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The introduction of large language models (LLMs) may change future pedagogical practices. Current
research mainly focuses on the use of LLMs to tutor students, while the exploration of LLMs’ potential
to assist teachers is limited. Taking high school mathematics as an example, we propose a method
that utilizes LLMs to enhance the quality of teaching plans through guiding the LLM to simulate
teacher-student interactions, generate teaching reflections, and subsequently direct the LLM to refine
the teaching plan by integrating these teaching process and reflections. Human evaluation results
show that this method significantly elevates the quality of the original teaching plans generated directly
by LLM. The improved teaching plans are comparable to high-quality ones crafted by human teachers
across various assessment dimensions and knowledge modules. This approach provides a pre-class
rehearsal simulation and ideas for teaching plan refinement, offering practical evidence for the

widespread application of LLMs in teaching preparation.

Large language models (LLMs), with their exceptional capabilities of natural
language understanding and generation', have driven the development of
educational applications in human-computer interaction, such as intelligent
tutoring systems and teaching assistants, offering new opportunities for the
transformation of teaching and learning paradigms’. Particularly in student
tutoring, agents built on LLMs can undertake most of the teaching tasks of
human teachers. By playing the roles of virtual tutors, assistants, and
learning peers, these LLMs provide students with personalized, interactive,
and engaging learning experiences’ . While LLMs demonstrate potential in
enhancing students’ learning, there is little research that explores how LLMs
may support teachers in their teaching’, especially the extent to which the
use of LLMs can influence various teaching processes, such as teaching
preparation, classroom instruction, and post-class reflection and
improvement®. Some researchers conducted preliminary research on using
LLMs to support teaching, but the results were mixed. For instance, some
used LLMs to evaluate teachers’ classroom performance, but the accuracy of
these evaluations and the coherence of the assessment content required
further improvement’. Other researchers applied LLMs in teacher training
programs, finding that these LLMs struggle to provide innovative, con-
sistent, and valuable teaching guidance'’. Researchers also used LLMs to
generate teaching materials, including course outlines, teaching manuals,
and exercises. Yet, these materials were not systematically evaluated and
validated, and their content often lacked specificity and practicality'".

Current research indicates that LLMs still require improvement in under-
standing the complexities of the teaching process and generating diverse
teaching content. In this study, we propose a method that uses LLM to
enhance the quality of teaching plans, which can improve the LLM’s
understanding of teaching, and better support teachers in teaching pre-
paration. We asked the LLM to simulate teaching processes and generate
teaching reflections based on original teaching plans. Drawing from these
simulations and reflections, the LLM was guided to generate new teaching
plans. Human evaluations indicate that the improved teaching plans can
reach the high quality level of those written by skilled human teachers.

A teaching plan is a teacher’s instructional design created during
teaching preparation. It serves as a pre-set plan that guides classroom
instruction, reflecting the teacher’s teaching ideas and strategies for the
specific lesson'”. Experienced teachers, when crafting teaching plans, would
take students’ actual needs into consideration and design suitable teaching
content and methods". However, novice teachers, due to their limited
practical teaching experience, often struggle to foresee students’ needs and
potential learning challenges'’. Consequently, their teaching plans tend to be
generic, sometimes assembled from exemplary teaching plans by other
teachers, and often lack depth and coherence'>'. As a result, novice teachers
often teach the same content in several classes to gain a more comprehensive
understanding of students’ real needs and challenges in the learning process.
This practice enables them to accumulate teaching experience and enhance
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the specificity and quality of their teaching plans. Positive and harmonious
teacher-student interactions during class can provide timely feedback on
students’ learning progress, and help teachers identify difficulties students
encounter. However, a high student-to-teacher ratio makes it challenging
for teachers to capture individualized learning needs and difficulties of every
student"”. This is particularly evident in middle and upper grades, where
most students, due to shyness or unwillingness to reveal their lack of
knowledge, refrain from actively seeking help from teachers. Only a few
students approach teachers after class for assistance. Consequently, it
becomes difficult for teachers to comprehensively identify specific obstacles
faced by students and obtain adequate feedback on their learning, making
the process of improving teaching plans and accumulating teaching
experience more difficult. Additionally, teaching plans are mostly revised
and optimized during post-class teaching reflections, which means that the
improved, higher-quality teaching plans primarily benefits students in
subsequent classes. Unless additional class time is allocated for supple-
mental instruction, the benefits for students in the current class remain
limited. Therefore, it becomes particularly important to foresee potential
learning difficulties that students may encounter during instruction and to
adjust teaching plan content accordingly in advance'®.

