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Abstract: 

Food is a complex system than commonly perceived, comprising thousands of molecules whose 

compositions and interactions ultimately shape human perception. To conceptualize this 

multifaceted nature, we frame food complexity across three interconnected layers: the molecular 

composition that defines its chemical foundation, the component-component interactions that 

shape food properties, and the perceptual responses that arise from human sensory systems. This 

review discusses how machine learning is advancing our ability to decode each of these layers, 

together with multimodal and data-fusion frameworks. Understanding these three layers may 

enable more accurate prediction of food properties, guide food product innovation, and deepen our 

scientific understanding of food. 

Keywords: artificial intelligence, bioinformatics, cheminformatics, food informatics, food 

systems  
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1. Introduction 

Food is inherently complex, consisting of thousands of chemical components that interact and 

ultimately shape its flavour, texture, nutrition, and consumer acceptance1,2. Despite advances in 

analytical food chemistry and sensory science, we still lack a clear understanding of how molecular 

composition, component interactions, and human perception are interconnected across scales3,4.  

At the molecular level, food contains thousands of compounds with diverse structures and 

physicochemical properties, including volatility, solubility, bioactivity, and bioavailability. Even 

small structural differences, such as isomerism, can lead to pronounced changes in functional or 

sensory behaviour5. Although more than 77,000 food-related chemicals have been reported, fewer 

than one-tenth have annotated flavour or bioactivity information6,7. This sparse knowledge base 

makes manual interpretation difficult and highlights the value of machine learning (ML), which 

can predict molecular properties directly from structure and reveal how specific features shape a 

molecule’s sensory or functional role in food. 

Beyond individual molecules, food properties also arise from interactions among components. 

These interactions can create emergent behaviours that are not predictable by examining single 

compounds in isolation. Well-known examples include the balance created jointly by sugars, acids, 

and volatiles in fruits8, or the enhancement of flavour richness through lipid-aroma interactions in 

dairy matrices9. Such interaction patterns are further modified by ingredient composition, 

processing conditions, and storage environments, contributing to the variability observed across 

foods10. Analytical tools such as gas chromatography-mass spectrometry (GC-MS) and liquid 

chromatography-mass spectrometry (LC-MS) help identify and quantify complex molecular 

mixtures11, whereas sensor systems like e-noses and e-tongues mimic human chemosensation to 

rapidly profile collective molecular signals12,13. When combined with such approaches and ML, 

these multimodal data support rapid assessment of quality, authenticity, and origin and provide 

scalable tools for interpreting interaction-driven complexity14. 

Human perception adds yet another dimension. The same chemical stimulus can elicit distinct 

sensory responses across individuals, influenced by genetic variation, cultural background, and 

personal experience15. Advances in neuroinformatics technologies, including 

electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and functional 

magnetic resonance imaging (fMRI), provide richer psychological and physiological markers for 
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studying these perceptual differences16. For example, fMRI and fNIRS can be used to identify 

specific brain regions activated by different flavour stimuli, and EEG can capture, in real time, the 

rapid changes in brain electrical activity associated with perception17. Integrating ML with these 

neurophysiological datasets offers a powerful means to model emotions and preferences elicited 

by food18,19, and to identify the neural features most relevant to perception20. Such approaches 

deepen our understanding of how humans experience food beyond its chemical and physical 

properties. 

Although previous reviews have examined ML applications in food science, most have focused on 

a single data type or addressed only one layer of food complexity11,21,22. As a result, the integration 

of multimodal data within unified ML frameworks remains limited. In this review, we 

conceptualize food complexity across three interconnected dimensions: (1) the chemical diversity 

that defines the building blocks of food; (2) the interactions among components that give rise to 

the emergent properties of foods; and (3) the perceptual processes through which humans 

experience food (Figure 1). Unveiling these dimensions demands large, heterogeneous datasets, 

motivating growing interest in data fusion strategies that integrate information across sources to 

tackle high-dimensional or sparse data and enhance model accuracy23-25. Building on this 

motivation, the review aims to summarize how ML has been applied to unveil each dimension of 

food complexity; examine data fusion approaches that unify disparate datasets; and highlight the 

opportunity of incorporating neuroinformatics data to deepen our understanding of food perception 

and improve predictive performance. 

 

2. Representative machine learning algorithms for unveiling food complexity 

ML provides a diverse set of algorithms that can extract patterns, uncover relationships, and make 

predictions from the heterogeneous datasets that characterize food complexity. Depending on the 

data structure and objective, different algorithmic families, such as supervised and unsupervised 

learning, offer complementary strengths for classification, regression, and clustering. 

As illustrated in Figure 2, ML workflows in food research typically involve data collection, 

preprocessing, feature engineering, and model training. Within this pipeline, supervised algorithms 

like support vector machines (SVM), decision trees (DT), random forests (RF), and k-nearest 

neighbours (KNN) have been widely adopted for tasks such as quality prediction, authenticity 
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verification, and sensory property modelling26. Unsupervised techniques, including clustering and 

dimensionality reduction, are often used to explore data structure, extract latent features, and guide 

early-stage data processing27. This section introduces the core ML algorithms most relevant to 

decoding food complexity and their representative applications. 

SVM is a margin-based classifier that identifies the decision boundary maximizing the separation 

between classes in a transformed feature space28. It addresses nonlinear classification issues using 

kernel functions, including linear, radial basis, and sigmoid kernels. For example, Gerhardt et al. 

(2019) developed an SVM model to effectively differentiate among various types of virgin olive 

oil, including extra-virgin, virgin, and lampante olive oil29. Similarly, Sun et al. (2022) developed 

an SVM model that integrates fruit metabolomic data to predict consumer preferences, thereby 

facilitating consumer fruit-flavour selection and aiding breeding programs in developing more 

popular varieties30. 

DTs use hierarchical, rule-based splits to partition data into homogeneous groups for classification 

or regression 31. RFs extend DTs by constructing large ensembles of trees and aggregating their 

predictions to improve robustness and reduce overfitting32. Wang et al. (2021) developed an RF 

model to predict the retention index and flavour attributes (aromatic, bitter, sulphury, and other) 

of molecules in beer, achieving satisfactory performance with an R2 of 0.9633. Hu et al. (2023) 

developed an RF model to determine the relationship between key aroma components and the 

sensory properties of fragrant peanut oils34. 

KNN classifies or predicts samples based on the labels or values of the most similar instances in 

the feature space35. Wu et al. (2019) developed a KNN model using electronic nose (e-nose) signals 

preprocessed with fuzzy discriminant principal component analysis (PCA) as input to differentiate 

between various Chinese liquor types and identify inferior or counterfeit liquids based on flavour, 

achieving a classification accuracy of 98.3%36. In addition to the previously mentioned ML 

algorithms, partial least-squares (PLS) regression, K-means clustering, and naïve Bayes have also 

been used to investigate food properties7. 

In recent years, advances in computational capacity and the availability of large-scale datasets 

have enabled the application of deep learning7. Deep learning refers to a family of neural-network-

based models capable of learning hierarchical representations from large, high-dimensional 

datasets26,37. In contrast to traditional ML techniques that require manual feature selection, deep 
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learning models can autonomously learn hierarchical representations, thereby facilitating their 

deployment in complex data analyses. 

