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Abstract

Lithocarpus litseifolius (sweet tea) is a medicinal and edible plant rich in flavonoids and
essential nutrients, with potential as a hepatoprotective beverages and natural sweetener. Although
widely cultivated across several provinces in China, the quality and consistency of its raw material
remain poorly regulated. To address this, 163 samples (n > 18) from 7 main producing regions
were analyzed for 22 functional compounds, 4 stable isotope ratios, and 49 multi-element to
discriminate cultivation practices and geographical origins. Orthogonal partial least squares
discriminant analysis (OPLS-DA) successfully generated prediction models across two cultivation
regions. Integrating 8 machine-learning algorithms with multi-level data fusion identified 6 key
variables—caffeine, Rb, Ce, 6"°N, Sr, and 3"-O-acetylphlorizin. Five base learners built on these
variables were then combined via soft-voting ensemble learning, yielding an optimal origin
classifier with 100.00% accuracy. Additionally, the study delivered the first comprehensive
analysis of quality variations in sweet tea and identified seven primary influenced environmental
factors, offering insights into cultivation strategies and quality formation mechanisms.

Keywords: Lithocarpus litseifolius (sweet tea), Geographical origin, Cultivation practice,
Functional compounds, Stable isotope ratio, Multi-element, Environmental factors.



Introduction

Lithocarpus litseifolius (commonly known as “sweet tea”), a newly popular tea beverage in
China and a member of the Fagaceae family, has gained significant attention for its distinctive
bioactive and nutritional properties 2. The species has a long history of use as both food and
medicine, first documented during the Northern and Southern Dynasties (AD 423) 3. At Jinyun
Mountain in Chongqing, local monks have harvested wild sweet tea since the temple’s
establishment, crafting it into a highly prized beverage long celebrated by visitors for its good taste
3. Historical records in classical pharmacopoeias such as the Dictionary of Chinese Materia
Medica (Zhong Hua Ben Cao) describe the health benefits of long-term consumption of sweet tea
4. Over centuries, sweet tea has also become deeply embedded in the tea culture of ethnic
communities across Hunan, Jiangxi, Yunnan, and Guizhou, where it is traditionally consumed as
“Immortal Tree” . Meanwhile, its derivatives—including sweet tea pastries and candies—are
popular regional specialties. Modern studies have revealed that its leaves are rich in
dihydrochalcones, particularly phloridzin and trilobatin, which exhibit notable antioxidant activity
and potential metabolic health benefits 2. These compounds also serve as abundant natural
sweeteners, with a sweetness approximately 300 times greater than that of sucrose and only one
three-hundred of its caloric content >6, Owing to these properties, sweet tea, often referred to as
the “Cordyceps sinensis on a tree” and “The best tea under heaven”, was officially approved as a
new food ingredient by the Chinese National Health Commission in 2017, and its extracts
subsequently entered clinical trials for type 2 diabetes management in 2025 *7. In recent years, the
diversification of downstream products and growing pharmaceutical interest have driven a sharp
rise in market demand and prices. Despite this promising growth, the raw-material supply chain
remains fragmented. Geographic labeling, quality grading, and pricing are often inconsistent, and
the absence of standardized quality criteria has enabled fraudulent practices such as origin
mislabeling, adulteration, and confusion between cultivated and wild sources. These deficiencies
undermine product authenticity and erode consumer trust, underscoring the need for robust,
verifiable systems to authenticate geographical origin and to discriminate cultivation practices.

In recent years, targeted metabolomics combined with machine learning has been
increasingly used to determine the geographical origin of foods and agricultural products. Several
analytical techniques, such as high-performance liquid chromatography (HPLC), gas
chromatography—mass spectrometry (GC—MS), and ultra-performance liquid chromatography—
mass spectrometry (UPLC—MS), have been developed for this purpose. For example, Bajoub et al.
effectively traced the geographical origin of “Picholine Marocaine” olives from seven regions
across Morocco by quantifying 25 phenolic compounds ®. However, these methods primarily focus
on bioactive molecules such as flavonoids, whose content is highly susceptible to annual climate,
agronomic practices, and plant physiological states, exhibiting significant dynamic fluctuations.
This results in single-metabolome-based traceability models potentially overlooking relatively
stable "static" chemical variations shaped by regional geological history and long-term
environmental stresses, which are precisely the core elements that form difficult-to-counterfeit



geographical fingerprints. Meanwhile, stable isotope ratios and multi-element profiles, based on
geochemical principles, have also been widely recognized as reliable indicators for origin
authentication. These methods have been successfully applied to various products, including
Slovenian strawberries, green coffee beans and Tetrastigma hemsleyanum °!'. Particularly, the
distribution patterns of rare elements and geochemical indicators such as Sr directly reflect the
parent rock composition and long-term weathering processes of the soil at the origin, forming a
unique and stable imprint akin to "geological DNA," significantly increasing the difficulty of
forgery '>13. Moreover, these methods exhibit limited resolution at small geographical scales, show
weak sensitivity to cultivation practices, and provide little information related to product quality,
such as sensory attributes or bioactive components. Consequently, relying on a single analytical
source is often insufficient to capture the full complexity of chemical information, resulting in
weaker sample differentiation, reduced model robustness, and lower classification accuracy.

To date, integrating multi-source data has therefore emerged as a promising strategy . For
instance, combining functional compound profiles with elemental fingerprints in Angelica sinensis
achieved 100.00% accuracy in origin discrimination and enabled prediction of key bioactive
components '°. Similarly, fusing stable isotope, elemental, and starch composition data with
ensemble learning in Euryale ferox Salisb. identified ten key markers and established a highly
reliable origin-tracing model '¢. Such multi-source data fusion approaches, particularly when
coupled with advanced machine learning algorithms, can address the challenges of high-
dimensional datasets and exploit the complementary strengths of different analytical platforms.
However, studies applying these multivariate data fusion methods to sweet tea remain scarce. In
addition, the variables contributing most to geographical differentiation and model prediction
accuracy have not yet been identified. Evaluating the relative importance of variables such as
functional compounds, stable isotope ratios (SIRs), and multi-element profiles is therefore
essential. Moreover, these characteristics in sweet tea are strongly influenced by environmental
factors !7. Further research is needed to elucidate how environmental drivers shape the chemical
composition of sweet tea.

Hence, this study pursued the following objectives: 1) Comprehensively characterize the
functional compounds, stable isotope ratios, and multi-element of sweet tea from different origins
in China and build a multi-source database; 2) Discriminate cultivation practices of sweet tea and
identify key agricultural factors; 3) Develop origin identification models by integrating functional
compounds, stable isotope ratios, and multi-element through multi-source data fusion algorithms,
and identify key discriminative variables; 4) Investigate the influence of environmental factors on
key variables across different sweet tea.