Teachers often reflect on the challenges students encounter during a
lesson and subsequently revise and refine their teaching plans', we propose
that LLMs may be able to anticipate students’ potential learning challenges
before the actual teaching takes place. This approach could help teachers to
optimize the content of their teaching plans in advance, reduce teaching
risks, and enhance the quality, ensuring that all students benefit from the
improved instructional materials. The key to achieving this lies in the role-
playing capabilities of LLMs". In this study, we designed prompt commands
to make LLM simulate classroom interactions between a teacher and stu-
dents of varying ability levels. LLM first simulated the teaching process
based on the content of the teaching plan, including scenarios where stu-
dents encountered learning challenges, such as providing incorrect answers
due to conceptual confusion. Then, using LLM’s reflection and error-
correction capabilities”’, we used LLM to generate teaching reflections based
on the simulated teaching process. Afterward, based on the teaching process
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and reflection texts, the LLM was instructed to make corresponding
improvements and optimizations to the original teaching plan. Finally, by
evaluating the enhanced teaching plans, we explored the potential of using
LLM simulations and reflections to improve the quality of teaching plans.
This study addresses two main research questions: (1) Can LLM enhance
the quality of teaching plans by simulating the teaching process and gen-
erating reflections? (2) How do the teaching plans generated through this
approach perform across various evaluation dimensions and different
knowledge modules?

When designing teaching plans, teachers usually set up instructional
objectives, analyze teaching content, select teaching methods, design
teaching contexts and activities, and consider ways to evaluate students’
learning outcomes based on curriculum standards***. This process reflects
the teacher’s Content Knowledge (CK) and Pedagogical Knowledge (PK), as
well as their ability to effectively integrate them. This corresponds to the
theory of Pedagogical Content Knowledge (PCK), which emphasizes that
teacher transform subject-specific knowledge into forms that are accessible
and comprehensible for students™. Also, teachers often incorporate pre-
designed mathematical problems into their teaching plans, providing
opportunities for students to construct knowledge and concepts™. Well-
designed problems are organized into a sequence of interconnected ques-
tions, forming a mathematical problem chain. This chain links various
knowledge points throughout the lesson, which enables students to
understand and master mathematical concepts in a gradual way™. In our
previous research™, we incorporated content knowledge and pedagogical
knowledge into prompts based on the PCK theory”, and established an
output format for teaching plans generated by LLMs using mathematical
problem chains. Subsequently, we utilized GPT-4 to generate teaching plans
for all mathematics lessons in high school®®, Furthermore, an evaluation
framework was developed to comprehensively assess the quality of the
generated teaching plans. The results demonstrate that the teaching plans
generated by GPT-4 perform well in areas such as establishing instructional
objectives, identifying teaching priorities and challenges, designing teaching
activities, and summarizing classroom teaching knowledge. However, there
remains a gap between GPT-4 generated teaching plans and those high-
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Fig. 1 | Construction and Evaluation of the Teaching Plan Dataset. This figure
illustrates the process involving three main phases: dataset construction, quality
enhancement, and effectiveness evaluation. During the dataset construction phase,
four baseline teaching plan datasets (Datasets A, B, C, and G), comprising a total of
240 teaching plans, were created. In the quality enhancement phase, the process
unfolded in three steps. First, the LLM simulated classroom interactions between
teacher and students based on the content of the teaching plans. Second, the LLM
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generated teaching reflections by integrating the teaching plans with the simulated
classroom interaction texts. Third, the LLM refined the teaching plans by incor-
porating the original plans and the generated teaching reflections. Four improved
teaching plan datasets were obtained in this phase (Datasets D, E, F, and H), with 240
teaching plans in total. Finally, in the evaluation phase, manual assessment and
comparative analysis were conducted on 8 teaching plan datasets.
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Knowledge Point : How to Conduct Stratified Random Sampling?

[Problem Chain]: Now that we understand the basic concept of stratified random sampling, how should we proceed with it? If
we categorize supermarket customers by gender and age, how many people should be sampled from each category?