Artificial neural networks (ANNs) consist of interconnected computational units that transform 

input features through weighted connections and nonlinear activation functions38. ANNs have been 

used to predict the taste attributes of chemicals based on molecular descriptors, thereby facilitating 

the rapid screening of novel flavourings39. In recent years, significant advances have been made 

in the development of ANN architectures, including convolutional neural networks (CNNs), graph 

neural networks (GNNs), and recurrent neural networks (RNNs), which have been proposed to 

address more complex tasks in food analysis.  

CNNs use convolutional filters to extract spatially localized features and are widely applied to 

grid-like data such as images40. In food flavour research, CNNs are frequently used in the analysis 

of e-nose and electronic tongue (e-tongue) related tasks41,42. Wu et al. (2019) developed a CNN 

model to predict the perceptual pleasantness of odours based on e-nose data, achieving an accuracy 

of > 90% on the test dataset43. Zhang et al. (2019) integrated CNNs with neuroinformatics data to 

enhance flavour recognition by analysing brain electrical signals in response to various aroma 

stimuli, including coffee, lemon, and vanilla odours44. Xia et al. (2024) developed a CNN model 

that effectively decodes EEG signals corresponding to the taste of sour, sweet, bitter, and salty 

foods, thereby facilitating the prediction of food taste perception45. 

GNNs operate on graph-structured data by iteratively aggregating information from neighbouring 

nodes and edges46. In contrast to CNNs, which operate on a fixed set of relationships between 

pixels in image data, GNNs are designed to handle dynamic relationships between elements, 

aggregating neighbouring information to update node representations. When predicting the taste 

of molecules, Song et al. (2023) observed that whereas most models perform reasonably well in 

predicting the umami taste, GNNs stand out for their superior accuracy in predicting bitter and 

sweet tastes47. 

RNNs model sequential data by maintaining hidden states that capture temporal dependencies 

across time steps 48. Qi et al. (2023) used an RNN combined with a multilayer perceptron to enable 

rapid identification of umami peptides49. However, RNNs face limitations like vanishing and 

exploding gradients, which hinder performance on long sequences50. To address this, advanced 

variants like long short-term memory (LSTM) networks were developed. LSTMs enhance RNNs 
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by introducing gating mechanisms that regulate information flow and preserve long-range 

dependencies51. For instance, Jiang et al. (2023) applied an LSTM encoder to extract features from 

peptide sequences for umami recognition52. LSTMs have also been used in natural language 

processing tasks in food research, including flavour term extraction from whisky reviews and 

personalized recipe generation based on user preferences53,54. 

Transformer architecture leverages self-attention mechanisms to model global dependencies in 

sequences while enabling highly parallelizable training55. This design markedly enhances model 

parallelism, thereby improving the training efficiency on large-scale datasets. Transformer-based 

models typically generate hidden state representations for each input token, thereby capturing the 

range of features learned from the input text. For example, Chew et al. (2022) developed a variant 

of the transformer model to analyse Instagram posts, and this approach exhibited superior precision 

and recall relative to baseline models in identifying brands and flavours of electronic nicotine 

delivery systems56. Additionally, large language models (LLMs) built on Transformer 

architectures excel at processing multimodal inputs (from text to images) to identify dish types 

and flavour profiles, while generating customized recipes that meet specific requirements57. 

Generative models learn the underlying probability distribution of data to create new samples that 

resemble those in the training set. By training on extensive datasets containing both flavour 

chemometric data and human sensory panel evaluations, these models learn to construct latent 

mathematical representations that encode fundamental patterns2. The trained model can generate 

synthetic but chemically plausible profiles to augment limited experimental datasets or predict 

emergent characteristics from novel ingredient combinations by interpolating in the learned space. 

For example, Queiroz et al. (2023) proposed a framework of deep generative models to design 

new flavour molecules based on their molecular structures58. Aleixandre et al. (2025) presented a 

generative diffusion network designed to create new aromas with specified characteristics, based 

on mass spectrometry data of essential oils59. These aspirational directions highlight the capacity 

of generative modelling to accelerate discovery in food, although they remain contingent on further 

validation with experimental and sensory data. 

Overall, the aforementioned algorithms differ in complexity, data requirements, and 

representational power, each offering distinct advantages for food research (Table 1). Traditional 

ML methods like SVM, RF, and KNN are well-suited for structured, small-to-medium datasets 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

and are often used for classification, regression, and feature selection tasks. In contrast, deep 

learning models excel at capturing complex, nonlinear relationships in large, high-dimensional, 

and multimodal datasets. They can autonomously learn hierarchical representations, making them 

ideal for analyzing unstructured data such as sensor signals, molecular graphs, peptide sequences, 

and textual descriptions. Generative models go a step further by enabling the design of novel 

molecules and the generation of synthetic data.  

 

3. Machine learning unveils food chemical complexity 

3.1 Mapping the uncharted chemical space of foods with machine learning 

While databases such as FooDB, FlavorDB, and AdditiveChem collectively catalogue tens of 

thousands of food-related compounds as summarized in Table 2, much of the chemical diversity 

of food remains uncharted, particularly secondary metabolites, processing-induced compounds, 

and minor constituents with sensory or health relevance. Early efforts such as FoodMine 

demonstrated the value of systematic literature mining by extracting over 7,000 quantified 

measurements for garlic and cocoa; however, its reliance on manual curation highlighted the 

limitations of scalability60.  

Recent advances in natural language processing, especially large language models (LLMs), now 

offer automated routes to expanding the molecular inventory. Domain-adapted LLMs can extract 

chemical entities, normalize molecular identifiers, and associate compounds with functional 

annotations from large-scale scientific corpora. Models such as GPT-4 have been shown to identify 

food-related molecules, metabolic intermediates, and bioactive compounds from millions of 

publications at speeds impossible for manual curation61.  

Beyond literature, ML is also broadening the search for food-relevant metabolites through genome 

mining. ML-driven tools such as antiSMASH62 and PRISM63 can analyze biosynthetic gene 

clusters to infer the structures of secondary metabolites that may have nutritional, flavour, or 

preservative functions. This is particularly relevant for identifying previously uncharacterized 

molecules from fermented foods, edible fungi, and underutilized plant species.  

 

3.2 Predicting multidimensional properties of food-related chemicals 
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Among the tens of thousands of known food-related molecules, fewer than 10% have annotated 

flavour or bioactivity information. This sparse coverage has motivated growing interest in ML as 

a means to infer molecular properties from structural information. 

Traditional approaches, such as quantitative structure-activity relationship (QSAR) models, 

originally established the link between molecular structure and functional behaviour using 

handcrafted physicochemical descriptors 64,65. Fingerprints and descriptor-based models remain 

effective for small to medium datasets and have been widely applied to tasks such as odour 

classification, as demonstrated by Shang et al.’s (2017) work using over 1,000 descriptors from 

Dragon software to predict odor characteristics66. 

However, descriptor-based strategies inherently depend on manually engineered features, limiting 

their ability to capture higher-order structural patterns. This has driven a shift toward deep learning 

approaches that learn representations directly from raw molecular structures. GNNs, for example, 

treat atoms and bonds as nodes and edges, allowing the model to capture the topological and 

geometric properties essential for molecular function. Pred-O3, developed by Ollitrault et al. 

(2024), predicted 23 odor notes and 109 human olfactory receptor interactions from 5,802 food-

derived odorants, revealing structure-odor relationships missing from traditional fingerprints67. 

