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Abstract:

Food is a complex system than commonly perceived, comprising thousands of molecules whose
compositions and interactions ultimately shape human perception. To conceptualize this
multifaceted nature, we frame food complexity across three interconnected layers: the molecular
composition that defines its chemical foundation, the component-component interactions that
shape food properties, and the perceptual responses that arise from human sensory systems. This
review discusses how machine learning is advancing our ability to decode each of these layers,
together with multimodal and data-fusion frameworks. Understanding these three layers may
enable more accurate prediction of food properties, guide food product innovation, and deepen our

scientific understanding of food.
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1. Introduction

Food is inherently complex, consisting of thousands of chemical components that interact and
ultimately shape its flavour, texture, nutrition, and consumer acceptance®?. Despite advances in
analytical food chemistry and sensory science, we still lack a clear understanding of how molecular

composition, component interactions, and human perception are interconnected across scales®.

At the molecular level, food contains thousands of compounds with diverse structures and
physicochemical properties, including volatility, solubility, bioactivity, and bioavailability. Even
small structural differences, such as isomerism, can lead to pronounced changes in functional or
sensory behaviour®. Although more than 77,000 food-related chemicals have been reported, fewer
than one-tenth have annotated flavour or bioactivity information®’. This sparse knowledge base
makes manual interpretation difficult and highlights the value of machine learning (ML), which
can predict molecular properties directly from structure and reveal how specific features shape a

molecule’s sensory or functional role in food.

Beyond individual molecules, food properties also arise from interactions among components.
These interactions can create emergent behaviours that are not predictable by examining single
compounds in isolation. Well-known examples include the balance created jointly by sugars, acids,
and volatiles in fruits®, or the enhancement of flavour richness through lipid-aroma interactions in
dairy matrices®. Such interaction patterns are further modified by ingredient composition,
processing conditions, and storage environments, contributing to the variability observed across
foods®®. Analytical tools such as gas chromatography-mass spectrometry (GC-MS) and liquid
chromatography-mass spectrometry (LC-MS) help identify and quantify complex molecular
mixtures'!, whereas sensor systems like e-noses and e-tongues mimic human chemosensation to
rapidly profile collective molecular signals!?!3, When combined with such approaches and ML,
these multimodal data support rapid assessment of quality, authenticity, and origin and provide

scalable tools for interpreting interaction-driven complexity4.

Human perception adds yet another dimension. The same chemical stimulus can elicit distinct
sensory responses across individuals, influenced by genetic variation, cultural background, and
personal  experience®.  Advances in  neuroinformatics  technologies, including
electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and functional

magnetic resonance imaging (fMRI), provide richer psychological and physiological markers for



studying these perceptual differences®. For example, fMRI and fNIRS can be used to identify
specific brain regions activated by different flavour stimuli, and EEG can capture, in real time, the
rapid changes in brain electrical activity associated with perception®’. Integrating ML with these
neurophysiological datasets offers a powerful means to model emotions and preferences elicited
by food'®1° and to identify the neural features most relevant to perception?. Such approaches
deepen our understanding of how humans experience food beyond its chemical and physical

properties.

Although previous reviews have examined ML applications in food science, most have focused on
a single data type or addressed only one layer of food complexity'?122, As a result, the integration
of multimodal data within unified ML frameworks remains limited. In this review, we
conceptualize food complexity across three interconnected dimensions: (1) the chemical diversity
that defines the building blocks of food; (2) the interactions among components that give rise to
the emergent properties of foods; and (3) the perceptual processes through which humans
experience food (Figure 1). Unveiling these dimensions demands large, heterogeneous datasets,
motivating growing interest in data fusion strategies that integrate information across sources to
tackle high-dimensional or sparse data and enhance model accuracy??°. Building on this
motivation, the review aims to summarize how ML has been applied to unveil each dimension of
food complexity; examine data fusion approaches that unify disparate datasets; and highlight the
opportunity of incorporating neuroinformatics data to deepen our understanding of food perception

and improve predictive performance.

2. Representative machine learning algorithms for unveiling food complexity

ML provides a diverse set of algorithms that can extract patterns, uncover relationships, and make
predictions from the heterogeneous datasets that characterize food complexity. Depending on the
data structure and objective, different algorithmic families, such as supervised and unsupervised

learning, offer complementary strengths for classification, regression, and clustering.

As illustrated in Figure 2, ML workflows in food research typically involve data collection,
preprocessing, feature engineering, and model training. Within this pipeline, supervised algorithms
like support vector machines (SVM), decision trees (DT), random forests (RF), and k-nearest

neighbours (KNN) have been widely adopted for tasks such as quality prediction, authenticity



verification, and sensory property modelling?®. Unsupervised techniques, including clustering and
dimensionality reduction, are often used to explore data structure, extract latent features, and guide
early-stage data processing?’. This section introduces the core ML algorithms most relevant to
decoding food complexity and their representative applications.

SVM is a margin-based classifier that identifies the decision boundary maximizing the separation
between classes in a transformed feature space?®. It addresses nonlinear classification issues using
kernel functions, including linear, radial basis, and sigmoid kernels. For example, Gerhardt et al.
(2019) developed an SVM model to effectively differentiate among various types of virgin olive
oil, including extra-virgin, virgin, and lampante olive 0il?®. Similarly, Sun et al. (2022) developed
an SVM model that integrates fruit metabolomic data to predict consumer preferences, thereby
facilitating consumer fruit-flavour selection and aiding breeding programs in developing more

popular varieties®,

DTs use hierarchical, rule-based splits to partition data into homogeneous groups for classification
or regression 1. RFs extend DTs by constructing large ensembles of trees and aggregating their
predictions to improve robustness and reduce overfitting®2. Wang et al. (2021) developed an RF
model to predict the retention index and flavour attributes (aromatic, bitter, sulphury, and other)
of molecules in beer, achieving satisfactory performance with an R? of 0.96%%. Hu et al. (2023)
developed an RF model to determine the relationship between key aroma components and the

sensory properties of fragrant peanut oils3,

KNN classifies or predicts samples based on the labels or values of the most similar instances in
the feature space®. Wu et al. (2019) developed a KNN model using electronic nose (e-nose) signals
preprocessed with fuzzy discriminant principal component analysis (PCA) as input to differentiate
between various Chinese liquor types and identify inferior or counterfeit liquids based on flavour,
achieving a classification accuracy of 98.3%%. In addition to the previously mentioned ML
algorithms, partial least-squares (PLS) regression, K-means clustering, and naive Bayes have also

been used to investigate food properties’.

In recent years, advances in computational capacity and the availability of large-scale datasets
have enabled the application of deep learning’. Deep learning refers to a family of neural-network-
based models capable of learning hierarchical representations from large, high-dimensional

datasets?®®’. In contrast to traditional ML techniques that require manual feature selection, deep



learning models can autonomously learn hierarchical representations, thereby facilitating their

deployment in complex data analyses.