[Variant Question]: Suppose we categorize male customers into age groups: 18-25, 26-35, 36-45, and over 46 years old, and
female customers are categorized similarly. How many people should we sample from each category? How should we decide?

Student 1 (correct response): | think we should sample according to the proportion of people in each category. If one

Teacher: Very good! You're correct. Typically, we sample according to the proportion of each category, a common method in
stratified random sampling. Let's try a specific example. Suppose we categorize male customers into age groups: 18-25, 26-35,
36-45, and over 46 years old, and female customers similarly. How many should we sample from each category? How do we

Student 2 (struggling with previous knowledge): Teacher, I'm not sure how to determine the specific number of samples.
Teacher: No worries. We usually decide the number of samples based on the proportion of each category. For example, if
male customers aged 18-25 make up 10% of all customers, we should sample 10% from this category. Everyone, try practicing

Student 3 (posing their own question): Teacher, if a category has very few people, do we still need to sample from it?

Deficiency: Although classroom discussions and interactive Q&A sessions enhance student engagement, the teaching plan
does not adequately address the needs of students with varying levels of cognitive abilities. For students who are slower in
understanding concepts, the plan should provide layered questions or more detailed explanations to ensure that all students

[Problem Chain 1]: Assuming we already understand the basic concept of stratified random sampling, how do we proceed
with stratified random sampling? If we categorize supermarket customers by gender and age, how many people should we

[Problem Chain 2]: Assuming we categorize male customers by age groups: 18-25 years old, 26-35 years old, 36-45 years old,
and over 46 years old, and do the same for female customers. The supermarket has 1000 customers, with the following
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Males 18-25 years old: 10%, Males 26-35 years old: 15%, Males 36-45 years old: 10%, Males over 46 years old: 15%

Females 18-25 years old: 10%, Females 26-35 years old: 20%, Females 36-45 years old: 10%, Females over 46 years old: 10%
If we need to sample 100 people, how many should we sample from each category?

[Trap-Based Problem Chain]:

[Problem Chain 1]: If we group male customers by employment type (full-time, part-time, student, retired) and then randomly
sample from each group, do you think this grouping is reasonable? Why or why not?
[Problem Chain 2]: If, in practice, the number of customers in certain categories is too small, how should we adjust our

sampling strategy?

Fig. 2 | Example of Using GPT-4 to Improve Teaching Plan. This figure illustrates
the process within the “Statistics” knowledge module, focusing on the lesson about
“Stratified Random Sampling.” It shows the teaching phase for “explaining new

knowledge” on “how to conduct stratified random sampling.” Utilizing GPT-4, the

figure demonstrates how the original teaching plan content is used to simulate
teacher-student interactive dialogs, generate teaching reflections, and subsequently,
the content of the enhanced teaching plan.

quality ones created by human teachers. The teaching plans generated by
GPT-4 still needs to be improved in the depth of teaching content, the
complexity of problem chains, the breadth of knowledge coverage, the
design of differentiated learning materials, interdisciplinary and subject
culture integration, and practical value. These findings provide a data
foundation for utilizing LLMs to enhance the quality of teaching plans in
this study.

The research design of this study is illustrated in Fig. 1. During the
teaching plan dataset construction phase, we used high school mathematics
curriculum as an example. The content of 21 chapters in high school
mathematics curriculum was categorized into four main knowledge mod-
ules: Statistics, Functions, Algebra, and Geometry”*"’. From each module, 15
lessons were randomly selected, resulting in a total of 60 lessons. The
teaching plans corresponding to these 60 lessons were used as evaluation
subjects. We first constructed four baseline teaching plan datasets, com-
prising a total of 240 teaching plans, including: (1) Dataset A, derived from
our previous research, in which finely designed prompt instructions based
on PCK theory and mathematical problem chains were used to generate
teaching plans; (2) Dataset B, consisting of teaching plans generated directly
by GPT-4 using prompts that did not incorporate the structure of mathe-
matical problem chains; (3) Dataset C, a high-quality teaching plan dataset
sourced from China’s National Primary and Secondary School Smart
Education Platform, authored by experienced teachers with over ten years of
teaching experience; and (4) Dataset G, consisting of teaching plans written
by pre-service teachers during a two-week induction training program.

