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Anticipated variability increases
generalization of predictive learning

M| Check for updates

Hadar Ram ® *0<, Guy Grinfeld ® >* & Nira Liberman?®

We show that learners generalized more broadly around the learned stimulus when they expected
more variability between the learning set and the generalization set, as well as within the generalization
set. Experiments 1 and 3 used a predictive learning task and demonstrated border perceptual
generalization both when expected variability was manipulated explicitly via instructions (Experiment
1), and implicitly by increasing temporal distance to the anticipated application of learning (Experiment
3). Experiment 2 showed that expecting to apply learning in the more distant future increases expected
variability in the generalization set. We explain the relation between expected variability and
generalization as an accuracy-applicability trade-off: when learners anticipate more variable
generalization targets, they “cast a wider net” during learning, by attributing the outcome to a broader
range of stimuli. The use of more abstract, broader categories when anticipating a more distant future
application aligns with Construal Level Theory of psychological distance.

Imagine a virologist who discovers a new pathogenic virus with seven spikes.
Later, the virologist observes a new group of similar viruses, but those ones
have various sub-types, with two, five, eight or ten spikes. Would the vir-
ologist expect some of those viruses to also be pathogenic? Would they
expect more sub-types of the newly discovered virus to be pathogenic if they
had a reason to believe that there should be much difference in the number
of spikes between the initial set of pathogenic viruses and the new set (e.g., if
the environment of the original set differed from that of the new set?) If the
virologist believed that pathogenic viruses within the new group should be
very different from each other in their number of spikes? This example
illustrates our research question: Would people generalize initial experi-
ences more broadly when they expect more variability between the learning
set and the generalization set as well as within the generalization set?

When people learn, they apply what they have learned not only to the
specific stimulus they experienced, but also to novel, similar stimuli. In other
words, they generalize'™. Generalization is what makes learning useful,
simply because new stimuli are never exactly the same as the learned ones. A
crucial question is therefore what determines the breadth of generalization,
or the strength of a learner’s expectation for objects that are similar yet not
identical to the learned object.

A classic finding in learning is the variability effect (also known as the
diversity effect): broader generalization occurs when people learn from a
diverse (vs. non-diverse) set of objects’™". For example, when people learned
that diverse exemplars (i.e., watermelon, strawberries, and pineapple) pre-
dicted an outcome, they generalized this prediction to novel exemplars from
that category (predicted the outcome with more certainty for orange, pear,

and lemon), relative to people who learned a single type of exemplar (i.e.,
watermelon) that was presented three times at learning'”. Note that in both
cases there is an equal number of learning trials, and the difference lies only
in the homogeneity (vs. variability) of the exemplars in the learning set (see'’
for other types of the variability effect).

The variability effect has been explained by suggesting that variability
affords abstraction'*™"” (for a review see ref. 11). For instance, learning from a
single exemplar (e.g., a watermelon) that is presented a number of times
makes it difficult to identify the critical feature that predicts the outcome
(e.g., is the effect predicted by its large size, its green color or the type of its
seeds). But learning from diverse exemplars (e.g., watermelon, strawberries,
and pineapple) makes it easier to identify the critical feature - it is the feature
that remains stable across exemplars (e.g., they are all fruits). In that way,
learning from diverse exemplars allows broader generalization that is based
on abstracting a more general category'®".

Importantly, the variability effect refers to actual variability within the
learning set: learners generalize more when learning from a varied set of
stimuli rather than a relatively homogeneous set. In this paper, however, we
consider a different aspect of the relation between variability and general-
ization. Specifically, we ask how generalization is affected by expected
variability, both between the learning set and the generalization set, and
within the generalization set. To the best of our knowledge, this question has
never been examined. Expected variability between the learning and gen-
eralization sets refers to the extent to which the (anticipated) generalization
stimuli differ from the learning stimuli. To use our opening example, this
refers to the difference between the learned pathogenic viruses (which all
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had seven spikes) and the viruses of the same type that one expects to see in
the future. Expected variability within the generalization set refers to the
extent to which the generalization stimuli are expected to be different from
each other. That is, the extent to which the viruses of the same type that one
will see in the future are expected to be different from each other (e.g., are
they expected to have 2-10 spikes or rather 6-8 spikes). In this paper we
focus on these two types of expected variability. We predict that learning in
one context while expecting to apply the knowledge in a different context
that is characterized by high (vs. low) variability would result in broader
generalization.

