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Abstract 

Adulteration of olive oil significantly compromises the interests of both producers and consumers, 

making its authentication a crucial challenge in the food industry. This study explored the potential 

of combining Raman spectroscopy with machine learning for the discrimination of various blended 

samples and the quantification of olive oil content in mixtures. Raman features, such as peak 

intensities at specific shifts, were extracted from the spectra and analyzed using hierarchical cluster 

analysis (HCA) and correlation analysis (CA) to identify significant variations corresponding to 

altered proportions of olive oil. Qualitative and quantitative analyses were performed for the 

classification of ten oil types and the prediction of compositional ratios in binary and ternary blends, 

comparing different chemometric techniques and input features. Among these, the random forest 

(RF) model yielded a high classification accuracy (98.9%) and strong predictive performance, with 

coefficients of determination (R2) of 0.985 and 0.926 on the binary and ternary samples, 

respectively. The Shapley additive explanations (SHAP) algorithm was subsequently employed to 

assess the contribution of key Raman features to the prediction accuracy of superior models. 

Overall, this novel analytical framework highlights Raman features and offers a promising solution 

for real-time quality monitoring of olive oil products. 

 

Keywords: Olive oil, Raman peak, adulteration, machine learning, SHAP 
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Introduction 

Extra virgin olive oil, a widely traded commodity, is highly sought after for its rich nutritional 

profile and unique organoleptic attributes1,2. Its high market value and complex global supply chain, 

however, make it a prime target for economically motivated adulteration. High-quality olive oils 

are often diluted with cheaper alternatives, such as refined olive oils or seed oils. This malpractice 

not only causes significant economic losses and undermines market fairness but also poses 

potential health risks to consumers and erodes trust in a product central to the Mediterranean diet3,4. 

Consequently, developing effective methods for detecting olive oil adulteration is not merely a 

technical challenge but an urgent necessity for ensuring food integrity, protecting public health, 

and sustaining the economic viability of the olive oil industry. 

 

Traditional laboratory-based methods, such as chromatography coupled with mass spectrometry5 

and vibrational spectroscopy (e.g., infrared and Raman)6, have been commonly employed for olive 

oil authentication. Among these, Raman spectroscopy, known for its rapid and non-destructive 

nature, has emerged as an effective tool for detecting adulterated olive oils. For instance, Fan et al. 

employed confocal Raman spectroscopy in combination with multivariate statistical techniques to 

quantitatively analyze the components of ternary blended olive oils7. Portarena et al. developed a 

novel method for determining the relative ratios of lutein and β-carotene in olive oil through curve 

fitting of Raman bands, aiding food chemical assessments8. Using a portable spatially offset 

Raman spectroscopy (SORS) device, Jiménez-Hernández et al. authenticated extra virgin and 

virgin olive oils against sunflower oil adulteration by applying multivariate regression models9. 

Raman spectroscopy provides rich information due to the distinct molecular vibration modes and 

changes in polarizability during Raman scattering, which is useful for identifying chemical bonds 

for structural characterization and even quantifying active ingredients. Furthermore, Hua et al. 

combined Raman spectra with the peak-area-ratio approach to monitor the quality of flaxseed oil 

during frying, correlating feature peak areas and ratios with parameters such as acid and peroxide 

values10. Despite the promise of Raman spectroscopy for olive oil authentication, existing 

approaches primarily rely on single metrics like peak intensities, thereby overlooking the 

complementary spectral information embedded in multidimensional attributes such as peak area 

and relative ratios. Integrating these features is crucial for developing more effective and robust 

models, especially for detecting subtle adulteration under realistic, variable conditions. 
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Recent advancements in machine learning algorithms for handling complex data have led to 

significant breakthroughs in food analysis11. Soares et al. developed an interval support vector 

machine (SVM) model using Raman spectroscopy to discriminate certified omega-3 fish oils, 

achieving 96% accuracy on the internal validation set12. Moe Htet et al. applied Raman spectra in 

combination with the partial least squares (PLS) method to classify vegetable oil samples and 

measure α-tocopherol contents, demonstrating strong predictive performance13. Chen et al. 

explored several machine learning models combined with Raman signals for the quantitative 

analysis of β-carotene and unsaturated fatty acids in blended sunflower seed-olive oils, with RF 

outperforming other models in prediction accuracy14. Utilizing surface enhanced Raman 

spectroscopy (SERS) data, Xu et al. applied the extreme gradient boosting (XGBoost) model to 

identify pure and adulterated camellia oils, achieving relatively high accuracy on the test set15. 

However, the "black-box" nature of machine learning models presents challenges in interpreting 

their predictive results16. The SHAP algorithm has become widely used to interpret model 

decisions by evaluating the importance of input features. For instance, Abdalla et al. integrated 

Raman scattering with chemometrics to determine drug release from polysaccharide coatings, then 

employed SHAP analysis to identify key factors influencing predictions, such as time and 

incubation medium, in the RF model17. 