During the teaching plan quality enhancement phase, we designed
prompt instructions and directed GPT-4 to simulate interactions between a

teacher and students of varying ability levels during the teaching process,
based on the content of each teaching plan from Dataset A, as illustrated in
Fig. 2. Next, we instructed GPT-4 to generate teaching reflections by inte-
grating the original teaching plans from Dataset A with the simulated
teaching process texts. Subsequently, we commanded GPT-4 to improve the
original teaching plans by incorporating the teaching reflections generated,
resulting in the enhanced teaching plan dataset, Dataset D. To compre-
hensively evaluate the effectiveness of this enhancement approach, we
conducted a second round of improvements using GPT-4 based on the
initial enhancement, resulting in teaching plan dataset E. Additionally, we
replaced the GPT-4 model with the Claude 3.5 Sonnet model to improve the
teaching plans in dataset A, producing teaching plan dataset F. Furthermore,
we utilized GPT-4 to enhance the teaching plans created by pre-service
teachers, yielding teaching plan dataset H. In total, four enhanced teaching
plan datasets were generated, comprising 240 teaching plans. Throughout
the processes of simulating the teaching process, generating teaching
reflections, and improving the original teaching plans, we included in the
prompt instructions corresponding knowledge points for each lesson, along
with instructional objectives and teaching priority and challenge from the
original teaching plans. Additionally, to improve the quality of the mathe-
matical problem chains designed by the LLM, we refined the original output
format of problem chains when designing the prompt instructions. Instead
of a standardized, generic problem chain format (e.g., “Problem Chain 1,
Problem Chain 2, Problem Chain 3...”), we categorized the problem chain
into three types: “context-based,” “trap-based,” and “summary-based”
problem chains™. A “context-based” problem chain requires the LLM to
create scenarios and knowledge-introduction questions related to the
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lesson’s knowledge points, ensuring logical progression and continuity
across teaching phases. A “trap-based” problem chain refers to a series of
questions designed by the LLM that are likely to cause students’ mistakes,
facilitate conceptual clarification, and present significant challenges. Finally,
a “summary-based” problem chain involves questions that guide students to
review and summarize the knowledge learned in the lesson, and stimulate
their interest in further learning.

Finally, during the teaching plan evaluation phase, we conducted
manual scoring and analysis of the eight teaching plan datasets. An eva-
luation framework was designed, comprising nine categories and nineteen
dimensions, including problem chains, teaching activities, content knowl-
edge, teaching methods and strategies, teaching evaluation, inter-
disciplinarity, practical value, scope beyond the syllabus, and overall rating.
A Likert 8-point scale was used for the manual assessment. Detailed
descriptions of each evaluation dimension (see Table 2), the basic infor-
mation of the evaluators, the design of prompt instructions for simulating
the teaching process and generating teaching reflections, as well as the
detailed construction of the evaluation dataset, will be thoroughly discussed
in the Methods section of this paper. As far as we know, this study is the first
to explore and evaluate the potential of LLMs in enhancing the quality of
teaching plans. This is expected to have a significant impact on how teachers
engage in human-AI collaborative instructional design during teaching
preparation and how pre-service teachers learn to design teaching plans in
the future.

Results

Descriptive Statistical Analysis of the Enhanced Teaching Plans
Across Evaluation Dimensions

We first conducted a descriptive statistical analysis of 16 evaluation
dimensions, using a total sample size of N =480 teaching plans. This
included N = 240 teaching plans before enhancement and N = 240 teaching
plans after enhancement. The evaluation results for each dimension are
depicted in Fig. 3.

From the perspective of various dimensions, the enhanced teaching
plans achieved an average score exceeding 7.0 in Dimension Q1 (designing a
rich context for problems). In Dimensions Q2 (designing sequentially
cohesive and challenging learning tasks) and Q3 (designing variant exercises
to consolidate learned knowledge), the average scores were generally above
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Fig. 3 | Average Values of Assessment Dimensions. This figure presents the average
scores in 16 assessment dimensions for the eight teaching plan datasets, each
comprising N = 60 samples. The evaluation employed an 8-point Likert scale, where
8 indicates “strongly agree” and 1 indicates “strongly disagree.” The assessment