Acrtificial neural networks (ANNS) consist of interconnected computational units that transform
input features through weighted connections and nonlinear activation functions®. ANNs have been
used to predict the taste attributes of chemicals based on molecular descriptors, thereby facilitating
the rapid screening of novel flavourings®. In recent years, significant advances have been made
in the development of ANN architectures, including convolutional neural networks (CNNSs), graph
neural networks (GNNs), and recurrent neural networks (RNNs), which have been proposed to
address more complex tasks in food analysis.

CNNs use convolutional filters to extract spatially localized features and are widely applied to
grid-like data such as images*. In food flavour research, CNNSs are frequently used in the analysis
of e-nose and electronic tongue (e-tongue) related tasks**2, Wu et al. (2019) developed a CNN
model to predict the perceptual pleasantness of odours based on e-nose data, achieving an accuracy
of > 90% on the test dataset*>. Zhang et al. (2019) integrated CNNs with neuroinformatics data to
enhance flavour recognition by analysing brain electrical signals in response to various aroma
stimuli, including coffee, lemon, and vanilla odours*. Xia et al. (2024) developed a CNN model
that effectively decodes EEG signals corresponding to the taste of sour, sweet, bitter, and salty
foods, thereby facilitating the prediction of food taste perception®.

GNNSs operate on graph-structured data by iteratively aggregating information from neighbouring
nodes and edges®. In contrast to CNNs, which operate on a fixed set of relationships between
pixels in image data, GNNs are designed to handle dynamic relationships between elements,
aggregating neighbouring information to update node representations. When predicting the taste
of molecules, Song et al. (2023) observed that whereas most models perform reasonably well in
predicting the umami taste, GNNs stand out for their superior accuracy in predicting bitter and

sweet tastes®’.

RNNs model sequential data by maintaining hidden states that capture temporal dependencies
across time steps “8. Qi et al. (2023) used an RNN combined with a multilayer perceptron to enable
rapid identification of umami peptides*. However, RNNs face limitations like vanishing and
exploding gradients, which hinder performance on long sequences®. To address this, advanced

variants like long short-term memory (LSTM) networks were developed. LSTMs enhance RNNs



by introducing gating mechanisms that regulate information flow and preserve long-range
dependencies®. For instance, Jiang et al. (2023) applied an LSTM encoder to extract features from
peptide sequences for umami recognition®’. LSTMs have also been used in natural language
processing tasks in food research, including flavour term extraction from whisky reviews and

personalized recipe generation based on user preferences®>*,

Transformer architecture leverages self-attention mechanisms to model global dependencies in
sequences while enabling highly parallelizable training®. This design markedly enhances model
parallelism, thereby improving the training efficiency on large-scale datasets. Transformer-based
models typically generate hidden state representations for each input token, thereby capturing the
range of features learned from the input text. For example, Chew et al. (2022) developed a variant
of the transformer model to analyse Instagram posts, and this approach exhibited superior precision
and recall relative to baseline models in identifying brands and flavours of electronic nicotine
delivery systems®®. Additionally, large language models (LLMSs) built on Transformer
architectures excel at processing multimodal inputs (from text to images) to identify dish types

and flavour profiles, while generating customized recipes that meet specific requirements®’.

Generative models learn the underlying probability distribution of data to create new samples that
resemble those in the training set. By training on extensive datasets containing both flavour
chemometric data and human sensory panel evaluations, these models learn to construct latent
mathematical representations that encode fundamental patterns?. The trained model can generate
synthetic but chemically plausible profiles to augment limited experimental datasets or predict
emergent characteristics from novel ingredient combinations by interpolating in the learned space.
For example, Queiroz et al. (2023) proposed a framework of deep generative models to design
new flavour molecules based on their molecular structures®. Aleixandre et al. (2025) presented a
generative diffusion network designed to create new aromas with specified characteristics, based
on mass spectrometry data of essential 0ils®®. These aspirational directions highlight the capacity
of generative modelling to accelerate discovery in food, although they remain contingent on further

validation with experimental and sensory data.

Overall, the aforementioned algorithms differ in complexity, data requirements, and
representational power, each offering distinct advantages for food research (Table 1). Traditional

ML methods like SVM, RF, and KNN are well-suited for structured, small-to-medium datasets



and are often used for classification, regression, and feature selection tasks. In contrast, deep
learning models excel at capturing complex, nonlinear relationships in large, high-dimensional,
and multimodal datasets. They can autonomously learn hierarchical representations, making them
ideal for analyzing unstructured data such as sensor signals, molecular graphs, peptide sequences,
and textual descriptions. Generative models go a step further by enabling the design of novel

molecules and the generation of synthetic data.

3. Machine learning unveils food chemical complexity
3.1 Mapping the uncharted chemical space of foods with machine learning

While databases such as FooDB, FlavorDB, and AdditiveChem collectively catalogue tens of
thousands of food-related compounds as summarized in Table 2, much of the chemical diversity
of food remains uncharted, particularly secondary metabolites, processing-induced compounds,
and minor constituents with sensory or health relevance. Early efforts such as FoodMine
demonstrated the value of systematic literature mining by extracting over 7,000 quantified
measurements for garlic and cocoa; however, its reliance on manual curation highlighted the

limitations of scalability®°.

Recent advances in natural language processing, especially large language models (LLMs), now
offer automated routes to expanding the molecular inventory. Domain-adapted LLMs can extract
chemical entities, normalize molecular identifiers, and associate compounds with functional
annotations from large-scale scientific corpora. Models such as GPT-4 have been shown to identify
food-related molecules, metabolic intermediates, and bioactive compounds from millions of

publications at speeds impossible for manual curation®?.

Beyond literature, ML is also broadening the search for food-relevant metabolites through genome
mining. ML-driven tools such as antiSMASH®? and PRISM®® can analyze biosynthetic gene
clusters to infer the structures of secondary metabolites that may have nutritional, flavour, or
preservative functions. This is particularly relevant for identifying previously uncharacterized

molecules from fermented foods, edible fungi, and underutilized plant species.

3.2 Predicting multidimensional properties of food-related chemicals



Among the tens of thousands of known food-related molecules, fewer than 10% have annotated
flavour or bioactivity information. This sparse coverage has motivated growing interest in ML as

a means to infer molecular properties from structural information.

Traditional approaches, such as quantitative structure-activity relationship (QSAR) models,
originally established the link between molecular structure and functional behaviour using
handcrafted physicochemical descriptors %4, Fingerprints and descriptor-based models remain
effective for small to medium datasets and have been widely applied to tasks such as odour
classification, as demonstrated by Shang et al.’s (2017) work using over 1,000 descriptors from

Dragon software to predict odor characteristics®.

