ($p < 0.05$). The decrease in malic acid was due to *O. oeni* catalyzing the decarboxylation of L-malic acid into L-lactic acid and CO_2 ²⁸. The reduction in tartaric acid was attributed to its precipitation as potassium hydrogen tartrate²⁹. The malic acid content in the SE group ($2.18 \pm 0.08 \mu\text{g/mL}$) was significantly lower than in the ST group ($2.51 \pm 0.08 \mu\text{g/mL}$) ($p < 0.05$), possibly due to the two strains were inoculated not at the same concentration, competition for amino acids and nutrients between *S. cerevisiae* and *O. oeni*, and ethanol production by *S. cerevisiae* inhibiting *O. oeni* growth^{30,31}.

Citric acid contents in the ST and SE groups were $0.09 \pm 0.02 \mu\text{g/mL}$ and $0.05 \pm 0.01 \mu\text{g/mL}$, respectively, significantly lower than in the SG group ($0.77 \pm 0.03 \mu\text{g/mL}$) ($p < 0.05$). *O. oeni* OI metabolizes citric acid to produce acetic acid and aroma compounds like diacetyl, ethoin, and 2,3-butanediol^{19,29}. High acetic acid content can mask fruit wine aromas, reduce flavor coordination, and result in a harsh, bitter taste. However, all three groups were within the normal range ($<0.7 \mu\text{g/mL}$)²⁹.


Analysis of amino acids

Amino acid contents in different groups are shown in Fig. 5A. Based on the polarity of the R group, amino acids are categorized as acidic, alkaline, neutral polar, and neutral non-polar³². Acidic amino acids, such as aspartic acid, decreased with MLF, potentially due to conversion into diacetyl, acetoin, and 1,3-butanediol by aminotransferase³². Glutamic acid in the ST group ($1.50 \pm 0.18 \mu\text{g/mL}$) was significantly lower than in the SE and SG groups ($p < 0.05$). The alkaline amino acids (histidine, arginine, and lysine) were significantly lower in the ST and SE groups than in the SG group ($p < 0.05$). The reduction in arginine content suggests that *O. oeni* can catabolize arginine through the arginine deiminase pathway (ADI) to protect against acidic environment³³. Neutral polar amino acids (glycine, serine, and threonine) and the neutral non-polar amino acid (alanine) were also significantly lower in the ST and SE groups than in the SG group ($p < 0.05$). These amino acids may provide precursors for free amino acids³⁴.

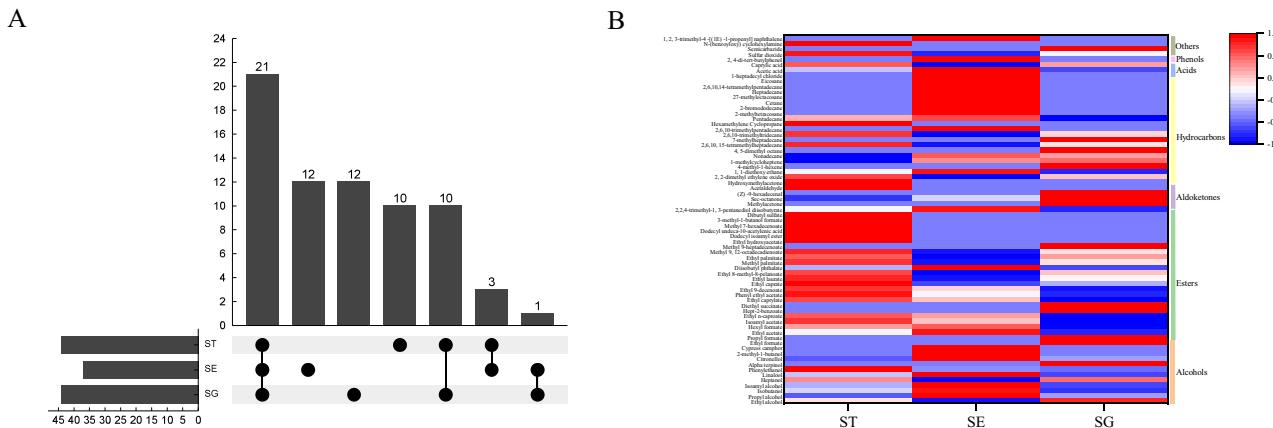
Analysis of volatile components

A total of 69 volatile compounds were identified in the blueberry wine. The SG and ST groups each detected 44 volatile components, while the SE group detected 37 (Fig. 6A). Twenty-one compounds were common to all groups. MLF with *O. oeni* OI led to the formation of 25 new volatiles: 12 in the ST group, 10 in the SE group, and 3 shared by both ST and SE groups. These volatiles were categorized into alcohols (11), esters (26), aldkoketones (5), hydrocarbons (20), acids (2), phenols (1), and others (4) (Fig. 6B).