——Dataset C human teacher baseline

6.5. This indicates that the LLM effectively utilized the teaching process and
teaching reflections to improve the quality of teaching plans, and further
enhanced the effectiveness of problem chain design. However, in Dimen-
sion Al (designing learning activities that promote teacher-student inter-
action), the enhanced teaching plans still fell short compared to the high-
quality teaching plans written by human teachers. Meanwhile, the average
scores for Dimensions A2 (designing teaching activities aligned with
instructional objectives), C1 (accurately explaining and summarizing dis-
ciplinary knowledge and concepts), C2 (refining and summarizing lesson
content), M1 (selecting appropriate teaching methods), and M2 (applying a
variety of teaching strategies) fluctuated around 6.8. This demonstrates that
the enhanced teaching plans showed significant improvements in areas such
as designing teaching activities aligned with objectives, explaining and
summarizing subject knowledge, and employing suitable teaching methods,
reaching or even surpassing the level of high-quality teaching plans
authored by human teachers. Notably, in Dimension C3 (introduction of
disciplinary history and culture), the enhanced teaching plans outperformed
those created by human teachers, with the Claude model demonstrating
particularly strong results. However, the average scores remained below 5,
indicating room for further exploration and improvement. Similarly, in
Dimension D1 (design of interdisciplinary content), the enhanced teaching
plans also surpassed those of human teachers, with additional improve-
ments observed after two rounds of refinement. This suggests that LLMs,
through reflective analysis of the teaching process, can effectively make use
of their multidisciplinary knowledge to design learning content that is more
closely aligned with disciplinary culture and interdisciplinary themes. In
Dimensions E1 and E2, the enhanced teaching plans showed significant
improvements in identifying differences among students and employing
diverse methods for assessment. In Dimension R1 (designing content
aligned with the scope of the lesson’s knowledge), the enhanced teaching
plans reached the level of high-quality teaching plans created by human
teachers. Moreover, the average score for the enhanced teaching plans
generated from pre-service teachers’ teaching plans exceeded 7. This indi-
cates that the method proposed in this study effectively addresses the issue
observed in previous research, in which teaching plans generated by LLMs
often included content beyond the scope of the lesson.

In terms of overall scores, among the four baseline teaching plan
datasets, the average scores of teaching plans generated directly by GPT-4

Dataset D one round enhanced by gpt4

Dataset G pre-service baseline ——Dataset H pre-service enhanced by gpt4

M1 M2 E1 E2 D1 Vi R1 F

dimensions encompass nine categories with a total of 16 evaluation criteria: problem
chains, teaching activities, knowledge content, teaching methods and strategies,
teaching evaluation, interdisciplinarity, practical value, scope, and overall score.
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(Dataset B) in most dimensions were lower than those of teaching plans
written by pre-service teachers during induction training (Dataset G).
However, the teaching plans generated by GPT-4 with integrated mathe-
matical problem chains (Dataset A) slightly outperformed those written by
pre-service teachers. After enhancement, the four improved teaching plan
datasets (Datasets D, E, F, and H) had higher average scores across most
dimensions compared to the baseline teaching plans (Datasets A, B, and G).
Among these, the teaching plans improved by the Claude model in one
round (Dataset F) had average scores around 6.5, slightly below those of
high-quality teaching plans written by exemplary human teachers (Dataset
C). In contrast, the teaching plans enhanced by GPT-4 in one round
(Dataset D) scored slightly higher than the high-quality teaching plans
written by human teachers. Notably, after two rounds of improvement with
GPT-4 (Dataset E), the average scores across most dimensions surpassed
those of the high-quality human-written teaching plans, with 12 dimensions
achieving average scores exceeding 6.8. Importantly, the teaching plans
derived from pre-service teachers’ original plans and enhanced through one
round of improvement by the GPT-4 model (Dataset H) achieved average
scores across dimensions hovering around 7, exceeding those of high-
quality teaching plans written by experienced human teachers and closely
approximating the scores of teaching plans improved through two rounds of
GPT-4 enhancement.