Similarly, Lee et al. (2023) created a principal odour map that positioned over 500,000 potential 

odorants, of which only ~5,000 have been characterised, highlighting a vast unexplored chemical-

sensory landscape68. Emerging work has also explored the use of large language models for 

molecular property prediction. Song et al. (2024) fine-tuned GPT-3.5 and GPT-4 on SMILES 

strings for taste classification, with GPT-4 achieving 86% accuracy, illustrating LLMs’ potential 

to complement graph-based modelling69. 

As these methods advance, ML is increasingly positioned to accelerate the early-stage prediction 

of molecular sensory and functional properties, reducing reliance on lengthy experimental 

screening. Equally important, interpretable AI frameworks such as SHAP47 offer new 

opportunities to illuminate the structural features most responsible for molecular behavior, 

bridging predictive modelling with mechanistic understanding. 

 

4. Integrating machine learning with instrumental analysis to decode food component 

interactions 
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Examining food properties, including quality grading, geographical origin, and freshness, 

facilitates food product development and quality control (Figure 3a). Traditionally, these tasks 

rely on labor-intensive, time-consuming experiments, such as sensory evaluation panels and 

metabonomics analyses, which are often limited by human subjectivity, high costs, and low 

throughput. Moreover, the complexity of food matrices and the interactions among various 

components pose challenges for manual interpretation. In this context, ML offers a powerful tool 

by learning complex, nonlinear relationships from instrumental data. 

 

4.1 Chromatography-based modeling 

Chromatographic techniques such as GC-MS, LC-MS, and GC-ion mobility spectrometry provide 

detailed molecular fingerprints of foods and are widely used to profile volatiles, semi-volatiles, 

and other key constituents. When coupled with ML, these datasets enable rapid and accurate 

analysis of product origin, quality, and sensory attributes.  

Recent studies demonstrate that statistical classifiers and modern ML models can decode subtle 

variations in chromatographic profiles for tasks such as geographical origin discrimination in 

honey70, regional classification of Atractylodes lancea71, and prediction of α-acid content in hops72. 

Similar approaches have been used to assess rancidity in walnuts73 and sensory grade in Sauvignon 

Blanc wine74. Together, these examples illustrate how ML enhances the interpretive power of 

chromatographic datasets by uncovering latent relationships between volatile patterns and food 

properties. 

Chromatography-based ML models are also increasingly used to complement sensory evaluation. 

While sensory panels remain essential, they suffer from fatigue, cultural variability, and limited 

throughput15. ML can serve as an initial screening tool to map chemical profiles to sensory 

descriptors, as in studies linking GC-MS data to aroma attributes in peanut oils75 or predicting beer 

flavour preferences by integrating chemical, sensory, and consumer data76. These approaches help 

form a hybrid workflow in which ML provides rapid, objective screening, while human assessors 

calibrate and validate final outputs. 

 

4.2 Sensor-based modeling 
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E-noses and e-tongues extend the capability of instrumental analysis by capturing holistic 

responses to odorants and tastants through sensor arrays. When integrated with ML, these systems 

offer high-throughput, reproducible alternatives to traditional sensory evaluation (Figure 3a). 

E-nose signals together with ML have been used to classify products such as Chinese baijiu36, 

discriminate brewing stages77, recognize beer odours78, and detect spoilage volatiles79. Advanced 

deep learning methods further improve e-nose performance. Shi et al. (2019) proposed a CNN-

SVM hybrid for precise beer odour recognition, replacing the fully connected layer of a CNN with 

an SVM to enhance predictive capability and better capture complex sensory patterns 78. Xiong et 

al. (2021) developed a convolutional spiking neural network to identify spoilage odours, 

integrating residual networks with spiking neurons to convert continuous sensor signals into 

discrete pulses. This design reduces redundant computations, requires fewer parameters than a 

one-dimensional-CNN, occupies less memory, and achieves >84% accuracy, making it well-suited 

for e-nose devices with limited computational resources79. 

Although these approaches effectively model overall odour profiles, ML models that can predict 

odour activity values (OAVs) or quantify multi-compound synergistic, masking, or enhancing 

effects remain scarce. Traditional methods for studying aroma interactions, such as σ-τ diagrams, 

OAV calculations, S-curves, or distribution-based metrics80,81, require intensive mathematical 

formulation and often fail to capture nonlinear behaviours in real food matrices. ML offers new 

opportunities to learn these complex relationships directly from large datasets of known 

interactions, yet such datasets remain limited and models for multi-component interaction 

prediction are still in their infancy. 

E-tongue systems show similar potential. ML-enabled classifiers have been developed for tea 

authentication82 and for predicting Pu’er tea storage time using transfer-learning approaches that 

leverage pre-trained models on large temporal signal datasets83. Data augmentation strategies, such 

as introducing controlled noise, also help mitigate small sample sizes frequently encountered in 

sensor-based studies83.  

Despite many applications, it is worth noting that taste stimuli dissolve in saliva before reaching 

their respective receptors. Once dissolved, the components of saliva can interact with these stimuli 

and their receptors, thereby influencing taste perception 84. However, solvents commonly used in 

food research with e-tongues often exhibit notable differences in their physicochemical properties 
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compared to those of human saliva. Such information has been less considered in ML modelling. 

It is recommended that future research using the e-tongue account for the effects of saliva and 

consider using artificial saliva as a solvent to more accurately replicate oral environmental 

conditions. 

 

4.3 Data fusion modeling 

Insights from chromatography- and sensor-based modelling show that individual analytical 

platforms capture only fragments of the complex interactions within food matrices. 

Chromatography provides detailed molecular fingerprints, particularly for volatiles, whereas e-

noses, e-tongues, and other sensor systems capture holistic olfactory and gustatory responses. 

Integrating these complementary data streams can substantially improve food property prediction 

by representing a broader spectrum of chemical and sensory information. Yet this richness comes 

with challenges, including high dimensionality, redundancy, and noise. 

Data fusion addresses these limitations by combining multimodal information to enhance model 

robustness and predictive performance 85. Fusion strategies typically operate at three levels: low, 

mid, and high (Figure 4a)86,87. Low-level fusion merges raw or preprocessed signals into a unified 

input matrix. Mid-level fusion extracts and concatenates informative features across modalities to 

preserve complementary structure while reducing dimensionality. High-level fusion integrates 

predictions from separate models trained on different data types.  

Applications across food quality and flavour research illustrate the advantages of this approach. 

For example, combining nuclear magnetic resonance, LC-MS, and GC-MS data has revealed 

synergistic insights into compositional changes in heat-treated apple juice 88. Studies fusing MS 

and NIR signals demonstrate that mid-level fusion often yields higher accuracy than low-level 

approaches when predicting sensory attributes such as bitterness and grassiness in olive oil 89. 

Multisensor fusion of e-nose and e-tongue signals similarly enhances flavour modeling by jointly 

capturing olfactory and taste information, enabling accurate classification, quality monitoring, and 

regression tasks 90,91. Incorporating visual data from electronic eye systems further broadens 

sensory representation, as shown in Longjing tea evaluation, integrating aroma, taste, and color 92.  