We derive this prediction from the notion that breadth of general-
ization is determined by a trade-off between accuracy and applicability'*,
and that expected variability should shift the point at which this trade-off
optimizes toward broader generalization. Narrower generalization is more
likely to be accurate (if a novel stimulus is more similar to the learned object,
thenitis more likely to generate the same outcome as the learned object), but
it can be potentially applied to fewer new objects (i.e., as the criterion of
similarity to the learned object becomes more stringent, fewer new objects
would be defined as similar). For example, generalizing from a virus with
seven spikes to other viruses with seven spikes is more likely to be accurate
than generalizing to all viruses with four-to-ten spikes, but obviously, it can
be applied to fewer cases. Conversely, broader generalization obviously
applies to more cases but is less likely to be accurate. When generalizing, a
learner attempts to find a “sweet spot” between these two opposing
considerations.

We propose that expected variability within the generalization set as
well as between the learning set and the generalization set affects the point at
which the accuracy-applicability trade-off optimizes. Specifically, when one
expects an application context in which there are relatively few objects that
are similar to the learned one, and relatively many objects that are different
from the learned one, then a broader generalization is needed to ensure that
learning would apply to enough objects. To use our opening example, if
viruses are likely to vary in number of spikes between the learning contexts
and the application context as well as within the application context, then
narrow generalization might prove irrelevant for this future context. This is
because there will be relatively few viruses with exactly seven spikes. In such
a situation, one needs to “cast a wider net,” that is, generalize learning to a
broader category of objects.

When should one expect variability in the application context? In some
real-world situations, the change in the application context is known and
expected. For example, when learning to shoot basketball, the learner
expects to shoot from different places on the field. Similarly, when learning
to read, children must be able to generalize letter-forms across fonts and
sizes. Beyond such explicit knowledge, we suggest that psychological dis-
tance serves as a cue for potential variability and will therefore broaden
generalization. This hypothesis is based on Construal Level Theory
(CLT)"?" which suggests that psychological distance, variability, and
abstraction are interrelated.

Construal Level Theory (CLT) suggests that distancing an object or an
event in any of the four dimensions of psychological distance (time, space,
social distance, hypotheticality) affects the way we think about it. A relevant
core insight of that theory is that distance introduces variability: More distal
objects are increasingly less similar to our current experience and are
increasingly uncertain and therefore potentially different from each
other'**”. For example, what you will eat tonight is relatively known and
predictable. But what you will eat for dinner 10 years from now includes
many more possibilities, some of them unknown. As a result, people
represent distal objects more abstractly, to capture this potential variability.
For example, we are more likely to use “fruit”, rather than “watermelon” to
describe what we will eat 10 years from now as opposed to what we will eat
tonight. According to CLT, abstraction introduces stability and allows one
to overcome the variability and unknowability of distant objects and events.
An abstract representation of an object glosses over the variation and retains
only features that are likely to remain stable across time, space, social per-
spectives, and hypothetical worlds.

We already mentioned that the variability effect could reflect greater
abstraction when one learns from more diverse sets. We propose here that
merely expecting variability in the application context could also afford
greater abstraction and increase the breadth of generalization. This could
happen both when there is explicit knowledge about high variability and
when a more subtle expectation of increased variability is elicited by
increased psychological distance to the anticipated application of one’s
learning.

Our hypothesis aligns with various models of generalization in learn-
ing, in which breadth of generalization is at least partly determined by
processes that occur already at learning. Bayesian models of generalization,
for example, assume that learners update their beliefs about the likelihood of
different probability distributions of the experienced stimuli based on
exposure to specific and limited examples™. Learners may try to build an
abstract structure of a domain and use it as a generative model to generalize
to novel situations™*’. Similarly, according to the function learning account
of generalization, learners generate rules that enable them to interpolate and
extrapolate from training examples to novel cases. For instance, Busemeyer
et al.”’ proposed the Associative-Learning Model (ALM), a connectionist
model in which inputs activate an array of hidden units, each representing a
possible, yet not experienced, input value. The activation of each hidden unit
depends on its similarity to the current input, allowing the learner to gen-
eralize a function from training examples.

In the Supplementary Materials, we propose a formal model and a
simulation that build on these extant models. Our model suggests a possible
mechanism for how generalization may be affected by expected variability in
the learning set and expected variability between the learning and
generalization sets.

To examine the prediction that expecting high (vs. low) variability
would broaden generalization we conducted three experiments. In
Experiment 1 and 3, we used a classic predictive learning task, in which
participants predict whether an outcome would follow rings of different
sizes. In the learning phase, participants learn about two rings of different
sizes, only one of which is followed by an outcome (Fig. 1a). In the gen-
eralization phase, participants predicted whether the outcome would follow
both the learned rings and rings of other size, of different similarity to the
learned rings (i, generalization rings; see Fig. la). Experiment 1
manipulated expected variability by directly instructing participants to
expect high versus low stimuli variability in the application context.
Experiment 2 examined how anticipated variability is affected by increasing
the temporal distance between learning and the anticipated application of
this learning. Specifically, participants indicated their expectations regard-
ing the variability of stimuli in the application set when temporal distance
between learning and application was short versus long. Experiment 3 then
replicated Experiment 1, but instead of direct instructions to anticipate more
variability, it manipulated anticipated temporal distance between learning
and application of that learning.