As shown in Fig. 6B, there was no significant difference in the alcohol content between the three groups, except for ethanol ($p > 0.05$). This indicates that *O. oeni* OI doesn't promote the production of higher alcohols, which can impart unpleasant aromas³⁵. Isoamyl alcohol and phenethyl alcohol were the main alcohol volatile flavor compounds in all three groups. Phenyl ethanol has a soft, pleasant, and long-lasting aroma of rose, violet, jasmine, and spice⁸. There were no significant differences in content among

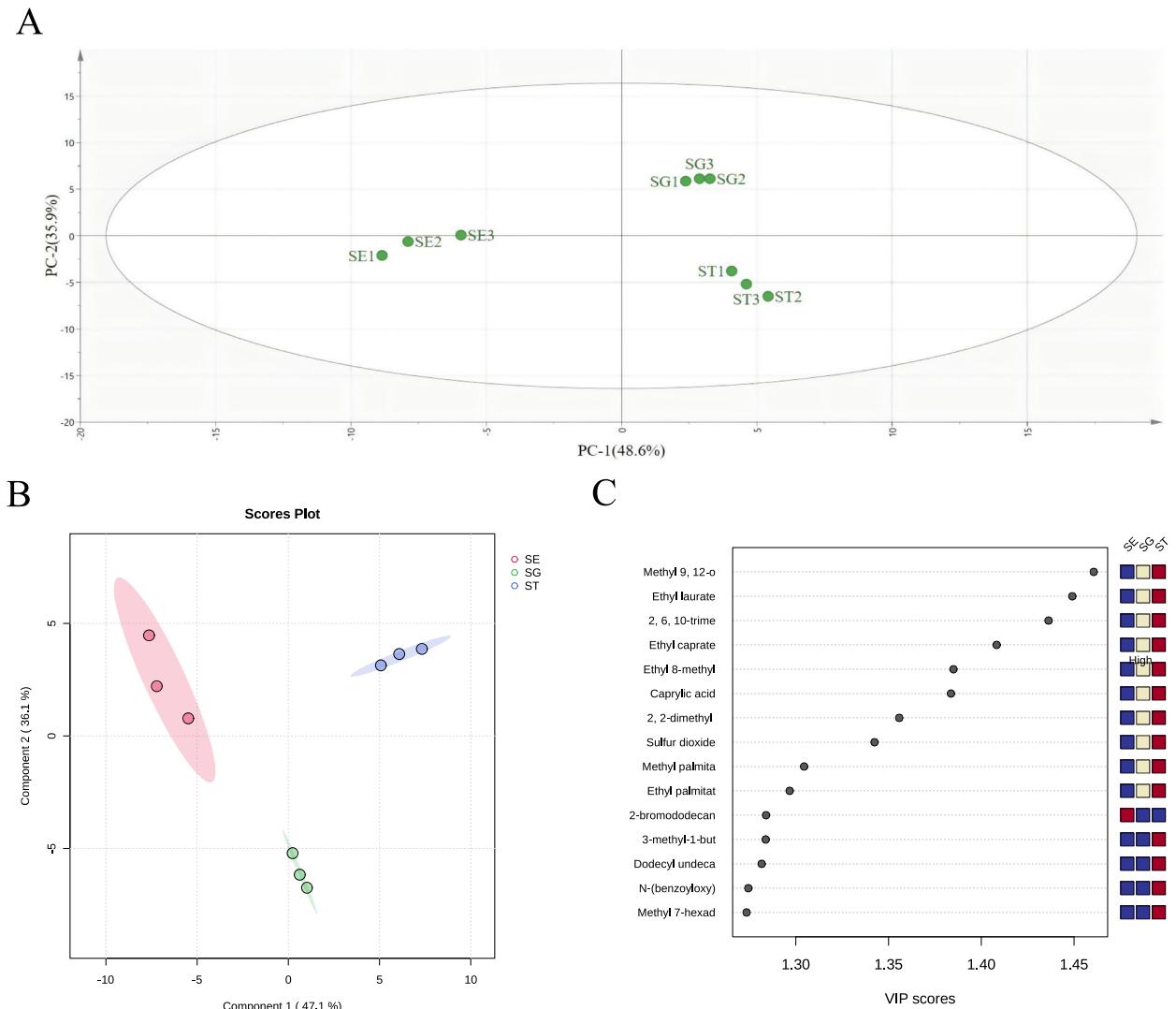
Fig. 5 | The amino acids of blueberry wine. The circle bar denoted the relative content of each individual amino acids. The redder (the bigger) of the circle, the higher content of the amino acids, and the bluer (the smaller) of the circle, the lower content of the amino acids. In the color panels for the amino acids classification, orange, green, purple and yellow indicated acidic, alkaline, neutral polar and neutral non-polar, respectively. Note: ST: *S. cerevisiae* FR and *O. oeni* OI were inoculated simultaneously; SE: *S. cerevisiae* FR and *O. oeni* OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR.

the three groups, indicating consistent characteristic flavors of the blueberry wine. However, the SE group produced 2-methyl-1-butanol (11.24 ± 4.76 mg/L), absent in the other groups, contributing to the aroma of the wine³⁶.