While multimodal fusion outperforms unimodal methods, practical implementation remains 

challenging. Differences in data formats, resolutions, scales, and naming conventions can hinder 
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integration and reduce model generalizability. Food matrices also exhibit heterogeneity and 

temporal variability, complicating alignment across platforms. Preprocessing strategies, including 

wavelet filtering, Savitzky-Golay smoothing, independent component analysis, dynamic time 

warping, correlation-optimized warping, and retention-time correction, help mitigate noise and 

reconcile instrumental shifts93,94. Batch effects arising from platform discrepancies can be reduced 

using standard normal variate scaling, multiplicative scatter correction, or empirical-Bayes 

adjustments. At a broader level, adherence to the Findable, Accessible, Interoperable, Reusable 

(FAIR) data principles enhances metadata harmonization and reproducibility95. Incorporating 

these procedures is critical for enabling accurate, scalable, and comprehensive food property 

profiling. 

 

5. Integrating machine learning with neuroinformatics to decode perception complexity 

Human flavour perception emerges from the integration of taste, smell, texture, visual cues, and 

trigeminal sensations, processed across distributed neural circuits. Recent advances in 

neuroinformatics, particularly EEG, fNIRS, and fMRI, provide non-invasive ways to probe these 

processes and link subjective experiences to objective neural responses 16. Each modality offers 

complementary strengths: EEG captures rapid neural dynamics, fNIRS enables naturalistic 

monitoring of cortical haemodynamics, and fMRI provides fine-grained spatial localization. 

Together, these tools create an opportunity to build ML frameworks that decode perceptual 

complexity directly from brain signals and move toward individualized food prediction. 

 

5.1 Machine learning for decoding EEG-based flavour responses 

EEG is a neurophysiological technique that records brain electrical activity by measuring the 

electrical potential difference between the scalp and skull using electrodes placed on the scalp. 

These signals represent temporal variations in electrical activity across distinct brain regions. 

Owing to its high temporal resolution and relatively low experimental cost, EEG has been 

extensively used in food research to enhance understanding of the relationship between food 

flavour perception and individuals’ cortical processing 96.  
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Using EEG, Yang et al. (2023) identified neurophysiological indicators associated with four tastes 

(sour, sweet, bitter, and salty) and their respective intensities97. They discovered that different taste 

qualities could be distinguished within 250-1,500 ms of stimulation, and the alpha and theta 

frequency bands show greater sensitivity to different tastes than do the delta, beta, and gamma 

bands97. These responses reflect not only sensory processing but also reward valuation and 

cognitive control mechanisms. 

Nevertheless, analyzing extensive EEG data to discern distinctive patterns and correlations with 

specific tastes presents considerable challenges. The application of ML techniques could prove 

instrumental in addressing this challenge. Figure 3b shows the ML model for food-flavour-

induced EEG signals, with an emphasis on feature extraction, model construction, and prediction. 

Classical ML models, including decision trees, SVMs, and k-nearest neighbours, have been 

successfully applied to tasks such as classifying sweet vs. non-sweet stimuli 98 and distinguishing 

fresh vs. non-fresh foods based on spectral features20. 

Deep learning further advances EEG analysis by automatically extracting multiscale temporal-

spatial representations. Multi-scale CNNs enable robust taste-category recognition across sour, 

sweet, bitter, salty, and umami stimuli19, and data-augmentation techniques such as spatiotemporal 

reconstruction mitigate issues of limited sample size45. ML models have also been used to predict 

olfactory pleasantness from EEG signatures, with graph-based features showing particularly 

strong performance18,99. Collectively, these studies highlight the emerging potential of EEG-based 

ML systems to decode affective and perceptual dimensions of food experience. 

 

5.2 Machine learning for decoding fNIRS and fMRI signals 

Besides EEG, fNIRS and fMRI are widely used non-invasive techniques that help to evaluate food 

perception by providing physiological indicators of brain activity. These technologies offer higher 

spatial resolution than EEG, enabling the observation of brain activity through hemodynamic 

changes. In particular, fNIRS uses near-infrared light to penetrate the skull and quantify the 

alterations in cerebral cortical blood oxygenation. Although its spatial resolution is inferior to that 

of fMRI, fNIRS is relatively portable and places fewer constraints on participants during use, 

making it well-suited for practical applications100. In contrast, fMRI measures brain activity by 

detecting blood-oxygen-level-dependent signals, offering exceptional spatial resolution that 
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allows precise localisation of cognitive functions within the brain cortex100. Both fNIRS and fMRI 

facilitate the examination of brain responses to flavour stimuli during sensory evaluation, thereby 

providing valuable insights into the neural processing of sensory information101-104.  

Integrating ML with these imaging modalities improves classification performance and reduces 

reliance on manual feature engineering. CNNs trained on resting-state fMRI data can discriminate 

between participant groups105, and SVM models have identified brain networks distinguishing 

responses to high-calorie foods (potato chips) and low-calorie foods (zucchini)106. These 

approaches demonstrate how data-driven methods can extract perceptual information that is not 

readily apparent in univariate analyses. 

 

5.3 Multimodal neuroinformatics and data fusion for food perception prediction 

While various neuroinformatics technologies can extract numerous features, including time, 

frequency, time-frequency, and spatial features, the characteristics derived from different 

neuroinformatics modalities inherently possess unique strengths and limitations. For instance, 

EEG provides rapid responsiveness but lacks spatial localisation. In contrast, fMRI provides high 

spatial resolution but is highly susceptible to head and body movements. Meanwhile, fNIRS 

enables monitoring of the cerebral cortex surface with greater tolerance to body movements, 

though it has slower responsiveness and lower spatial resolution107,108. A meta-LDA classifier that 

combines EEG band power changes with fNIRS haemoglobin concentration data can markedly 

enhance the accuracy of motor imagery classification relative to the use of EEG data alone109. This 

suggests that combining neuroinformatics technologies through multimodal data integration, 

supported by advanced ML techniques, could leverage their complementary strengths.  

Multimodal fusion methods in neuroinformatics can be categorized as symmetric or asymmetric. 

Symmetric fusion treats all modalities equally, while asymmetric fusion prioritizes one modality 

as a reference or constraint for another110. Feature fusion can also be classified as early or late, 

depending on the timing of integration. Figure 4b illustrates the data fusion strategies for EEG 

and fNIRS data. Early fusion combines data from multiple sources into a unified format before 

processing, suitable for strongly correlated data, whereas late fusion integrates results after 

independent analyses, ideal for independent data sources111. For example, Sun et al. (2020) 

extracted features from fNIRS and EEG signals, concatenated them to create enhanced feature 
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vectors, and classified participants’ emotional states while watching videos using an SVM 

algorithm112. Furthermore, an increasing number of studies have examined the influence of 

auditory and visual cues on food perception113,114. 

 

6. Challenges and opportunities 

ML at the molecular layer benefits from growing databases that support the prediction of sensory 

attributes, receptor activities, and toxicological profiles. However, progress is constrained by three 

major gaps. First, molecular databases contain substantial redundancy and inconsistent annotations 

due to overlapping curation sources115, complicating data integration and reducing modelling 

reliability. Second, sensory annotations remain narrowly focused on olfaction and taste, while 

trigeminal and chemesthetic dimensions are largely undocumented, with PungentDB being the 

only resource linking molecules to TRP channels116 (Table 2). Third, generative models produce 

promising molecular suggestions but lack interpretability and are rarely validated experimentally, 

limiting real-world applicability58,59. 