Results and discussion

The analysis of functional compounds, stable isotope ratio and multi-element in sweet tea
leaves

22 functional compounds (Dataset I) were used to analyze the quality differences of sweet tea



leaves from different origins. These included 3 nutritional indicators (AA, CAF, and Tp), 8
characteristic quality compounds of sweet tea leaves (Phz, Trb, Hpz 3, Gpt 2, Oapz_3, Oapz_2,
Gua, and Pht), and 11 organic acids (PA, DA, GA, Dih, Esc, Tar, Cit, Fum, SuA, CA and THBA).
Additionally, 4 SIRs (§°H, §'%0, §'3C, and §'°N) and 49 elements (Na, Mg, Al, K, Ca, Ti, Mn, Fe,
Zn,Ba, L1, Be, B, P, S, V, Cr, Co, Ni, Cu, Ga, As, Se, Rb, Sr, Y, Mo, Ag, Cd, In, Sb, Cs, La, Ce, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, T1, Pb, and Bi1) (Dataset II) were combined to predict.
The detailed contents of functional compounds, SIRs, and multi-element are provided in Tab. S3-
Ss.

Fig. 1 Boxplots of the 22 functional compounds in sweet tea from different origins (A); PCA analyses of the
samples based on functional compounds, including all origins (B), HNZJ versus HNZJP (C), and JXAF versus
JXAFP (D). In plot B-D: Three PCAs were plotted along with their variable contribution. The variables are
represented by arrows, with the direction, color and length of the arrows reflecting each variable’s contribution

to the respective principal components.

The functional compound of sweet tea leaves from different origins

Significant differences were observed in the concentrations of 22 functional compounds
across the seven production regions (p < 0.01, Welch’s test; Fig. 1A; Tab. S3). Among the three
nutritional indices, AA showed the highest levels in HNZJP (21095.8 + 1098.8 ng/g), while CAF
and Tp were most abundant in HNZJ (40612.6 + 5671.9 ng/g) and JXAFP (105293.8 + 19746.7
ug/g), respectively. The geographical variation in secondary metabolites of sweet tea not only
represents a chemical adaptation to stressful environments but may also reflect stable chemotype
differentiation formed under phylogenetic constraints among distinct evolutionary lineages. This
study focuses on dihydrochalcone compounds Phz and Trb, whose biosynthetic pathways may
represent key traits evolved in specific Lithocarpus lineages !. The extremely high Phz
accumulation observed in the YNGN population (135,166.6 = 37,246.9 pg/g), together with the
high Trb accumulation in HNZJP, likely represents two genetically distinct chemotypes. The
YNGN chemotype is plausibly linked to the long-term evolutionary history of this region as a



major refugium during the Quaternary glaciation. Owing to its complex topography, the Yunnan—
Guizhou Plateau provided stable microenvironments during glacial periods, allowing many
species to persist in geographic isolation and evolve independently '8, Similarly, Lithocarpus
litseifolius populations in this region may have experienced prolonged isolation, leading to the
genetic fixation of metabolic pathways favoring high Phz synthesis. Consequently, the distinctive
dihydrochalcone profile of the YNGN population is more likely to reflect long-term evolutionary
history rather than direct responses to present-day climatic conditions, supporting the view that
chemical diversity is shaped by phylogeographic processes 2. In contrast, wild populations from
non-refugial regions showed consistently low Trb contents (HNZJ: 10,510.4 + 6,439.6 pug/g; JXAF:
1,945.8 £ 2,413.7 pg/g), which may reflect genetic constraints associated with populations
established through post-glacial expansion from refugia '¥. Notably, all cultivated samples in this
study (HNZJP and JXAFP) were derived directly from their corresponding local wild populations,
with no interregional germplasm exchange and an average tree age of approximately five years.
Under cultivation, Trb concentrations increased markedly by 2-10 fold (HNZJP: 23,580.4 +
20,539.2 ng/g; IXAFP: 18,218.6 £ 16,944.4 ng/g), clearly demonstrating that cultivation practices
can strongly enhance Trb biosynthesis even under the same genetic background 2!. These results
indicate that the high-Trb chemotypes observed in cultivated populations primarily reflect the
activation of inherent metabolic potential under optimized growing conditions. Therefore, the
geographical variation of Trb arises from the combined influence of genetic background and
environmental induction. Given that Trb is a high-value natural sweetener and that efficient
synthetic production routes are currently unavailable 2!, cultivation strategies tailored to local
genetic resources offer a practical and traceable approach to enhancing the industrial value of
regional sweet tea. Hpz 3 levels were significantly higher in JXAF (5345.9 + 1321.1 pg/g) and
JXAFP (6517.7 £ 1748.0 pg/g). Gpt_2 reached its highest concentration in YNGN (1227.3 £299.3
ug/g). Oapz 3 was significantly elevated in HNXP (2781.9 + 928.0 pg/g), while Oapz_2 peaked
in HNZJ (5233.4 + 930.2 ng/g). Notably, both Oapz 3 (308.4 + 240.6 ng/g) and Oapz_2 (541.4 +
723.2 ng/g) showed the lowest levels in YNGN. Gua content was highest in HNXP (172.8 &+ 98.5
ug/g). Pht, a key downstream metabolite of Phz and Trb 2%}, was also significantly higher in
YNGN (291.5 +343.4 pg/g). Organic acids, amino acids, total phenols, and flavonoids are known
to strongly influence the sensory quality of tea 2*. Among the 11 organic acids analyzed, DA and
GA were significantly higher in GZSQ (32.2 + 5.7 and 8.7 + 3.2 ug/g, respectively), while SuA
was most abundant in JXAFP (198.7 £ 77.9 ng/g). CA showed notably higher levels in HNXP and
HNZJ. Seven other organic acids—PA, Dih, Esc, Tar, Cit, Fum, and THBA—were significantly
enriched in JXAF (6.4 + 1.2, 25.5 £ 9.3, 56.3 £ 9.7, 367.8 + 249.7, 3831.3 + 1622.0, 1278.3 +
210.6, and 1.3 + 0.2 ng/g, respectively). These pronounced regional differences in organic acid
composition contribute to the distinct sensory characteristics of sweet tea from JXAF, underscoring
its unique quality attributes.

The PCA plot on Dataset I showed weak regional separation. The first two components
explained 38.7% of total variance. Within-province separation was minimal. HNXP, HNZJ and
HNZJP overlapped extensively (Fig. 1B). Discrimination by cultivation practice within region was
limited. All HNZJP points fell inside the HNZJ confidence ellipse. JXAF showed slightly greater
separation from JXAFP, for that pair the first two components explained 52.3% of variance.
Separation remained unclear (Fig. 1C, D). These findings indicate a need for richer data
dimensions. Stronger machine learning approaches are required to enhance classification accuracy.