 

In this study, Raman spectroscopy combined with chemometrics was applied to authenticate 

blended olive oils for content determination. Initially, Raman spectral data from pure and blended 

oils were collected, and key peak features, including peak intensity (I), peak area (A), peak area 

ratio (R), and full width at half maximum (F), were analyzed using HCA and heatmap visualization. 

The CA was then used to explore the relationship between increasing proportions of olive oil and 

corresponding Raman features in binary blends. To classify oil samples and quantify the olive oil 

content, machine learning models, including SVM, PLS, RF, and XGBoost, were employed. 

Model performance was evaluated to identify the most suitable models and relevant Raman 

features for olive oil authentication. In quantifying the olive oil content in mixtures, the SHAP was 

applied for feature selection and model interpretation, ranking the significance of Raman features 

and explaining their impact on content estimation. Notably, the commercially available blended 

oils were used for method validation, and the results from various models were further explained 
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using SHAP analysis. This study introduces an innovative framework by comparing multiple 

Raman peak features in machine learning models for the quantification of olive oil in binary and 

ternary blends, offering a valuable screening tool for detecting adulteration in high-value edible 

oils. 

 

Results and Discussion 

Raman spectra of pure and blended oils 

Fig. 1a shows the average Raman spectra of four types of pure oils, such as olive oil, after intensity 

normalization. The main characteristic bands are observed in the range of 800-1800 cm-1, 

corresponding to specific molecular vibration modes. It is evident that four Raman peaks at 1156, 

1265, 1526, and 1658 cm-1 exhibit distinct signals in the pure oil samples. Their spectral features, 

such as peak intensity and peak area, were further analyzed to differentiate olive oil from other 

edible oils. The variations in Raman spectra are mainly due to differences in the molecular 

composition of the oils, including bioactive compounds like polyphenols, carotenoids, and 

unsaturated fatty acids. For example, the concentration of β-carotene varies significantly across 

olive oil varieties, depending on factors like cultivar, geographical origin, and harvesting 

methods18. The Raman peak at 1440 cm-1, attributed to the deformation vibration of the –CH₂ 

group, shows relatively high and stable intensity across all pure oil samples19,20; therefore, this 

Raman peak was used to normalize the entire spectrum. Based on vibrational assignments and 

functional groups, the Raman peaks at 1156 and 1526 cm-1 are characteristic of β-carotene, which 

is notably present in olive oils21. The former corresponds to the C–C stretching vibration of the –

(CH2)n– group, and the latter is associated with the C=C stretching vibration of the RHC=CHR 

group14,22. Additionally, the Raman bands at 1265 and 1658 cm-1 correspond to the =C–H 

symmetric rocking and C=C stretching vibrations, respectively, both of which are related to the cis 

RHC=CHR group and are closely associated with unsaturated fatty acids23,24. Despite slight 

variations in feature peak intensity, different brands of pure edible oils from different brands and 

origins show high spectral similarity. Notably, characteristic bands of olive oil are evident around 

1156 and 1526 cm-1 when compared to other edible oils, which agrees with previous findings20,21. 

However, these two Raman signals also appear in rapeseed oil, which may lead to misclassification 

and prediction errors in blended samples. The spectral overlap between olive and rapeseed oils at 

1156 and 1526 cm-1 presents a challenge for accurate classification, highlighting the need for 
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complementary analytical techniques or more advanced algorithms to improve classification 

accuracy. 

 

As displayed in Fig. 1b, the offset spectrogram illustrates the variation in Raman characteristic 

peaks for representative binary blends of olive-sunflower seed oils (OS) with increasing olive oil 

content. Specifically, OS0 represents 0% olive oil (pure sunflower seed oil), while OS100 

represents 100% olive oil (pure olive oil). As the proportion of olive oil increases in the OS blends, 

the intensity of Raman bands at 1156 and 1526 cm-1 becomes more pronounced, with clearer peak 

shapes. In contrast, the Raman signals at 1265 and 1658 cm-1 gradually decrease from OS0 to 

OS100. This trend can be explained by previous studies, which show that olive oil is richer in oleic 

acid, while sunflower seed oil contains higher levels of linoleic acid in the unsaturated fatty acid 

profile14,20. Additionally, the Raman spectra of other binary blends, including olive-rapeseed oils 

(OR) and olive-corn oils (OC) at various mixing proportions, are shown in S. Fig. 1. Similarly, Fig. 