Results

Experiment 1

In Experiment 1 we showed participants rings of different sizes, told them
that the rings represent samples of bacteria and that their goal is to learn to
predict which samples are pathogenic (see Fig. la). We manipulated
expected variability between learning and generalization as well as within
the generalization set by telling participants that they will learn with samples
from one batch collected by one lab (i.e., from objects that span a narrow
range of space and time) and then apply it in a different context, in which
samples come from different batches of different labs (high-expected-
variability condition) versus in a similar context, in which more samples
from the same batch of the same lab (low-expected-variability condition).
During learning, a middle-sized ring was followed by the outcome (i.e.,
“being pathogenic”), whereas a larger ring was never followed by the out-
come (see Fig. 1b). During generalization, participants saw rings of varying
sizes and indicated their predictions. Importantly, we compared conditions
that were similar to each other in both their learning and generalization
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Fig. 1 | Task stimuli, experimental design and main results of Experiment 1.

a Stimuli presented in the predictive learning task: S + = a learning stimulus that
predicts the appearance of the outcome; S— = a learning stimulus that predicts the
absence of the outcome. S = generalization stimuli. The numbers reflect size, from
smallest to largest. Note that the hypothesis focuses on S1-S4. b An example of a
trial’s sequence: A single ring is presented on the computer screen accompanied by
an 11-point rating scale for participants to indicate their prediction of whether it is
pathogenic, ranging from 0 (certainly not pathogenic) to 10 (certainly pathogenic).

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mea
1 s2 S3 sS4 S+ S6 s7 S8 s9 S-

Stimulus

—— High expected variability — = Low expected variability

After participants respond, a feedback screen appears, and then a screen announcing
the next trial. ¢ Mean outcome predictions (on a 0 to 10 scale) during the learning
phase by expected variability, trial number, and stimulus type. Error bars depict
+1 standard errors. d Mean outcome predictions for all rings (1-10) during the first
generalization block by expected variability. Error bars depict +1 standard errors.
e Mean outcome predictions for all rings (1-10) during all generalization blocks by
expected variability. Error bars depict standard errors +1.
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phases, and only differed in the expected variability between learning and
generalization as well in the expected variability within the general-
ization set.

Learning. Participants learned to differentiate between S+ and S—
equally well in the two experimental conditions (Fig. 1c; see the Sup-
plement 1 for full analysis).

Generalization. As recommended by Vervliet et al.*, we analysed both
the first block of the generalization phase, which shows effects of learning
that are relatively clean of extinction (but suffer from a low number of
trials), and the entire generalization phase.

As preregistered, we analyzed participants’ predictions only for the
generalization rings located on the side of S+ that is opposite to S— (Rings
S1-S4 in Fig. 1a) because these rings allow to test for generalization from S+
that is less influenced by generalization from S—. We used the afex package
inR (v1.3-0”) to conduct a4 x 2 mixed-design ANOVA, with similarity to S
+ (4 levels, from most similar to least similar to S + ) as a within-subject
factor and expected variability (low vs. high) as a between-subject factor. As
predicted, we found broader generalization in the high-expected-variability
condition (M =7.03, SD =1.90) than in the low-expected-variability con-
dition (M =591, SD = 2.53; Fig. 1d, Table 1). Generalization did not change
as a function of similarity to S+, and there was no interaction between
similarity and expected variability. The predicted broader generalization
with increased expected variability obtained also when we examined all six
generalization blocks (Table 1, Fig. le).

Control variables. There were no significant differences between the two
conditions in any of the mood measures or any of the control measures
(see the Supplementary Table 9).

Experiment 2

Experiment 2 aimed to examine whether temporal distance between
learning and the application of that learning increases expected variability.
Building on the context of Experiment 1, we tested whether a long (vs. short)
temporal delay between the collection of first and the second batches leads
participants to expect higher variability between learning and application of
that learning, as well as more variability within the application context.
Unlike Experiment 1, this experiment did not examine learning and gen-
eralization. Rather, participants only indicated their expectations about the
variability of stimuli in the application set when the temporal distance
between learning and application was long versus short.