The stable isotope ratios and multi-element of sweet tea leaves from different origins

Similarly, as shown in Fig. 2, significant differences (p < 0.01, Welch test) were observed in
4 SIRs and 49 elemental concentrations in sweet tea leaves across the seven production regions.
Regarding SIRs, the 6'3C values of sweet tea samples ranged from —33.550%o to —26.877%o. Based
on its taxonomic classification within the genus Lithocarpus and the C3 photosynthetic
characteristics of Fagaceae, as well as its origins in humid subtropical montane forests , this
species is considered a typical C3 plant 2. The selective pressure exerted by environmental factors
plays a crucial role in influencing the 8'*C values of sweet tea populations—higher temperatures
and lower light conditions are associated with more negative §"*C values *°. Among them, the
JXAF sample site has the lowest average elevation (148 m), the shortest annual sunshine duration
(1,514 hours), and the highest average annual temperature (18.4°C), and its 6'*C value is also the
most negative (-31.68 = 0.951%o). The 8'*C values of wild sweet tea samples from Hunan and
Jiangxi are significantly higher than those of cultivated samples (HNZJP: -28.03 = 0.516%o vs.
HNZJ: -29.32 £ 0.767%o0; JXAF: -31.68 + 0.951%o vs. JXAFP: -29.24 + 0.547%o), indicating that
cultivation practices such as fertilization optimize the photosynthetic structure and stomatal
conductance of sweet tea by altering soil fertility 26, ultimately improving the water use efficiency
(WUE) of high-Trb potential chemotype populations—a positive phenotypic plasticity response
27 At the same time, the results also reflect that specific chemotypes exhibit different water use
strategies. The 8'*C values of YNGN show no significant difference from those of the HNZJ
population, despite the stark differences in their hydrothermal conditions (Fig. 2A; Tab. S1). This
suggests that the dominant factor in their WUE differences may not be contemporary climate but
rather a deeper genetic background that determines carbon-water balance strategies. This inference
further supports the notion that the formation of the high-Phz chemotype in YNGN is a deep
adaptation to historical stress environments. Plant 6'°N values responded significantly to fertilizer
application frequency and type 2® and were closely associated with the biosynthesis of Phz, the key
bioactive compound in sweet tea 2. The highest §'*N value was observed in the HNZJP sample
(4.067 = 1.850%0), which received two equal applications of base and topdressing fertilizers
annually. This value was significantly higher than that of wild samples from the same region
(HNZJ: 0.378 + 1.502%o0). In contrast, the JXAFP sample, fertilized only once per year, showed
only a slight increase in 6'°N (—0.336 + 1.947%0) compared to JXAF (—1.569 + 1.185%o). The
lowest 0'°N value was recorded at the GZSQ (—4.100 + 0.841%0). The 6°H and 6'0 values
primarily reflect regional hydrological and environmental conditions and are independent of
cultivation practices %°. The highest §*H value was observed in JX (—=82.95 + 13.41%o), which was
significantly higher than that in HN (—106.1%o to —103.1%o), mainly due to its lower altitude,
higher temperature, and greater precipitation. Unexpectedly high 6*H values were recorded in
YNGN (—89.87 = 7.801%0) and GZSQ (—75.74 + 5.498%0), despite their higher elevations and
lower rainfall. This anomaly suggests a predominant influence of soil groundwater as the primary
water source ¥. The spatial distribution of §'80 resembled that of 8°H but exhibited weaker
regional variation. The highest 6'*0 value was found in GZSQ (25.08 + 0.739%o).

The beneficial elements (BEs) detected included Na, V, Se, Co, Ti, and Ni, while the essential
elements (EEs) consisted of Mg, B, K, Mo, S, Mn, Fe, P, Zn, and Ca (Fig. 2B). Among the EEs,
K, Ca, and Mg were the most abundant, with the highest levels observed in JXAF (12615.9 +
1880.6 mg/kg), YNGN (9591.0 £ 7645.5 mg/kg), and HNZJ (1836.5 + 409.8 mg/kg), respectively.
Se (0.030-0.310 mg/kg) and Mo (0.016—0.063 mg/kg) showed the lowest concentrations among

BEs and EEs, respectively. Samples from the red soil region % of JX exhibited significantly higher



Fe and Mn contents than those from other regions. The Fe content in JXAF reached 436.6 + 119.7
mg/kg, twice that of JXAFP. A total of eight heavy metal elements (HEs) included Ag, As, Cd, Cr,
Cu, Ga, Pb, and Sb were analyzed. Cu showed the highest concentration (6.9—10.9 mg/kg) among
HEs but did not reach the level indicative of a hyperaccumulator 3. It was followed by Pb (0.5 +
0.3—-4.1+1.2mg/kg) and Cr (0.6 0.3 — 2.7 + 0.8 mg/kg). Sb levels were consistently low across
all regions, with YNGN showing the lowest value (0.049 £+ 0.025 mg/kg). Samples from JX had
significantly higher As, Ga, Pb, and Ag levels, with Pb in JXAF (4.1 £ 1.2 mg/kg) exceeding that
of other provinces by 4-fold. However, this was not associated with significant suppression in the
contents of Phz and Trb (Fig. 1). According to the US EPA safety thresholds for heavy metal
concentrations %2, the average levels of all HEs in sweet tea leaves from every region were below
the limits, reflecting both geological characteristics and indicating that sweet tea is a safe raw
material with low heavy metal accumulation potential. 15 rare earth elements (REs) were detected,
the distribution of which is largely determined by local ore deposits 3. The highest total RE content
was found in JXAFP, followed by JXAF. The RE content in sweet tea was dominated by Ce (0.070
+0.022 — 2.744 + 0.913 mg/kg), La (0.060 + 0.027 — 3.568 + 2.357 mg/kg), Nd (0.041 £ 0.015 —
2.825 + 1.815 mg/kg), and Y (0.035 £ 0.017 — 1.260 £ 0.603 mg/kg), while the remaining REs all
showed maximum concentrations below 1 mg/kg. Results for other elements (OEs) are also shown
in Fig. 2B. Rb exhibited the greatest variation among regions (11.9 = 4.4 — 71.1 = 19.8 mg/kg),
with the highest level detected in JXAFP.

The results of the PCA based on Dataset II are presented in Fig. 2C. The first two principal
components collectively explained 56% of the total variance. Samples from the same region
showed highly overlapping distributions, indicating that PCA alone was unable to clearly
discriminate sweet tea samples from different geographical origins. Similarly, the model exhibited
limited ability to distinguish between agricultural practices (Fig. 2D, E). Therefore, further
application of machine learning methods, integrated with features from additional dimensions, is
necessary to construct an effective origin traceability model for sweet tea.
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Fig. 2 Boxplots of the 4 SIRs in sweet tea from different origins (A); Cluster heatmap of 49 multi-element from
different origins (B); PCA analyses based on SIRs and multi-element profiles, including all origins (C), HNZJ



versus HNZJP (D), and JXAF versus JXAFP (E). In plot B: The color gradient in the heatmap ranges from green
(-2) to red (2), indicating normalized values for the relative abundance level of the factors. The shade of the color
reflects the magnitude of the value, where green represents lower values and red represents higher values. In plot
C-E: Three PCAs were plotted along with their variable contribution. The variables are represented by arrows,
with the direction, color and length of the arrows reflecting each variable’s contribution to the respective

principal components.
Discrimination of sweet tea cultivation practices and identification of key agricultural factors