1c presents the Raman spectra of representative ternary blends (OSR) composed of olive, 

sunflower seed, and rapeseed oils at varying blending ratios. In seven different mixing proportions, 

ranging from 0% to 30% olive oil, the change in feature peaks is clearly observed, with increasing 

rapeseed oil content leading to higher Raman intensity at 1156 and 1526 cm-1 from OSR1 to OSR5. 

In contrast, higher olive oil content slightly enhances the signals of these two characteristic bands. 

The Raman spectra of other ternary blends, including OSC (olive, sunflower seed, and corn oils) 

and ORC (olive, rapeseed, and corn oils) at different mixing proportions, are shown in S. Fig. 2. 

The spectral differences observed in both pure oils and blended samples are crucial for olive oil 

authentication and quality control. Raman spectroscopy effectively differentiates oils based on 

bioactive compounds such as β-carotene14 and unsaturated fatty acids25, which contribute to the 

health benefits and sensory properties of olive oil. This technique offers a valuable tool for 

detecting adulteration and ensuring the authenticity of premium olive oils, especially in regions 

susceptible to fraud. 

 

Feature selection of Raman peaks  

Fig. 2 shows the HCA and heatmap visualization of various Raman features, including intensity 

(I), area (A), ratio (R), and full width at half maximum (F), across four classes of pure oils. For 

practical olive oil identification, the distinct Raman feature peaks are critical for differentiating 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

 

olive oil from other edible oils. These differences arise due to the unique molecular composition 

of olive oil, which contains higher concentrations of bioactive compounds such as β-carotene and 

oleic acid. These compounds contribute to the distinct Raman peaks at 1156 and 1526 cm-1, which 

are not as prominent in other oils. The HCA heatmap of these Raman features highlights key peak 

attributes that influence classification results. This visualization technique is particularly valuable 

in complex blends, allowing for the identification of critical features that can differentiate oils with 

similar chemical compositions. For example, olive oils exhibit relatively higher intensities at I1156 

and I1526, and lower intensities at I1265 and I1658 compared to other oils. Regarding peak area 

and area ratio, olive oil shows higher values for A1156, A1526, A1265, R1156, and R1526. 

Additionally, low F1265, along with high F1156 and F1526, are observed in olive oil. These 

differential Raman features are subsequently used as inputs for the qualitative and quantitative 

analysis of blended olive oils, providing valuable insights into the composition and authenticity of 

olive oil blends. Such Raman spectral data can be leveraged in quality control and adulteration 

detection, offering a non-destructive and efficient method for olive oil authentication. 

 

Fig. 3a presents the HCA and heatmap visualization of various Raman features in binary blends of 

olive-sunflower seed oils (OS). Increasing olive oil content is positively correlated with higher 

normalized peak intensities at 1156 and 1526 cm-1 (I1156 and I1526). These Raman bands are 

attributed to the unique presence of β-carotene in olive oil, which is absent in sunflower seed oil8,14. 

The higher β-carotene concentration in olive oil is associated with its potent antioxidant 

properties26, which contribute not only to its health benefits but also to its distinct spectral 

fingerprint, making it a key parameter for quality and authenticity assessment of olive oil. 

Additionally, the normalized peak intensities at 1265 and 1658 cm-1 gradually decrease as the 

proportion of olive oil increases. This can be explained by the higher oleic acid content in olive oil 

and the higher linoleic acid content in sunflower seed oil, as both acids differ in their unsaturated 

fatty acid profiles14,20,25. Linoleic acid, with the same carbon chain length as oleic acid but an 

additional C=C double bond, produces stronger Raman intensities at 1265 and 1658 cm-1 in 

sunflower seed oil. This explains the observed decrease in I1265 and I1658 in OS samples with 

higher olive oil content. Notably, the different unsaturated fatty acid profiles in olive and sunflower 

seed oils could also impact their sensory properties, such as taste and stability, further underscoring 

the importance of distinguishing between these oils in blended products. Parallel analysis of peak 
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area, peak area ratio, and full width at half maximum at varying Raman shifts further reveals key 

Raman features for olive oil authentication, which could be crucial for quality control and 

adulteration detection in the olive oil industry. 

 

As shown in Fig. 3b, the correlation between olive oil content levels in OS blends and Raman 

features was analyzed using CA. The results reveal significant positive correlations (p＜0.05) 

between OS levels, ranging from 0% to 100% olive oil content, and I1156, I1526, A1156, A1526, 

R1156, R1526, and F1156. These correlations are likely due to the higher concentrations of β-

carotene and oleic acid in olive oil, which contribute to the distinct Raman peaks at 1156 and 1526 

cm-1. The positive correlations with A1156 and A1526 further emphasize the role of the peak areas 

in characterizing the oil composition, as the increase in olive oil content leads to more pronounced 

Raman bands associated with these bioactive compounds. Conversely, significant negative 

correlations (p＜0.05) were found with I1265, I1658, A1265, A1658, R1265, R1658, F1265, and 

F1658. This decrease in Raman signals at these wavelengths can be attributed to the higher linoleic 

acid content in sunflower seed oil, which exhibits different molecular characteristics, such as 

additional C=C double bonds, contributing to stronger Raman intensities at 1265 and 1658 cm-1. 