However, descriptor-based strategies inherently depend on manually engineered features, limiting
their ability to capture higher-order structural patterns. This has driven a shift toward deep learning
approaches that learn representations directly from raw molecular structures. GNNs, for example,
treat atoms and bonds as nodes and edges, allowing the model to capture the topological and
geometric properties essential for molecular function. Pred-O3, developed by Ollitrault et al.
(2024), predicted 23 odor notes and 109 human olfactory receptor interactions from 5,802 food-
derived odorants, revealing structure-odor relationships missing from traditional fingerprints®’.
Similarly, Lee et al. (2023) created a principal odour map that positioned over 500,000 potential
odorants, of which only ~5,000 have been characterised, highlighting a vast unexplored chemical-
sensory landscape®. Emerging work has also explored the use of large language models for
molecular property prediction. Song et al. (2024) fine-tuned GPT-3.5 and GPT-4 on SMILES
strings for taste classification, with GPT-4 achieving 86% accuracy, illustrating LLMs’ potential
to complement graph-based modelling®®.

As these methods advance, ML is increasingly positioned to accelerate the early-stage prediction
of molecular sensory and functional properties, reducing reliance on lengthy experimental
screening. Equally important, interpretable Al frameworks such as SHAP*" offer new
opportunities to illuminate the structural features most responsible for molecular behavior,

bridging predictive modelling with mechanistic understanding.

4. Integrating machine learning with instrumental analysis to decode food component

interactions



Examining food properties, including quality grading, geographical origin, and freshness,
facilitates food product development and quality control (Figure 3a). Traditionally, these tasks
rely on labor-intensive, time-consuming experiments, such as sensory evaluation panels and
metabonomics analyses, which are often limited by human subjectivity, high costs, and low
throughput. Moreover, the complexity of food matrices and the interactions among various
components pose challenges for manual interpretation. In this context, ML offers a powerful tool

by learning complex, nonlinear relationships from instrumental data.

4.1 Chromatography-based modeling

Chromatographic techniques such as GC-MS, LC-MS, and GC-ion mobility spectrometry provide
detailed molecular fingerprints of foods and are widely used to profile volatiles, semi-volatiles,
and other key constituents. When coupled with ML, these datasets enable rapid and accurate

analysis of product origin, quality, and sensory attributes.

Recent studies demonstrate that statistical classifiers and modern ML models can decode subtle
variations in chromatographic profiles for tasks such as geographical origin discrimination in
honey?, regional classification of Atractylodes lancea’™, and prediction of a-acid content in hops2.
Similar approaches have been used to assess rancidity in walnuts’ and sensory grade in Sauvignon
Blanc wine™. Together, these examples illustrate how ML enhances the interpretive power of
chromatographic datasets by uncovering latent relationships between volatile patterns and food

properties.

Chromatography-based ML models are also increasingly used to complement sensory evaluation.
While sensory panels remain essential, they suffer from fatigue, cultural variability, and limited
throughput®. ML can serve as an initial screening tool to map chemical profiles to sensory
descriptors, as in studies linking GC-MS data to aroma attributes in peanut oils’ or predicting beer
flavour preferences by integrating chemical, sensory, and consumer data’®. These approaches help
form a hybrid workflow in which ML provides rapid, objective screening, while human assessors

calibrate and validate final outputs.

4.2 Sensor-based modeling



E-noses and e-tongues extend the capability of instrumental analysis by capturing holistic
responses to odorants and tastants through sensor arrays. When integrated with ML, these systems

offer high-throughput, reproducible alternatives to traditional sensory evaluation (Figure 3a).

E-nose signals together with ML have been used to classify products such as Chinese baijiu®,
discriminate brewing stages’’, recognize beer odours’®, and detect spoilage volatiles’. Advanced
deep learning methods further improve e-nose performance. Shi et al. (2019) proposed a CNN-
SVM hybrid for precise beer odour recognition, replacing the fully connected layer of a CNN with
an SVM to enhance predictive capability and better capture complex sensory patterns '8, Xiong et
al. (2021) developed a convolutional spiking neural network to identify spoilage odours,
integrating residual networks with spiking neurons to convert continuous sensor signals into
discrete pulses. This design reduces redundant computations, requires fewer parameters than a
one-dimensional-CNN, occupies less memory, and achieves >84% accuracy, making it well-suited

for e-nose devices with limited computational resources’®.

Although these approaches effectively model overall odour profiles, ML models that can predict
odour activity values (OAVSs) or quantify multi-compound synergistic, masking, or enhancing
effects remain scarce. Traditional methods for studying aroma interactions, such as ¢-t diagrams,
OAV calculations, S-curves, or distribution-based metrics®8!, require intensive mathematical
formulation and often fail to capture nonlinear behaviours in real food matrices. ML offers new
opportunities to learn these complex relationships directly from large datasets of known
interactions, yet such datasets remain limited and models for multi-component interaction

prediction are still in their infancy.

E-tongue systems show similar potential. ML-enabled classifiers have been developed for tea
authentication®? and for predicting Pu’er tea storage time using transfer-learning approaches that
leverage pre-trained models on large temporal signal datasets®®, Data augmentation strategies, such
as introducing controlled noise, also help mitigate small sample sizes frequently encountered in

sensor-based studies®?.

Despite many applications, it is worth noting that taste stimuli dissolve in saliva before reaching
their respective receptors. Once dissolved, the components of saliva can interact with these stimuli
and their receptors, thereby influencing taste perception 8. However, solvents commonly used in

food research with e-tongues often exhibit notable differences in their physicochemical properties



compared to those of human saliva. Such information has been less considered in ML modelling.
It is recommended that future research using the e-tongue account for the effects of saliva and
consider using artificial saliva as a solvent to more accurately replicate oral environmental

conditions.

4.3 Data fusion modeling

Insights from chromatography- and sensor-based modelling show that individual analytical
platforms capture only fragments of the complex interactions within food matrices.
Chromatography provides detailed molecular fingerprints, particularly for volatiles, whereas e-
noses, e-tongues, and other sensor systems capture holistic olfactory and gustatory responses.
Integrating these complementary data streams can substantially improve food property prediction
by representing a broader spectrum of chemical and sensory information. Yet this richness comes

with challenges, including high dimensionality, redundancy, and noise.

Data fusion addresses these limitations by combining multimodal information to enhance model
robustness and predictive performance . Fusion strategies typically operate at three levels: low,
mid, and high (Figure 4a)%8’. Low-level fusion merges raw or preprocessed signals into a unified
input matrix. Mid-level fusion extracts and concatenates informative features across modalities to
preserve complementary structure while reducing dimensionality. High-level fusion integrates

predictions from separate models trained on different data types.