These results indicate that the directly generated teaching plans by GPT-
4 in previous studies was less effective, aligning with findings from other
research that the content generated by LLMs often tends to be broad and lacks
depth”. However, the method proposed in this study effectively addresses
these issues. By utilizing LLMs to simulate teaching processes and generate
teaching reflections, and then integrating these insights to refine teaching
plans, this approach has demonstrated considerable success in improving the
quality of teaching plans. Furthermore, due to their lack of teaching experi-
ence, pre-service teachers tend to produce teaching plans that are relatively
generic and lack specificity. Under the guidance of prompts incorporating
mathematical problem chains, the quality of teaching plans generated by
GPT-4 showed improvement, reaching a level comparable to those written by
pre-service teachers. However, they still fell short of the high-quality teaching
plans created by exemplary teachers. Building on this foundation, the appli-
cation of the method proposed in this study resulted in noticeable improve-
ments in the quality of teaching plans, bringing them to a level comparable to
high-quality teaching plans. Additionally, after two rounds of enhancement,
the quality of the teaching plans exhibited a modest yet further improvement.

Interestingly, the teaching plans written by pre-service teachers showed
significant improvement after being enhanced by the LLM, with their scores
in Dimension V1 (practical value) even approaching the teaching plans
improved through two rounds of enhancement. Analyzing the reasons
behind this, we posit that teaching plans created by pre-service teachers are
inherently designed to meet the practical needs of real classroom teaching
preparation. As a result, the LLM’s first round enhancement on these plans
aligns more closely with actual teaching preparation requirements. In
contrast, the Dataset A teaching plans used in the two-round enhancement
process were originally generated by the LLM itself, and therefore still differ
from teaching plans designed grounded in real-world teaching preparation
needs. After two rounds of content enhancement, although significant
improvements were observed across most dimensions, the improved
teaching plans were built upon and extended from a “fabricated” teaching
plan. In contrast, the results of LLM enhanced teaching plans based on real-
world examples demonstrated greater practical value, with scores in
Dimension V1 (practical value) exceeding 7. This indicates that the method
proposed in this study holds considerable applicability and practicality,
providing valuable instructional insights and references to support teachers
in their instructional design.

Cross-Analysis of the Enhanced Teaching Plans by Dimensions
and Knowledge Modules

Additionally, taking the enhanced teaching plan dataset D (improved
through one round of GPT-4 refinement) as an example, we conducted a

more in-depth exploration of its performance across various evaluation
dimensions within different knowledge modules. Comparisons were made
against three baseline teaching plan datasets (Datasets A, B, and C). Each
knowledge module—Algebra, Functions, Geometry, and Statistics—had a
sample size of N = 60. The evaluation results for each dimension across the
different knowledge modules are presented in Fig. 4a.

Across the knowledge modules, in the “Algebra” module, the teaching
plans enhanced through one round of GPT-4 refinement outperformed
high-quality teaching plans written by human teachers in 11 evaluation
dimensions. They achieved scores exceeding 7 points in areas such as
accurately explaining disciplinary concepts, employing diverse teaching
methods and strategies, and utilizing varied approaches to evaluate students’
learning. Most scores within this module ranged between 6.5 and 6.8. In the
“Functions” module, the improved teaching plans surpassed high-quality
human-crafted teaching plans in 13 evaluation dimensions. They demon-
strated outstanding performance in designing challenging learning tasks,
accurately explaining disciplinary theories, summarizing subject knowledge,
employing diverse teaching methods and strategies, evaluating learning
situations diversely, and designing content within the curriculum’s scope,
with average scores exceeding 7 points in these areas. Most scores in this
module ranged between 6.7 and 7.0. The overall performance of the “Geo-
metry” module was slightly lower than that of the other three modules, with
scores exceeding 7 points only in the dimension of designing effective and
scientifically sound problem contexts. While the improved teaching plans in
this module matched the level of high-quality teaching plans in 11 evaluation
dimensions, most scores hovered around 6.4. In contrast, the “Statistics”
module demonstrated the best performance among all knowledge modules,
with 13 evaluation dimensions scoring above 7 points. Scores in dimensions
such as designing effective and scientifically sound problem contexts,
creating teaching activities that foster teacher-student interaction, accurately
explaining disciplinary theoretical concepts, summarizing subject knowl-
edge, employing diverse teaching methods and strategies, evaluating learn-
ing situations diversely, and designing content within the curriculum’s scope
exceeded 7.3 points, reaching the level of high-quality teaching plans. These
results indicate that the method proposed in this study effectively improved
the performance of enhanced teaching plans across all knowledge modules.