In the CA of various Raman features, a positive relationship was observed between normalized 

peak intensity and peak area (p＜0.05), such as I1156 and A1156. The increase in peak area 

contributed to a significant rise in the peak area ratio in the Raman spectra of different OS samples. 

The Raman feature differences in binary blended olive-rapeseed oils (OR) and olive-corn oils (OC) 

are displayed using HCA and CA in S. Fig. 3 and S. Fig. 4, respectively. These differences further 

demonstrate how varying oil blends influence Raman spectral patterns, which could be critical for 

detecting adulteration or confirming the authenticity of olive oil blends in commercial products. 

Overall, the olive oil content in binary OS blends causes significant changes in Raman peak 

features at 1156, 1265, 1526, and 1658 cm-1. 

 

Discrimination of oil samples using machine learning  

Machine learning algorithms, including SVM, PLS-DA, RF, and XGBoost, were investigated 

to classify ten samples, including four pure oils, three binary blends, and three ternary blends, 

based on Raman features such as peak intensity (I), peak area (A), peak area ratio (R), full width 

at half maximum (F), and all features (ALL). The classification results, in terms of accuracy, are 
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visualized through multiple confusion matrices, as shown in Fig. 4. Based on the misclassification 

results, RF and XGBoost models demonstrate superior performance in identifying multiple oil 

classes, including both pure and blended oils, when using all Raman features, highlighting the 

importance of feature selection in model classification. This suggests that RF and XGBoost models 

are more robust in handling complex data with multiple features, making them particularly 

effective for classifying heterogeneous oil samples. The importance of feature selection is further 

emphasized, as using a comprehensive set of Raman features improves the model’s ability to 

distinguish between oil types with high accuracy. The confusion matrix is derived from the model 

classification on the independent test set of a single stratified split. The performance should 

therefore be interpreted with the understanding that it may vary with different data partitions. 

 

Furthermore, Fig. 5 shows the model evaluation for SVM, PLS-DA, RF, and XGBoost in 

classifying oil samples using various Raman features as inputs. S. Table 1 provides relevant 

evaluation metrics, including accuracy, precision, recall, F1-score, and specificity. A 5-fold cross-

validation analysis is also shown in S. Table 2. The radar chart indicates that the best-performing 

models, RF and XGBoost, achieve the highest metrics when all Raman features are used as inputs, 

followed by peak area. SVM also shows good performance when using the peak area of 

characteristic bands. Although Raman spectra contain abundant information, peak intensity or 

height is often used as a preliminary feature in chemometrics for food ingredient analysis27. 

However, peak area and ratio, which provide unique spectral data, should also be considered and 

could potentially become effective inputs for Raman spectroscopy applications in edible oil 

authentication10,28. The RF model (accuracy = 98.9%, precision = 98.0%, recall = 98.0%, F1-score 

= 98.0%, specificity = 99.2%) and XGBoost model (accuracy = 99.4%, precision = 99.0%, recall 

= 98.4%, F1-score = 98.6%, specificity = 99.6%) based on all Raman features outperform 

individual inputs, such as peak intensity and area, indicating that these two models are optimal for 

Raman spectra applications. When using a single Raman feature as input, peak area exhibits 

superior accuracy and precision, with RF achieving 97.5% accuracy and 92.4% precision, and 

XGBoost achieving 97.0% accuracy and 89.2% precision. A comparative study of different models 

using the same Raman feature is presented in S. Fig. 6. Both RF and XGBoost demonstrate 

superiority over SVM and PLS-DA, regardless of the Raman feature input. The performance 

discrepancies among models primarily stem from differences in their capacity to model nonlinear 
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correlations within high-dimensional spectral data. RF and XGBoost effectively capture complex 

feature interactions and exhibit excellent generalization ability, whereas SVM and PLS-DA are 

limited by their linear assumptions, resulting in reduced sensitivity to subtle spectral variations 

and lower discriminative power. To mitigate potential class imbalance in oil-type discrimination, 

stratified sampling and macro-averaged metrics were employed to ensure a fair evaluation across 

all classes and reduce bias toward larger sample groups. 

 

Determination of blended olive oils using machine learning  

For the purpose of determining the blending proportion of olive oil in binary and ternary mixtures, 

the processed Raman features were further utilized for training and testing chemometric regression 

models. Four regression algorithms, including SVR, PLSR, RFR, and XGBoost, were employed 

to estimate the olive oil content based on different Raman features, including I, A, R, F, and ALL. 