The concentration and types of esters increased significantly with MLF. The ST group produced seven new esters compared to the SG group. Isoamyl acetate, ethyl n-caproate, ethyl caprylate, phenyl ethyl acetate, and ethyl 9-deenoate were significantly higher in the ST and SE groups than in the SG group ($p < 0.05$), with isoamyl acetate in the ST group was increasing nearly 6-fold. These esters contribute fruity aromas to the wine³⁵. One study of Negroamaro wine similarly found that the co-inoculation of *S. cerevisiae* and *O. oeni* increased ester contents³⁷. The formation of ethyl fatty acid esters and acetate esters is likely due to esterase and acyltransferase from *O. oeni*. However, ethyl formate was absent in the ST and SE groups, indicating potential decomposition of transformation by *O. oeni* OI.

In aldoketones, only the ST group detected acetaldehyde (1.54 ± 0.59 mg/L), possibly contributing to the minor reduction of anthocyanins in this group. Acetaldehyde can be rapidly metabolized by *O. oeni*, but the rate of acetaldehyde degradation by *O. oeni* is affected by malic acid concentration, which may account for the detection of acetaldehyde only in the ST group³⁸. The SE group had the highest variety of hydrocarbons, with 8 unique to it. Acetic acid, a by-product of MLF, increases significantly with MLF; with caprylic acid only detected in the SG and ST groups. The phenolic compound 2, 4-di-tert-butylphenol was present in all groups, potentially related to phenolic acid degradation³⁹. Sulfur dioxide, converted by the added potassium metabisulfite, was detected in the ST and SE groups.

Multivariate statistical analysis of volatile aroma compounds


The influence of different groups on the volatile aroma compounds of blueberry wine was evaluated by principal component analysis (PCA). As revealed in Fig. 7A, the contributions of variance for PC1 and PC2 were 48.6% and 35.9%, respectively, with a cumulative variance contribution of 84.5%. It could also be seen that the three groups were located in different quadrants, indicating that there was a great deal of variation in the composition and content of the volatile aroma compounds.

To further recognize the volatile aroma compounds that result in the flavor differences of blueberry wines, the supervised PLS-DA method was used to analyze them. The PLS-DA score plot and VIP value plot were shown in Fig. 7B, C. In the score plot, PC1 and PC2 explain 47.1% and 36.1% of the variance, respectively, explaining 83.2% of the total variance. The sample points were scattered between groups, while samples within groups were independently clustered. Compared with

Fig. 6 | Aroma profile of different fermentation trials. A The distribution of volatile components. The bar chart at the bottom-left represents the number of volatile components included in each blueberry wine. The bar chart on the right represents the numbers of common volatile compounds in the wine samples. The

solid black dot at the bottom-right shows the wine samples contained in the group. **B** Individual aroma compounds. Note: ST: *S. cerevisiae* FR and *O. oeni* OI were inoculated simultaneously; SE: *S. cerevisiae* FR and *O. oeni* OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR.

Fig. 7 | Multivariate statistical analysis of volatile aroma compounds. Multivariate statistical analysis of volatile aroma compounds (A: PCA analysis of volatile aroma compounds; B: The scores plot of PLS-DA; C: VIP value plot).

Table 2 | Antioxidant capacity of blueberry wine

Antioxidant capacity	ABTS (%)	DPPH (%)	Hydroxyl radical (%)
ST	86.67 ± 0.95 ^b	95.76 ± 5.54 ^a	47.62 ± 3.83 ^a
SE	92.61 ± 1.18 ^a	71.23 ± 3.71 ^b	16.39 ± 2.30 ^b
SG	83.25 ± 0.48 ^c	50.40 ± 4.86 ^c	15.45 ± 2.87 ^b

Note: ST: *S. cerevisiae* FR and *O. oeni* OI were inoculated simultaneously; SE: *S. cerevisiae* FR and *O. oeni* OI were sequentially inoculated; SG: Inoculated with *S. cerevisiae* FR; Different lowercase letters in the same column in the table indicate significant differences ($p < 0.05$).

the PCA, the PLS-DA more clearly showed intra-group consistency. On the basis of the VIP score, 15 compounds with VIP scores greater than 1 were recognized as potential markers for differentiating between samples⁴⁰. Among them, methyl 9, 12-octadecadienoate, ethyl laurate, 2, 6, 10-trimethylpentadecane, ethyl caprate, ethyl 8-methyl-8-pelanoate, caprylic acid, 2, 2-dimethyl ethylene oxide, sulfur dioxide, methyl palmitate, ethyl palmitate, 3-methyl-1-butanol formate, dodecyl isoamyl ester, n-(benzoyloxy) cyclohexylamine and methyl 7-hexadecenoate had strong correlations with the ST group. 2-bromododecane showed a strong correlation with the SE group. These results illustrated that blueberry wines fermented by different groups presented different aroma profiles, thus enriching the complexity of blueberry wine.