Applications across food quality and flavour research illustrate the advantages of this approach.
For example, combining nuclear magnetic resonance, LC-MS, and GC-MS data has revealed
synergistic insights into compositional changes in heat-treated apple juice . Studies fusing MS
and NIR signals demonstrate that mid-level fusion often yields higher accuracy than low-level
approaches when predicting sensory attributes such as bitterness and grassiness in olive oil 8.
Multisensor fusion of e-nose and e-tongue signals similarly enhances flavour modeling by jointly
capturing olfactory and taste information, enabling accurate classification, quality monitoring, and
regression tasks °*°1. Incorporating visual data from electronic eye systems further broadens

sensory representation, as shown in Longjing tea evaluation, integrating aroma, taste, and color %2,

While multimodal fusion outperforms unimodal methods, practical implementation remains

challenging. Differences in data formats, resolutions, scales, and naming conventions can hinder



integration and reduce model generalizability. Food matrices also exhibit heterogeneity and
temporal variability, complicating alignment across platforms. Preprocessing strategies, including
wavelet filtering, Savitzky-Golay smoothing, independent component analysis, dynamic time
warping, correlation-optimized warping, and retention-time correction, help mitigate noise and
reconcile instrumental shifts®®>®*, Batch effects arising from platform discrepancies can be reduced
using standard normal variate scaling, multiplicative scatter correction, or empirical-Bayes
adjustments. At a broader level, adherence to the Findable, Accessible, Interoperable, Reusable
(FAIR) data principles enhances metadata harmonization and reproducibility®. Incorporating
these procedures is critical for enabling accurate, scalable, and comprehensive food property

profiling.

5. Integrating machine learning with neuroinformatics to decode perception complexity

Human flavour perception emerges from the integration of taste, smell, texture, visual cues, and
trigeminal sensations, processed across distributed neural circuits. Recent advances in
neuroinformatics, particularly EEG, fNIRS, and fMRI, provide non-invasive ways to probe these
processes and link subjective experiences to objective neural responses *. Each modality offers
complementary strengths: EEG captures rapid neural dynamics, fNIRS enables naturalistic
monitoring of cortical haemodynamics, and fMRI provides fine-grained spatial localization.
Together, these tools create an opportunity to build ML frameworks that decode perceptual

complexity directly from brain signals and move toward individualized food prediction.

5.1 Machine learning for decoding EEG-based flavour responses

EEG is a neurophysiological technique that records brain electrical activity by measuring the
electrical potential difference between the scalp and skull using electrodes placed on the scalp.
These signals represent temporal variations in electrical activity across distinct brain regions.
Owing to its high temporal resolution and relatively low experimental cost, EEG has been
extensively used in food research to enhance understanding of the relationship between food

flavour perception and individuals’ cortical processing *.



Using EEG, Yang et al. (2023) identified neurophysiological indicators associated with four tastes
(sour, sweet, bitter, and salty) and their respective intensities®”. They discovered that different taste
qualities could be distinguished within 250-1,500 ms of stimulation, and the alpha and theta
frequency bands show greater sensitivity to different tastes than do the delta, beta, and gamma
bands®. These responses reflect not only sensory processing but also reward valuation and

cognitive control mechanisms.

Nevertheless, analyzing extensive EEG data to discern distinctive patterns and correlations with
specific tastes presents considerable challenges. The application of ML techniques could prove
instrumental in addressing this challenge. Figure 3b shows the ML model for food-flavour-
induced EEG signals, with an emphasis on feature extraction, model construction, and prediction.
Classical ML models, including decision trees, SVMs, and k-nearest neighbours, have been
successfully applied to tasks such as classifying sweet vs. non-sweet stimuli ® and distinguishing
fresh vs. non-fresh foods based on spectral features®.

Deep learning further advances EEG analysis by automatically extracting multiscale temporal-
spatial representations. Multi-scale CNNs enable robust taste-category recognition across sour,
sweet, bitter, salty, and umami stimuli®, and data-augmentation techniques such as spatiotemporal
reconstruction mitigate issues of limited sample size*®>. ML models have also been used to predict
olfactory pleasantness from EEG signatures, with graph-based features showing particularly
strong performance®%. Collectively, these studies highlight the emerging potential of EEG-based

ML systems to decode affective and perceptual dimensions of food experience.

5.2 Machine learning for decoding fNIRS and fMRI signals

Besides EEG, fNIRS and fMRI are widely used non-invasive techniques that help to evaluate food
perception by providing physiological indicators of brain activity. These technologies offer higher
spatial resolution than EEG, enabling the observation of brain activity through hemodynamic
changes. In particular, fNIRS uses near-infrared light to penetrate the skull and quantify the
alterations in cerebral cortical blood oxygenation. Although its spatial resolution is inferior to that
of fMRI, fNIRS is relatively portable and places fewer constraints on participants during use,
making it well-suited for practical applications!®. In contrast, fMRI measures brain activity by

detecting blood-oxygen-level-dependent signals, offering exceptional spatial resolution that



allows precise localisation of cognitive functions within the brain cortex'®. Both fNIRS and fMRI
facilitate the examination of brain responses to flavour stimuli during sensory evaluation, thereby

providing valuable insights into the neural processing of sensory information01-104,

Integrating ML with these imaging modalities improves classification performance and reduces
reliance on manual feature engineering. CNNs trained on resting-state fMRI data can discriminate
between participant groups'®, and SVM models have identified brain networks distinguishing
responses to high-calorie foods (potato chips) and low-calorie foods (zucchini)!®. These
approaches demonstrate how data-driven methods can extract perceptual information that is not

readily apparent in univariate analyses.

5.3 Multimodal neuroinformatics and data fusion for food perception prediction

While various neuroinformatics technologies can extract numerous features, including time,
frequency, time-frequency, and spatial features, the characteristics derived from different
neuroinformatics modalities inherently possess unique strengths and limitations. For instance,
EEG provides rapid responsiveness but lacks spatial localisation. In contrast, fMRI provides high
spatial resolution but is highly susceptible to head and body movements. Meanwhile, fNIRS
enables monitoring of the cerebral cortex surface with greater tolerance to body movements,
though it has slower responsiveness and lower spatial resolution'®1%, A meta-LDA classifier that
combines EEG band power changes with fNIRS haemoglobin concentration data can markedly
enhance the accuracy of motor imagery classification relative to the use of EEG data alone®. This
suggests that combining neuroinformatics technologies through multimodal data integration,

supported by advanced ML techniques, could leverage their complementary strengths.