Model performance in quantitative prediction was evaluated using three common statistical 

indicators, namely root mean square error (RMSE), R², and mean absolute error (MAE). Fig. 6 

presents the prediction results of machine learning models for representative binary blended olive-

sunflower seed oils (OS) based on various Raman features. Among the tested models, RFR and 

XGBoost achieved the highest R2 values (0.985 and 0.984, respectively) when all Raman features 

were used, showing predictions that closely fluctuated around the true values and exhibited strong 

linear correlations. In addition, both models demonstrated relatively lower RMSE and MAE values 

compared to SVR and PLSR, confirming their superior performance in the quantitative analysis of 

OS samples. Notably, all four models exhibited improved predictive metrics when using peak 

intensity as input features compared to other Raman characteristics such as peak area, suggesting 

that peak intensity provides more discriminative information for concentration estimation. Model 

regression plots for binary blended olive-rapeseed oils (OR) and olive-corn oils (OC) based on 

various Raman features are presented in S. Fig. 7 and S. Fig. 8, respectively. The detailed 

evaluation indicators for the prediction performance of all models on binary blended oils are 

summarized in S. Table 3, and corresponding 5-fold cross-validation analysis is shown in S. Table 

4. The superior performance of RFR and XGBoost can be attributed to their ensemble learning 

architectures and strong capability in modeling nonlinear and interactive relationships among 

Raman features. Both algorithms integrate multiple decision trees to reduce variance and enhance 

generalization, allowing them to capture subtle compositional variations in blended oils. In 
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contrast, SVR and PLSR, which rely on linear or kernel-based assumptions, are less effective in 

representing complex spectral-concentration correlations, leading to relatively lower prediction 

accuracy. 

 

Fig. 7 illustrates the prediction results of machine learning models for representative ternary 

blended oils (OSR) composed of olive, sunflower seed, and rapeseed oils, based on various Raman 

features. When dealing with complex mixtures synthesized from three different edible oils, the 

RFR and XGBoost models still exhibit excellent evaluation metrics using all Raman features, 

achieving R2 values of 0.926 and 0.929, respectively. Their relatively low RMSE and MAE values 

further confirm the robustness and reliability of these models in determining the olive oil content 

in ternary oil samples. These results highlight the capability of ensemble learning algorithms to 

capture nonlinear spectral interactions among components in complex mixtures, enabling accurate 

quantification even under overlapping Raman signals. Considering the performance based on 

single Raman feature inputs, peak intensity emerges as the most effective feature, providing higher 

prediction accuracy than other spectral descriptors. This finding suggests that Raman intensity 

conveys richer compositional information than peak area or shift, as it directly reflects the 

concentration of characteristic molecular vibrations related to unsaturation levels in the blended 

oils. Model regression plots of ternary blended oils (OSC), composed of olive, sunflower seed, 

and corn oils, and ternary blended oils (ORC), composed of olive, rapeseed, and corn oils, are 

presented in S. Fig. 9 and S. Fig. 10, respectively. The detailed evaluation indicators for model 

performance in predicting ternary blended oils are summarized in S. Table 5, and corresponding 

5-fold cross-validation results are provided in S. Table 6. Furthermore, Fig. 8 outlines the 

evaluation of machine learning models for quantifying olive oil in three binary and three ternary 

blended oil systems. Among all tested algorithms, the RFR and XGBoost models, which yield high 

R2 and low RMSE values, are identified as the most suitable approaches for the quantitative 

analysis of blended olive oils based on the full set of Raman features. The consistent superiority 

of these models across both binary and ternary systems indicates their strong generalization ability 

and potential for practical application in olive oil authentication and quality control. 

 

Application of SHAP in model explanation for prediction 

To interpret the predictions of the two best-performing models, RF and XGBoost, the SHAP 
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algorithm was employed to rank the importance of Raman features and elucidate their interactive 

effects across various blended oil samples. Fig. 9 presents the SHAP analysis for the RF model 

quantifying olive oil in binary blends. The summary plot for the OS blend indicates that the top 

two features, I1156 and I1265, exert the most significant influence on the model output. A higher 

value of I1156 increases the predicted olive oil content, whereas a higher value of I1265 decreases 

it. This inverse relationship is further illustrated in the dependence plot, showing that low I1156 

coupled with high I1265 yields negative SHAP values. These observations are consistent with the 

distinct compositions of olive and sunflower seed oils14,20,21. The strong Raman signals at 1156 

and 1526 cm-1 originate from β-carotene, which is unique to olive oil, leading to a higher estimated 

content. Conversely, olive oil is richer in oleic acid, while sunflower seed oil contains more linoleic 

acid, resulting in weaker Raman intensities at 1265 and 1658 cm-1 for olive oil. Thus, high values 

at I1265 and I1658 indicate a lower proportion of olive oil. Similarly, in the SHAP analysis for OR 

and OC blends, I1526 attributed to β-carotene was identified as the most contributive feature. 