An independent-samples t-test revealed that participants in the distal
condition rated the likelihood that the second batch would be different as
higher (M =6.61, SD = 2.61) than participants in the proximal condition
(M =3.88,SD = 1.95), t(ge) = 5.57, p < 0.001, d = 2.32. Also, a paired-sample
t-test showed that participants agreed with the statement that as the time
between the first and the second batches increases, pathogenic colonies with
sizes different from the first batch become more likely (M = 6.88, SD = 2.05),

than with the statement that they become less likely (M = 3.77, SD = 1.80),
to0) =8.59, p <0.001, d =3.45. Thus, consistent with our prediction, the
expected variability was higher when participants expected to apply their
learning in the more distant future.

Experiment 3

We reasoned, based on Experiment 2, that when the scope of time that
separates learning from the application of that learning increases (i.e., when
learning for the distant future), the potential for variability increases as
well'**>*** Experiment 3 manipulated temporal distance of anticipated
application of learning. Participants predicted the occurrence of a picture of
a lightning bolt from rings of different sizes. We told participants in the
proximal (distal) condition that they would apply what they learned in the
near future, immediately after learning (in the distant future, during a
second session). In practice, the generalization phase followed immediately
after learning, without any announcement, and was not different between
conditions. Thus, participants in both conditions underwent similar
learning and generalization procedures and only differed in whether they
expected to apply what they learned in the near or the more distant future.

Learning. Learning did not differ between conditions (Fig. 2a, see Sup-
plement 2 for complete analysis).

Generalization. As in Experiment 1, we analysed both the first gen-
eralization block and the entire generalization phase in a 4 x 2 mixed-
design ANOVA, with similarity to S+ (4 levels, from most similar to least
similar to S + ) as a within-subject factor and temporal distance (prox-
imal vs. distal) as a between-subject factor. As hypothesized, we found
broader generalization in the distal condition (M = 5.80, SD = 2.06) than
in the proximal condition (M = 4.79, SD = 2.50; see Table 2 and Fig. 2b). A
main effect of similarity to S+ indicated that generalization decreased as
similarity to S+ decreased. There was no interaction between similarity
and distance. These results held also when we analyzed all generalization
blocks (Fig. 2¢, Table 2).

General discussion

We used a predictive learning task to examine whether generalization would
be broader when learners expect more variability between the learning set
and the generalization set, as well as within the generalization set. In
Experiment 1, participants learned that a bacterial colony of a medium size
was pathogenic (S + ), whereas a larger colony was not (S—). At a sub-
sequent generalization phase, they indicated the likelihood that colonies of
different, previously unseen sizes would be pathogenic. Colonies were
represented by rings, and information on whether a colony is pathogenic
was represented by a word. We found that participants generalized more
broadly when they were told that the colonies at the second stage come from
a more variable environment (i.e., the new samples were collected in dif-
ferent labs) as opposed to a homogenous environment similar to the
learning context (i.e., the new samples were collected in the same lab). That

Table 1 | ANOVA Results for Generalization by Expected Variability and Similarity to S +, in the First Generalization Block and

Across all Generalization Blocks, in Experiment 1

First generalization block

F{(df) P ﬂzp Close,
Expected variability F(1,94)=5.99 0.016 0.060 [0.002, 0.173]
Similarity to S+ F(2.90, 272.66) = 1.27 0.286 0.013 [0.000, 0.042]
Similarity x Expected variability F(2.90, 272.66) = 0.08 0.966 0.001 [0.000, 0.002]
All generalization blocks

F(df) P nzp Closs,
Expected variability F(1,94)=4.37 0.039 0.044 [0.000, 0.150]
Similarity to S+ F(1.95, 183.45) = 34.83 <0.001 0.270 [0.184, 0.348]
Similarity x Expected variability F(1.95, 183.45)=2.56 0.082 0.026 [0.000, 0.066]
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Fig. 2 | Main results in Experiment 3. a Mean outcome predictions (on a 0 to
10 scale) during the learning phase by temporal distance, trial number, and stimulus
type. Error bars depict +1 standard errors. b Mean outcome predictions for all rings

(1-10) during the first generalization block by temporal distance. Error bars depict
standard errors. ¢ Mean outcome predictions for all rings during all generalization
test blocks by temporal distance. Error bars depict +1 standard errors.