Modeling interactions among food ingredients is far more complex than predicting single-

molecule properties. First, most ML studies still focus on small volatile compounds because they 

have well-defined structures, richer databases, and established analytical workflows. In contrast, 

interactions involving macromolecules, such as lipids, proteins, and polysaccharides, remain 

largely unexplored, even though they play critical roles in flavour release, stability, and texture. 

This gap arises from the structural heterogeneity of macromolecules, the strong dependence of 

interactions on matrix conditions (pH, temperature, ionic strength), the scarcity of high-resolution 

in situ datasets, and the difficulty of representing molecular and supramolecular features within 

unified ML frameworks. Second, although databases such as Open Food Facts, Recipe1M, 

FoodRepo, and FoodData Central map food-ingredient relationships, current computational 

approaches offer limited chemical interpretability and struggle to incorporate reaction dynamics 

and spatial constraints117 (Table 2). Third, empirical data generation remains a major bottleneck: 

matrix effects, chromatographic variability, and isomer ambiguity compromise measurement 

stability and hinder reproducible quantification5. Inter-laboratory differences and inconsistent 

labelling further reduce dataset comparability118. Moreover, food systems evolve continuously 
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through oxidation, enzymatic transformations, and Maillard reactions29,88, yet available datasets 

are predominantly static snapshots that fail to capture these temporal dynamics.  

Despite growing interest in neuroinformatics, its application to food perception remains limited 

due to multiple structural and methodological barriers. First, large-scale EEG, fNIRS, and fMRI 

datasets specifically focused on flavour are scarce, and each modality has inherent limitations: 

EEG lacks spatial precision; fNIRS and fMRI are expensive, sensitive to motion artifacts, and 

difficult to deploy in naturalistic settings109. Small sample sizes, inconsistent acquisition protocols, 

heterogeneous hardware configurations, and culturally narrow participant pools further undermine 

reproducibility and model generalizability. Neuroinformatics signals are inherently noisy and 

highly susceptible to environmental and physiological interference, making the collection of high-

quality data outside controlled laboratories challenging. Second, the field lacks standardized 

preprocessing pipelines and evaluation criteria. These inconsistencies reduce cross-study 

comparability and limit the transferability of models across populations and contexts. At the 

modelling level, explainability remains insufficient: existing frameworks mainly serve 

methodological inspection rather than providing actionable insights for product development, 

sensory evaluation, or consumer applications. Third, most current studies examine olfactory or 

gustatory pathways in isolation. However, real-world flavour perception is inherently multisensory, 

shaped by trigeminal stimulation as well as visual, auditory, and oral tactile cues.  

Looking ahead, progress in understanding food complexity requires coordinated advances across 

the molecular, interaction, and perceptual levels. At the chemical level, databases should expand 

beyond olfactory and gustatory data to include trigeminal responses and receptor-level information. 

High-throughput screening, combined with carefully curated, standardized datasets, will be 

essential for mapping the vast space of uncharacterized food molecules and improving structure-

function understanding. At the interaction level, standardization across labs, open data sharing, 

and unified ontologies are crucial for making data comparable and enabling reproducible models. 

These efforts should go hand in hand with multi-scale analytical approaches capable of capturing 

dynamic changes during processing and storage. At the perceptual level, there is a pressing need 

for large, culturally diverse neuroimaging and sensory datasets. Federated learning offers a 

promising solution by enabling multi-center model training without exchanging raw 

neurophysiological data, thereby safeguarding participant privacy while improving model 

generalizability across populations and experimental settings; in parallel, synthetic data generation, 
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using generative models such as variational autoencoders, GANs, or diffusion-based approaches, 

can help alleviate small-sample limitations by augmenting training data with statistically realistic 

neural signals, reducing overfitting to site-specific noise119,120. There also remains considerable 

scope to develop end-user-centred, explainable AI systems that tailor model outputs to the needs 

of different stakeholders. For example, developing interfaces that map neural features onto sensory 

attributes familiar to product developers, or consumer-oriented visual summaries that 

communicate how flavour cues influence predicted affective responses121. Furthermore, the 

development of industry-wide standards, rigorous validation frameworks, and systematic cost-

benefit and return-on-investment assessments will be essential for narrowing the gap between 

laboratory findings and real-world applications. Finally, incorporating modalities including 

olfactory, gustatory, trigeminal, visual, and auditory sensations through multimodal data fusion 

and ML frameworks will enable more comprehensive decoding of flavour responses and support 

future developments in personalized nutrition, virtual tasting, and immersive multisensory 

applications. 

Advances in ML will support progress across all three layers. Ongoing development of flexible 

deep learning models is essential to combine diverse data types, including chemical, sensory, and 

neural signals, while automated feature engineering and domain-specific explainable AI can lessen 

dependence on manual processing and enhance interpretability. Creating multisensory models that 

identify nonlinear interactions among sensory pathways will be vital. Ultimately, close 

collaboration among food scientists, chemists, data scientists, neuroscientists, and sensory experts 

will accelerate the development of shared resources, standardized workflows, and integrated 

modeling tools, thereby advancing the field’s understanding of food complexity. 

 

7. Conclusions 

This review outlines the transformative potential of ML in decoding the three interrelated layers 

of food complexity: (1) the structural and physicochemical properties of individual food molecules; 

(2) the food properties arising from interactions among food components; and (3) the 

neurophysiological processes underlying human food perception. By harnessing a growing 

ecosystem of molecular, instrumental, and neuroinformatics data, ML provides a powerful means 

to bridge micro-level chemical data with macro-level sensory experiences. 
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We summarised the application of advanced ML and deep learning architectures, including CNNs, 

GNNs, and transformers, which are particularly well-suited to modelling the complex, nonlinear, 

and multimodal nature of food-related data. We also examined the growing role of 

neuroinformatics technologies such as EEG, fNIRS, and fMRI in decoding individual perceptual 

responses, and how their integration with ML can advance personalised food experience modelling. 

Moreover, we emphasised that integrating diverse data modalities through data fusion across 

chromatographic, sensor-based, imaging, and neurophysiological platforms offers a critical 

solution to challenges such as data sparsity, heterogeneity, and noise. These strategies enable the 

development of more accurate and generalisable predictive models for food quality assessment, 

flavour profiling, consumer preference prediction, and product authentication. 

Looking forward, progress will depend on three priorities: (1) building comprehensive and 

standardized multimodal databases, including underrepresented dimensions such as trigeminal 

perception; (2) developing interpretable and hybrid ML models that balance predictive accuracy 

with mechanistic insight; and (3) fostering interdisciplinary collaboration across food science, 

chemistry, neuroscience, and data science to establish shared platforms and validation pipelines. 

By aligning technical development with rigorous standards and collaborative practices, we expect 

ML to not only advance the scientific understanding of food complexity but also accelerate its 

translation into and consumer-relevant applications. 
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Figure Captions 

Figure 1. Three levels of food complexity. Level 1 captures the chemical complexity of food, 

where diverse chemical structures give rise to distinct bioactivities and flavour characteristics. 

Level 2 represents the interaction level, encompassing the dynamic chemical, physical, and matrix-

dependent interactions among food components that shape quality, safety, and stability. Level 3 

reflects perceptual complexity, arising from the multisensory integration of taste, smell, trigeminal 

sensations, and higher cognitive processes that together determine the eating experience. 