Furthermore, the SHAP analysis of the XGBoost model, as depicted in S. Fig. 11, highlighted the 

importance of I1156 and I1526 in quantifying binary blends, corroborating the findings from the 

RF model. 

 

The SHAP analysis for ternary blended oils revealed that I1265 is critical to the RF model 

quantification of olive oil (Fig. 10). Specifically, lower values of I1265 consistently contributed to 

a higher predicted olive oil content across all ternary blends (OSR, OSC, and ORC). This inverse 

relationship aligns with the characteristically weaker Raman intensity of olive oil at 1265 cm-1 

compared to other oils14,21,29. This consistency across different ternary systems underscores the 

generalizability of I1265 as a key spectroscopic marker for olive oil, even in more complex 

mixtures. The observed phenomenon is potentially associated with its distinct unsaturated fatty 

acid profile (e.g., oleic acid) and is further supported by data in Fig. 1 and S. Table 10. While the 

interaction between I1265 and other features (e.g., I1156, I1526) on the SHAP value appeared 

complex and less distinct, even subtle variations at I1265 proved to be highly important for the 

quantitative analysis of multicomponent olive oil blends. This suggests that the model successfully 

captures nuanced compositional changes that may be critical for accurate quantification in 

complex matrices. This finding was corroborated by the XGBoost model, whose SHAP analysis 

also underscored the significant impact of I1265 on the predicted olive oil content in ternary 
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systems (S. Fig. 12). The consensus between the RF and XGBoost models not only validates the 

predictive power of I1265 but also enhances the overall credibility of the SHAP-based 

interpretation. 

 

Method validation with commercial BO 

 To validate the practical applicability of the models, five different commercial blended oil 

samples comprising other edible oils and olive oil at a 95:5 ratio were quantitatively analyzed. 

Strikingly, the prediction results from the XGBoost (6.3 ± 1.7%) and RF (6.9 ± 1.6%) models, 

when using all Raman features, were in close agreement with the actual value (5%), significantly 

outperforming SVR and PLSR (Fig. 11a). The high accuracy achieved by both RF and XGBoost 

on commercial samples, which inherently contain complex matrix effects absent in prepared 

laboratory samples, strongly validates the robustness and practical potential of the proposed 

analytical framework. Notably, the prediction from the PLSR model (4.1 ± 1.1%) was slightly 

lower, highlighting that conventional linear models may struggle with the nuanced spectral 

contributions in such complex mixtures. These findings serve to emphasize the paramount 

importance of model selection to a certain degree. Furthermore, the significant differences in 

predictions resulting from different feature sets suggest that the optimal fingerprint of Raman 

features is essential for unlocking the full potential of the spectroscopy technique for quantitative 

analysis. While the five commercial blended oil samples provided a meaningful real-world test, 

their small size and limited concentration coverage constrain statistical power and leave the 

quantitative accuracy partially unverified across the full gradient. Future work should include a 

larger and more concentration-diverse external set to rigorously assess robustness. Finally, SHAP 

analysis of the RF and XGBoost models on the commercial samples (Fig. 11b and 11c) revealed 

consistent feature importance rankings, with I1156, I1526, and I1265 being the most influential. 

The stability of this key feature set across both models and its successful application to a real-

world sample greatly enhance the credibility of our interpretable machine learning approach and 

pinpoint the most reliable spectral markers for future applications. 

 

In conclusion, this study establishes a novel Raman spectroscopy framework integrated with 

machine learning for the authentication and quantification of olive oil in blended products. By 

analyzing four pure oils and six custom-blended samples (binary and ternary), key spectral features, 
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including peak intensity, peak area, area ratio, and full width at half maximum, were identified as 

effective discriminators. Multivariate analysis (HCA and CA) not only visualized the sample 

clustering but also revealed feature trends correlated with olive oil content. Among the 

chemometric models evaluated, tree-based ensemble methods (RF and XGBoost) demonstrated 

superior performance over SVM and PLS in both classification and regression tasks. Notably, 

Raman peak area was found to be a highly effective alternative to the conventional use of peak 

intensity, potentially offering greater robustness. The innovative application of the SHAP 

algorithm provided critical interpretability, identifying I1156, I1526, and I1265 as the most 

impactful features for prediction, which aligns with the unique biochemical composition of olive 

oil (e.g., β-carotene and fatty acid profile). The successful quantification of olive oil in various 

commercial blends further validated the practical applicability and accuracy of our approach. 

