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Abstract  

Lithocarpus litseifolius (sweet tea) is a medicinal and edible plant rich in flavonoids and 

essential nutrients, with potential as a hepatoprotective beverages and natural sweetener. Although 

widely cultivated across several provinces in China, the quality and consistency of its raw material 

remain poorly regulated. To address this, 163 samples (n ≥ 18) from 7 main producing regions 

were analyzed for 22 functional compounds, 4 stable isotope ratios, and 49 multi-element to 

discriminate cultivation practices and geographical origins. Orthogonal partial least squares 

discriminant analysis (OPLS-DA) successfully generated prediction models across two cultivation 

regions. Integrating 8 machine-learning algorithms with multi-level data fusion identified 6 key 

variables—caffeine, Rb, Ce, δ¹⁵N, Sr, and 3''-O-acetylphlorizin. Five base learners built on these 

variables were then combined via soft-voting ensemble learning, yielding an optimal origin 

classifier with 100.00% accuracy. Additionally, the study delivered the first comprehensive 

analysis of quality variations in sweet tea and identified seven primary influenced environmental 

factors, offering insights into cultivation strategies and quality formation mechanisms. 

 

Keywords: Lithocarpus litseifolius (sweet tea), Geographical origin, Cultivation practice, 

Functional compounds, Stable isotope ratio, Multi-element, Environmental factors.  
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Introduction 

Lithocarpus litseifolius (commonly known as “sweet tea”), a newly popular tea beverage in 

China and a member of the Fagaceae family, has gained significant attention for its distinctive 

bioactive and nutritional properties 1,2. The species has a long history of use as both food and 

medicine, first documented during the Northern and Southern Dynasties (AD 423) 3. At Jinyun 

Mountain in Chongqing, local monks have harvested wild sweet tea since the temple’s 

establishment, crafting it into a highly prized beverage long celebrated by visitors for its good taste 
3. Historical records in classical pharmacopoeias such as the Dictionary of Chinese Materia 

Medica (Zhong Hua Ben Cao) describe the health benefits of long-term consumption of sweet tea 
4. Over centuries, sweet tea has also become deeply embedded in the tea culture of ethnic 

communities across Hunan, Jiangxi, Yunnan, and Guizhou, where it is traditionally consumed as 

“Immortal Tree” 4. Meanwhile, its derivatives—including sweet tea pastries and candies—are 

popular regional specialties. Modern studies have revealed that its leaves are rich in 

dihydrochalcones, particularly phloridzin and trilobatin, which exhibit notable antioxidant activity 

and potential metabolic health benefits 2. These compounds also serve as abundant natural 

sweeteners, with a sweetness approximately 300 times greater than that of sucrose and only one 

three-hundred of its caloric content 5,6. Owing to these properties, sweet tea, often referred to as 

the “Cordyceps sinensis on a tree” and “The best tea under heaven”, was officially approved as a 

new food ingredient by the Chinese National Health Commission in 2017, and its extracts 

subsequently entered clinical trials for type 2 diabetes management in 2025 4,7. In recent years, the 

diversification of downstream products and growing pharmaceutical interest have driven a sharp 

rise in market demand and prices. Despite this promising growth, the raw-material supply chain 

remains fragmented. Geographic labeling, quality grading, and pricing are often inconsistent, and 

the absence of standardized quality criteria has enabled fraudulent practices such as origin 

mislabeling, adulteration, and confusion between cultivated and wild sources. These deficiencies 

undermine product authenticity and erode consumer trust, underscoring the need for robust, 

verifiable systems to authenticate geographical origin and to discriminate cultivation practices. 

In recent years, targeted metabolomics combined with machine learning has been 

increasingly used to determine the geographical origin of foods and agricultural products. Several 

analytical techniques, such as high-performance liquid chromatography (HPLC), gas 

chromatography–mass spectrometry (GC–MS), and ultra-performance liquid chromatography–

mass spectrometry (UPLC–MS), have been developed for this purpose. For example, Bajoub et al. 

effectively traced the geographical origin of “Picholine Marocaine” olives from seven regions 

across Morocco by quantifying 25 phenolic compounds 8. However, these methods primarily focus 

on bioactive molecules such as flavonoids, whose content is highly susceptible to annual climate, 

agronomic practices, and plant physiological states, exhibiting significant dynamic fluctuations. 

This results in single-metabolome-based traceability models potentially overlooking relatively 

stable "static" chemical variations shaped by regional geological history and long-term 

environmental stresses, which are precisely the core elements that form difficult-to-counterfeit 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

geographical fingerprints. Meanwhile, stable isotope ratios and multi-element profiles, based on 

geochemical principles, have also been widely recognized as reliable indicators for origin 

authentication. These methods have been successfully applied to various products, including 

Slovenian strawberries, green coffee beans and Tetrastigma hemsleyanum 9-11. Particularly, the 

distribution patterns of rare elements and geochemical indicators such as Sr directly reflect the 

parent rock composition and long-term weathering processes of the soil at the origin, forming a 

unique and stable imprint akin to "geological DNA," significantly increasing the difficulty of 

forgery 12,13. Moreover, these methods exhibit limited resolution at small geographical scales, show 

weak sensitivity to cultivation practices, and provide little information related to product quality, 

such as sensory attributes or bioactive components. Consequently, relying on a single analytical 

source is often insufficient to capture the full complexity of chemical information, resulting in 

weaker sample differentiation, reduced model robustness, and lower classification accuracy.  

To date, integrating multi-source data has therefore emerged as a promising strategy 14. For 

instance, combining functional compound profiles with elemental fingerprints in Angelica sinensis 

achieved 100.00% accuracy in origin discrimination and enabled prediction of key bioactive 

components 15. Similarly, fusing stable isotope, elemental, and starch composition data with 

ensemble learning in Euryale ferox Salisb. identified ten key markers and established a highly 

reliable origin-tracing model 16. Such multi-source data fusion approaches, particularly when 

coupled with advanced machine learning algorithms, can address the challenges of high-

dimensional datasets and exploit the complementary strengths of different analytical platforms. 

However, studies applying these multivariate data fusion methods to sweet tea remain scarce. In 

addition, the variables contributing most to geographical differentiation and model prediction 

accuracy have not yet been identified. Evaluating the relative importance of variables such as 

functional compounds, stable isotope ratios (SIRs), and multi-element profiles is therefore 

essential. Moreover, these characteristics in sweet tea are strongly influenced by environmental 

factors 17. Further research is needed to elucidate how environmental drivers shape the chemical 

composition of sweet tea. 

Hence, this study pursued the following objectives: 1) Comprehensively characterize the 

functional compounds, stable isotope ratios, and multi-element of sweet tea from different origins 

in China and build a multi-source database; 2) Discriminate cultivation practices of sweet tea and 

identify key agricultural factors; 3) Develop origin identification models by integrating functional 

compounds, stable isotope ratios, and multi-element through multi-source data fusion algorithms, 

and identify key discriminative variables; 4) Investigate the influence of environmental factors on 

key variables across different sweet tea. 