Therefore, OPLS-DA was employed to further discriminate sweet tea leaf samples from
different cultivation practices. Generally, a Q(cum) value above 0.5 indicates good predictive
ability, while a value exceeding 0.9 is considered excellent. Meanwhile, R?Y should ideally be
close to 1 **. As shown in Fig. 3A, the OPLS-DA model distinguishing HNZJ and HNZJP
demonstrated excellent performance, with a Q2(cum) of 0.895 (excellent predictive ability) and
R2Y of 0.972 (excellent explanatory power), achieving clear separation between the two groups.
Similarly, the model discriminating JXAF and JXAFP also performed well, with a Q%(cum) of
0.601 (good predictive ability) and R2Y of 0.901 (excellent explanatory power) (Fig. 3D). To
evaluate potential overfitting, 200 permutation tests were conducted for each comparison. In all
cases, the regression line of R remained above zero and was largely higher than that of Q2
supporting the robustness of the model (Fig. 3C, F). A total of seven features with VIP > 1 were
identified in each model (Fig. 3B, E). Most of these were functional compounds, with K being the
only elemental feature (VIPunzs = 1.56; VIPixar = 1.33). This suggests that multi-element and
SIRs are less affected by cultivation practices, whereas functional compounds show significant
improvement. Key variables for cultivation practice prediction included CAF, Phz, Tp, Trb, and
Oapz_2 in both regions. Additionally, Cit was important for distinguishing HNZJP, and AA
contributed notably in JXAFP. Fertilization significantly influenced the levels of Phz (VIPunzs =
3.96; VIPixar = 3.72) and Trb (VIPunzs = 3.72; VIPixar = 2.75). Interestingly, Phz responded in
opposite trends between HNZJ and JXAF under fertilization, whereas Trb consistently increased
across both regions. This indicates that fertilization may affect Phz and Trb through distinct
mechanisms and to varying extents. In summary, OPLS-DA effectively differentiated sweet tea
samples from different cultivation practices within the same geographic origin. The model captures
the metabolic plasticity induced by cultivation practices under the same genetic background, rather
than artifacts caused by germplasm admixture.
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Fig. 3 OPLS-DA results of cultivation practice prediction for samples from Hunan and Jiangxi regions based on
functional compounds, SIRs, and multi-element data. Training and prediction results (A), VIP score in prediction
set (B) and permutation test (C) of HNZJ with HNZJP; Training and prediction results (D), VIP score in
prediction set (E) and permutation test (F) of JXAF with JXAFP. In plot A and D: The dashed ellipses in this
figure are not 95% confidence ellipses. They are only used to illustrate the classification of samples from
different regions. Y-axis zero point divides the graph into left and right regions representing different
geographical areas, while the dispersion along the X-axis indicates the within-group differences of the predicted
samples. In plot C and F: Green dots and lines: Represent the model's explanatory power for the data (R2). The
higher the R2, the better the model fits the data. Blue dots and lines: Represent the model's predictive ability
(Q2). The higher the Q2, the stronger the model's predictive ability and the better its generalization.

Individual dataset and low-level fusion in origin prediction

Datasets I and II were used as inputs for machine learning modeling, with the overall
workflow illustrated in Fig. 6. Model performance metrics and data partition schemes for each
fusion strategy are summarized in Tab. S6. Confusion matrices for test and training accuracies are
presented in Fig. 4 and Fig. S1, respectively. Models based on individual data sources yielded
suboptimal results. Dataset I showed a training error of 8.86 + 3.13%, while Dataset II showed
5.95 £+ 1.84% (Tab. 1). Corresponding test errors were 3.10 + 1.70% and 5.68 + 2.00%, and macro
F1 scores reached 0.97 + 0.02 and 0.94 + 0.02, respectively—values below the desired threshold
for robust traceability models. Model selection prioritized macro F1 as the key indicator of overall
performance, with higher scores reflecting superior accuracy and generalization ability. SVM
performed best with Dataset 1. Training error measured 5.82 + 4.53%, macro F1 achieved 0.98 +
0.02 and test error registered 1.82 + 2.42%. Confusion matrix analysis revealed training accuracy
between 80.0 £ 3.8% and 95.4 + 1.5% for most regions. HNZJ and YNGN showed deviations, this
is likely because the sweet tea from both HNZJ and YNGN exhibits high nutritional quality as well



as similar sensory characteristics. JXAF suffered severe misclassification. Test errors concentrated
in HNZJP and JXAF regions, the reason is the geographical proximity of the origins. Accuracy
values measured 96.0 + 8.0% and 86.7 + 16.3% respectively. Lasso achieved optimal performance
with Dataset II. Macro F1 reached 0.97 + 0.02. Training error measured 4.43 + 3.48%. Test error
registered 3.03 £ 1.92%. Training accuracy ranged from 80.0 + 10.5% to 98.8 £+ 2.5% across most
regions. GZSQ constituted an exception. Most misclassifications involved HNZJ region. Test
errors primarily affected HNXP and HNZJ regions with accuracy values measured 92.0 = 9.8%
and 85.0 = 12.2% respectively. The predictive models based on the two datasets demonstrated
complementary advantages and limitations in terms of performance, highlighting the necessity of
employing data fusion strategies to enhance overall robustness and accuracy. Consequently,
Dataset III was constructed through low-level fusion by directly merging Datasets I and II.
Employing the optimal algorithm, LightGBM, this approach achieved a macro F1 of 1.00, with
test and training errors of 0.00 + 0.00% and 3.66 + 4.18%, respectively, effectively enhancing both
performance and stability of the geographical origin prediction model. The confusion matrix
revealed misclassifications across all regions except GZSQ in the training set, with accuracy rates
ranging from 87.7 £ 7.8% to 99.0 + 2.0%, where JXAF-associated errors were most pronounced.
Although Dataset III - LightGBM demonstrated promising results, the extensive feature set
necessitates further optimization of key features to reduce data dependency, improve model
performance, and enhance economic viability for future origin prediction applications.

Tab. 1 Classification error rate (%) and macro F1 score of best models by Dataset I ~ Dataset V

Approaches Datasets Best model Training set Testing set Macro F1 score
Functional compounds I SVM 5.82 +4.53 1.82+2.42 0.98 £ 0.02
SIRs and Multi-element I Lasso 443 +3.48 3.03+£1.92 0.97 £0.02
Low-level fusion I LightGBM 3.66 +4.18 0.00 £ 0.00 1.00 £0.00
Mid-level fusion v ElasticNet 0.58 £ 1.69 0.00 £ 0.00 1.00 £ 0.00
Extracted features \Y/ Ridge 0.37£1.23 0.00 £ 0.00 1.00 £0.00
High-level fusion \Y/ Multi-models 0.00 £ 0.00 0.00 £ 0.00 1.00 £0.00

Feature extraction and mid-level fusion in origin prediction

Therefore, we employed a combined RFE-SBS approach to obtain a refined yet
discriminative feature combination at relatively low computational cost. This feature extraction
workflow was independently applied to Datasets I, II, and III. The screening process involved
iterative feature set reduction through RFE, selecting the subset achieving minimal classification
error with the fewest features as the optimal feature set (Fig. S1). Subsequently, SBS was initiated
based on this optimal set, following identical iterative optimization rules to derive the final feature
subset, with corresponding screening curves presented in Fig. 4B-D. From Datasets I and II, the
extracted feature combination formed Dataset IV comprising 23 variables (Mg, Zn, B, P, Rb, Sr,
Y, Mo, Sb, 6*C, 6N, &*H, S, CAF, AA, Tp, Hpz 3, Oapz 3, Oapz 2, DA, Tar, Cit, SuA).
Meanwhile, feature extraction from Dataset III yielded Dataset V containing 6 variables (CAF, Rb,



Ce, 6N, Sr, Oapz_3).