Analysis of antioxidant capacity

DPPH, ABTS, and hydroxyl radical scavenging rates are shown in Table 2. The ABTS clearance rate of the SE group was significantly higher than both the SG and ST groups ($p < 0.05$). Conversely, the DPPH clearance rate of the SE group was significantly lower than the ST group ($p < 0.05$), but still higher than the SG group. The hydroxyl radical scavenging rate in the SE group was significantly lower than in the ST group ($p < 0.05$). Typically, higher antioxidant activity in fermented foods is attributed to increased total phenolics and flavonoids⁴¹. However, our findings showed increased antioxidant capacity without a corresponding increase in total phenolics and flavonoids. Instead, there was a reduction in total phenols with MLF, suggesting the formation of new phenolic compounds from glycoconjugate precursors or degradation⁴². This enhances the bioavailability of health-promoting phenolics in blueberry wine with *O. oeni* OI. Similar results were reported in one study, which found higher bioactive compounds after fermentation in sorghum juice despite a decrease in total flavonoid, tannin, and phenolic content⁴³.

Materials and Methods

Blueberry wine fermentation

Rabbit eye blueberry (*V. ashei* Reade), 'Emerald' cultivars (Reducing sugar: 26.6 g/kg; Soluble solid: 12 °Bx) from Yubei, Chongqing was commercially harvested in August 2023. After harvesting, the raw material was immediately transported to our laboratory and stored at -20 °C until use. Immature

and damaged blueberries were discarded and the rest were homogenized using a food grinder (PB-110, Suzhou Shangyi Electric Technology Co. Ltd). Potassium pyrosulfite (0.374 g/kg, Aladdin, Shanghai, China) and pectinase (0.2 g/kg, Aladdin, Shanghai) was added to the mixture, which was incubated in a water bath at 50 °C for 1 h. After cooling, the sugar content was adjusted to 25% soluble solid with sucrose.

For the fermentation process, *S. cerevisiae* FR (2.3×10^{10} CFU/g, 0.25 g, Yantai Diboshi Brewing Machine Co. Ltd) and *O. oeni* OI (2.28×10^9 CFU/g, 2.5 mg, Yantai Diboshi Brewing Machine Co. Ltd) were inoculated into 250 mL of blueberry juice and fermented at 19 °C for 13 days (The temperature is the optimal temperature for *O. oeni* OI strains to work obtained from our previous studies), constituting the ST group. In the SE group, *S. cerevisiae* FR was inoculated for 8 days at 24 °C (The temperature is the optimal temperature for *S. cerevisiae* FR strains to work obtained from our previous studies), followed by co-inoculation with *O. oeni* OI for 5 additional days at 19 °C. As a control, only *S. cerevisiae* FR was inoculated for 13 days at 24 °C, forming the SG group. The resulting fermented blueberry wine was stored at 4 °C until analysis. All fermentations were conducted in triplicate.

Basic physical and chemical indexes

Following the analytical methods prescribed by the International Organization of Vine and Wine⁴⁴, the pH value, ethanol content, and titratable acidity in wines were analyzed. The soluble solid content was determined using a hand-held refractometer (WZS-32, Shanghai Yili Electrophysical Optical Instrument Co, Ltd). All samples were analyzed in three replicates.

Reducing sugar content was determined using the anthrone colorimetric method with a slight modification⁴⁵. The absorbance was measured at 620 nm using a double-beam ultraviolet-visible (UV-vis) spectrophotometer (TU-1950, Shanghai Jinghua Scientific and Technical Instrument Co, Ltd). All samples were analyzed in three replicates.

Color parameters

The color of blueberry wine was measured using a colorimeter (WR-10, Weifu Photoelectricity Technology Co, Ltd) in transmission mode under light avoidance. L, a, and b values were recorded to represent the brightness, redness-greenness, and yellowness-blueness characteristics of the samples. All samples were analyzed in three replicates.

Anthocyanin content

The total anthocyanin content was determined by the pH differential method⁴⁶. Blueberry wine was diluted 10-fold with 0.2 mol/L potassium chloride buffer at pH 1.0 and 1.0 mol/L acetate buffer at pH 4.5, followed by incubation at 4 °C for 2 h. Absorbance was recorded at 510 nm and 700 nm at pH 1 and pH 4.5 using a double beam UV-vis spectrophotometer, calibrated with distilled water as a blank. All samples were analyzed in three replicates.

Total flavonoid content

Total flavonoid content was determined using the aluminum chloride method with slight modifications⁴⁷. The blueberry wine was diluted 2-fold with 80% ethanol-water solution, followed by sonication for 30 min using an ultrasonic washer (SB-5200 DTD, Ningbo Xinzhi Biotechnology Co. Ltd). Samples were filtered, and 1 mL of the diluted sample was mixed with 5 mL of 30% ethanol and 1 mL of 5% sodium nitrite (Chongqing Taixin Chemical Co. Ltd,) solution, followed by a reaction at room temperature for 6 min. The reaction system was then transferred into a solution containing 4 mL of 1 mol/L sodium hydroxide (Chongqing Taixin Chemical Co, Ltd) and diluted to 25 mL using 30% ethanol. Absorbance at 510 nm was measured, calibrating with rutin standard solution. All samples were analyzed in three replicates.