Results and discussion 

The analysis of functional compounds, stable isotope ratio and multi-element in sweet tea 

leaves 

22 functional compounds (Dataset I) were used to analyze the quality differences of sweet tea 
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leaves from different origins. These included 3 nutritional indicators (AA, CAF, and Tp), 8 

characteristic quality compounds of sweet tea leaves (Phz, Trb, Hpz_3, Gpt_2, Oapz_3, Oapz_2, 

Gua, and Pht), and 11 organic acids (PA, DA, GA, Dih, Esc, Tar, Cit, Fum, SuA, CA and THBA). 

Additionally, 4 SIRs (δ2H, δ18O, δ13C, and δ15N) and 49 elements (Na, Mg, Al, K, Ca, Ti, Mn, Fe, 

Zn, Ba, Li, Be, B, P, S, V, Cr, Co, Ni, Cu, Ga, As, Se, Rb, Sr, Y, Mo, Ag, Cd, In, Sb, Cs, La, Ce, Pr, 

Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl, Pb, and Bi) (Dataset II) were combined to predict. 

The detailed contents of functional compounds, SIRs, and multi-element are provided in Tab. S3-

S5. 

 

Fig. 1 Boxplots of the 22 functional compounds in sweet tea from different origins (A); PCA analyses of the 

samples based on functional compounds, including all origins (B), HNZJ versus HNZJP (C), and JXAF versus 

JXAFP (D). In plot B-D: Three PCAs were plotted along with their variable contribution. The variables are 

represented by arrows, with the direction, color and length of the arrows reflecting each variable’s contribution 

to the respective principal components. 

The functional compound of sweet tea leaves from different origins 

Significant differences were observed in the concentrations of 22 functional compounds 

across the seven production regions (p < 0.01, Welch’s test; Fig. 1A; Tab. S3). Among the three 

nutritional indices, AA showed the highest levels in HNZJP (21095.8 ± 1098.8 µg/g), while CAF 

and Tp were most abundant in HNZJ (40612.6 ± 5671.9 µg/g) and JXAFP (105293.8 ± 19746.7 

µg/g), respectively. The geographical variation in secondary metabolites of sweet tea not only 

represents a chemical adaptation to stressful environments but may also reflect stable chemotype 

differentiation formed under phylogenetic constraints among distinct evolutionary lineages. This 

study focuses on dihydrochalcone compounds Phz and Trb, whose biosynthetic pathways may 

represent key traits evolved in specific Lithocarpus lineages 1. The extremely high Phz 

accumulation observed in the YNGN population (135,166.6 ± 37,246.9 μg/g), together with the 

high Trb accumulation in HNZJP, likely represents two genetically distinct chemotypes. The 

YNGN chemotype is plausibly linked to the long-term evolutionary history of this region as a 
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major refugium during the Quaternary glaciation. Owing to its complex topography, the Yunnan–

Guizhou Plateau provided stable microenvironments during glacial periods, allowing many 

species to persist in geographic isolation and evolve independently 18,19. Similarly, Lithocarpus 

litseifolius populations in this region may have experienced prolonged isolation, leading to the 

genetic fixation of metabolic pathways favoring high Phz synthesis. Consequently, the distinctive 

dihydrochalcone profile of the YNGN population is more likely to reflect long-term evolutionary 

history rather than direct responses to present-day climatic conditions, supporting the view that 

chemical diversity is shaped by phylogeographic processes 20. In contrast, wild populations from 

non-refugial regions showed consistently low Trb contents (HNZJ: 10,510.4 ± 6,439.6 μg/g; JXAF: 

1,945.8 ± 2,413.7 μg/g), which may reflect genetic constraints associated with populations 

established through post-glacial expansion from refugia 18. Notably, all cultivated samples in this 

study (HNZJP and JXAFP) were derived directly from their corresponding local wild populations, 

with no interregional germplasm exchange and an average tree age of approximately five years. 

Under cultivation, Trb concentrations increased markedly by 2–10 fold (HNZJP: 23,580.4 ± 

20,539.2 μg/g; JXAFP: 18,218.6 ± 16,944.4 μg/g), clearly demonstrating that cultivation practices 

can strongly enhance Trb biosynthesis even under the same genetic background 21. These results 

indicate that the high-Trb chemotypes observed in cultivated populations primarily reflect the 

activation of inherent metabolic potential under optimized growing conditions. Therefore, the 

geographical variation of Trb arises from the combined influence of genetic background and 

environmental induction. Given that Trb is a high-value natural sweetener and that efficient 

synthetic production routes are currently unavailable 5,21, cultivation strategies tailored to local 

genetic resources offer a practical and traceable approach to enhancing the industrial value of 

regional sweet tea. Hpz_3 levels were significantly higher in JXAF (5345.9 ± 1321.1 μg/g) and 

JXAFP (6517.7 ± 1748.0 μg/g). Gpt_2 reached its highest concentration in YNGN (1227.3 ± 299.3 

μg/g). Oapz_3 was significantly elevated in HNXP (2781.9 ± 928.0 μg/g), while Oapz_2 peaked 

in HNZJ (5233.4 ± 930.2 μg/g). Notably, both Oapz_3 (308.4 ± 240.6 μg/g) and Oapz_2 (541.4 ± 

723.2 μg/g) showed the lowest levels in YNGN. Gua content was highest in HNXP (172.8 ± 98.5 

μg/g). Pht, a key downstream metabolite of Phz and Trb 5,22,23, was also significantly higher in 

YNGN (291.5 ± 343.4 μg/g). Organic acids, amino acids, total phenols, and flavonoids are known 

to strongly influence the sensory quality of tea 24. Among the 11 organic acids analyzed, DA and 

GA were significantly higher in GZSQ (32.2 ± 5.7 and 8.7 ± 3.2 μg/g, respectively), while SuA 

was most abundant in JXAFP (198.7 ± 77.9 μg/g). CA showed notably higher levels in HNXP and 

HNZJ. Seven other organic acids—PA, Dih, Esc, Tar, Cit, Fum, and THBA—were significantly 

enriched in JXAF (6.4 ± 1.2, 25.5 ± 9.3, 56.3 ± 9.7, 367.8 ± 249.7, 3831.3 ± 1622.0, 1278.3 ± 

210.6, and 1.3 ± 0.2 μg/g, respectively). These pronounced regional differences in organic acid 

composition contribute to the distinct sensory characteristics of sweet tea from JXAF, underscoring 

its unique quality attributes. 

The PCA plot on Dataset I showed weak regional separation. The first two components 

explained 38.7% of total variance. Within-province separation was minimal. HNXP, HNZJ and 

HNZJP overlapped extensively (Fig. 1B). Discrimination by cultivation practice within region was 

limited. All HNZJP points fell inside the HNZJ confidence ellipse. JXAF showed slightly greater 

separation from JXAFP, for that pair the first two components explained 52.3% of variance. 