In the mid-level fusion approach, ElasticNet applied to Dataset IV achieved a macro F1 of
1.00, accompanied by a training error of 0.00 + 0.00% and the lower error (0.58 = 1.69%),
establishing it as a high-performance prediction model (Tab. 1). The corresponding confusion
matrix revealed that training misclassifications occurred exclusively in the HNZJ and JXAF
regions, with accuracy rates of 98.6 + 2.9% and 95.4 + 6.2%, respectively. Notably, the test set
demonstrated perfect classification accuracy, suggesting a potential tendency toward overfitting.
For Dataset V, Ridge regression similarly attained a macro F1 of 1.00 and a test error of 0.00 +
0.00%, while exhibiting an even lower training error (0.37 + 1.23%) compared to the Dataset IV -
ElasticNet model, thereby emerging as the top-performing approach within the mid-level fusion
framework. The Dataset V - Ridge confusion matrix indicated training misclassifications solely in
the HNZJ and JXAFP regions, with respective accuracy rates of 97.1 + 3.5% and 99.1 + 1.8%.
Although the obtained performance metrics are already exceptional, advanced fusion strategies
such as integrating multiple algorithm outputs through voting systems could potentially reduce the
training error to zero, thereby further enhancing both the robustness and accuracy of the predictive
system.

High-level fusion in origin prediction

This study implemented a soft voting ensemble learning approach, which calculates the
average prediction probabilities from multiple models and selects the geographical origin with the
highest mean probability as the final output. This methodology offers the advantage of balancing
the bias-variance trade-off, thereby enhancing overall robustness and ultimately generating more
conservative and reliable consensus probabilities. Based on feature economy considerations, the
multi-algorithm fusion utilized models derived from Dataset V (6 variables) rather than Dataset
IV (23 variables). Model selection was conducted with a stringent criterion of macro F1 > 0.99,
retaining only high-performance models including Ridge, ElasticNet, RandomForest, KNN, and
SVM to avoid the introduction of noise. Based on these five models, a soft voting ensemble
learning method was employed to construct the most generalized and accurate origin traceability
model in this study. This model combines a lightweight structure (only 6 features), high precision
(training error = 0.00 + 0.00%), and exceptional generalization capability (test error = 0.00 +
0.00%), demonstrating outstanding performance in geographical origin prediction applications
(Tab. 1).



Fig. 4 Evaluation parameters of models (macro F1, test accuracy, training accuracy, MCC, balanced accuracy,

and ROC-AUC (OvR)) (A). Feature extraction curves obtained using RFE-SBS for Datasets I-111 (B-D),
respectively. Confusion matrices for test sets: Dataset | — SVM (E), Dataset Il — Lasso (F), Dataset Il —
LightGBM (G), Dataset IV — ElasticNet (H), Dataset V — Ridge (1), and Ensemble Test (J).

Relationships between the key origin prediction factors with environmental factors

Environmental factors, as potential selective pressures, significantly shape the biosynthesis
patterns of secondary metabolites in sweet tea populations from different geographic origins !”.
Based on 11 environmental variables from each sampling site (Tab. S1), Spearman correlation
heatmap analysis (Fig. 5A) revealed that CAF exhibited strong positive correlation with Tmin (r =
0.61, p < 0.001) and strong negative correlation with MI (r = - 0.59), indicating that its
accumulation is primarily driven by low temperature stress, with secondary influence from water
deficit, this may be a metabolic response to adapt to cold habitats. Oapz_3 demonstrated strong
negative correlations with both MAP (r = - 0.74) and MTCO (r = - 0.74), suggesting that cold and
rainy environments inhibit its accumulation, potentially due to reduced enzymatic conversion
efficiency caused by dilution effects from enhanced transpiration *°. Regarding elemental
composition, Sr showed strong negative correlation with MAP (r = - 0.55). Ce exhibited strong
positive correlations with MTWA, MI and Tmax (r = 0.53 - 0.61), while demonstrating strong
negative correlation with ALT (r = -0.61), its high sensitivity to ALT may reflect regional
differences in the mineral deposits where populations of different geographic origins. The high
sensitivity to altitude reflects regional variations in mineral deposits. Rb displayed strong negative



correlation with DI (r =- 0.64). Among SIRs, 6'°N showed negative correlation with DI (r = - 0.63).
This pattern contradicts previous cross-regional research findings and may indicate a nitrogen
cycling adaptation strategy unique to the study population ¢.

SFS combined with VIF analysis identified seven predictors (ALT, GP, DI, MAP, SH, MTCO,
and Tmin) from eleven environmental candidates for redundancy analysis (RDA) (Fig. 5B)*’. The
RDA ranking results visually demonstrate the spatial differentiation effect of environmental
selection pressure on chemical composition. Correlation coefficients with six key variables ranged
from —0.74 to 0.61. Based on 999 permutations, the model was significant (adjusted R? = 63.74%,
p <0.001), with the first two axes explaining 43.1% and 27.7% of the total variance, respectively.
The ranking results indicate that DI, GP, and MTCO are the dominant environmental gradients,
strongly suggesting that hydrothermal conditions are the primary macro-selective pressures
shaping the adaptive divergence of chemical composition in sweet tea populations of different
geographic origins '*. CAF and Oapz 3 accumulated synergistically, mainly promoted by SH, DI,
and Tmin. This may reflect enhanced biosynthesis of the precursor Phz under intense light, which
elevates Oapz 3 levels *%. Conversely, low temperature may inhibit the conversion of Phz to
Oapz 3, potentially due to reduced chalcone isomerase activity >>*3. CAF accumulation was more
sensitive to low temperature and drought, consistent with the stress-induced shift from growth to
secondary metabolism that increases CAF biosynthesis in Camellia sinensis *°, this can be viewed
as an adaptive metabolic phenotype to cold and dry habitats.