Total phenol content

Total phenol content was measured using the Folin-Ciocalteu method³⁹. The blueberry wine (1 mL) was diluted 10-fold with anhydrous ethanol,

followed by ultrasound treatment for 10 min and filtration. Treated sample (1 mL) was mixed with distilled water (6 mL) and 1.0 mol/L Folin-Phenol reagent (1 mL). After incubation for 6 min, sodium carbonate solution (10.6%, 4 mL) was added and incubated for 60 min, then diluted to 25 mL with distilled water. Absorbance at 760 nm was measured, calibrating with a gallic acid standard solution. All samples were analyzed in three replicates.

Organic acids

Organic acid content was determined using the method described by Yang et al.⁴⁸. Blueberry wine was centrifuged at 6000 g at 4 °C for 10 min. The treated sample was diluted 1.5-fold with 0.01 mol/L sodium dihydrogen phosphate (pH 2.8, Chongqing Taixin Chemical Co. Ltd) and filtered using a 0.22 µm organic phase needle filter. The processed sample was injected into the high-performance liquid chromatography (HPLC) (LC-20A, Shimadzu Co. Ltd, Japan) with a C18 column (250 mm × 4.6 mm, particle size: 5 µm, Agilent, USA). The mobile phase consisted of sodium dihydrogen phosphate (pH 2.8): methanol = 97:3 (v/v). A flow rate of 1 mL/min was maintained, and samples (20 µL) were injected into the column. Organic acid concentrations were determined by measuring their UV absorbance at 210 nm. All samples were analyzed in three replicates.

Amino acids

The amino acid content was determined by using the method described by Tian et al.⁴⁹. Briefly, 10 mL of blueberry wine was heated at 60 °C for 30 min and was diluted to 100 mL with distilled water. The diluted sample was filtered via a 0.22-µm organic-phase needle filter. The quantification of amino acids was conducted by using high-performance liquid chromatography (HPLC) with C18 column (250 × 4.6 mm, 5 µm, Agilent, USA) and detector: ultraviolet detector-liquid phase. The chromatographic conditions were as follows: mobile phase A consisted of 0.1 mol/L sodium acetate solution-acetonitrile (97:3, V/V) (acetic acid adjusted pH was 6.5), mobile phase B consisted of acetonitrile:water (4:1, V/V), the flow rate of 1 mL/min, gradient elution: 0–11 min, 0–1.5% A, 100–98.5% B; 11–21.7 min, 1.5%–7.6% A, 98.5–92.4% B; 21.7–23.9 min, 7.6–11% A, 92.4–89% B; 23.9–39 min, 11–30% A, 89–70% B; 39–42 min, 30–70% A, 70–30% B; 42–45 min, 70–100% A, 30–0% B; 45–52 min, 100% A, 0% B; 52–55 min, 100–0% A, 0–100% B; 55–70 min, 0% A, 100% B. The detection wavelength was 254 nm, the column temperature was 36 °C, and the sample size was 20 µL. All samples were analyzed in three replicates.

Volatile components

Volatile compounds were analyzed using headspace solid-phase micro-extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS)⁵⁰. Blueberry wine (5 mL) with 1 g sodium chloride (Chongqing Taixin Chemical Co. Ltd) and 20 µL 2-octanol (500 µg/L, Chongqing Taixin Chemical Co. Ltd) was prepared in a 20 mL vial. The sample was agitated at 376 g for 10 min at 45 °C, and a manual solid-phase microextraction injector (75 µm CAR/PDMS headspace solid-phase microextraction fiber head, Supelco, USA) was inserted into the vial headspace to absorb volatiles at 45 °C for 40 min. The injector was inserted into the gas chromatography(GC) injector for 3 min at 230 °C.

Volatile compounds were analyzed using a gas chromatography-mass spectrometry instrument (GCMS-2010, Shimadzu, Japan) with a DB-5MS capillary column (60 m × 0.25 mm, 0.25 µm thickness). Helium was the carrier gas, with a flow rate of 1.0 mL/min. The injection temperature was 230°C in splitless mode. The oven temperature program was: 35 °C for 3 min, increased to 150 °C at 6 °C/min and held for 1 min, then increased to 230 °C at 12 °C/min and held for 3 min. MS conditions included ion source and interface temperatures of 230 °C, full scan mode from *m/z* 20–550, and an ionization voltage of 70 eV.

Volatile compounds were identified by matching the mass spectrum and the retention indices (RI) with reference standards in the National Institute of Standards and Technology (NIST) 11 MS database. RI values were calculated using the Automated Mass Spectral Deconvolution and Identification System (AMDIS). All samples were analyzed in three replicates.