Separation remained unclear (Fig. 1C, D). These findings indicate a need for richer data 

dimensions. Stronger machine learning approaches are required to enhance classification accuracy. 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

The stable isotope ratios and multi-element of sweet tea leaves from different origins 

Similarly, as shown in Fig. 2, significant differences (p < 0.01, Welch test) were observed in 

4 SIRs and 49 elemental concentrations in sweet tea leaves across the seven production regions. 

Regarding SIRs, the δ¹³C values of sweet tea samples ranged from −33.550‰ to −26.877‰. Based 

on its taxonomic classification within the genus Lithocarpus and the C3 photosynthetic 

characteristics of Fagaceae, as well as its origins in humid subtropical montane forests , this 

species is considered a typical C3 plant 2. The selective pressure exerted by environmental factors 

plays a crucial role in influencing the δ¹³C values of sweet tea populations—higher temperatures 

and lower light conditions are associated with more negative δ¹³C values 25. Among them, the 

JXAF sample site has the lowest average elevation (148 m), the shortest annual sunshine duration 

(1,514 hours), and the highest average annual temperature (18.4°C), and its δ¹³C value is also the 

most negative (-31.68 ± 0.951‰). The δ¹³C values of wild sweet tea samples from Hunan and 

Jiangxi are significantly higher than those of cultivated samples (HNZJP: -28.03 ± 0.516‰ vs. 

HNZJ: -29.32 ± 0.767‰; JXAF: -31.68 ± 0.951‰ vs. JXAFP: -29.24 ± 0.547‰), indicating that 

cultivation practices such as fertilization optimize the photosynthetic structure and stomatal 

conductance of sweet tea by altering soil fertility 26, ultimately improving the water use efficiency 

(WUE) of high-Trb potential chemotype populations—a positive phenotypic plasticity response 
27. At the same time, the results also reflect that specific chemotypes exhibit different water use 

strategies. The δ¹³C values of YNGN show no significant difference from those of the HNZJ 

population, despite the stark differences in their hydrothermal conditions (Fig. 2A; Tab. S1). This 

suggests that the dominant factor in their WUE differences may not be contemporary climate but 

rather a deeper genetic background that determines carbon-water balance strategies. This inference 

further supports the notion that the formation of the high-Phz chemotype in YNGN is a deep 

adaptation to historical stress environments. Plant δ¹⁵N values responded significantly to fertilizer 

application frequency and type 28 and were closely associated with the biosynthesis of Phz, the key 

bioactive compound in sweet tea 26. The highest δ¹⁵N value was observed in the HNZJP sample 

(4.067 ± 1.850‰), which received two equal applications of base and topdressing fertilizers 

annually. This value was significantly higher than that of wild samples from the same region 

(HNZJ: 0.378 ± 1.502‰). In contrast, the JXAFP sample, fertilized only once per year, showed 

only a slight increase in δ¹⁵N (−0.336 ± 1.947‰) compared to JXAF (−1.569 ± 1.185‰). The 

lowest δ¹⁵N value was recorded at the GZSQ (−4.100 ± 0.841‰). The δ²H and δ¹⁸O values 

primarily reflect regional hydrological and environmental conditions and are independent of 

cultivation practices 29. The highest δ²H value was observed in JX (−82.95 ± 13.41‰), which was 

significantly higher than that in HN (−106.1‰ to −103.1‰), mainly due to its lower altitude, 

higher temperature, and greater precipitation. Unexpectedly high δ²H values were recorded in 

YNGN (−89.87 ± 7.801‰) and GZSQ (−75.74 ± 5.498‰), despite their higher elevations and 

lower rainfall. This anomaly suggests a predominant influence of soil groundwater as the primary 

water source 29. The spatial distribution of δ¹⁸O resembled that of δ²H but exhibited weaker 

regional variation. The highest δ¹⁸O value was found in GZSQ (25.08 ± 0.739‰). 

The beneficial elements (BEs) detected included Na, V, Se, Co, Ti, and Ni, while the essential 

elements (EEs) consisted of Mg, B, K, Mo, S, Mn, Fe, P, Zn, and Ca (Fig. 2B). Among the EEs, 

K, Ca, and Mg were the most abundant, with the highest levels observed in JXAF (12615.9 ± 

1880.6 mg/kg), YNGN (9591.0 ± 7645.5 mg/kg), and HNZJ (1836.5 ± 409.8 mg/kg), respectively. 

Se (0.030–0.310 mg/kg) and Mo (0.016–0.063 mg/kg) showed the lowest concentrations among 

BEs and EEs, respectively. Samples from the red soil region 30 of JX exhibited significantly higher 
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Fe and Mn contents than those from other regions. The Fe content in JXAF reached 436.6 ± 119.7 

mg/kg, twice that of JXAFP. A total of eight heavy metal elements (HEs) included Ag, As, Cd, Cr, 

Cu, Ga, Pb, and Sb were analyzed. Cu showed the highest concentration (6.9–10.9 mg/kg) among 

HEs but did not reach the level indicative of a hyperaccumulator 31. It was followed by Pb (0.5 ± 

0.3 – 4.1 ± 1.2 mg/kg) and Cr (0.6 ± 0.3 – 2.7 ± 0.8 mg/kg). Sb levels were consistently low across 

all regions, with YNGN showing the lowest value (0.049 ± 0.025 mg/kg). Samples from JX had 

significantly higher As, Ga, Pb, and Ag levels, with Pb in JXAF (4.1 ± 1.2 mg/kg) exceeding that 

of other provinces by 4-fold. However, this was not associated with significant suppression in the 

contents of Phz and Trb (Fig. 1). According to the US EPA safety thresholds for heavy metal 

concentrations 32, the average levels of all HEs in sweet tea leaves from every region were below 

the limits, reflecting both geological characteristics and indicating that sweet tea is a safe raw 

material with low heavy metal accumulation potential. 15 rare earth elements (REs) were detected, 

the distribution of which is largely determined by local ore deposits 33. The highest total RE content 

was found in JXAFP, followed by JXAF. The RE content in sweet tea was dominated by Ce (0.070 

± 0.022 – 2.744 ± 0.913 mg/kg), La (0.060 ± 0.027 – 3.568 ± 2.357 mg/kg), Nd (0.041 ± 0.015 – 

2.825 ± 1.815 mg/kg), and Y (0.035 ± 0.017 – 1.260 ± 0.603 mg/kg), while the remaining REs all 

showed maximum concentrations below 1 mg/kg. Results for other elements (OEs) are also shown 

in Fig. 2B. Rb exhibited the greatest variation among regions (11.9 ± 4.4 – 71.1 ± 19.8 mg/kg), 

with the highest level detected in JXAFP. 

The results of the PCA based on Dataset II are presented in Fig. 2C. The first two principal 

components collectively explained 56% of the total variance. Samples from the same region 

showed highly overlapping distributions, indicating that PCA alone was unable to clearly 

discriminate sweet tea samples from different geographical origins. Similarly, the model exhibited 

limited ability to distinguish between agricultural practices (Fig. 2D, E). Therefore, further 

application of machine learning methods, integrated with features from additional dimensions, is 

necessary to construct an effective origin traceability model for sweet tea. 

 

Fig. 2 Boxplots of the 4 SIRs in sweet tea from different origins (A); Cluster heatmap of 49 multi-element from 

different origins (B); PCA analyses based on SIRs and multi-element profiles, including all origins (C), HNZJ 
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versus HNZJP (D), and JXAF versus JXAFP (E). In plot B: The color gradient in the heatmap ranges from green 

(-2) to red (2), indicating normalized values for the relative abundance level of the factors. The shade of the color 

reflects the magnitude of the value, where green represents lower values and red represents higher values. In plot 

C-E: Three PCAs were plotted along with their variable contribution. The variables are represented by arrows, 

with the direction, color and length of the arrows reflecting each variable’s contribution to the respective 

principal components. 