Among elemental and isotopic variables, Sr showed a spatial distribution pattern similar to
CAF, with its bioavailability shaped by the combined influence of modern climate and deep
geological history. The Sr content in YNGN (6.04 mg/kg) is significantly lower than that in
JXAF/JXAFP (10.4 mg/kg), profoundly reflecting their respective geochemical backgrounds: The
red soil region where JXAF/JXAFP is located develops from silicate rock parent material, and the
Sr?* released during weathering is relatively retained in soils with high clay content, leading to a
richer source available for plants *’. In contrast, the YNGN karst region is dominated by carbonate
rocks, where intense dissolution causes Sr** and Ca?* to be rapidly leached away simultaneously,
resulting in an extremely low background level of available Sr in the soil *'*2. The distribution of
REs, represented by Ce, is primarily governed by regional geochemical static fingerprints, with its
fundamental source being the stable soil background reservoir formed through long-term
weathering '2. Although climatic factors such as GP and MAP can regulate the bioavailability of
Ce by altering soil redox conditions, accelerating the Ce**/Ce*" cycle and leading to enrichment
variations !°, they do not fundamentally alter this deep geological imprint. Therefore, compared to
secondary metabolites like Phz and Trb, which respond rapidly to environmental changes, Ce
provides a more stable and traceable geochemical signature. These signatures, derived from
coupled geological-climatic timescales and purely geological timescales respectively, mark the
deep environmental contexts to which different geographic populations have adapted over long
periods, serving as reliable chemical indicators for deciphering their evolutionary history and
geographic origins. Rb distribution was primarily influenced by local microenvironmental
conditions associated with altitude, while its negative correlations with DI and Tmin reflected
topography—climate coupling effects **. In terms of isotope ratios, 8N showed a positive
correlation with ALT and SH, but a negative correlation with the DI and Tmin. This aligns with the
general pattern that high-altitude, high-radiation conditions promote nitrogen isotope fractionation,
while dry and cold conditions favor nitrogen conservation in ecosystems *4, this further supports
the role of local environments related to geographic origins in shaping the nitrogen metabolism of
populations *°. Previous findings revealed that variations in §'N were closely coupled with



cultivation practices and specific metabolic pathways. Specifically, in HNZJP cultivation samples
fertilized twice a year, the accumulation of Trb coincided with 6'*N enrichment, strongly
suggesting that frequent and sufficient nitrogen input not only altered the baseline 6'°N of the soil
nitrogen pool but also likely upregulated nitrogen metabolic flux, directly driving the biosynthesis
of dihydrochalcone compounds derived from phenylalanine ?°. In contrast, JXAFP samples
fertilized only once a year exhibited significantly lower Trb and §'*N accumulation compared to
HNZJP and wild samples. This parallel trend indicates that the degree of 6'*N enrichment can serve
as a potential "isotopic tracer" reflecting nitrogen utilization intensity and the activation state of
specific secondary metabolites (Trb), providing a basis for using 6'°N as an indicator to assess
nitrogen nutrition status and secondary metabolic potential in sweet tea. However, it must be
clearly pointed out that this study is based on sampling from wild and cultivated populations, so
the identified environment-chemical phenotype associations cannot strictly distinguish whether
the underlying mechanism of climate factors' influence on population chemical composition is
phenotypic plasticity or local adaptation. Nevertheless, the spatial distribution pattern of
chemotypes—particularly the extreme, discontinuous high Phz accumulation observed in the
YNGN population, and the strong spatial coupling of this pattern with Quaternary glacial refugia—
strongly suggests that in historically isolated regions like YNGN, the observed chemical
differentiation may more profoundly reflect a genetic adaptation background shaped by long-term
evolutionary isolation and selective pressures. Future research on sweet tea could control
environmental factors through ongoing common garden experiments and integrate population
genomics approaches to ultimately verify the relative contributions of plasticity and genetic
adaptation in environmentally driven chemical variation.
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Fig. 5 Heatmap of the correlation between environmental factors and key variables (A) and RDA analysis of the
key variables constrained by selective pressures from key environmental factors (B). In plot A: Red and blue
represent positive and negative correlations, respectively. The darker the cell color, the larger the absolute value
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of the correlation coefficient, and vice versa. The symbols “*”, “**” and “***” in the cells indicate significant
correlations at the 0.05, 0.01 and 0.001 levels, respectively. Cells without asterisks indicate non-significant
relationships. The combined lines outside the cells represent their clustering trends. In plot B: The scatter points
represent the positions of samples based on the two principal components RDAL1 and RDA2, with different
colors indicating their geographical origin. The 6 key variable vectors selected by the previous optimal origin
traceability model are plotted with red dashed lines, while the seven key environmental factor vectors are plotted
with blue solid lines. The direction represents the direction of maximum contribution, and the length represents



the relative strength of contribution.
Methods

Sampling strategy and climate data origin

Between June and July 2022, a total of 163 mature leaf samples (3 months after sprouting) of
sweet tea were collected from seven major production regions distributed across four Chinese
provinces—Hunan, Jiangxi, Guizhou and Yunnan (23.65 — 27.55 °N, 105.44 — 114.67 °E; Fig. 6,
Tab. S1). Among these, 52 samples were collected from cultivated stands managed with organic
fertilizer (HNZJP, JXAFP), while the remaining 111 samples were obtained from natural or
organically managed stands (HNZJ, HNXP, GZSQ, JXAF, YNGN). All samples were
authenticated as Lithocarpus litseifolius by Prof. Yang Jian (National Resource Center for Chinese
Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China), and voucher
specimens were deposited at the same institution. Following authentication, fresh leaves were
washed, sliced, oven-dried at 50 °C for 36 h to inactivate endogenous enzymes, ground into fine
powder (30-40 mesh), and stored in a desiccator until analysis. The bioclimate factors were
obtained from the Science Data Bank and extracted by the GPS location. In total, the 11
environmental factors included ALT (altitude, m), DI (annual drought index), MI (annual moisture
index), GP (growing season precipitation, mm), MTCO (mean temperature of the coldest month,
'C), MTWA (mean temperature of the warmest month, “C), Tmax (absolute maximum temperature,
’C), Tmin (absolute minimum temperature, °C), MAP (mean annual precipitation, mm), MAT (mean
annual temperature, °C), SH (sunshine hour, hour).
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Fig. 6 Workflow. Sample collection (A), characterization (B) and data-fusion (C).

JXAF, JXAFP, Anfu County, Cultivation basement of Anfu County in Jiangxi Province; GZSQ, Shigian County
in Guizhou Province; HNZJ, HNZJP, HNXP Zhijiang County, Cultivation basement of Zhijiang County, Xupu
County in Hunan Province; YNGN, Guangnan County in Yunnan Province.