2,2'-Azinobis-(3-Ethylbenzthiazoline-6-Sulphonate) (ABTS) cationic free Radical clearance

ABTS cationic free radical clearance was determined using a method described by Liu et al.⁵¹. The ABTS cationic free radical dilution solution was prepared by reacting 7 mmol/L ABTS solution with 140 mmol/L potassium persulfate solution (both obtained from Chongqing Taixin Chemical Co, Ltd, China) in a 1:1 (v/v) ratio, incubated for 24 h at room temperature in the dark. The mixture was then diluted with absolute ethanol to an absorbance value of 0.70 ± 0.02 at 734 nm. Blueberry wine (0.5 mL) was added to 4.5 mL ABTS solution, and absorbance was measured after 6 min. All samples were analyzed in three replicates.

1,1-diphenyl-2-picryl-hydrayl (DPPH) radical Clearance

DPPH free radical scavenging rate was determined according to the method proposed by Shopska et al.⁵². Blueberry wine (2 mL) was mixed with 2 mL of a DPPH solution (0.2 mmol/L, Chongqing Taixin Chemical Co. Ltd). After 20 min of incubation, absorbance at 517 nm was measured, Calibrating with absolute ethanol. All samples were analyzed in three replicates.

Hydroxyl radical scavenging ability

Hydroxyl radical scavenging ability was determined using the method described by Ma et al.⁵³. Ferrous sulfate (6 mmol/L, 2 mL) was mixed with a salicylic acid solution (6 mmol/L, 2 mL, both obtained from Chongqing Taixin Chemical Co. Ltd), followed by the addition of 2 mL of blueberry wine. The reaction system was then supplemented with 2 mL of hydrogen peroxide solution (6 mmol/L, Chongqing Taixin Chemical Co. Ltd). After incubation at 37 °C for 1 h, absorbance at 517 nm was measured. All samples were analyzed in three replicates.

Statistical Analysis

Standard deviation (SD) represented the errors in triplicate studies for each treatment group. One-way analysis of variance (ANOVA) using SPSS 25.0 software identified significant differences among groups. Duncan's test ($p < 0.05$) discerned significant differences between treatments, with different letters indicating statistically significant differences. Data visualization was done using Origin 2021, MetaboAnalyst 5.0, TBtools, Simca, ChiPlot (<https://www.chiplot.online>). Values were reported as mean \pm SD with a minimum of three replicates per group.

Data availability

All data are available from the corresponding author upon request.

Received: 21 September 2024; Accepted: 18 December 2024;