Discrimination of sweet tea cultivation practices and identification of key agricultural factors 

Therefore, OPLS-DA was employed to further discriminate sweet tea leaf samples from 

different cultivation practices. Generally, a Q²(cum) value above 0.5 indicates good predictive 

ability, while a value exceeding 0.9 is considered excellent. Meanwhile, R²Y should ideally be 

close to 1 34. As shown in Fig. 3A, the OPLS-DA model distinguishing HNZJ and HNZJP 

demonstrated excellent performance, with a Q²(cum) of 0.895 (excellent predictive ability) and 

R²Y of 0.972 (excellent explanatory power), achieving clear separation between the two groups. 

Similarly, the model discriminating JXAF and JXAFP also performed well, with a Q²(cum) of 

0.601 (good predictive ability) and R²Y of 0.901 (excellent explanatory power) (Fig. 3D). To 

evaluate potential overfitting, 200 permutation tests were conducted for each comparison. In all 

cases, the regression line of R² remained above zero and was largely higher than that of Q², 

supporting the robustness of the model (Fig. 3C, F). A total of seven features with VIP > 1 were 

identified in each model (Fig. 3B, E). Most of these were functional compounds, with K being the 

only elemental feature (VIPHNZJ = 1.56; VIPJXAF = 1.33). This suggests that multi-element and 

SIRs are less affected by cultivation practices, whereas functional compounds show significant 

improvement. Key variables for cultivation practice prediction included CAF, Phz, Tp, Trb, and 

Oapz_2 in both regions. Additionally, Cit was important for distinguishing HNZJP, and AA 

contributed notably in JXAFP. Fertilization significantly influenced the levels of Phz (VIPHNZJ = 

3.96; VIPJXAF = 3.72) and Trb (VIPHNZJ = 3.72; VIPJXAF = 2.75). Interestingly, Phz responded in 

opposite trends between HNZJ and JXAF under fertilization, whereas Trb consistently increased 

across both regions. This indicates that fertilization may affect Phz and Trb through distinct 

mechanisms and to varying extents. In summary, OPLS-DA effectively differentiated sweet tea 

samples from different cultivation practices within the same geographic origin. The model captures 

the metabolic plasticity induced by cultivation practices under the same genetic background, rather 

than artifacts caused by germplasm admixture. 
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Fig. 3 OPLS-DA results of cultivation practice prediction for samples from Hunan and Jiangxi regions based on 

functional compounds, SIRs, and multi-element data. Training and prediction results (A), VIP score in prediction 

set (B) and permutation test (C) of HNZJ with HNZJP; Training and prediction results (D), VIP score in 

prediction set (E) and permutation test (F) of JXAF with JXAFP. In plot A and D: The dashed ellipses in this 

figure are not 95% confidence ellipses. They are only used to illustrate the classification of samples from 

different regions. Y-axis zero point divides the graph into left and right regions representing different 

geographical areas, while the dispersion along the X-axis indicates the within-group differences of the predicted 

samples. In plot C and F: Green dots and lines: Represent the model's explanatory power for the data (R2). The 

higher the R2, the better the model fits the data. Blue dots and lines: Represent the model's predictive ability 

(Q2). The higher the Q2, the stronger the model's predictive ability and the better its generalization. 

Individual dataset and low-level fusion in origin prediction 

Datasets I and II were used as inputs for machine learning modeling, with the overall 

workflow illustrated in Fig. 6. Model performance metrics and data partition schemes for each 

fusion strategy are summarized in Tab. S6. Confusion matrices for test and training accuracies are 

presented in Fig. 4 and Fig. S1, respectively. Models based on individual data sources yielded 

suboptimal results. Dataset I showed a training error of 8.86 ± 3.13%, while Dataset II showed 

5.95 ± 1.84% (Tab. 1). Corresponding test errors were 3.10 ± 1.70% and 5.68 ± 2.00%, and macro 

F1 scores reached 0.97 ± 0.02 and 0.94 ± 0.02, respectively—values below the desired threshold 

for robust traceability models. Model selection prioritized macro F1 as the key indicator of overall 

performance, with higher scores reflecting superior accuracy and generalization ability. SVM 

performed best with Dataset I. Training error measured 5.82 ± 4.53%, macro F1 achieved 0.98 ± 

0.02 and test error registered 1.82 ± 2.42%. Confusion matrix analysis revealed training accuracy 

between 80.0 ± 3.8% and 95.4 ± 1.5% for most regions. HNZJ and YNGN showed deviations, this 

is likely because the sweet tea from both HNZJ and YNGN exhibits high nutritional quality as well 
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as similar sensory characteristics. JXAF suffered severe misclassification. Test errors concentrated 

in HNZJP and JXAF regions, the reason is the geographical proximity of the origins. Accuracy 

values measured 96.0 ± 8.0% and 86.7 ± 16.3% respectively. Lasso achieved optimal performance 

with Dataset II. Macro F1 reached 0.97 ± 0.02. Training error measured 4.43 ± 3.48%. Test error 

registered 3.03 ± 1.92%. Training accuracy ranged from 80.0 ± 10.5% to 98.8 ± 2.5% across most 

regions. GZSQ constituted an exception. Most misclassifications involved HNZJ region. Test 

errors primarily affected HNXP and HNZJ regions with accuracy values measured 92.0 ± 9.8% 

and 85.0 ± 12.2% respectively. The predictive models based on the two datasets demonstrated 

complementary advantages and limitations in terms of performance, highlighting the necessity of 

employing data fusion strategies to enhance overall robustness and accuracy. Consequently, 

Dataset III was constructed through low-level fusion by directly merging Datasets I and II. 

Employing the optimal algorithm, LightGBM, this approach achieved a macro F1 of 1.00, with 

test and training errors of 0.00 ± 0.00% and 3.66 ± 4.18%, respectively, effectively enhancing both 

performance and stability of the geographical origin prediction model. The confusion matrix 

revealed misclassifications across all regions except GZSQ in the training set, with accuracy rates 

ranging from 87.7 ± 7.8% to 99.0 ± 2.0%, where JXAF-associated errors were most pronounced. 

Although Dataset III - LightGBM demonstrated promising results, the extensive feature set 

necessitates further optimization of key features to reduce data dependency, improve model 

performance, and enhance economic viability for future origin prediction applications. 

Tab. 1 Classification error rate (%) and macro F1 score of best models by Dataset Ⅰ ~ Dataset V 

Approaches Datasets Best model Training set Testing set Macro F1 score 

Functional compounds Ⅰ SVM 5.82 ± 4.53 1.82 ± 2.42 0.98 ± 0.02 

SIRs and Multi-element Ⅱ Lasso 4.43 ± 3.48 3.03 ± 1.92 0.97 ± 0.02 

Low-level fusion Ⅲ LightGBM 3.66 ± 4.18 0.00 ± 0.00 1.00 ± 0.00 

Mid-level fusion Ⅳ ElasticNet 0.58 ± 1.69 0.00 ± 0.00 1.00 ± 0.00 

Extracted features V Ridge 0.37 ± 1.23 0.00 ± 0.00 1.00 ± 0.00 

High-level fusion V Multi-models 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 

Feature extraction and mid-level fusion in origin prediction 

Therefore, we employed a combined RFE-SBS approach to obtain a refined yet 

discriminative feature combination at relatively low computational cost. This feature extraction 

workflow was independently applied to Datasets I, II, and III. The screening process involved 

iterative feature set reduction through RFE, selecting the subset achieving minimal classification 

error with the fewest features as the optimal feature set (Fig. S1). Subsequently, SBS was initiated 

based on this optimal set, following identical iterative optimization rules to derive the final feature 

subset, with corresponding screening curves presented in Fig. 4B-D. From Datasets I and II, the 

extracted feature combination formed Dataset IV comprising 23 variables (Mg, Zn, B, P, Rb, Sr, 

Y, Mo, Sb, δ¹³C, δ¹⁵N, δ²H, S, CAF, AA, Tp, Hpz_3, Oapz_3, Oapz_2, DA, Tar, Cit, SuA). 