Chemicals and Reagents

All elemental standards were supplied by the National Centre for Analysis and Testing of
Non-ferrous Metals & Electronic Materials (China). Multi-element stock solutions (100 ug mL™")
containing Ag, As, B, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Ga, In, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr,
V, Zn along with rare earth element solutions (La, Ce, Pr, Nd, Sm, Eu, Gd, Th, Dy, Ho, Er, Tm,
Yb, Lu) were used for calibration. Major-element standards included K, Na, Mg, P were obtained
as 1 mg mL™" stock solutions, while single-element standards of S, Al, Fe, Ca, and Ti were acquired
at the same concentration. Additional single-element standards for Tl and Y, as well as internal
standards Sc and Rh (all at 100 pg/mL), were included for quality assurance. High-purity acids
included HNOs, HF, and HCI were supplied by CNW (Shanghai Anpu Technology), and HCIO4
was obtained from Feichuan brand (Tianjin Xinyuan Chemical). Ultrapure water was provided by
Watsons (Guangzhou). For combustion analysis, reduced copper granules, tungsten trioxide
(WO:5), and glassy carbon were acquired from Elementar (Germany). Isotopic reference materials,
including B2155 (8"*C = —-26.98 %o, 8"°N = 5.94 %0), USGS40 (8'°N = — 4.52 %o), IAEA-CH-6
(0°C =—10.449 %o), USGS64 (8"*C = —40.82 %0), IAEA-N-2 (6"°N = 20.3 %o), USGS54 (6*H =
— 150.4 %o, 880 = 17.79 %0), USGSS5 (6*H = — 28.2 %o, 6'*0 = 19.12 %o), USGS56 (°H = —
44.0 %o, 0'%0 = 27.23 %o) were obtained from the International Atomic Energy Agency (IAEA,
Vienna). All standards and reagents were used as received from their respective suppliers.
Functional compounds reference materials included phlorizin (Phz), Trilobatin (Trb), 3-hydroxy
phlorizin (Hpz_3), Phloretin 2'-O-glucoside (Gpt 2), 3"-O-acetyl phloridzin (Oapz_3), 2"-O-
acetyl phloridzin (Oapz_2), Guavinoside (Gua), Phloretin (Pht), Protocatechualdehyde (PA),
Protocatechuic acid (DA), Gallic acid (GA), 6,7-dihydroxycoumarin (Dih), Esculin (Esc), Tartaric
acid (Tar), Citric acid (Cit), Fumaric acid (Fum), Succinic acid (SuA), Chlorogenic acid (CA),
2,3,4-Trihydroxybenzoic acid (THBA) and Folin-Ciocalteu reagent were obtained from
Beiterenkang Bio-Technology Co., Ltd. (Beijing, China). Methanol and acetonitrile were LC-MS
grade and purchased from Fisher Scientific (Massachusetts, USA).

Multi-element Analysis

Multi-element analysis was performed using a triple-quadrupole inductively coupled plasma
mass spectrometer (ICP-MS/MS, Agilent 8900). Sample digestion was carried out with the Mars
5 microwave digestion system (CEM Corp, USA) and precise weighing was achieved using an
analytical balance (Sartorius BSA224S-CW). The instrumental operating parameters were set as
follows: RF power at 1550 W, high-purity argon (99.999%) as carrier gas, a concentric nebulizer
with a gas flow of 1.05 L min™', make-up gas at 0.15 L min!, sampling depth of 8.0 mm, and



peristaltic pump speed of 0.3 rpm. For sample preparation, approximately 0.10 g of finely ground
leaf powder (100 mesh) was accurately weighed into a PTFE digestion vessel. After the addition
of 6.0 mL concentrated HNOs, the open vessel was pre-digested at 120 °C for 30 minutes until the
evolution of NOx fumes ceased. Following cooling, the vessel was sealed and subjected to a four-
stage microwave digestion program: 120 °C (ramp 10 min, hold 2 min), 150 °C (ramp 10 min, hold
2 min), 180 °C (ramp 10 min, hold 2 min), and 200 °C (ramp 10 min, hold 20 min). The resulting
digest was evaporated at 180 °C to approximately 0.5 mL, quantitatively transferred to a 25 mL
volumetric flask, diluted with 67% HNO; to volume, thoroughly mixed, allowed to settle, and
finally filtered through a 0.45 um syringe filter to ICP-MS/MS analysis.

Stable isotope ratio analysis

SIR analysis was conducted using an elemental analyzer coupled with isotope-ratio mass
spectrometry (EA/IRMS, Elementar, Germany). Measurements of 8'*C and 6'°N were performed
using a Vario Isotope cube-Biovision system, while 6°H and '*0 were determined using a Vario
Pyro cube coupled to an Isoprime 100 IRMS (TC/EA mode). Sample weighing was carried out
with an analytical balance (Mettler-Toledo XPR106DUH/AC). For 6"*C and 6N analysis,
approximately 5 mg of plant powder was weighed into a tin capsule and introduced into the EA
autosampler. Combustion occurred in a WOs-packed tube at 1150 °C, followed by reduction in a
copper-packed tube at 850 °C under a helium carrier gas (99.999% purity). The resulting CO- and
N: were delivered to the IRMS, with CO: signal attenuation achieved using a CentrION diluter.
IRMS trap currents were set to 100 uA for CO2 and 400 pA for N.. For 8*H and 8'%0 determination,
approximately 0.5 mg of sample was weighed and loaded into the TC/EA autosampler. Pyrolysis
took place in a glassy carbon-packed reactor at 1450 °C under helium carrier gas (99.999%). The
produced H2 and CO were introduced into the IRMS, with a built-in diluter moderating the CO
signal. IRMS trap currents were configured to 200 pA for CO and 400 pA for Ha. Isotopic
compositions were calculated using the standard delta notation: SE (%o) = [(Rsample / Rstandard) — 1]
x 1000, where R represents the ratio of *C/"2C, '*N/“N, 80/**O, or *H/'H. All values were
referenced to VPDB (8'*C), AIR (6'*N), and VSMOW (5'#0, 6°H).

Functional compounds analysis

Each 0.02 g sample of sweet tea powder was extracted with 1.5 mL of 80% methanol and
weighed. The mixture was subjected to ultrasonic treatment for 40 minutes (300 W, 40 kHz). After
cooling, it was weighed again, and 80% methanol was added to compensate for any loss in weight,
followed by centrifugation at 13,000 rpm for 10 minutes. The resulting supernatant was filtered
through a 0.22 pum membrane before injection into the liquid chromatography system.
Chromatographic separation was performed on an ACQUITY UPLC™ BEH C18 column (100
mm x 2.1 mm, 1.8 pm) maintained at 40 °C. The injection volume was 1.0 pL, and the flow rate
was 0.6 mL/min. The mobile phase consisted of 0.1% formic acid in acetonitrile (A) and 0.1%
formic acid in water (B). The gradient program was as follows: 0—1.0 min, 5-25% A; 1.0-3.5 min,



25-40% A; 3.5-4.5 min, 40-60% A; 4.5-5.0 min, 60-5% A; 5.0-7.0 min, 5% A. Tandem mass
spectrometry (MS/MS) was performed using API 6500 system (AB SCIEX, Los Angeles, CA,
USA) equipped with an electrostatic ionization (ESI) source (AB SCIEX). MS analysis for
flavonoid was carried out in negative ionization mode, and the operating conditions were set as
follows: ion source voltage, -5500 V (ESI-); turbo spray temperature (TEM), 550 °C; Curtain Gas
(CUR) flow, 30 L/min; Ion Source Gas (IS) flow, 55 L/min; scanning mode: Scheduled multiple
reaction monitoring (Scheduled MRM). The MS parameters for flavonoid were manually
optimized (Tab. S2). Data acquisition was carried out using Analyst Software 1.6.2 (AB SCIEX,
Los Angeles, CA, USA), and analysis was performed using MultiQuant Software 3.0 (AB SCIEX,
Los Angeles, CA, USA).