Published online: 26 March 2025

References

- Qian, Y. P. L., Zhou, Q., Magana, A. A. & Qian, M. C. Comparative study of volatile composition of major Northern Highbush blueberry (*Vaccinium corymbosum*) varieties. *J. Food Composition and Anal.* **110**, 104538 (2022).
- Assuncao-Junior, S. O. et al. Amazonian Melastomataceae blueberries: determination of phenolic content, nutritional composition, and antioxidant and anti-glycation activities. *Food Res. Int.* **158**, 111519 (2022).
- Wang, Y. et al. Effects of *Torulaspora delbrueckii* co-fermented with *Saccharomyces cerevisiae* on physicochemical and aromatic profiles of blueberry fermented beverage. *Food Chem.* **409**, 135284 (2023).
- Genisheva, Z., Mussatto, S. I., Oliveira, J. M. & Teixeira, J. A. Malolactic fermentation of wines with immobilised lactic acid bacteria - Influence of concentration, type of support material and storage conditions. *Food Chem.* **138**, 1510–1514 (2013).
- Li, M., Qin, J., Zhong, B., Hao, F. & Wu, Z. Improving acidity and flavors of citrus juice as well as its antioxidant activity by cofermentation with deacidification bacteria combination. *Food Biosci.* **53**, 102592 (2023).
- Sun, S. Y., Gong, H. S., Jiang, X. M. & Zhao, Y. P. Selected non-*Saccharomyces* wine yeasts in controlled multistarter fermentations with *Saccharomyces cerevisiae* on alcoholic fermentation behaviour and wine aroma of cherry wines. *Food Microbiol.* **44**, 15–23 (2014).
- Hao, N. et al. Malolactic fermentation performance of indigenous *Oenococcus oeni* strains from Shaanxi wine region (China) and their mutants on Pinot Noir and Chardonnay wines. *Lwt-Food Sci Technol.* **185**, 115170 (2023).
- Zhang, B. et al. Impact of indigenous *Oenococcus oeni* and *Lactiplantibacillus plantarum* species co-culture on Cabernet Sauvignon wine malolactic fermentation: Kinetic parameters, color and aroma. *Food Chem. X* **22**, 101369 (2024).
- Izquierdo-Cañas, P. M. et al. Co-Existence of Inoculated Yeast and Lactic Acid Bacteria and Their Impact on the Aroma Profile and Sensory Traits of Tempranillo Red Wine. *Fermentation* **6**, 17 (2020).
- Balmaseda, A., Rozes, N., Bordons, A., Alexandre, H. & Reguant, C. Evaluating the impact of *Torulaspora delbrueckii* and amino acid concentration on the nitrogen metabolism of *Oenococcus oeni*. *Lwt-Food Sci Technol.* **210**, 116838 (2024).
- Chen, D. & Liu, S.-Q. Transformation of chemical constituents of lychee wine by simultaneous alcoholic and malolactic fermentations. *Food Chem.* **196**, 988–995 (2016).
- Abrahamse, C. E. & Bartowsky, E. J. Timing of malolactic fermentation inoculation in Shiraz grape must and wine: influence on chemical composition. *World J. Microbiol. Biotechnol.* **28**, 255–265 (2012).
- Garofalo, C. et al. Autochthonous starter cultures and indigenous grape variety for regional wine production. *J. Appl. Microbiol.* **118**, 1395–1408 (2015).
- Knoll, C. et al. Impact of different malolactic fermentation inoculation scenarios on Riesling wine aroma. *World J. Microbiol. Biotechnol.* **28**, 1143–1153 (2012).
- Sun, X. et al. Improving effects of three selected co-pigments on fermentation, color stability, and anthocyanins content of blueberry wine. *Lwt-Food Sci Technol.* **156**, 113070 (2022).
- Devi, A. & Anu-Appaiah, K. A. Yeast–bacterial interactions during malolactic inoculations affecting anthocyanin adsorption and content in Shiraz Wine. *Am. J. Enol. Vitic.* **71**, 105–113 (2020).
- Devi, A., Anu-Appaiah, K. A. & Lin, T.-F. Timing of inoculation of *Oenococcus oeni* and *Lactobacillus plantarum* in mixed malo-lactic culture along with compatible native yeast influences the polyphenolic, volatile and sensory profile of the Shiraz wines. *Lwt-Food Sci. Technol.* **158**, 113130 (2022).
- Li, X. et al. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. *Food Chem.* **333**, 127455 (2020).
- Virdis, C., Sumbay, K., Bartowsky, E. & Jiranek, V. Lactic acid bacteria in wine: technological advances and evaluation of their functional role. *Front. Microbiol.* **11**, 612118 (2021).
- Burns, T. R. & Osborne, J. P. Loss of Pinot noir wine color and polymeric pigment after malolactic fermentation and potential causes. *Am. J. Enol. Vitic.* **66**, 130–137 (2015).
- Forino, M., Picariello, L., Lopatriello, A., Moio, L. & Gambuti, A. New insights into the chemical bases of wine color evolution and stability: the key role of acetaldehyde. *Eur. Food Res. Technol.* **246**, 733–743 (2020).
- Garrido, J. & Borges, F. Wine and grape polyphenols-A chemical perspective. *Food Res. Int.* **44**, 3134–3134 (2011).
- Lu, H.-C. et al. The key role of vineyard parcel in shaping flavonoid profiles and color characteristics of Cabernet Sauvignon wines combined with the influence of harvest ripeness, vintage and bottle aging. *Food Chem.: X* **19**, 100772 (2023).
- Bandic, L. M. et al. The profile of organic acids and polyphenols in apple wines fermented with different yeast strains. *J. Food Sci. Technol.-Mysore* **56**, 599–606 (2019).

25. Jiang, J. et al. Effects of cofermentation of *Saccharomyces cerevisiae* and different lactic acid bacteria on the organic acid content, soluble sugar content, biogenic amines, phenol content, antioxidant activity and aroma of prune wine. *Food Chem.: X* **22**, 101502–101502 (2024).

26. Kristof, I., Ledesma, S. C., Apud, G. R., Vera, N. R. & Fernandez, P. A. *A. Oenococcus oeni* allows the increase of antihypertensive and antioxidant activities in apple cider. *Helijon* **9**, e16806 (2023).

27. Robles, A., Fabjanowicz, M., Chmiel, T. & Plotka-Wasylka, J. Determination and identification of organic acids in wine samples. Problems and challenges. *Trac-Trends in Anal Chem.* **120**, 115630 (2019).

28. Sumbry, K. M., Bartle, L., Grbin, P. R. & Jiranek, V. Measures to improve wine malolactic fermentation. *Appl. Microbiol. Biotechnol.* **103**, 2033–2051 (2019).

29. Wojdylo, A., Samoticha, J. & Chmielewska, J. The influence of different strains of *Oenococcus oeni* malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region. *J. Food Sci.* **85**, 1070–1081 (2020).

30. Liu, Y. et al. Wine microbiome: a dynamic world of microbial interactions. *Crit. Rev. Food Sci. Nutr.* **57**, 856–873 (2017).

31. Liu, Y. et al. Metabolomics-driven elucidation of interactions between *Saccharomyces cerevisiae* and *Lactobacillus panis* from Chinese Baijiu Fermentation Microbiome. *Fermentation-Basel* **8**, 33 (2022).

32. Liu, X. et al. Sensory and chemical characterizations of aroma during the loquat wine fermentation. *Food Biosci.* **58**, 103731 (2024).

33. Bourdineaud, J.-P. Both arginine and fructose stimulate pH-independent resistance in the wine bacteria *Oenococcus oeni*. *Int. J. Food Microbiol.* **107**, 274–280 (2006).