Meanwhile, feature extraction from Dataset III yielded Dataset V containing 6 variables (CAF, Rb, 
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Ce, δ¹⁵N, Sr, Oapz_3). 

In the mid-level fusion approach, ElasticNet applied to Dataset IV achieved a macro F1 of 

1.00, accompanied by a training error of 0.00 ± 0.00% and the lower error (0.58 ± 1.69%), 

establishing it as a high-performance prediction model (Tab. 1). The corresponding confusion 

matrix revealed that training misclassifications occurred exclusively in the HNZJ and JXAF 

regions, with accuracy rates of 98.6 ± 2.9% and 95.4 ± 6.2%, respectively. Notably, the test set 

demonstrated perfect classification accuracy, suggesting a potential tendency toward overfitting. 

For Dataset V, Ridge regression similarly attained a macro F1 of 1.00 and a test error of 0.00 ± 

0.00%, while exhibiting an even lower training error (0.37 ± 1.23%) compared to the Dataset IV - 

ElasticNet model, thereby emerging as the top-performing approach within the mid-level fusion 

framework. The Dataset V - Ridge confusion matrix indicated training misclassifications solely in 

the HNZJ and JXAFP regions, with respective accuracy rates of 97.1 ± 3.5% and 99.1 ± 1.8%. 

Although the obtained performance metrics are already exceptional, advanced fusion strategies 

such as integrating multiple algorithm outputs through voting systems could potentially reduce the 

training error to zero, thereby further enhancing both the robustness and accuracy of the predictive 

system. 

High-level fusion in origin prediction 

This study implemented a soft voting ensemble learning approach, which calculates the 

average prediction probabilities from multiple models and selects the geographical origin with the 

highest mean probability as the final output. This methodology offers the advantage of balancing 

the bias-variance trade-off, thereby enhancing overall robustness and ultimately generating more 

conservative and reliable consensus probabilities. Based on feature economy considerations, the 

multi-algorithm fusion utilized models derived from Dataset V (6 variables) rather than Dataset 

IV (23 variables). Model selection was conducted with a stringent criterion of macro F1 ≥ 0.99, 

retaining only high-performance models including Ridge, ElasticNet, RandomForest, KNN, and 

SVM to avoid the introduction of noise. Based on these five models, a soft voting ensemble 

learning method was employed to construct the most generalized and accurate origin traceability 

model in this study. This model combines a lightweight structure (only 6 features), high precision 

(training error = 0.00 ± 0.00%), and exceptional generalization capability (test error = 0.00 ± 

0.00%), demonstrating outstanding performance in geographical origin prediction applications 

(Tab. 1). 
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Fig. 4 Evaluation parameters of models（macro F1, test accuracy, training accuracy, MCC, balanced accuracy, 

and ROC-AUC (OvR)) (A). Feature extraction curves obtained using RFE-SBS for Datasets I–III (B–D), 

respectively. Confusion matrices for test sets: Dataset I – SVM (E), Dataset II – Lasso (F), Dataset III – 

LightGBM (G), Dataset IV – ElasticNet (H), Dataset V – Ridge (I), and Ensemble Test (J). 

Relationships between the key origin prediction factors with environmental factors 

Environmental factors, as potential selective pressures, significantly shape the biosynthesis 

patterns of secondary metabolites in sweet tea populations from different geographic origins 17. 

Based on 11 environmental variables from each sampling site (Tab. S1), Spearman correlation 

heatmap analysis (Fig. 5A) revealed that CAF exhibited strong positive correlation with Tmin (r = 

0.61, p < 0.001) and strong negative correlation with MI (r = - 0.59), indicating that its 

accumulation is primarily driven by low temperature stress, with secondary influence from water 

deficit, this may be a metabolic response to adapt to cold habitats. Oapz_3 demonstrated strong 

negative correlations with both MAP (r = - 0.74) and MTCO (r = - 0.74), suggesting that cold and 

rainy environments inhibit its accumulation, potentially due to reduced enzymatic conversion 

efficiency caused by dilution effects from enhanced transpiration 35. Regarding elemental 

composition, Sr showed strong negative correlation with MAP (r = - 0.55). Ce exhibited strong 

positive correlations with MTWA, MI and Tmax (r = 0.53 - 0.61), while demonstrating strong 

negative correlation with ALT (r = -0.61), its high sensitivity to ALT may reflect regional 

differences in the mineral deposits where populations of different geographic origins. The high 

sensitivity to altitude reflects regional variations in mineral deposits. Rb displayed strong negative 
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correlation with DI (r = - 0.64). Among SIRs, δ¹⁵N showed negative correlation with DI (r = - 0.63). 

This pattern contradicts previous cross-regional research findings and may indicate a nitrogen 

cycling adaptation strategy unique to the study population 36. 

SFS combined with VIF analysis identified seven predictors (ALT, GP, DI, MAP, SH, MTCO, 

and Tmin) from eleven environmental candidates for redundancy analysis (RDA) (Fig. 5B) 37. The 

RDA ranking results visually demonstrate the spatial differentiation effect of environmental 

selection pressure on chemical composition. Correlation coefficients with six key variables ranged 

from –0.74 to 0.61. Based on 999 permutations, the model was significant (adjusted R² = 63.74%, 

p < 0.001), with the first two axes explaining 43.1% and 27.7% of the total variance, respectively. 

The ranking results indicate that DI, GP, and MTCO are the dominant environmental gradients, 

strongly suggesting that hydrothermal conditions are the primary macro-selective pressures 

shaping the adaptive divergence of chemical composition in sweet tea populations of different 

geographic origins 13. CAF and Oapz_3 accumulated synergistically, mainly promoted by SH, DI, 

and Tmin. This may reflect enhanced biosynthesis of the precursor Phz under intense light, which 

elevates Oapz_3 levels 38. Conversely, low temperature may inhibit the conversion of Phz to 

Oapz_3, potentially due to reduced chalcone isomerase activity 22,23. CAF accumulation was more 

sensitive to low temperature and drought, consistent with the stress-induced shift from growth to 

secondary metabolism that increases CAF biosynthesis in Camellia sinensis 39, this can be viewed 

as an adaptive metabolic phenotype to cold and dry habitats.  