Table 2| ANOVA Results for Generalization across all Generalization Blocks by Similarity and Temporal Distance in Experiment 3

First generalization block

F{(df) P % Close,
Temporal distance F(1,90)=4.42 0.038 0.047 [0.000, 0.156]
Similarity to S+ F(2.861, 257.521) = 13.96 <0.001 0.134 [0.062, 0.206]
Similarity x Temporal distance F(2.861, 257.521) =0.39 0.754 0.004 [0.000, 0.020]
All generalization blocks

F{(df) P % Close,
Temporal distance F(1,90)=4.42 0.038 0.047 [0.000, 0.156]
Similarity to S+ F(1.829, 164.595) = 60.32 <0.001 0.401 [0.313, 0.475]
Similarity x Temporal distance F(1.829, 164.595) = 1.80 0.172 0.020 [0.000, 0.055]

is, participants expected more previously unseen colonies to be pathogenic.
Experiment 2 showed that anticipating applying learning in a more distant
future induce expectation for increased variability. Experiment 3 built on the
results of Experiment 2 and showed that expected temporal distance
between learning and the anticipated future application of learning broa-
dened generalization. Specifically, we used a task that was a variation on
Experiment 1. Namely, the same rings were used, but now at learning a
medium size ring predicted a lightning bolt and a larger ring predicted its
absence. We found that when participants anticipated a long (vs. short)
temporal delay between learning and application of that learning, they
generalized more broadly.

We predicted these results based on the notion that generalization
involves an accuracy-applicability trade-off, whereby a broader general-
ization, namely, forming expectations about a larger class of objects, means,
on the one hand, that expectations can be formed about more objects, but on

the other hand increases the risk that these expectations would be incorrect.
We reasoned that when learners anticipate generalization targets to be more
variable and more different from the learned objects, they optimize the
trade-off between accuracy and applicability by “casting a wider net”
attributing the outcome to a broader range of objects.

Our findings are consistent with Construal Level Theory (CLT),
according to which people represent objects that are distal in time, space and
social perspective in a more abstract way'*". It has been suggested that one
of the reasons behind the relation between distance and abstraction is the
fact that distance increases the range and variability of possibilities'“*. For
example, “a disease I might have a year from now” has more possible
manifestations than “a disease I might have tomorrow” and therefore using
the broader, more inclusive category “disease” (as opposed to, e.g., “a flu”)
would be more appropriate when representing and predicting a more distal
state of affairs. Our studies suggest the possibility that when people learn in
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view of a distal implementation, they represent the learned stimuli in a
broader, more inclusive way, which would typically entail broader
generalization.

In a recent review on abstraction, it was theorized to occur whenever
two subjectively distinct objects are deemed equivalent and therefore sub-
stitutable in producing an effect'’. If more objects are deemed substitutable
with each other, then one can say that more abstraction occurred. For
example, if we categorize dieting and exercising abstractly as “ways to lose
weight” we deem them equivalent in that respect. If we add to this category
also “taking slimming pills” we make that category even more abstract.
Importantly, by that definition, generalization is abstraction, because in
generalization, two distinct objects are deemed equivalent by the learner,
who judges them both as predictive of the outcome.

Our experiments show that learning, and more specifically, general-
ization may be affected by expectations about application, and not only, as
has been shown in past research, by actual experience at learning'**’. Such
expectations were induced in our experiments by verbal instructions, and in
that our findings are consistent with other studies that demonstrated that
generalization is sensitive to verbal instructions’ ~* (for a review see ref. 35).
For example, in a study by Boddez and colleagues™, participants first learned
to predict an electric shock from a CS (a white or a black square), and then
saw generalization stimuli (squares in different shades of grey). Instructions
informed participants that the likelihood of receiving an electric shock is
lower when the stimulus looks more similar to the CS. In this way, the
instructions countered the typical generalization gradient (a tendency to
predict the outcome with more likelihood for stimuli that are more similar to
the CS). The results indicated that generalization was lower (i.e., lower
expectations for electric shock) for stimuli that were more similar to the CS.

Generalization plays a central role not only in classic learning theories,
but also in research on concept formation, attitude generalization, and the
acquisition of complex knowledge structures. Therefore, our findings may
have also practical implications for applied settings such as education,
person perception, and clinical psychology (e.g., fear conditioning). Lever-
aging the insights from the current research may help both researchers and
practitioners to design more effective learning and training procedures.
Depending on the intended goal — whether to narrow or broaden the extent
of generalization — one can strategically adjust the expected variability and
expected distance of the anticipated application context. For example, in the
context of education, instructors might wish to enhance generalization of
acquired knowledge — a process that is typically referred to as
“transfer”'"”**, Research has shown that as learners experience more
variability in their educational training (e.g., exposure to different question
formats), they exhibit better transfer of acquired knowledge”™"'. Based on
our findings we may predict that the mere expectation of distal (vs. prox-
imal) learning applications will improve transfer. Instructors might strive to
enhance transfer by making students anticipate exams that are distant in
time and different in context from the learning context — exams that would
be administered by a different teacher, in unknown format, and in the
distant future. Increasing transfer is a challenge that educators constantly
face. Although this is a far implication of our studies, we believe there is a
great value in attempting to extend our research into educational setting and
more specifically to the hard question of transfer.