 

While the proposed method shows significant promise, the scope of this study, particularly the 

limited number of ternary blends, suggests a need for validation with a larger and more diverse 

sample set encompassing different olive varieties, geographical origins, and adulterants to ensure 

global applicability. Future work will focus on expanding the spectral library and translating the 

optimized models for use with portable Raman spectrometers. This direction holds strong potential 

for on-site, rapid screening in supply chains, enhancing quality control and combating fraud in the 

edible oil industry. The findings underscore the value of combining spectroscopic fingerprints with 

explainable machine learning for non-destructive food analysis. 

 

Methods 

Sample preparation 

Forty types of edible vegetable oils from various brands and manufacturers were purchased from 

local markets in Wuhan, China, and the corresponding label information is provided in S. Table 7. 

Four types of pure oils are included: olive oil (OO), sunflower seed oil (SO), rapeseed oil (RO), 

and corn oil (CO). All olive oils used are extra virgin olive oil. Five commercial blended oils (BO), 

composed of other edible oils and olive oil in a 95:5 volume ratio, were also used as the reference 

for method validation. As shown in S. Table 8, three types of binary blends, including olive-

sunflower seed oil (OS), olive-rapeseed oil (OR), and olive-corn oil (OC), were prepared with 

olive oil content ranging from 0% to 100% (v/v) in 10% increments, resulting in a total of 11 mixed 
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samples for each blend. Five sets of parallel samples were prepared for each binary mixture by 

blending OO1-OO5 with other edible oils (e.g., SO1-SO5, RO1-RO5, CO1-CO5), respectively. 

Additionally, in S. Table 9, three types of ternary blends, including olive-sunflower seed-rapeseed 

oil (OSR), olive-sunflower seed-corn oil (OSC), and olive-rapeseed-corn oil (ORC), were prepared 

with olive oil content ranging from 0% to 30% (v/v) in 5% increments, producing a total of 35 

mixed samples for each adulteration, based on the composition of the other two edible oils. Three 

sets of parallel samples were prepared for each ternary mixture by blending OO1-OO3 with other 

edible oils (e.g., SO1-SO3, RO1-RO3, CO1-CO3), respectively. 

 

For sample preparation, the corresponding volume of pure oils was pipetted into dry, clean beakers 

and thoroughly mixed using an ultrasonic oscillator (DL-480E, Shanghai Five Phase 

Instrumentation Co., Ltd., China). The blended oils, with a final total volume of 5 mL, were then 

stored in 10 mL glass vials at 4°C in a refrigerator for subsequent analysis. A 1 mL aliquot of each 

oil sample was transferred to a quartz cuvette for Raman spectroscopy measurements. All oil 

samples were prepared in triplicate and analyzed within three days of preparation. 

 

Raman measurements and data treatment 

Raman spectra from different oil samples were acquired using a microscopic Raman spectrometer 

(MR-3CHANNELS, Shanghai Oceanhood Technology Co., Ltd., Shanghai, China). A 532 nm 

laser with 100 mW power, a line width of less than 0.2 nm, and a 10x optical objective lens were 

applied to obtain Raman spectra in the range of 200 to 3600 cm-1, with a spectral resolution of 16 

cm-1. All measurements were performed at room temperature with an integration time of 1 s, and 

each oil sample was scanned three times to obtain an averaged spectrum. The Raman laser was 

positioned at three randomly selected points on the surface of the quartz cuvette, and ten Raman 

spectra were collected at each position. In total, 90 Raman spectra were obtained for each class of 

oil samples, resulting in 46,800 spectra across all studied samples.  

 

The peak at 884 cm-1, corresponding to ethanol, was used for the calibration of Raman shifts. 

Preprocessing steps such as baseline correction and denoising30 were applied to eliminate 

fluorescence background interference and instrument noise, thereby improving the signal-to-noise 

ratio of the raw Raman spectra. In the Raman spectra of pure and blended oils, several features, 
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including normalized peak intensity (I), peak area (A), peak area ratio (R), and full width at half 

maximum (F), were extracted at specific Raman shifts, such as 1156, 1265, 1526, and 1658 cm-1. 

These values are recorded in S. Table 10. The peak at 1440 cm-1, attributed to the deformation 

vibration of the –CH₂ group, was selected to normalize the Raman spectra and correct for spectral 

intensity differences19,20. The normalized peak intensity was calculated as the ratio of the 

characteristic peak intensity to the intensity at 1440 cm-1. The peak area was estimated as the area 

enclosed by the characteristic peak and the baseline on the spectrogram, while the peak area ratio 

was defined as the ratio of the characteristic peak area to the total area of four main peaks 10. Full 

width at half maximum was determined by the distance between the two points of the characteristic 

peak at half the peak height31,32. The area under the characteristic spectral peaks was determined 

via numerical integration. A linear baseline was established for each peak by connecting manually 

selected start and end points in the adjacent valley regions. After baseline subtraction, the net peak 

area was calculated by integrating the signal intensity across the peak range using the trapezoidal 

rule implemented in MATLAB R2021a. For overlapping spectral features, peak deconvolution was 

performed using the Gaussian-Lorentzian (Voigt) peak fitting function prior to individual area 

calculation. 