 

Figure 2. Machine learning modeling pipeline for unveiling food complexity. The process 

begins with data collection, integrating information from databases, sensory evaluations, and 

instrumental analyses. Next, data cleaning and preprocessing standardize formats, resolve 

inconsistencies, and harmonize multi-source inputs. Feature engineering follows, involving either 

manual descriptor construction or automated representation learning through deep models. In 

model development, algorithms are trained, optimized, and validated to capture structure-function 

relationships. Finally, the resulting models are applied to predict properties across the molecular, 

interaction, and perception levels, enabling a multiscale understanding of food complexity. 

 

Figure 3. Machine learning with instrumental analysis and electroencephalogram (EEG) 

data. (a) Application of machine learning using instrumental analysis data and the representative 

artificial neural network (ANN) algorithm for predicting food characteristics. (b) Machine learning 

modelling with EEG data. EEG data can be manually preprocessed to extract temporal, spatial, or 

spectral features, which can then be used in conventional machine learning frameworks, such as 

support vector machines (SVMs) and random forests (RFs). Alternatively, deep learning 

algorithms, such as convolutional neural networks, enable automatic feature extraction and 

prediction, offering an advanced approach to decoding sensory responses to food. 

 

Figure 4. Data fusion strategies with multimodal input. (a) Combining multi-source 

heterogeneous data at low, mid, and high levels (b) Data fusion pipeline involving 

electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) data, utilizing 

both early fusion and late fusion strategies to improve predictive accuracy in understanding food 

perception. 
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Note: E-nose, electronic nose; E-tongue, electronic tongue; GC-MS, gas chromatography-mobility 

spectrometry; LC-MS, liquid chromatography-mass spectrometry; VIS, visible spectroscopy; NIR, 

near-infrared spectroscopy; HIS, hyperspectral imaging spectroscopy.  
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Table 1. Comparison of representative machine learning algorithms in exploring food 

complexity. 

Algorithms Advantages Limitations  
Representative 

applications 

Support vector 

machines 

High accuracy on 

small/medium 

datasets; effective for 

nonlinear 

classification 

Computationally 

intensive with large 

datasets; less interpretable 

Flavour classification, 

consumer preference 

prediction 

Decision trees  
Interpretable; fast 

training 

Prone to overfitting; 

limited generalization 

Simple classification, 

feature importance 

analysis 

Random forests  

Robust to overfitting; 

suitable for high-

dimensional data 

Less interpretable 

compared to decision 

trees; slower with large 

trees 

Predicting flavour 

attributes, sensory 

property mapping 

Artificial neural 

networks  

Learns complex 

relationships; no 

manual feature 

engineering 

Requires tuning and large 

datasets; lower 

interpretability 

Predicting taste from 

molecular descriptors 

Convolutional 

neural networks  

Excellent for 

spatial/pattern data; 

effective with sensor 

inputs 

Less suitable for 

sequential or molecular 

graph data 

E-nose/e-tongue 

analysis, EEG-based 

perception modeling 

Graph neural 

networks  

Models relational 

data (e.g., molecular 

structures); captures 

topological context 

Data-hungry; higher 

computational demand 

Structure-odor/taste 

prediction, flavour-

receptor interaction 

mapping 

Recurrent neural 

networks  

Captures sequential 

dependencies; suited 

for time-series data 

Prone to 

vanishing/exploding 

gradients 

Peptide sequence 

analysis, sequential 

flavour evolution 

Long short-term 

memory 

networks 

Overcomes RNN 

limitations; handles 

long-term 

dependencies 

More complex; slower 

training 

Umami peptide 

detection, text mining 

Transformer 

Handles long 

sequences efficiently; 

enables multimodal 

input processing 

Requires large training 

data and compute 

resources 

Text mining, 

multimodal 

understanding 

Generative 

Models (VAE, 

GAN, Diffusion) 

Creates novel 

samples; augments 

limited datasets 

Training instability; 

difficult to evaluate 

quality 

Synthetic flavour 

generation, design of 

novel food chemicals, 

aroma simulation 

Table 2. Representative databases supporting food chemical and interaction complexity 

studies.  
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Food 

complexity 

levels 

Names URLs Descriptions 

Food 

chemical 

complexity 

TastePeptidesDB 
http://tastepeptides-

meta.com/TastePeptidesDB  

Peptide database 

with 2,926 taste-

related entries, 

linked to sensory 

modulation like 

umami and bitter; 

supports taste 

prediction for food 

development. 

ChemTastesDB https://doi.org/10.5281/zenodo.5747393  

Tastant database 

with 2,944 

molecules, linked 

to sensory taste 

classifications; 

facilitates QSAR 

studies for flavour 

and sensory 

research. 

FlavorDB2 https://cosylab.iiitd.edu.in/flavordb2/ 

Database 

comprising over 

25,000 molecules, 

annotated with 

physicochemical 

properties and 

natural 

occurrence. The 

database supports 

research in food 

science and 

sensory profiling, 

and additionally 

provides tools for 

food pairing 

analysis. 

Flavor Ingredient 

Library 

https://www.femaflavor.org/flavor-

library 

GRAS flavour 

database with 

approximately 

2,500 molecules, 

linked to safety 

evaluations 

including toxicity; 

ensures regulatory 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

compliance for 

food applications. 

Phenol-Explorer http://phenol-explorer.eu/ 

Polyphenol 

database with 

35,000 content 

values for 500 

compounds in 400 

foods, linked to 

metabolism and 

antioxidant 

effects; focuses on 

food phenolics for 

health research. 

FooDB https://foodb.ca/ 

A comprehensive 

food metabolome 

database 

comprising over 

70,000 food-

related molecules, 

including 

nutrients, 

phytochemicals, 

and flavour 

compounds. It 

emphasizes 

molecular-level 

characterization of 

foods and their 

associated 

biochemical 

pathways. While 

some bioactivity 

information is 

provided, 

systematic 

coverage of 

toxicity data is not 

included. 

FSBI-DB https://fsbi-db.de/ 

Database with 

2,544 entries 

across 300 foods, 

linked to sensory 

receptors and 

physiological 

effects; 

emphasizes 
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chemosensory 

research and food 

science. 

AdditiveChem http://www.rxnfinder.org/additivechem/  

Database of over 

9,064 food 

additives, detailing 

molecular 

structures, 

physicochemical 

properties, 

toxicity, 

metabolism, and 

regulatory data. It 

supports food 

science and safety 

research with 

integrated data 

from 16 sources. 

OpenFoodTox  

https://www.efsa.europa.eu/en/data-

report/chemical-hazards-database-

openfoodtox 

Database with 

over 5,700 food-

related chemicals, 

linked to toxicity 

and risk 

assessments; 

focuses on 

chemical safety 

for regulatory and 

health evaluations. 

Food 

component 

interaction 

complexity 

Open Food Facts https://world.openfoodfacts.org/ 

Database of over 

4,000,000 food 

products, linked to 

allergens and 

health choices; 

enables informed 

consumer 

decisions through 

open nutritional 

data. 

FoodRepo https://www.foodrepo.org  

Database with 

380,428 barcoded 

food products, 

supporting health-

informed choices; 

provides API-

accessible data for 

research and 
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application 

development. 

Recipe1M http://pic2recipe.csail.mit.edu  

Database of over 

1,000,000 cooking 

recipes and 

13,000,000 food 

images, linked to 

culinary patterns; 

focuses on cross-

modal embeddings 

for recipe-image 

retrieval and food 

research. 