34. Gong, D. et al. *Penicillium expansum*-induced release of branched-chain volatile compounds in apple fruit by increasing amino acids accumulation. *Postharvest Biol. Technol.* **173**, 11–14 (2021).

35. Diez-Ozaeta, I., Lavilla, M. & Amarita, F. Effect of inoculation strategy with autochthonous *Oenococcus oeni* strains on aroma development in Rioja Alavesa Tempranillo wines. *Lwt-Food Sci Technol.* **162**, 113399 (2022).

36. Ji, G. et al. Influence on the aroma substances and functional ingredients of apple juice by lactic acid bacteria fermentation. *Food Biosci.* **51**, 102337 (2023).

37. Tristeza, M. et al. Simultaneous inoculation of yeasts and lactic acid bacteria: effects on fermentation dynamics and chemical composition of Negroamaro wine. *Lwt-Food Sci. Technol.* **66**, 406–412 (2016).

38. Jackowetz, J. N. & de Orduna, R. M. Metabolism of SO₂ binding compounds by *Oenococcus oeni* during and after malolactic fermentation in white wine. *Int. J. Food Microbiol.* **155**, 153–157 (2012).

39. Fu, Y. et al. Fermentation of mead using *Saccharomyces cerevisiae* and *Lactobacillus paracasei*: strain growth, aroma components and antioxidant capacity. *Food Biosci.* **52**, 102402 (2023).

40. Liu, J. et al. Effects of *Torulaspora delbrueckii* on physicochemical properties and volatile flavor compounds of navel orange wine. *J. Food Compos. Anal.* **121**, 1750 (2023).

41. Hashemi, S. M. B. et al. Fermented sweet lemon juice (*Citrus limetta*) using *Lactobacillus plantarum* LS5: Chemical composition, antioxidant and antibacterial activities. *J. Funct. Foods* **38**, 409–414 (2017).

42. del Valle, R. L., Carmen, M., José, R.-V. M. & María, S. F. Utilization of *Oenococcus oeni* strains to ferment grape juice: Metabolic activities and beneficial health potential. *Food Microbiol.* **101**, 103895 (2022).

43. Adebo, O. A., Njobeh, P. B., Adebiyi, J. A. & Kayitesi, E. Co-influence of fermentation time and temperature on physicochemical properties, bioactive components and microstructure of ting (a Southern African food) from whole grain sorghum. *Food Biosci.* **25**, 118–127 (2018).

44. OIV International Oenological Codex. Recueil des méthodes internationales d'analyse des vins et des moutis. Paris: Office International de la Vigne et du Vin. Edition (2022).

45. Evstigneyev, E. I. Quantification of polysaccharides in vegetable raw materials and lignin preparations. *Russian J. Bioorg. Chem.* **43**, 732–736 (2017).

46. Margherita, M. et al. Using ethanol as postharvest treatment to increase polyphenols and anthocyanins in wine grape. *Helijon* **10**, e26067 (2024).

47. Zhou, Y. et al. Cultivar difference characterization of kiwifruit wines on phenolic profiles, volatiles and antioxidant activity. *Food Chem.: X* **18**, 100691 (2023).

48. Yang, B. et al. Flavor profile and quality of strawberry wine are improved through sequential fermentation with indigenous non-*Saccharomyces* yeasts and *Saccharomyces cerevisiae*. *Food Biosci.* **59**, 104021 (2024).

49. Tian, T., Sun, J., Wu, D., Xiao, J. & Lu, J. Objective measures of greengage wine quality: from taste-active compound and aroma-active compound to sensory profiles. *Food Chem.* **340**, 128179 (2021).

50. Wang, X. et al. Sequential fermentation with indigenous non-*Saccharomyces* yeasts and *Saccharomyces cerevisiae* for flavor and quality enhancement of Longyan dry white wine. *Food Biosci.* **55**, 102952 (2023).

51. Liu, W. et al. Adjustment of impact phenolic compounds, antioxidant activity and aroma profile in Cabernet Sauvignon wine by mixed fermentation of *Pichia kudriavzevii* and *Saccharomyces cerevisiae*. *Food Chem.: X* **18**, 100685 (2023).

52. Shopska, V. et al. Comparative study on phenolic content and antioxidant activity of different malt types. *Antioxidants* **10**, 1124 (2021).

53. Ma, J. et al. Extraction of flavonoids from black mulberry wine residues and their antioxidant and anticancer activity in vitro. *Helijon* **10**, e31518 (2024).

Acknowledgements

This work was supported by the Chongqing Technology Innovation and Application Development Project (grant number: CSTB2023TIAD-KPX0028) and the Southwest University Training Program of Innovation and Entrepreneurship for Undergraduates (grant number: X202310635132).

Author contributions

Liu and Zhang wrote the main manuscript text and processed all the data; Lian, Xie and Gao prepared figures 5–7 and tables; Song and Suo offered suggestions and references for the manuscript; Zhang conducted a full-text analysis and review and made revisions and corrections. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Yu Zhang.

Reprints and permissions information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025