Among elemental and isotopic variables, Sr showed a spatial distribution pattern similar to 

CAF, with its bioavailability shaped by the combined influence of modern climate and deep 

geological history. The Sr content in YNGN (6.04 mg/kg) is significantly lower than that in 

JXAF/JXAFP (10.4 mg/kg), profoundly reflecting their respective geochemical backgrounds: The 

red soil region where JXAF/JXAFP is located develops from silicate rock parent material, and the 

Sr²⁺ released during weathering is relatively retained in soils with high clay content, leading to a 

richer source available for plants 40. In contrast, the YNGN karst region is dominated by carbonate 

rocks, where intense dissolution causes Sr²⁺ and Ca²⁺ to be rapidly leached away simultaneously, 

resulting in an extremely low background level of available Sr in the soil 41,42. The distribution of 

REs, represented by Ce, is primarily governed by regional geochemical static fingerprints, with its 

fundamental source being the stable soil background reservoir formed through long-term 

weathering 12. Although climatic factors such as GP and MAP can regulate the bioavailability of 

Ce by altering soil redox conditions, accelerating the Ce³⁺/Ce⁴⁺ cycle and leading to enrichment 

variations 13, they do not fundamentally alter this deep geological imprint. Therefore, compared to 

secondary metabolites like Phz and Trb, which respond rapidly to environmental changes, Ce 

provides a more stable and traceable geochemical signature. These signatures, derived from 

coupled geological-climatic timescales and purely geological timescales respectively, mark the 

deep environmental contexts to which different geographic populations have adapted over long 

periods, serving as reliable chemical indicators for deciphering their evolutionary history and 

geographic origins. Rb distribution was primarily influenced by local microenvironmental 

conditions associated with altitude, while its negative correlations with DI and Tmin reflected 

topography–climate coupling effects 43. In terms of isotope ratios, δ¹⁵N showed a positive 

correlation with ALT and SH, but a negative correlation with the DI and Tmin. This aligns with the 

general pattern that high-altitude, high-radiation conditions promote nitrogen isotope fractionation, 

while dry and cold conditions favor nitrogen conservation in ecosystems 44, this further supports 

the role of local environments related to geographic origins in shaping the nitrogen metabolism of 

populations 45. Previous findings revealed that variations in δ¹⁵N were closely coupled with 
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cultivation practices and specific metabolic pathways. Specifically, in HNZJP cultivation samples 

fertilized twice a year, the accumulation of Trb coincided with δ¹⁵N enrichment, strongly 

suggesting that frequent and sufficient nitrogen input not only altered the baseline δ¹⁵N of the soil 

nitrogen pool but also likely upregulated nitrogen metabolic flux, directly driving the biosynthesis 

of dihydrochalcone compounds derived from phenylalanine 26. In contrast, JXAFP samples 

fertilized only once a year exhibited significantly lower Trb and δ¹⁵N accumulation compared to 

HNZJP and wild samples. This parallel trend indicates that the degree of δ¹⁵N enrichment can serve 

as a potential "isotopic tracer" reflecting nitrogen utilization intensity and the activation state of 

specific secondary metabolites (Trb), providing a basis for using δ¹⁵N as an indicator to assess 

nitrogen nutrition status and secondary metabolic potential in sweet tea. However, it must be 

clearly pointed out that this study is based on sampling from wild and cultivated populations, so 

the identified environment-chemical phenotype associations cannot strictly distinguish whether 

the underlying mechanism of climate factors' influence on population chemical composition is 

phenotypic plasticity or local adaptation. Nevertheless, the spatial distribution pattern of 

chemotypes—particularly the extreme, discontinuous high Phz accumulation observed in the 

YNGN population, and the strong spatial coupling of this pattern with Quaternary glacial refugia—

strongly suggests that in historically isolated regions like YNGN, the observed chemical 

differentiation may more profoundly reflect a genetic adaptation background shaped by long-term 

evolutionary isolation and selective pressures. Future research on sweet tea could control 

environmental factors through ongoing common garden experiments and integrate population 

genomics approaches to ultimately verify the relative contributions of plasticity and genetic 

adaptation in environmentally driven chemical variation. 

 
Fig. 5 Heatmap of the correlation between environmental factors and key variables (A) and RDA analysis of the 

key variables constrained by selective pressures from key environmental factors (B). In plot A: Red and blue 

represent positive and negative correlations, respectively. The darker the cell color, the larger the absolute value 

of the correlation coefficient, and vice versa. The symbols “*”, “**”, and “***” in the cells indicate significant 

correlations at the 0.05, 0.01 and 0.001 levels, respectively. Cells without asterisks indicate non-significant 

relationships. The combined lines outside the cells represent their clustering trends. In plot B: The scatter points 

represent the positions of samples based on the two principal components RDA1 and RDA2, with different 

colors indicating their geographical origin. The 6 key variable vectors selected by the previous optimal origin 

traceability model are plotted with red dashed lines, while the seven key environmental factor vectors are plotted 

with blue solid lines. The direction represents the direction of maximum contribution, and the length represents 
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the relative strength of contribution. 

Methods 

Sampling strategy and climate data origin 

Between June and July 2022, a total of 163 mature leaf samples (3 months after sprouting) of 

sweet tea were collected from seven major production regions distributed across four Chinese 

provinces—Hunan, Jiangxi, Guizhou and Yunnan (23.65 – 27.55 °N, 105.44 – 114.67 °E; Fig. 6, 

Tab. S1). Among these, 52 samples were collected from cultivated stands managed with organic 

fertilizer (HNZJP, JXAFP), while the remaining 111 samples were obtained from natural or 

organically managed stands (HNZJ, HNXP, GZSQ, JXAF, YNGN). All samples were 

authenticated as Lithocarpus litseifolius by Prof. Yang Jian (National Resource Center for Chinese 

Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China), and voucher 

specimens were deposited at the same institution. Following authentication, fresh leaves were 

washed, sliced, oven-dried at 50 °C for 36 h to inactivate endogenous enzymes, ground into fine 

powder (30–40 mesh), and stored in a desiccator until analysis. The bioclimate factors were 

obtained from the Science Data Bank and extracted by the GPS location. In total, the 11 

environmental factors included ALT (altitude, m), DI (annual drought index), MI (annual moisture 

index), GP (growing season precipitation, mm), MTCO (mean temperature of the coldest month, 
◦C), MTWA (mean temperature of the warmest month, ◦C), Tmax (absolute maximum temperature, 
◦C), Tmin (absolute minimum temperature, ◦C), MAP (mean annual precipitation, mm), MAT (mean 

annual temperature, ◦C), SH (sunshine hour, hour). 
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Fig. 6 Workflow. Sample collection (A), characterization (B) and data-fusion (C). 

JXAF, JXAFP, Anfu County, Cultivation basement of Anfu County in Jiangxi Province; GZSQ, Shiqian County 

in Guizhou Province; HNZJ, HNZJP, HNXP Zhijiang County, Cultivation basement of Zhijiang County, Xupu 

County in Hunan Province; YNGN, Guangnan County in Yunnan Province. 