Multimodal fusion methods in neuroinformatics can be categorized as symmetric or asymmetric.
Symmetric fusion treats all modalities equally, while asymmetric fusion prioritizes one modality
as a reference or constraint for another!. Feature fusion can also be classified as early or late,
depending on the timing of integration. Figure 4b illustrates the data fusion strategies for EEG
and fNIRS data. Early fusion combines data from multiple sources into a unified format before
processing, suitable for strongly correlated data, whereas late fusion integrates results after
independent analyses, ideal for independent data sources'!. For example, Sun et al. (2020)

extracted features from fNIRS and EEG signals, concatenated them to create enhanced feature



vectors, and classified participants’ emotional states while watching videos using an SVM
algorithm®*2, Furthermore, an increasing number of studies have examined the influence of

auditory and visual cues on food perception!3114,

6. Challenges and opportunities

ML at the molecular layer benefits from growing databases that support the prediction of sensory
attributes, receptor activities, and toxicological profiles. However, progress is constrained by three
major gaps. First, molecular databases contain substantial redundancy and inconsistent annotations
due to overlapping curation sources*'®, complicating data integration and reducing modelling
reliability. Second, sensory annotations remain narrowly focused on olfaction and taste, while
trigeminal and chemesthetic dimensions are largely undocumented, with PungentDB being the
only resource linking molecules to TRP channels''® (Table 2). Third, generative models produce
promising molecular suggestions but lack interpretability and are rarely validated experimentally,
limiting real-world applicability®8>°,

Modeling interactions among food ingredients is far more complex than predicting single-
molecule properties. First, most ML studies still focus on small volatile compounds because they
have well-defined structures, richer databases, and established analytical workflows. In contrast,
interactions involving macromolecules, such as lipids, proteins, and polysaccharides, remain
largely unexplored, even though they play critical roles in flavour release, stability, and texture.
This gap arises from the structural heterogeneity of macromolecules, the strong dependence of
interactions on matrix conditions (pH, temperature, ionic strength), the scarcity of high-resolution
in situ datasets, and the difficulty of representing molecular and supramolecular features within
unified ML frameworks. Second, although databases such as Open Food Facts, RecipelM,
FoodRepo, and FoodData Central map food-ingredient relationships, current computational
approaches offer limited chemical interpretability and struggle to incorporate reaction dynamics
and spatial constraints'!’ (Table 2). Third, empirical data generation remains a major bottleneck:
matrix effects, chromatographic variability, and isomer ambiguity compromise measurement
stability and hinder reproducible quantification®. Inter-laboratory differences and inconsistent

labelling further reduce dataset comparability*'®. Moreover, food systems evolve continuously



through oxidation, enzymatic transformations, and Maillard reactions?>®, yet available datasets

are predominantly static snapshots that fail to capture these temporal dynamics.

Despite growing interest in neuroinformatics, its application to food perception remains limited
due to multiple structural and methodological barriers. First, large-scale EEG, fNIRS, and fMRI
datasets specifically focused on flavour are scarce, and each modality has inherent limitations:
EEG lacks spatial precision; fNIRS and fMRI are expensive, sensitive to motion artifacts, and
difficult to deploy in naturalistic settings*®®. Small sample sizes, inconsistent acquisition protocols,
heterogeneous hardware configurations, and culturally narrow participant pools further undermine
reproducibility and model generalizability. Neuroinformatics signals are inherently noisy and
highly susceptible to environmental and physiological interference, making the collection of high-
quality data outside controlled laboratories challenging. Second, the field lacks standardized
preprocessing pipelines and evaluation criteria. These inconsistencies reduce cross-study
comparability and limit the transferability of models across populations and contexts. At the
modelling level, explainability remains insufficient: existing frameworks mainly serve
methodological inspection rather than providing actionable insights for product development,
sensory evaluation, or consumer applications. Third, most current studies examine olfactory or
gustatory pathways in isolation. However, real-world flavour perception is inherently multisensory,

shaped by trigeminal stimulation as well as visual, auditory, and oral tactile cues.

Looking ahead, progress in understanding food complexity requires coordinated advances across
the molecular, interaction, and perceptual levels. At the chemical level, databases should expand
beyond olfactory and gustatory data to include trigeminal responses and receptor-level information.
High-throughput screening, combined with carefully curated, standardized datasets, will be
essential for mapping the vast space of uncharacterized food molecules and improving structure-
function understanding. At the interaction level, standardization across labs, open data sharing,
and unified ontologies are crucial for making data comparable and enabling reproducible models.
These efforts should go hand in hand with multi-scale analytical approaches capable of capturing
dynamic changes during processing and storage. At the perceptual level, there is a pressing need
for large, culturally diverse neuroimaging and sensory datasets. Federated learning offers a
promising solution by enabling multi-center model training without exchanging raw
neurophysiological data, thereby safeguarding participant privacy while improving model

generalizability across populations and experimental settings; in parallel, synthetic data generation,



using generative models such as variational autoencoders, GANSs, or diffusion-based approaches,
can help alleviate small-sample limitations by augmenting training data with statistically realistic
neural signals, reducing overfitting to site-specific noise!'®!%, There also remains considerable
scope to develop end-user-centred, explainable Al systems that tailor model outputs to the needs
of different stakeholders. For example, developing interfaces that map neural features onto sensory
attributes familiar to product developers, or consumer-oriented visual summaries that
communicate how flavour cues influence predicted affective responses'?!. Furthermore, the
development of industry-wide standards, rigorous validation frameworks, and systematic cost-
benefit and return-on-investment assessments will be essential for narrowing the gap between
laboratory findings and real-world applications. Finally, incorporating modalities including
olfactory, gustatory, trigeminal, visual, and auditory sensations through multimodal data fusion
and ML frameworks will enable more comprehensive decoding of flavour responses and support
future developments in personalized nutrition, virtual tasting, and immersive multisensory

applications.

Advances in ML will support progress across all three layers. Ongoing development of flexible
deep learning models is essential to combine diverse data types, including chemical, sensory, and
neural signals, while automated feature engineering and domain-specific explainable Al can lessen
dependence on manual processing and enhance interpretability. Creating multisensory models that
identify nonlinear interactions among sensory pathways will be vital. Ultimately, close
collaboration among food scientists, chemists, data scientists, neuroscientists, and sensory experts
will accelerate the development of shared resources, standardized workflows, and integrated

modeling tools, thereby advancing the field’s understanding of food complexity.

7. Conclusions

This review outlines the transformative potential of ML in decoding the three interrelated layers
of food complexity: (1) the structural and physicochemical properties of individual food molecules;
(2) the food properties arising from interactions among food components; and (3) the
neurophysiological processes underlying human food perception. By harnessing a growing
ecosystem of molecular, instrumental, and neuroinformatics data, ML provides a powerful means

to bridge micro-level chemical data with macro-level sensory experiences.



We summarised the application of advanced ML and deep learning architectures, including CNNs,
GNNSs, and transformers, which are particularly well-suited to modelling the complex, nonlinear,
and multimodal nature of food-related data. We also examined the growing role of
neuroinformatics technologies such as EEG, fNIRS, and fMRI in decoding individual perceptual
responses, and how their integration with ML can advance personalised food experience modelling.
Moreover, we emphasised that integrating diverse data modalities through data fusion across
chromatographic, sensor-based, imaging, and neurophysiological platforms offers a critical
solution to challenges such as data sparsity, heterogeneity, and noise. These strategies enable the
development of more accurate and generalisable predictive models for food quality assessment,

flavour profiling, consumer preference prediction, and product authentication.