USDA FoodData 

Central 
https://fdc.nal.usda.gov/ 

Database with 

467,149 food 

nutrient profiles, 

linked to health 

benefits via 

nutrients; supports 

nutritional 

analysis for 

dietary planning 

and public health 

initiatives. 

FooDrugs https://imdeafoodcompubio.com/ 

Database of 

50,960 foods and 

bioactive 

compounds linked 

to 

pharmacological 

effects via gene 

expression; 

emphasizes food-

drug interactions 

for health and 

safety research. 
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Table 3. Representative machine learning studies in exploring food complexity. 

Note: EEG, electroencephalogram; E-nose, electronic nose; E-tongue, electronic tongue; GC-

DMS, gas chromatography-differential mobility spectrometry; HS-GC-FID/FPD, headspace gas 

chromatography-flame ionization detector/flame photometric detector; HS-SPME-GC-MS, 

headspace solid-phase microextraction-gas chromatography-mass spectrometry; NIR, near-

infrared spectroscopy; SHS-GC-IMS, solid-phase microextraction-gas chromatography-ion 

mobility spectrometry; AdaBoost, adaptive boosting; ANN, artificial neural network; BPNN, back 

propagation neural network; CNN, convolutional neural networks; DNN, deep neural network; 

ELM, extreme learning machine; ET, extra trees; GB, gradient boosting; GNN, graph neural 

network; GGNN, gated-graph neural network; KNC, KNeighbors Classifier; KNN, K-nearest 

neighbor; Lasso, Lasso regression; LDA, linear discriminant analysis; LGBM, light gradient 

boosting machine; LR, linear regression; PCA, principal component analysis; PLS-DA, partial 

least squares discriminant analysis; PLSR, partial least squares regression; PSO, particle swarm 

optimization; RF, random forest; RNN, recurrent neural network; SVM, support vector machine; 

XGBoost, extreme gradient boosting. 

Food 

comple

xity 

levels 

Tasks 

Data 

descriptio

n 

Algorith

ms 

Best 

model 

Best model 

description 

Performance 

metrics 

R

ef 

Food 

chemic

al 

comple

xity 

Sweetness 

prediction 

• 2,291 

molecules 

from 

BitterSwe

et dataset 

- 1,237 

sweet  

- 1,054 

non-sweet 

RF, 

XGB, 

LGBM, 

FCN, 

LGBM 

(Soft-

vote 

ensemble

) 

LGBM 

(Soft-

vote 

ensembl

e) 

The optimal 

model 

structure is a 

soft-vote 

ensemble that 

combines 

two LGBM 

models 

trained on 

layered 

molecular 

fingerprints 

and alvaDesc 

physicochem

ical 

descriptors, 

with grid 

search using 

5-fold 

stratified 

• Test 

AUROC = 

0.96 

• Test AUPR 

= 0.97 

• Test F1 = 

0.91 

39 
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cross-

validation. 

Umami 

peptide 

prediction 

• 499 

peptides 

encoded 

with 6 

feature 

vectors 

- 249 

umami 

- 250 non-

umami 

Umami-

MRNN 

(MLP+R

NN), 

SVM, 

RF, 1D-

CNN, 

BERT 

Umami-

MRNN 

(MLP + 

RNN) 

The optimal 

model 

merges a 

two-layer 

MLP with 

ReLu 

activation 

and 0.5 

dropout and a 

two-layer 

LSTM RNN 

with 0.3 

dropout, 

using Adam 

optimization, 

early 

stopping, and 

a weighted 

mean of 

outputs with 

hyperparamet

ers tuned via 

10-fold 

cross-

validation. 

• Test ACC 

= 0.91 

• Test MCC 

= 0.81 

• Test AUC 

= 0.97 

49 

Bitter/sweet/

umami 

classification 

• 3,706 

molecules 

from 

ChemTast

esDB and 

UMP 442 

datasets 

with 

RDKit 

descriptor

s  

- 1,466 

bitter  

- 1,764 

sweet  

- 238 

umami  

- 238 

control 

DNN, 

GNN 
GNN 

The optimal 

model is a 

GNN with 

two 

convolution 

blocks (each 

with a 128-

channel 

graph 

convolution 

layer, ReLU 

activation, 

batch 

normalizatio

n, and max-

pooling), a 

graph gather 

layer, a 150-

neuron dense 

• All classes 

test ACC = 

0.81 

• 

Bitter/sweet/

umami test 

ACC = 0.86 

12

2 
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layer, and an 

output layer, 

using dropout 

of 0.1, node 

and edge 

features, 

trained with a 

batch size of 

32, 

categorical 

cross-entropy 

loss, 50 

epochs, 

random 

search 

optimization, 

and 

oversampling 

with seven 

SMILES 

variants for 

minority 

classes. 

Odor 

prediction  

5,000 

molecules 

from 

GoodScen

ts  and 

Leffingwe

ll datasets 

with 138 

odor 

labels 

GNN, 

RF, 

SVM 

GNN 

The optimal 

model uses a 

message 

passing 

neural 

network with 

multiple 

message-

passing 

layers 

followed by 

atom-bond 

embedding 

combination, 

reduce-sum 

aggregation, 

and fully 

connected 

layers 

producing 

256-

dimensional 

embeddings 

• Train 

AUROC = 

0.89  

• Test R = 

0.52  

• POM-panel 

corr = 0.73 

68 
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before final 

sigmoid 

prediction 

across 138 

odor 

descriptors, 

with Adam 

optimization 

and class-

imbalance-

weighted 

cross-entropy 

loss. 

Flavour 

molecule 

generation 

921 

flavour 

molecules 

from 

FlavorDB 

with 417 

labels 

GGNN+

MLP 

GGNN+

MLP 

The optimal 

model uses a 

GGNN with 

iterative 

message-

passing 

layers 

followed by a 

multi-layer 

perceptron 

global 

readout block 

with two 

hidden layers 

and SELU 

activation, 

producing 

graph-level 

embeddings 

for final 

predictions, 

optimized 

with Adam 

and a 

learning rate 

of 9.9e-5, 

converging at 

epoch 780. 

200 

molecules 

generated:  

- validity = 

100% 

- uniqueness 

= 95% 

- 77.5% 

usable 

58 

Food 

compo

nent 

interact

ion 

Sauvignon 

Blanc wine 

quality 

grading 

• 143 

wine 

samples 

across 3 

grades  

PCA-

LDA, 

PLS-DA, 

KNN, 

SVM, 

ANN 

The optimal 

model uses a 

neural 

network with 

two hidden 

Test ACC = 

0.95 
74 
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comple

xity 

• 286 

SHS-GC-

IMS 

measurem

ents, 33 

identified 

compound

s 

XGB, 

ANN 

layers of 64 

neurons each, 

input size of 

65, and 

output size of 

3, trained 

using the 

Adam 

optimizer 

(learning rate 

= 0.0001) 

with L2 

regularizatio

n (λ = 0.01) 

for 7500 

epochs and a 

batch size of 

32. 