Chemicals and Reagents 

All elemental standards were supplied by the National Centre for Analysis and Testing of 

Non-ferrous Metals & Electronic Materials (China). Multi-element stock solutions (100 µg mL⁻¹) 

containing Ag, As, B, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Ga, In, Li, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sr, 

V, Zn along with rare earth element solutions (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, 

Yb, Lu) were used for calibration. Major-element standards included K, Na, Mg, P were obtained 

as 1 mg mL⁻¹ stock solutions, while single-element standards of S, Al, Fe, Ca, and Ti were acquired 

at the same concentration. Additional single-element standards for Tl and Y, as well as internal 

standards Sc and Rh (all at 100 µg/mL), were included for quality assurance. High-purity acids 

included HNO₃, HF, and HCl were supplied by CNW (Shanghai Anpu Technology), and HClO₄ 

was obtained from Feichuan brand (Tianjin Xinyuan Chemical). Ultrapure water was provided by 

Watsons (Guangzhou). For combustion analysis, reduced copper granules, tungsten trioxide 

(WO₃), and glassy carbon were acquired from Elementar (Germany). Isotopic reference materials, 

including B2155 (δ¹³C = –26.98 ‰, δ¹⁵N = 5.94 ‰), USGS40 (δ¹⁵N = – 4.52 ‰), IAEA-CH-6 

(δ¹³C = – 10.449 ‰), USGS64 (δ¹³C = – 40.82 ‰), IAEA-N-2 (δ¹⁵N = 20.3 ‰), USGS54 (δ²H = 

– 150.4 ‰, δ¹⁸O = 17.79 ‰), USGS55 (δ²H = – 28.2 ‰, δ¹⁸O = 19.12 ‰), USGS56 (δ²H = – 

44.0 ‰, δ¹⁸O = 27.23 ‰) were obtained from the International Atomic Energy Agency (IAEA, 

Vienna). All standards and reagents were used as received from their respective suppliers. 

Functional compounds reference materials included phlorizin (Phz), Trilobatin (Trb), 3-hydroxy 

phlorizin (Hpz_3), Phloretin 2'-O-glucoside (Gpt_2), 3''-O-acetyl phloridzin (Oapz_3), 2''-O-

acetyl phloridzin (Oapz_2), Guavinoside (Gua), Phloretin (Pht), Protocatechualdehyde (PA), 

Protocatechuic acid (DA), Gallic acid (GA), 6,7-dihydroxycoumarin (Dih), Esculin (Esc), Tartaric 

acid (Tar), Citric acid (Cit), Fumaric acid (Fum), Succinic acid (SuA), Chlorogenic acid (CA), 

2,3,4-Trihydroxybenzoic acid (THBA) and Folin-Ciocalteu reagent were obtained from 

Beiterenkang Bio-Technology Co., Ltd. (Beijing, China). Methanol and acetonitrile were LC-MS 

grade and purchased from Fisher Scientific (Massachusetts, USA). 

Multi-element Analysis 

Multi-element analysis was performed using a triple-quadrupole inductively coupled plasma 

mass spectrometer (ICP-MS/MS, Agilent 8900). Sample digestion was carried out with the Mars 

5 microwave digestion system (CEM Corp, USA) and precise weighing was achieved using an 

analytical balance (Sartorius BSA224S-CW). The instrumental operating parameters were set as 

follows: RF power at 1550 W, high-purity argon (99.999%) as carrier gas, a concentric nebulizer 

with a gas flow of 1.05 L min⁻¹, make-up gas at 0.15 L min⁻¹, sampling depth of 8.0 mm, and 
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peristaltic pump speed of 0.3 rpm. For sample preparation, approximately 0.10 g of finely ground 

leaf powder (100 mesh) was accurately weighed into a PTFE digestion vessel. After the addition 

of 6.0 mL concentrated HNO₃, the open vessel was pre-digested at 120 °C for 30 minutes until the 

evolution of NOₓ fumes ceased. Following cooling, the vessel was sealed and subjected to a four-

stage microwave digestion program: 120 °C (ramp 10 min, hold 2 min), 150 °C (ramp 10 min, hold 

2 min), 180 °C (ramp 10 min, hold 2 min), and 200 °C (ramp 10 min, hold 20 min). The resulting 

digest was evaporated at 180 °C to approximately 0.5 mL, quantitatively transferred to a 25 mL 

volumetric flask, diluted with 67% HNO₃ to volume, thoroughly mixed, allowed to settle, and 

finally filtered through a 0.45 μm syringe filter to ICP-MS/MS analysis. 

Stable isotope ratio analysis 

SIR analysis was conducted using an elemental analyzer coupled with isotope-ratio mass 

spectrometry (EA/IRMS, Elementar, Germany). Measurements of δ¹³C and δ¹⁵N were performed 

using a Vario Isotope cube-Biovision system, while δ²H and δ¹⁸O were determined using a Vario 

Pyro cube coupled to an Isoprime 100 IRMS (TC/EA mode). Sample weighing was carried out 

with an analytical balance (Mettler-Toledo XPR106DUH/AC). For δ¹³C and δ¹⁵N analysis, 

approximately 5 mg of plant powder was weighed into a tin capsule and introduced into the EA 

autosampler. Combustion occurred in a WO₃-packed tube at 1150 °C, followed by reduction in a 

copper-packed tube at 850 °C under a helium carrier gas (99.999% purity). The resulting CO₂ and 

N₂ were delivered to the IRMS, with CO₂ signal attenuation achieved using a CentrION diluter. 

IRMS trap currents were set to 100 µA for CO₂ and 400 µA for N₂. For δ²H and δ¹⁸O determination, 

approximately 0.5 mg of sample was weighed and loaded into the TC/EA autosampler. Pyrolysis 

took place in a glassy carbon-packed reactor at 1450 °C under helium carrier gas (99.999%). The 

produced H₂ and CO were introduced into the IRMS, with a built-in diluter moderating the CO 

signal. IRMS trap currents were configured to 200 µA for CO and 400 µA for H₂. Isotopic 

compositions were calculated using the standard delta notation: δE (‰) = [(Rsample / Rstandard) − 1] 

× 1000, where R represents the ratio of ¹³C/¹²C, ¹⁵N/¹⁴N, ¹⁸O/¹⁶O, or ²H/¹H. All values were 

referenced to VPDB (δ¹³C), AIR (δ¹⁵N), and VSMOW (δ¹⁸O, δ²H). 

Functional compounds analysis 

Each 0.02 g sample of sweet tea powder was extracted with 1.5 mL of 80% methanol and 

weighed. The mixture was subjected to ultrasonic treatment for 40 minutes (300 W, 40 kHz). After 

cooling, it was weighed again, and 80% methanol was added to compensate for any loss in weight, 

followed by centrifugation at 13,000 rpm for 10 minutes. The resulting supernatant was filtered 

through a 0.22 μm membrane before injection into the liquid chromatography system. 

Chromatographic separation was performed on an ACQUITY UPLC™ BEH C18 column (100 

mm × 2.1 mm, 1.8 μm) maintained at 40 °C. The injection volume was 1.0 μL, and the flow rate 

was 0.6 mL/min. The mobile phase consisted of 0.1% formic acid in acetonitrile (A) and 0.1% 

formic acid in water (B). The gradient program was as follows: 0–1.0 min, 5–25% A; 1.0–3.5 min, 
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25–40% A; 3.5–4.5 min, 40–60% A; 4.5–5.0 min, 60–5% A; 5.0–7.0 min, 5% A. Tandem mass 

spectrometry (MS/MS) was performed using API 6500 system (AB SCIEX, Los Angeles, CA, 

USA) equipped with an electrostatic ionization (ESI) source (AB SCIEX). MS analysis for 

flavonoid was carried out in negative ionization mode, and the operating conditions were set as 

follows: ion source voltage, -5500 V (ESI-); turbo spray temperature (TEM), 550 ◦C; Curtain Gas 

(CUR) flow, 30 L/min; Ion Source Gas (IS) flow, 55 L/min; scanning mode: Scheduled multiple 

reaction monitoring (Scheduled MRM). The MS parameters for flavonoid were manually 

optimized (Tab. S2). Data acquisition was carried out using Analyst Software 1.6.2 (AB SCIEX, 

Los Angeles, CA, USA), and analysis was performed using MultiQuant Software 3.0 (AB SCIEX, 

Los Angeles, CA, USA).  