Looking forward, progress will depend on three priorities: (1) building comprehensive and
standardized multimodal databases, including underrepresented dimensions such as trigeminal
perception; (2) developing interpretable and hybrid ML models that balance predictive accuracy
with mechanistic insight; and (3) fostering interdisciplinary collaboration across food science,
chemistry, neuroscience, and data science to establish shared platforms and validation pipelines.
By aligning technical development with rigorous standards and collaborative practices, we expect
ML to not only advance the scientific understanding of food complexity but also accelerate its

translation into and consumer-relevant applications.
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Figure Captions

Figure 1. Three levels of food complexity. Level 1 captures the chemical complexity of food,
where diverse chemical structures give rise to distinct bioactivities and flavour characteristics.
Level 2 represents the interaction level, encompassing the dynamic chemical, physical, and matrix-
dependent interactions among food components that shape quality, safety, and stability. Level 3
reflects perceptual complexity, arising from the multisensory integration of taste, smell, trigeminal

sensations, and higher cognitive processes that together determine the eating experience.

Figure 2. Machine learning modeling pipeline for unveiling food complexity. The process
begins with data collection, integrating information from databases, sensory evaluations, and
instrumental analyses. Next, data cleaning and preprocessing standardize formats, resolve
inconsistencies, and harmonize multi-source inputs. Feature engineering follows, involving either
manual descriptor construction or automated representation learning through deep models. In
model development, algorithms are trained, optimized, and validated to capture structure-function
relationships. Finally, the resulting models are applied to predict properties across the molecular,
interaction, and perception levels, enabling a multiscale understanding of food complexity.

Figure 3. Machine learning with instrumental analysis and electroencephalogram (EEG)
data. (a) Application of machine learning using instrumental analysis data and the representative
artificial neural network (ANN) algorithm for predicting food characteristics. (b) Machine learning
modelling with EEG data. EEG data can be manually preprocessed to extract temporal, spatial, or
spectral features, which can then be used in conventional machine learning frameworks, such as
support vector machines (SVMs) and random forests (RFs). Alternatively, deep learning
algorithms, such as convolutional neural networks, enable automatic feature extraction and

prediction, offering an advanced approach to decoding sensory responses to food.

Figure 4. Data fusion strategies with multimodal input. (@) Combining multi-source
heterogeneous data at low, mid, and high levels (b) Data fusion pipeline involving
electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) data, utilizing
both early fusion and late fusion strategies to improve predictive accuracy in understanding food

perception.



Note: E-nose, electronic nose; E-tongue, electronic tongue; GC-MS, gas chromatography-mobility
spectrometry; LC-MS, liquid chromatography-mass spectrometry; VIS, visible spectroscopy; NIR,
near-infrared spectroscopy; HIS, hyperspectral imaging spectroscopy.
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Table 1. Comparison of representative machine learning algorithms in exploring food

complexity.
Algorithms Advantages Limitations Repr_ese_ntanve
applications
High accuracy on
small/medium Computationally Flavour classification,
Support  vector ) . ) . .
: datasets; effective for intensive  with  large consumer preference
machines . ) . .
nonlinear datasets; less interpretable prediction

Decision trees

Random forests

Artificial neural

networks

Convolutional
neural networks

Graph neural

networks

Recurrent neural
networks

Long short-term
memory
networks

Transformer

Generative
Models  (VAE,
GAN, Diffusion)

classification

Interpretable; fast

training

Robust to overfitting;

suitable for high-
dimensional data
Learns complex
relationships; no
manual feature
engineering

Excellent for
spatial/pattern  data;

effective with sensor

inputs

Models relational
data (e.g., molecular
structures);  captures

topological context
Captures  sequential
dependencies; suited
for time-series data

Overcomes RNN
limitations; handles
long-term
dependencies
Handles long
sequences efficiently;
enables multimodal

input processing

Creates novel
samples;  augments
limited datasets

Prone to overfitting;
limited generalization

Less interpretable
compared to decision
trees; slower with large
trees

Requires tuning and large

datasets; lower
interpretability
Less suitable for

sequential or molecular
graph data

Data-hungry; higher
computational demand

Prone to
vanishing/exploding
gradients

More complex; slower
training
Requires large training
data and compute
resources
Training instability;
difficult to evaluate
quality

Simple classification,

feature  importance
analysis

Predicting flavour
attributes, sensory

property mapping

Predicting taste from
molecular descriptors

E-nose/e-tongue
analysis, EEG-based
perception modeling

Structure-odor/taste

prediction,  flavour-
receptor  interaction
mapping

Peptide sequence
analysis,  sequential

flavour evolution

Umami peptide
detection, text mining

Text
multimodal
understanding

mining,

Synthetic flavour
generation, design of
novel food chemicals,
aroma simulation

Table 2. Representative databases supporting food chemical and interaction complexity

studies.



Food
complexity Names URLs Descriptions
levels

Peptide database
with 2,926 taste-
related entries,
linked to sensory
modulation like
umami and bitter;
supports taste
prediction for food
development.
Tastant database
with 2,944
molecules, linked
to sensory taste
ChemTastesDB  https://doi.org/10.5281/zenodo.5747393 classifications;
facilitates QSAR
studies for flavour
and sensory

http://tastepeptides-
meta.com/TastePeptidesDB

TastePeptidesDB

research.
Database
comprising over
chz(r)r(])i((j;m 25,000 molecules,
i annotated with
complexity

physicochemical
properties and
natural
occurrence. The
database supports
research in food
science and
sensory profiling,
and additionally
provides tools for
food pairing
analysis.

GRAS flavour
database with
approximately

FlavorDB2 https://cosylab.iiitd.edu.in/flavordb2/

Flavor Ingredient https://www.femaflavor.org/flavor- 2,500 molecules,
Library library linked to safety
evaluations

including toxicity;
ensures regulatory



Phenol-Explorer

FooDB

FSBI-DB

http://phenol-explorer.eu/

https://foodb.ca/

https://fsbi-db.de/

compliance for
food applications.
Polyphenol
database with
35,000 content
values for 500
compounds in 400
foods, linked to
metabolism and
antioxidant
effects; focuses on
food phenolics for
health research.