An inherent limitation of the predictive learning task we used is that it
does not distinguish between two reasons for responding to a novel stimulus
in a way that is similar to the learned stimulus”**: First, participants might
fail to discriminate between the two (i.e., they incorrectly perceive the novel
stimulus as the learned stimulus), and second, they might correctly identify
the novel stimulus as different from the learned one, but expect it to result in
the same outcome. Of note, those processes are not mutually exclusive, and
are both consistent with forming a more abstract category of the learned
stimulus, which we and others'' assumed to underlie broader generalization.

A possible way to distinguish between these two options is to measure
stimulus perception®. For example, a future study could use a task in which
participants decide whether a stimulus is old (i.e., the learned stimulus) or
new (a generalization stimulus; see also refs. 45-49), and then perform a

generalization task. Would perceptual sensitivity decrease with expectations
of increased variability? And if so, would it predict generalization?

A future study could also examine whether expected variability or
psychological distance that are introduced after the learning phase, before
generalization would increase generalization. If wider generalization
emerges also when expected variability or distance are introduced only after
learning, it would suggest that expected variability could affect decision
criteria.

Methods

All materials, data, syntax and the pre-registrations can be accessed at the
project’s OSF page. All experiments were approved by the Ethics Committee
of Tel Aviv University and were following the approved guidelines and
regulations (Approval numbers 0001956-1 and 0001956-3).

Experiment 1

Participants. One-hundred-and-thirty Mechanical Turk participants
completed the study in return for payment. The preregistered sample size
was based on power estimation to detect a main effect of condition in the
first generalization block based on a pilot study with 24 participants that
found an effect size of n’, = 0.47. According to G¥*power software™, 98
participants are required to achieve 80% power. We factored up by 30%
anticipating dropout which might happen in online participation in such
paradigms and collected data from 130 participants (we conducted
Experiment 3 before Experiment 1, but because Experiment 1 tests the
basic mechanism, we present it first.). Participants were randomly
assigned to one of two experimental conditions. Per our preregistered
exclusion criteria, 34 participants were excluded because they did not
reach the learning criterion. One additional participant was excluded
because they did not complete the task. The final sample consisted of 96
participants (Mg =38.54, SDge.=11.78, 52 women) Niow-expected-
variability = 46, N high-expected-variability = 50.

The predictive learning task. In the predictive learning task”™ (Experi-
ment 1), participants aimed to learn which stimuli predict a particular
outcome. The stimuli were rings of different sizes that, in our modified
version, represented bacteria colonies. The outcome was “being patho-
genic”. Participants were informed that rings of different sizes will be
displayed on the computer screen and that these rings represent bacteria
colonies, some pathogenic and others harmless. They were then told that
their goal is to learn to predict which bacteria colonies are pathogenic and
which are not. Each trial started with the message “The next trial starts
now” displayed at the center of the screen for 500 ms. Then a single ring
was presented on the computer screen accompanied by an 11-point
rating scale for participants to indicate their prediction of whether it is
pathogenic, ranging from 0 (certainly not pathogenic) to 10 (certainly
pathogenic). Afterwards, the ring and the scale disappeared from the
screen, and either the phrase “pathogenic bacteria” or a black screen was
displayed at the center of the screen for 1500 ms (see Fig. 1b).

The task consisted of two phases: learning and generalization. In the
learning phase, two stimuli were presented (see Fig. 1a), each presented 12
times: a medium-size ring (S + ) and a large-size ring (S—). S+ was followed
by the phrase “pathogenic bacteria” in 10 of its 12 presentations. In its
remaining two presentations it was followed by a black screen. S— was
always followed by a black screen. Once the learning phase was complete,
participants were told they will move onto the next phase and feedback will
no longer be provided. In the generalization phase, participants encountered
six identical blocks in which eight novel rings of varying sizes were pre-
sented. In each generalization block, S+, was presented twice, S— was
presented twice, and each of the eight generalization rings were presented
once. S+ was placed at the center of the generalization dimension, whereas S
— was positioned at the right-most edge (see Fig. 1a). Half of the general-
ization rings were larger than S+ (between S+ and S—). Predictions to these
rings could be affected by both generalization from S+ (which would call for
enhanced predictions of the outcome, i.e., predicting pathogenic bacteria)
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and generalization from S— (which would call for reduced predictions of the
outcome, ie., predicting non-pathogenic bacteria). The other half of the
generalization rings were smaller than S+ (to the left of S + , in the opposite
direction of S—). These novel rings allowed for the examination of gen-
eralization from S+ that was less influenced by generalization from S—*".
Therefore, our (preregistered) hypothesis concerned these latter general-
ization rings (see S1-S4 in Fig. 1b).