Total polyphenol (Tp) was determined according to GB/T 8313-2018. Weighed 0.200 g of
sample. Added 5.0 mL of 70% aqueous methanol preheated to 70 °C. Stirred to ensure complete
wetting. Extracted in a 70 °C water bath for 10 min with brief stirring at 5 min. Cooled to room
temperature. Centrifuged at 3500 r/min for 10 min. Transferred the supernatant to a 10 mL
volumetric flask. Reextracted the residue with 5.0 mL of 70% methanol under the same conditions.
Combined the extracts. Diluted to 10.0 mL with the same solvent. Mixed thoroughly. Filtered
through a 0.45 um membrane to obtain the stock solution. Pipetted 1.0 mL stock into a 100 mL
volumetric flask. Diluted to volume with water. Mixed to obtain the test solution. Transferred 1.0
mL of each gallic acid working solution, water blank, and test solution into separate tubes. Added
5.0 mL Folin—Ciocalteu reagent. Mixed immediately. After 3—8 min added 4.0 mL of 7.5% sodium
carbonate. Brought to volume with water. Shook thoroughly. Stood at room temperature for 60
min. Measured absorbance at 765 nm. The analysis of Caffeine (CAF) was performed according
to GB/T 8312-2013. Weighed 1.5 g of sample. Added 200 mL of boiling distilled water. Extracted
in a boiling water bath for 45 min with shaking every 10 min. Performed hot vacuum filtration.
Rinsed the residue 2-3 times with small volumes of hot water. Transferred the filtration to a 250
mL volumetric flask. Cooled to room temperature. Diluted to volume with water. Mixed well.
Pipetted 10 mL of test solution into a 100 mL volumetric flask. Added 4 mL of 0.01 mol/L
hydrochloric acid. Added 1 mL of basic lead acetate solution. Diluted to volume with water. Mixed
thoroughly. Allowed to clarify. Filtered. Transferred 25 mL of filtrate into a 50 mL volumetric flask.
Added 0.10 mL of 4.5 mol/L sulfuric acid. Diluted to volume with water. Mixed well. Allowed to
clarify. Filtered. Measured absorbance at 274 nm in a 10 mm quartz cuvette using the reagent blank
as reference. The analysis of Amino acids (AA) was conducted according to GB/T 8314-2013.
Weighed 1.5 g of sample into a 250 mL conical flask. Added 200 mL of boiling distilled water.
Extracted in a boiling water bath for 45 min with shaking every 10 min. Performed hot vacuum
filtration. Rinsed the residue 2—3 times with small volumes of hot water. Transferred the filtration
to a 250 mL volumetric flask. Cooled to room temperature. Diluted to volume with water. Mixed
well. Pipetted 1.0 mL of test solution into a 25 mL colorimetric tube. Added 0.5 mL of pH 8.0
phosphate buffer. Added 0.5 mL of 2% ninhydrin solution. Heated in a boiling water bath for 15
min. Cooled to room temperature. Diluted to 25 mL with water. Stood for 10 min. Measured



absorbance at 570 nm in a 5 mm cuvette using the reagent blank as reference.
Statistical analysis and Machine learning models evaluation

All statistical analyses were performed at R 4.4.1. Welch’s ANOVA from the "onewaytests"
package with Games Howell post hoc testing from "rstatix" assessed differences among origins “°.
Principal component analysis (PCA) was conducted with "FactoMineR" and "factoextra", and data
wrangling and plotting used "tidyverse" 4. Cluster heatmaps were generated with
"ComplexHeatmap" and "circlize", correlation networks with "igraph", "ggraph", "tidygraph" and
"ggplot2", and additional boxplots and heatmaps with "ggplot2" and "ComplexHeatmap".
Supervised chemometrics employed orthogonal partial least squares discriminant analysis (OPLS-
DA) in SIMCA P 14.1 with Pareto scaling, cultivation practice models were first built on all data
to identify variables with VIP greater than 1, and overfitting was evaluated by 200 permutation
tests **. Redundancy analysis (RDA) was run with the "vegan" package through "rpy2", and
variance inflation factor (VIF) testing used the "variance inflation factor" function from
"statsmodels" *7. Multiclass modeling feature selection and visualization were implemented in
Python 3.13.5 in the VSCode environment using recursive feature elimination (RFE), sequential
forward selection (SFS) and sequential backward selection (SBS) from "sklearn.feature selection"
48 _(Classifiers included Elastic Net Classifier (ElasticNet), Least Absolute Shrinkage and Selection
Operator (Lasso), and Ridge Classifier (Ridge) from "sklearn.linear model"; K-Nearest Neighbors
(KNN) from "sklearn.neighbors"; Random Forest Classifier (RandomForest) from
"sklearn.ensemble"; Support Vector Machine (SVM) from "sklearn.svm"; and Light Gradient
Boosting Machine (LightGBM) and Extreme Gradient Boosting (XGBoost) from their native
packages. Classification error rates and feature importance under optimal configurations were
plotted with "matplotlib.pyplot". Key metrics, including macro-average Fl-score, accuracy
(training and test sets), Matthews correlation coefficient (MCC), balanced accuracy, and one-vs-
rest ROC-AUC (ROC-AUC OvR), were computed via the "sklearn.metrics". SVEL integrated
prediction probabilities using clone from "sklearn.base", and majority voting tallies used
"Counter" from the collections module.

PCA served as an unsupervised screen across seven regions using 75 features. For machine
learning, datasets were split into 80% training and 20% prediction sets, standardized with
"StandardScaler", and partitioned with "train_ test split" using five random repetitions with
stratification to preserve label representation. Training performance was assessed by 5-fold cross
validation, and the test set was evaluated by leave one out cross validation (LOOCYV). Data fusion
adopted three levels in which low-level fusion concatenated compositional data, SIRs and multi-
element fingerprints, mid-level fusion integrated features selected by RFE combined with SBS,
and high-level fusion combined prediction outputs from multiple models on the optimal dataset
using SVEL to produce a robust classifier *°. 8 multiclass models including ElasticNet, KNN,
Lasso, LightGBM, RandomForest, Ridge, SVM and XGBoost were compared and
hyperparameters were optimized by grid search with 5-fold stratified cross validation including



the regularization strength C for Lasso, Ridge and SVM, the combination of C and 11 _ratio for
ElasticNet, the number of estimators for RandomForest, XGBoost and LightGBM, and the number
of neighbors for KNN *°. Final performance was summarized by macro F1 and classification error
rates on training and test sets >'. In soft voting, the summed class probabilities across models were
used to assign the predicted origin by the argument of the maximum (argmax).
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