A comprehensive
food metabolome
database
comprising over
70,000 food-
related molecules,
including
nutrients,
phytochemicals,
and flavour
compounds. It
emphasizes
molecular-level
characterization of
foods and their
associated
biochemical
pathways. While
some bioactivity
information is
provided,
systematic
coverage of
toxicity data is not
included.
Database with
2,544 entries
across 300 foods,
linked to sensory
receptors and
physiological
effects;
emphasizes



AdditiveChem

OpenFoodTox

http://www.rxnfinder.org/additivechem/

https://www.efsa.europa.eu/en/data-
report/chemical-hazards-database-

openfoodtox

chemosensory
research and food
science.

Database of over
9,064 food
additives, detailing
molecular
structures,
physicochemical
properties,
toxicity,
metabolism, and
regulatory data. It
supports food
science and safety
research with
integrated data
from 16 sources.
Database with
over 5,700 food-
related chemicals,
linked to toxicity
and risk
assessments;
focuses on
chemical safety
for regulatory and
health evaluations.

Food
component
interaction
complexity

Open Food Facts

FoodRepo

https://world.openfoodfacts.org/

https://www.foodrepo.org

Database of over
4,000,000 food
products, linked to
allergens and
health choices;
enables informed
consumer
decisions through
open nutritional
data.

Database with
380,428 barcoded
food products,
supporting health-
informed choices;
provides API-
accessible data for
research and




RecipelM

USDA FoodData
Central

FooDrugs

http://pic2recipe.csail.mit.edu

https://fdc.nal.usda.qov/

https://imdeafoodcompubio.com/

application
development.
Database of over
1,000,000 cooking
recipes and
13,000,000 food
images, linked to
culinary patterns;
focuses on cross-
modal embeddings
for recipe-image
retrieval and food
research.
Database with
467,149 food
nutrient profiles,
linked to health
benefits via
nutrients; supports
nutritional
analysis for
dietary planning
and public health
initiatives.
Database of
50,960 foods and
bioactive
compounds linked
to
pharmacological
effects via gene
expression;
emphasizes food-
drug interactions
for health and
safety research.




Table 3. Representative machine learning studies in exploring food complexity.

Note: EEG, electroencephalogram; E-nose, electronic nose; E-tongue, electronic tongue; GC-
DMS, gas chromatography-differential mobility spectrometry; HS-GC-FID/FPD, headspace gas
chromatography-flame ionization detector/flame photometric detector; HS-SPME-GC-MS,
headspace solid-phase microextraction-gas chromatography-mass spectrometry; NIR, near-
infrared spectroscopy; SHS-GC-IMS, solid-phase microextraction-gas chromatography-ion
mobility spectrometry; AdaBoost, adaptive boosting; ANN, artificial neural network; BPNN, back
propagation neural network; CNN, convolutional neural networks; DNN, deep neural network;
ELM, extreme learning machine; ET, extra trees; GB, gradient boosting; GNN, graph neural
network; GGNN, gated-graph neural network; KNC, KNeighbors Classifier; KNN, K-nearest
neighbor; Lasso, Lasso regression; LDA, linear discriminant analysis; LGBM, light gradient
boosting machine; LR, linear regression; PCA, principal component analysis; PLS-DA, partial
least squares discriminant analysis; PLSR, partial least squares regression; PSO, particle swarm
optimization; RF, random forest; RNN, recurrent neural network; SVM, support vector machine;

XGBoost, extreme gradient boosting.

Food Data
comple Tasks descriptio Algorith Best Best model  Performance R
Xity 0 ms model description metrics ef
levels
The optimal
model
structure is a
soft-vote
ensemble that
. 2291 RF. combines
molecules XGB, xvsdlglfBM * Test
Food from LGBM, LGBM trained on AUROC =
chemic Sweetness BitterSwe FCN, (Soft- layered 0.96
al rediction etdataset LGBM  vote molecular « Test AUPR %
comple P - 1,237 (Soft- ensembl fi int =0.97
xity sweet vote e) alr?(?(;sggessc e Test F1 =
- 1,054 ensemble . 0.91
non-sweet ) |_ohyS|cochem
ical
descriptors,
with grid
search using
5-fold

stratified




Umami
peptide
prediction

Bitter/sweet/
umami
classification

* 499
peptides
encoded
with 6
feature
vectors

- 249
umami

- 250 non-
umami

3,706
molecules
from
ChemTast
esDB and
UMP 442
datasets
with
RDKit
descriptor
S

- 1,466
bitter
-1,764
sweet

- 238
umami

- 238
control

Umami-
MRNN
(MLP+R
NN),
SVM,
RF, 1D-
CNN,
BERT

DNN,
GNN

Umami-
MRNN
(MLP +
RNN)

GNN

Cross-
validation.
The optimal
model
merges a
two-layer
MLP with
RelLu
activation
and 0.5

dropout and a

two-layer
LSTM RNN
with 0.3
dropout,
using Adam
optimization,
early

stopping, and

a weighted
mean of
outputs with

hyperparamet

ers tuned via
10-fold
Cross-
validation.
The optimal
model is a
GNN with
two
convolution
blocks (each
with a 128-
channel
graph
convolution
layer, ReLU
activation,
batch
normalizatio
n, and max-
pooling), a
graph gather
layer, a 150-
neuron dense

* Test ACC
=091
* Test MCC
=0.81
* Test AUC
=0.97

» All classes
test ACC =
0.81
Bitter/sweet/
umami test
ACC =0.86

49

12




Odor
prediction

5,000
molecules
from
GoodScen
ts and
Leffingwe
Il datasets
with 138
odor
labels

GNN,
RF,
SVM

GNN

layer, and an
output layer,
using dropout
of 0.1, node
and edge
features,
trained with a
batch size of
32,
categorical
cross-entropy
loss, 50
epochs,
random
search
optimization,
and
oversampling
with seven
SMILES
variants for
minority
classes.

The optimal
model uses a
message
passing
neural
network with
multiple
message-
passing
layers
followed by
atom-bond
embedding
combination,
reduce-sum
aggregation,
and fully
connected
layers
producing
256-
dimensional
embeddings

e Train
AUROC =
0.89
*TestR =
0.52

* POM-panel
corr=0.73

68




Flavour
molecule
generation

Sauvignon
Blanc wine
quality
grading

921
flavour
molecules
from
FlavorDB
with 417
labels

* 143
wine
samples
across 3
grades

GGNN+

MLP MLP

PCA-
LDA,
PLS-DA, ANN
KNN,
SVM,

GGNN+

before final
sigmoid
prediction
across 138
odor
descriptors,
with Adam
optimization
and class-
imbalance-
weighted
cross-entropy
loss.