Note that in our experiments, as in previous studies with the same
paradigm’**, S— was the biggest ring, and S+ was a medium-size ring. As in
these previous studies, we did not use a condition in which S— is small and S
+ is medium, because previous studies found that instead of giving rise to a
generalization gradient (i.e., lower expectations with reduced similarity to
the S + ), it makes learners increase intensity of response with increasing size
(see the review on generalization by Ghirlanda and Enquist™), as if they
inferred a rule “the larger the ring the higher the probability of the outcome
appearance.”

We operationalized broader generalization as a tendency to predict
“pathogenic” for the generalization rings that are smaller than the original
learned ring, S+ (i.e., those to the left of S 4 ). We hypothesized that high-
expected-variability (vs. low-expected-variability) would lead to higher
predictions of pathogenic quality for these rings.

Procedure. After signing an electronic consent form, an instruction
screen informed participants that a number of rings would appear on
the screen and that these rings represent various bacteria colonies of
different sizes, and that some of these bacteria are pathogenic (i.e.,
cause a disease) while other are harmless. Participants were told that
their goal is to learn to predict which bacteria colony is pathogenic
and which is not. The predictive learning task was similar across
conditions.

At the beginning of the task, we told participants in the low-expected-
variability condition that in the second stage of the task, they would be
presented with another batch of bacteria samples from the same lab. In
contrast, we told participants in the high-expected-variability condition that
in the second stage they would be presented with bacteria samples that were
collected by other labs across the world. Upon completing the learning
phase participants in the low-expected-variability condition read the fol-
lowing reminder:

Now we will present you with another batch of samples from the same
lab. The samples from both batches were collected at approximately the same
time and in very similar conditions. Such batches tend to be very similar to
each other.

Whereas participants in the high-expected-variability read the fol-
lowing reminder:

Now we will present you with samples from other labs, across the world.
When samples of bacteria colonies are transferred between labs, the colonies’
size may get distorted. For example, samples can shrink because of dry con-
ditions and change of pressure. Samples can also expand because of humidity,
heat, etc.

Next, participants completed the generalization phase. Upon
completion of the task, we asked participants “What was the origin of
the samples you saw on the second stage” with the following options:
1) other labs across the world, 2) the same lab as in the first stage, 3)
innovative electron microscope, 4) underground research excava-
tions, and 5) skin of laboratory animals. Thereafter, we asked them
an open-ended question about what guided their predictions in the
second stage. Then, participants responded to the following ques-
tions, which served as control variables: interest (“How interesting
was the task for you?”), enjoyment (“How much did you enjoy the
task?”), difficulty (“How difficult did you find the task?”), motivation
(“How motivated did you feel to perform the task well?”), importance
(“How important was it for you to perform the task well?”), and
perceived competence (“How well do you feel that you did on the
task?”) on scales that ranged from 1 (not at all) to 7 (very much).
General mood was also assessed (“Generally, how do you feel right

now?” 1 = very bad, 7 = very good), followed by eight specific
emotions (“How sad/loose/tense/relaxed/nervous/happy/ joyful/
depressed do you feel right now?” 1 = not at all, 7 = very much).
Finally, participants indicated their age and gender.

Experiment 2

Participants. One-hundred-and-two Prolific participants completed the
study in return for payment. The preregistered sample size was based on a
pilot study with 51 participants, in which we found an effect of condition
of Cohen’s d = 1.13. We suspected that this might be an over-estimation
of the true effect size and opted to detect a medium effect of Cohen’s
d=0.5 in the preregistered experiment. According to G*power
software™, 102 participants are required to achieve 80% power with that
effect. Per the preregistered exclusion criteria, nine participants were
excluded because they failed an attention check and an additional two
were excluded because they failed the memory check. The final sample
included 91 participants (Mg =30.22, SD=5.16, 44 women),
Nproximal =42, Ndistal =49.

Procedure and materials. Participants were told that the study is about
intuitive expectations. After signing an electronic consent form, parti-
cipants were randomly assigned to one of two experimental conditions
and read the respective vignette. Below is the text that participants in the
proximal condition received. The text for the distal condition appears in
brackets:

People are exposed to various bacteria, however, only some of these
bacteria are pathogenic (i.e., cause a disease), while others are harmless.
Imagine that you are working in a laboratory and test which bacteria are
pathogenic and which are not. The bacteria form colonies of different sizes,
and their size has to do with whether the bacteria are pathogenic or not. In one
sample you looked at, you found out that a colony of the size that is presented

here is pathogenic:

You look at another pathogenic colony. It looks like that:

O

Yet another pathogenic colony looked like that:

O

The pathogenic colony that you have just seen was from a first batch. In
some cases, the second batch is collected soon after the first, while in other cases
it might take a full year before the second batch is collected. You now learn
that the second batch of pathogenic colonies was collected a few minutes after
[a year after] the first batch.