Olive oil 

classification 

• Total 

701 

samples 

acorss 3 

quality 

levels 

• 118 

attributes 

per 

sample 

(113 GC-

IMS 

marker 

intensities

, 5 

auxiliary 

attributes) 

KNN, 

SVM, 

DT, LR, 

XGBoost

, ANN 

ANN 

The best 

model 

structure is a 

multilayer 

feed-forward 

neural 

network with 

an input layer 

(113 

neurons), one 

hidden layer 

using ReLU 

activation, an 

output layer 

with softmax 

activation, 

optimized 

with the 

Adam 

optimizer, 

and tuned via 

the geometric 

pyramid rule 

and rules of 

thumb. 

Average test 

ACC = 0.89 

12

3 

Vinegar 

quality 

• 69 

samples 

across 5 

ANN ANN 

The optimal 

model uses a 

neural 

Test ACC = 

0.97 
77 
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identificatio

n 

brewing 

processes 

• 17 

volatile 

compound

s 

identified 

by flash 

GC e-

nose 

network with 

two hidden 

layers, input 

size of 16, 

and output 

size of 5, 

using tanh 

activation in 

hidden layers 

and softmax 

in the output 

layer, trained 

with online 

gradient 

descent. 

Walnut 

kernel 

freshness 

identificatio

n 

• Samples 

across 4 

grades  

• 20 GC-

DMS 

samples, 5 

replicates 

per grade 

• 12 GC-

MS 

samples, 3 

replicates 

per grade 

PCA, 

PLSR 
PLSR 

The best 

model 

structure is a 

PLSR with a 

tolerance 

limit of m ± 

0.5, using 

leave-one-out 

cross-

validation. 

• ACC = 

0.80 

• RMSE = 

0.42 

73 

Spoiled food 

odor 

identificatio

n 

• E-nose 

dataset 1: 

mixed 

spoiled 

food 

odors; 

479 

samples 

• E-nose 

dataset 2: 

rotten 

fruit 

odors; 

360 

samples 

LDA, 

SVM, 

1D-

DCNN, 

ResNet-

18, 

RCSNN-

12 

RCSNN-

12 

The optimal 

model uses a 

convolutional 

spiking 

neural 

network with 

10 

convolutional 

spiking 

layers and 2 

fully 

connected 

spiking 

layers, 

trained using 

RMSProp 

(learning rate 

= 1e-4) for 

• Dataset-1 

test ACC = 

0.85 

• Dataset-2 

test ACC = 

0.89 

79 
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150 epochs 

with batch 

size = 32, 

time steps 

(T) = 20, 

time constant 

(τ) = 5, 

threshold 

voltage (Vth) 

= 1.0, and 

reset voltage 

(Vreset) = 0. 

Pu-erh tea 

storage time 

identificatio

n 

1,595 VE-

Tongue 

signals 

acorss 5 

storage 

times 

1D-

CNN+T

L, 

BPNN, 

SVM, 

ELM 

1D-CNN 

with TL 

The best 

model is a 

1D-CNN 

with five 

convolutional 

layers (ELU 

activation), 

four max-

pooling 

layers (2×1, 

stride 2), two 

fully 

connected 

layers (128 

neurons 

each), two 

dropout 

layers, a 

softmax 

layer, and 

transfer 

learning, 

with data 

normalizatio

n applied. 

• Test 

ACC=0.99 

• Test 

Precision=0.

98 

• Test 

Recall=0.98 

• Test 

F1=0.98 

83 

• Beer 

flavour 

prediction 

• Consumer 

appreciation 

prediction 

• 250 beer 

samples 

• 226 

chemical 

properties 

(obtained 

from HS-

GC-

FID/FPD 

AdaBoos

t, ANN, 

ET, 

GBR, 

Lasso, 

LR, 

PLSR, 

RF, 

GBR 

The optimal 

model is a 

GBR with a 

learning rate 

of 0.1, 100 

estimators, a 

maximum 

depth of 5, 

and a 

GBR for 

RateBeer: 

R²=0.69 

76 
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and HS-

SPME-

GC-MS) 

• 50 

sensory 

descriptor

s 

• 180,000 

consumer 

reviews 

SVR, 

XGB 

minimum 

samples split 

of 2. 

Food 

percept

ion 

comple

xity 

Umami taste 

recognition 

• 46 EEG 

subjects 

• 6 taste 

stimuli 

NuSVC, 

KNN, 

Bagging, 

RF, 

SVM 

(ensembl

e) 

SVM 

(ensembl

e) 

The optimal 

model 

structure is 

an ensemble 

combining C-

SVC, KNN 

(k=4), 

Bagging, and 

RF 

(n_estimators

=1000, 

max_depth=9

) with SVM 

for output 

fitting, using 

percentage 

conversion, 

standardizati

on, SMOTE 

oversampling

. 

Test ACC = 

0.78 
20 

Taste 

recognition 

• 6 EEG 

subjects 

• 6 taste 

stimuli 

TSceptio

n, 

EEGNet, 

ResNet, 

SVM, 

RF, 

KNN 

EEG-

MSRNet 

The optimal 

model uses a 

multiscale 

CNN with 

residual 

learning, 

featuring 

multiscale 

temporal 

convolution 

blocks, 

multiscale 

spatial 

convolution 

blocks, a 

Test ACC = 

0.50 

Test AUC = 

0.71 

19 
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convolutional 

layer, and 

global 

average 

pooling, 

optimized 

with a batch 

size of 16, 

200 epochs, a 

learning rate 

of 0.001, the 

Adam 

optimizer, 

and a loss 

function 

combining 

cross-entropy 

and 2×MSE. 

Odor 

recognition 

• 15 EEG 

subjects 

• 8 odor 

stimuli 

EEGNet, 

ResNet1

8, 

AttnSlee

p, 

MSDAN

, 1D-

CNN, 

DFB-

ConvNet

, AFBD-

SVM 

FBANet 

(CNN + 

Transfor

mer) 

The optimal 

model uses 

FBANet with 

five 

convolutional 

modules, 

global 

average 

pooling, a 

transformer-

based self-

attention 

mechanism 

with 40-head 

multi-head 

attention, 

batch 

size=32, 

epochs=100, 

learning 

rate=0.0005, 

and weight 

decay=0.001. 

Test ACC = 

0.99 

Test F1 = 

0.99 

45 

• Odor 

recognition 

• 

Pleasantness 

recognition 

• 15 EEG 

subjects 

• 8 odor 

stimuli 

RF, 

ELM, 

PSO-

SVM 

PSO-

SVM 

The optimal 

model was an 

ensemble of 

RF, ELM, 

and PSO 

• Odor test 

ACC = 0.96 

• 

Pleasantness 

12
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optimized 

SVM with a 

sigmoid 

kernel, C set 

to 10, gamma 

set to 0.1, 50 

PSO 

iterations, 

and 5-fold 

cross-

validation. 

test ACC = 

0.99 

• Odor 

recognition 

• 

Pleasantness 

recognition 

• 16 EEG 

subjects 

• 8 odor 

stimuli 

SVM, 

BP, 

KNN, 

NB, V-

ELM 

SVM 

The optimal 

model uses a 

functional 

brain 

network with 

degree-based 

feature 

extraction 

and an SVM 

classifier 

with RBF 

kernel, 

C=100, 

Gamma=0.1, 

optimized via 

PSO with c,g 

in [0.5, 200], 

learning 

factors 

c1=c2=2, 30 

particles, 150 

iterations, 

and 5-fold 

cross-

validation. 

• Odor test 

ACC = 0.96 

• 

Pleasantness 

test ACC = 

0.98 

99 

 

 