 

Machine learning  

In the pure oil samples, HCA and heatmap visualization33 were applied based on clustering patterns 

to reveal key differentiated features associated with oil types. For binary blended oils, HCA was 

combined with CA34 to explore changes in Raman features with increasing olive oil content and 

examine the relationship between olive oil proportion and various Raman features. Machine 

learning algorithms, including SVM, PLS-DA, RF, and XGBoost, were employed to discriminate 

among multiple oil samples, including four pure oils, three binary blends, and three ternary blends, 

based on different sets of Raman features. These regression models were also used to predict the 

olive oil mixing ratio in binary and ternary blends. The principles and procedures for these machine 

learning models were described in the literature12-15. For model development, the spectral data 

from ten types of oil samples, including four pure oils, three binary blends, and three ternary blends, 

were randomly split at an 8:2 ratio into training and testing sets for classification. The split was 

stratified to maintain the class distribution (i.e., the proportion of each oil type) across both the 

training and test sets, ensuring a representative evaluation. Similarly, the spectral data 
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corresponding to each mixture proportion in the three binary and three ternary blended oils were 

randomly divided at the same 8:2 ratio and used as the training and testing sets for prediction 

models. A stratified sampling strategy was also applied to both binary and ternary blended oils, 

covering the full range of their respective mixing ratios. These preprocessed and structured datasets 

provided a solid foundation for the subsequent development of classification and prediction 

models. A 5-fold cross-validation strategy was employed to perform internal validation of the 

models. Five evaluation metrics, including accuracy, precision, recall, F1-score, and specificity, 

were used to assess the model performance for oil type classification. For the quantification of 

blended oils, R2, RMSE, and MAE were used to evaluate model performance. Additionally, the 

SHAP algorithm17 was applied to identify key Raman features that significantly influence model 

predictions. All data treatments, including machine learning models, HCA, CA, and SHAP 

algorithms, were performed using Python 3.9 (available at https://www.python.org/), while 

scientific plotting was accomplished using GraphPad Prism version 9.0. 
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Figure and Table Legends: 

Fig. 1: Average Raman spectra of various oil samples. (a) Four pure edible oils: olive oil (OO), sunflower 

seed oil (SO), rapeseed oil (RO), and corn oil (CO), showing differential Raman feature bands; (b) Binary 

blended olive-sunflower seed oils (OS) at different mixing proportions; (c) Ternary blended oils (OSR) 

composed of olive, sunflower seed, and rapeseed oils at varying mixing proportions. 

 

Fig. 2: HCA and heatmap visualization of Raman features for various pure oils. (a) Peak intensity (I); 

(b) Peak area (A); (c) Peak area ratio (R); (d) Full width at half maximum (F). 

 

Fig. 3: Differences in Raman features of binary blended olive-sunflower seed oils (OS). (a) Hierarchical 

cluster analysis (HCA); (b) Correlation analysis (CA) between olive oil content levels and Raman features. 

 

Fig. 4: Confusion matrices of model classification based on Raman features of pure and blended oils. 

 

Fig. 5: Performance of machine learning models based on different Raman features for the 

classification of pure and blended oils. Evaluation metrics of (a) SVM, (b) PLS-DA, (c) RF, and (d) 

XGBoost. 

 

Fig. 6: Representative regression plots of machine learning models for binary blended olive-sunflower 

seed oils (OS) based on various Raman features. 

 

Fig. 7: Representative regression plots of machine learning models for ternary blended oils (OSR) 

composed of olive, sunflower seed, and rapeseed oils based on various Raman features.  

 

Fig. 8: Evaluation of machine learning models for predicting the olive oil content in mixtures. Bars 

represent the R² values, and symbols represent the RMSE values in the combined plot. 

 

Fig. 9: SHAP summary plots of the RF model for binary blended oils, including OS, OR, and OC. 

SHAP dependence plots show the interaction between the top two Raman features based on peak intensity 

(I). 

 

Fig. 10: SHAP summary plots of the RF model for ternary blended oils, including OSR, OSC, and 

ORC. SHAP dependence plots show the interaction between the top two Raman features based on peak 
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intensity (I). 

 

Fig. 11: Model validation with commercial BO. (a) Content predictions based on various Raman features, 

and SHAP waterfall plots of the (b) RF model and (c) XGBoost model. 
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