The optimal
model uses a
GGNN with
iterative
message-
passing
layers
followed by a
multi-layer
perceptron
global
readout block
with two
hidden layers
and SELU
activation,
producing
graph-level
embeddings
for final
predictions,
optimized
with Adam
and a
learning rate
of 9.9e-5,
converging at
epoch 780.
The optimal
model uses a
neural
network with
two hidden

200
molecules
generated:

- validity =
100%

- uniqueness
=95%
-77.5%
usable

Test ACC =
0.95




comple
Xity

Olive oil
classification

Vinegar
quality

* 286
SHS-GC-
IMS
measurem
ents, 33
identified
compound
S

 Total
701
samples
acorss 3
quality
levels

* 118
attributes
per
sample
(113 GC-
IMS
marker
intensities
.5
auxiliary
attributes)

* 69
samples
across 5

XGB,
ANN

KNN,
SVM,
DT, LR,
XGBoost
, ANN

ANN

ANN

ANN

layers of 64
neurons each,
input size of
65, and
output size of
3, trained
using the
Adam
optimizer
(learning rate
=0.0001)
with L2
regularizatio
n(AL=0.01)
for 7500
epochs and a
batch size of
32.

The best
model
structure is a
multilayer
feed-forward
neural
network with
an input layer
(113
neurons), one
hidden layer
using ReLU
activation, an
output layer
with softmax
activation,
optimized
with the
Adam
optimizer,
and tuned via
the geometric
pyramid rule
and rules of
thumb.

The optimal
model uses a
neural

Average test
ACC =0.89

Test ACC =
0.97

12
3

7




identificatio
n

Walnut
kernel
freshness
identificatio
n

Spoiled food
odor
identificatio
n

brewing
processes
o 17
volatile
compound
S
identified
by flash
GCe-
nose

» Samples
across 4
grades

* 20 GC-
DMS
samples, 5
replicates
per grade
* 12 GC-
MS
samples, 3
replicates
per grade

PCA,

PLSR PLSR

* E-nose
dataset 1:
mixed
spoiled
food
odors;
479
samples
* E-nose
dataset 2:
rotten
fruit
odors;
360
samples

LDA,
SVM,
1D-
DCNN,
ResNet- 12
18,

RCSNN-

12

RCSNN-

network with
two hidden
layers, input
size of 16,
and output
size of 5,
using tanh
activation in
hidden layers
and softmax
in the output
layer, trained
with online
gradient
descent.

The best
model
structure is a
PLSR with a
tolerance
limitof m +
0.5, using
leave-one-out
Cross-
validation.

The optimal
model uses a
convolutional
spiking
neural
network with
10
convolutional
spiking
layers and 2
fully
connected
spiking
layers,
trained using
RMSProp
(learning rate
= le-4) for

* ACC =
0.80

* RMSE =
0.42

 Dataset-1
test ACC =
0.85
* Dataset-2
test ACC =
0.89

73

79




Pu-erh tea
storage time
identificatio
n

* Beer
flavour
prediction

* Consumer
appreciation
prediction

1,595 VE-
Tongue
signals
acorss 5
storage
times

* 250 beer
samples

* 226
chemical
properties
(obtained
from HS-
GC-
FID/FPD

1D-
CNN+T
L,
BPNN,
SVM,
ELM

AdaBoos
t, ANN,
ET,
GBR,
Lasso,
LR,
PLSR,
RF,

1D-CNN
with TL

GBR

150 epochs
with batch
size = 32,
time steps
(T) =20,
time constant
(1) =5,
threshold
voltage (Vth)
=1.0,and
reset voltage
(Vreset) = 0.
The best
model is a
1D-CNN
with five
convolutional
layers (ELU
activation),
four max-
pooling
layers (2x1,
stride 2), two
fully
connected
layers (128
neurons
each), two
dropout
layers, a
softmax
layer, and
transfer
learning,
with data
normalizatio
n applied.
The optimal
model is a
GBR with a
learning rate
of 0.1, 100
estimators, a
maximum
depth of 5,
and a

e Test

ACC=0.99

e Test
Precision=0.

98 83
e Test
Recall=0.98

e Test

F1=0.98

GBR for
RateBeer: 6
R2=0.69




Food
percept
ion
comple
xity

Umami taste
recognition

Taste
recognition

and HS- SVR,
SPME- XGB
GC-MS)
* 50
sensory
descriptor
S
* 180,000
consumer
reviews
NuSVC,
* 46 EEG g;\lNi’n
subjects 99ing,
* 6 taste RF,
S SVM
stimuli
(ensembl
€)
TSceptio
n,
"OEEG  Eegnet,
subjects
« 6 taste ResNet,
stimuli SVM,
RF,
KNN

SVM
(ensembl

€)

EEG-
MSRNet

minimum
samples split
of 2.

The optimal
model
structure is
an ensemble
combining C-
SVC, KNN
(k=4),
Bagging, and
RF
(n_estimators
=1000,
max_depth=9
) with SVM
for output
fitting, using
percentage
conversion,
standardizati
on, SMOTE
oversampling

The optimal
model uses a
multiscale
CNN with
residual
learning,
featuring
multiscale
temporal
convolution
blocks,
multiscale
spatial
convolution
blocks, a

Test ACC =
0.78

Test ACC =
0.50
Test AUC =
0.71

20

19




Odor
recognition

* Odor
recognition
Pleasantness
recognition

* 15 EEG
subjects
» 8 odor
stimuli

* 15 EEG
subjects
* 8 odor
stimuli

EEGNet,
ResNetl
8,
AttnSlee
p,
MSDAN
, 1D-
CNN,
DFB-
ConvNet
, AFBD-
SVM

RF,

ELM,
PSO-
SVM

FBANet
(CNN +
Transfor
mer)

PSO-
SVM

convolutional
layer, and
global
average
pooling,
optimized
with a batch
size of 16,
200 epochs, a
learning rate
of 0.001, the
Adam
optimizer,
and a loss
function
combining
cross-entropy
and 2xMSE.
The optimal
model uses
FBANet with
five
convolutional
modules,
global
average
pooling, a
transformer-
based self-
attention
mechanism
with 40-head
multi-head
attention,
batch
size=32,
epochs=100,
learning
rate=0.0005,
and weight
decay=0.001.
The optimal
model was an
ensemble of
RF, ELM,
and PSO

Test ACC =
0.99

Test F1 =
0.99

» Odor test
ACC =0.96

Pleasantness

45

12
4




* Odor
recognition
Pleasantness
recognition

* 16 EEG
subjects
* 8 odor
stimuli

SVM,

KNN,
NB, V-
ELM

SVM

optimized
SVM with a
sigmoid
kernel, C set
to 10, gamma
setto 0.1, 50
PSO
iterations,
and 5-fold
Cross-
validation.
The optimal
model uses a
functional
brain
network with
degree-based
feature
extraction
and an SVM
classifier
with RBF
kernel,
C=100,
Gamma=0.1,
optimized via
PSO with c¢,g
in [0.5, 200],
learning
factors
cl=c2=2, 30
particles, 150
iterations,
and 5-fold
Cross-
validation.

test ACC =
0.99

* Odor test
ACC =0.96
Pleasantness
test ACC =
0.98

99