Total polyphenol (Tp) was determined according to GB/T 8313-2018. Weighed 0.200 g of 

sample. Added 5.0 mL of 70% aqueous methanol preheated to 70 °C. Stirred to ensure complete 

wetting. Extracted in a 70 °C water bath for 10 min with brief stirring at 5 min. Cooled to room 

temperature. Centrifuged at 3500 r/min for 10 min. Transferred the supernatant to a 10 mL 

volumetric flask. Reextracted the residue with 5.0 mL of 70% methanol under the same conditions. 

Combined the extracts. Diluted to 10.0 mL with the same solvent. Mixed thoroughly. Filtered 

through a 0.45 μm membrane to obtain the stock solution. Pipetted 1.0 mL stock into a 100 mL 

volumetric flask. Diluted to volume with water. Mixed to obtain the test solution. Transferred 1.0 

mL of each gallic acid working solution, water blank, and test solution into separate tubes. Added 

5.0 mL Folin–Ciocalteu reagent. Mixed immediately. After 3–8 min added 4.0 mL of 7.5% sodium 

carbonate. Brought to volume with water. Shook thoroughly. Stood at room temperature for 60 

min. Measured absorbance at 765 nm. The analysis of Caffeine (CAF) was performed according 

to GB/T 8312-2013. Weighed 1.5 g of sample. Added 200 mL of boiling distilled water. Extracted 

in a boiling water bath for 45 min with shaking every 10 min. Performed hot vacuum filtration. 

Rinsed the residue 2–3 times with small volumes of hot water. Transferred the filtration to a 250 

mL volumetric flask. Cooled to room temperature. Diluted to volume with water. Mixed well. 

Pipetted 10 mL of test solution into a 100 mL volumetric flask. Added 4 mL of 0.01 mol/L 

hydrochloric acid. Added 1 mL of basic lead acetate solution. Diluted to volume with water. Mixed 

thoroughly. Allowed to clarify. Filtered. Transferred 25 mL of filtrate into a 50 mL volumetric flask. 

Added 0.10 mL of 4.5 mol/L sulfuric acid. Diluted to volume with water. Mixed well. Allowed to 

clarify. Filtered. Measured absorbance at 274 nm in a 10 mm quartz cuvette using the reagent blank 

as reference. The analysis of Amino acids (AA) was conducted according to GB/T 8314-2013. 

Weighed 1.5 g of sample into a 250 mL conical flask. Added 200 mL of boiling distilled water. 

Extracted in a boiling water bath for 45 min with shaking every 10 min. Performed hot vacuum 

filtration. Rinsed the residue 2–3 times with small volumes of hot water. Transferred the filtration 

to a 250 mL volumetric flask. Cooled to room temperature. Diluted to volume with water. Mixed 

well. Pipetted 1.0 mL of test solution into a 25 mL colorimetric tube. Added 0.5 mL of pH 8.0 

phosphate buffer. Added 0.5 mL of 2% ninhydrin solution. Heated in a boiling water bath for 15 

min. Cooled to room temperature. Diluted to 25 mL with water. Stood for 10 min. Measured 
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absorbance at 570 nm in a 5 mm cuvette using the reagent blank as reference. 

Statistical analysis and Machine learning models evaluation 

All statistical analyses were performed at R 4.4.1. Welch’s ANOVA from the "onewaytests" 

package with Games Howell post hoc testing from "rstatix" assessed differences among origins 46. 

Principal component analysis (PCA) was conducted with "FactoMineR" and "factoextra", and data 

wrangling and plotting used "tidyverse" 47. Cluster heatmaps were generated with 

"ComplexHeatmap" and "circlize", correlation networks with "igraph", "ggraph", "tidygraph" and 

"ggplot2", and additional boxplots and heatmaps with "ggplot2" and "ComplexHeatmap". 

Supervised chemometrics employed orthogonal partial least squares discriminant analysis (OPLS-

DA) in SIMCA P 14.1 with Pareto scaling, cultivation practice models were first built on all data 

to identify variables with VIP greater than 1, and overfitting was evaluated by 200 permutation 

tests 34. Redundancy analysis (RDA) was run with the "vegan" package through "rpy2", and 

variance inflation factor (VIF) testing used the "variance_inflation_factor" function from 

"statsmodels" 37. Multiclass modeling feature selection and visualization were implemented in 

Python 3.13.5 in the VSCode environment using recursive feature elimination (RFE), sequential 

forward selection (SFS) and sequential backward selection (SBS) from "sklearn.feature_selection" 
48. Classifiers included Elastic Net Classifier (ElasticNet), Least Absolute Shrinkage and Selection 

Operator (Lasso), and Ridge Classifier (Ridge) from "sklearn.linear_model"; K-Nearest Neighbors 

(KNN) from "sklearn.neighbors"; Random Forest Classifier (RandomForest) from 

"sklearn.ensemble"; Support Vector Machine (SVM) from "sklearn.svm"; and Light Gradient 

Boosting Machine (LightGBM) and Extreme Gradient Boosting (XGBoost) from their native 

packages. Classification error rates and feature importance under optimal configurations were 

plotted with "matplotlib.pyplot". Key metrics, including macro-average F1-score, accuracy 

(training and test sets), Matthews correlation coefficient (MCC), balanced accuracy, and one-vs-

rest ROC-AUC (ROC-AUC OvR), were computed via the "sklearn.metrics". SVEL integrated 

prediction probabilities using clone from "sklearn.base", and majority voting tallies used 

"Counter" from the collections module. 

PCA served as an unsupervised screen across seven regions using 75 features. For machine 

learning, datasets were split into 80% training and 20% prediction sets, standardized with 

"StandardScaler", and partitioned with "train_test_split" using five random repetitions with 

stratification to preserve label representation. Training performance was assessed by 5-fold cross 

validation, and the test set was evaluated by leave one out cross validation (LOOCV). Data fusion 

adopted three levels in which low-level fusion concatenated compositional data, SIRs and multi-

element fingerprints, mid-level fusion integrated features selected by RFE combined with SBS, 

and high-level fusion combined prediction outputs from multiple models on the optimal dataset 

using SVEL to produce a robust classifier 49. 8 multiclass models including ElasticNet, KNN, 

Lasso, LightGBM, RandomForest, Ridge, SVM and XGBoost were compared and 

hyperparameters were optimized by grid search with 5-fold stratified cross validation including 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

the regularization strength C for Lasso, Ridge and SVM, the combination of C and l1_ratio for 

ElasticNet, the number of estimators for RandomForest, XGBoost and LightGBM, and the number 

of neighbors for KNN 50. Final performance was summarized by macro F1 and classification error 

rates on training and test sets 51. In soft voting, the summed class probabilities across models were 

used to assign the predicted origin by the argument of the maximum (argmax). 
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