Thereafter, participants were asked how likely the second batch is to be
different from the first one and to include pathogenic samples that are
different in size. They indicated their estimation on a 10-point scale ranging
from 1 (not at all likely), to 10 (very likely). Then, as a memory check,
participants indicated how much time passed between the collection of the
first and the second batches: 1) a few minutes, 2) a few days, 3) a year, 4) 10
years. Finally, we also asked participants to indicate to what degree they
agree with the following sentences on a 10-point scale ranging from 1
(strongly disagree) to 10 (strongly agree): 1) As the time between the first
and the second batches increases, it becomes more likely that the second
sample will include pathogenic colonies with sizes different from the first
batch, and, 2) As the time between the first and the second batches increases,
it becomes less likely that the second sample will include pathogenic colonies
with sizes different from the first batch. These last two questions were
preregistered as exploratory measures.

Experiment 3
Participants. One-hundred-and-twenty-six online participants were
recruited by an online Israeli platform (“Midgam”), completed the study
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in return for payment. The sample size was based on the recommenda-
tion of Ledgerwood™ for experiments with unknown effects. We ori-
ginally planned to recruit 50 participants per condition, but anticipating
exclusions due to low performance, we recruited 60 participants per
condition. Participants were randomly assigned to one of the two
experimental conditions. We excluded 34 participants because they did
not reach the learning criterion. The final sample consisted of 92 parti-
cipants (M,ge =25.32, SDgge=2.70, 44 women) Nproximal = 45,
Naistal = 47.

Procedure. The experimental procedure and stimuli were similar to
Experiment 1, except for the framing of the task, the outcome that
was predicted and the way generalization was introduced. The
experiment was presented to the participants as a study on learning
and personality. After signing an electronic consent form, the
instructions screen informed participants that a number of rings
would appear on the screen and that some of these rings would be
followed by a lightning bolt. They were told that their goal was to
learn which ring would be followed by the lightning bolt. Unlike
Experiment 1, the 11-point scale ranged from “Certainly no light-
ning” (0) to “Certainly lightning” (10). We manipulated the temporal
distance of anticipated application of learning by telling all the
participants that they will first do a simulation of the actual task, and
then manipulating between conditions the time of the anticipated
actual task. Specifically, we told participants that the actual task will
follow either immediately after the simulation (in the proximal
condition) or a week later (in the distal condition). In reality, there
was no “actual task” and in both conditions we were interested in
participants’ performance of the ostensible simulation, which was
(except for the timing of the anticipated actual task) identical in both
conditions, and which presented learning and generalization one
after the other, with no break and no specific instructions
between them.

Participants in the distal condition read the following:

The following study aims to test the effect of personality on performance
in a learning task. The study includes two parts - the first part will occur now,
whereas the second part will take in a week from now.

In Part 1,now, you will do a simulation of the learning task.

In Part 2,next week, you will do the actual learning task and answer
personality questionnaires.

Participants in the proximal condition read the following:

The following study aims to test the effect of personality on performance
in a learning task. The study includes two parts - the first part will occur now,
whereas the second part will take in a week from now.

In Part 1,now, you will first complete a simulation of the learning task,
and the actual task will follow.

In Part 2, next week, you will answer personality questionnaires.

Participants in both conditions read that the personality assessment
would take place in the next session, a week later, to make sure that parti-
cipants in both conditions expect a two-part experiment. In fact, partici-
pants in both conditions completed the predictive learning task (which they
thought was the simulation of the actual task) in the first session, and a short
version of the Need for Condition questionnaire (NFC”) the week after. We
included this questionnaire to lend credibility to our cover story that the
second part of the experiment involves personality questionnaires. We
chose NFC because we thought that it might be related to learning and to
generalization, but we did not predict it to moderate or mediate the effect of
distance. We found that high NFC was associated with less generalization
and was unrelated to learning. The effect of distance on generalization
remained significant after controlling for NFC (see Supplementary
Materials).

Upon completing the predictive learning task (ie., the ostensible
simulation), participants answered a demographic questionnaire. After a
week, we invited them to participate in the second part of the experiment, in
which they answered the NFC questionnaire.

Data availability
All materials, data, syntax and pre-registration forms can be accessed on the
project’s OSF page.

Code availability
The underlying code for this study is available in the project’s OSF page and
can be accessed via this link .
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