Additionally, we evaluated the practicality and applicability of the
refined context-based, trap-based, and summary-based problem chains, as
illustrated in Fig. 4b. Overall, the evaluation results showed that these three
types of problem chains performed best in the “Statistics” module. The
context-based and summary-based problem chains achieved average scores
above 6.5 across all knowledge modules. The trap-based problem chains
scored above 6.5 in the “Statistics” module, while their scores in other
modules exceeded 6.0, indicating room for further improvement.

By comparing the performance scores of the improved teaching plans
across various knowledge modules, we identified disparities among the
knowledge modules across different evaluation dimensions. Given the
heteroscedasticity of the sample datasets, we conducted the Kruskal-Wallis
H test, a non-parametric rank-sum test, to further investigate whether these
differences were statistically significant. The pairwise comparison results for
the knowledge modules across each evaluation dimension are presented in
Table 1. We have listed comparisons where the adjusted significance levels,
after Bonferroni correction, were less than 0.05. From the perspective of
various evaluation dimensions, the “Statistics” module significantly out-
performed the other modules, while the “Functions” module slightly
exceeded the “Algebra” and “Geometry” modules. The “Statistics” module
excelled in designing effective and scientifically sound problem contexts,
challenging learning tasks, variant exercises to consolidate knowledge,
teaching activities that promote teacher-student interaction discussions,
and maintaining content within the curriculum scope. Additionally, it
demonstrated superior performance in summarizing subject knowledge
and selecting appropriate teaching methods and strategies. The context-
based and summary-based problem chains within the “Statistics” module
also showed considerable practical value compared to those in other
modules. Furthermore, although there was improvement in the design of
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Fig. 4 | Average Values of Each Assessment Dimension under Different
Knowledge Modules. In a, the average scores of the four knowledge modules—
Algebra, Functions, Geometry, and Statistics—are presented for each of the four
datasets (Datasets A, B, C and D) across all assessment dimensions. In b, the detailed

analysis of refined problem chains (context-based, trap-based, and summary-based)
shows their average scores, maximum, minimum, and standard deviations across
these modules and overall.

disciplinary culture and interdisciplinary content across all knowledge
modules compared to previous studies, there remains considerable room for
further enhancement.

Overall, this study demonstrates that the improvement of teaching plans
using LLMs can lead to enhancements across all knowledge modules, with the
evaluation performance closely resembling that of high-quality teaching plans
created by exemplary human teachers. This indicates that guiding LLMs to
enhance teaching plan quality through a process of simulation, reflection, and
refinement can yield favorable results. Regarding the performance differences
observed among the various knowledge modules, we attribute these to the
nature of the content in the “Geometry” module of high school mathematics.
Certain concepts in this module require the use of geometric diagrams to aid
understanding. Relying solely on textual descriptions generated by the LLMs
may not effectively achieve the ideal “integration of algebra and geometry”
(numerical and graphical relationships), which resulted in its evaluation
performance being lower than that of other knowledge modules. For the
“Algebra” and “Functions” knowledge modules, the LLMs still have room for
improvement, particularly when tasked with designing and solving medium-
to-high-difficulty algebraic and functional problems. This limitation stems
from the model’s inherent capacity to handle complex mathematical tasks. In
contrast, the “Statistics” module focuses more on providing students with rich
statistical problem contexts to enhance their understanding and application of
statistical knowledge™. This aligns well with the strengths of LLMs, which
excel in supporting multidisciplinary knowledge and vast information, lead-
ing to better performance in the evaluation for this module.

Discussion
The results of this study make significant contributions to the application
and use of LLMs in teaching, particularly in supporting teachers with pre-

class preparation. The rationale for adopting a simulation and reflection
approach in this research is twofold. Firstly, in our preliminary studies, we
aimed to use LLMs to grade and provide feedback for teaching plans.
However, we found that the scores provided by LLMs were inconsistent and
lacked a scientific basis. Regardless of the quality of the teaching plans, LLMs
tended to provide positive ratings. One possible explanation is that, as
language models, LLMs may not be sufficiently sensitive to numerical
values. Therefore, the focus of the study should not be on the numerical
scores, but rather on exploring how LLMs’ capabilities in language under-
standing, role imitation, and self-reflection can be used for educational
practice. Secondly, novice teachers, early in their teaching careers, have not
established solidified teaching content, teaching strategies, or teaching
styles. Much of their instructional material can only be refined and
enhanced through reflection and revision after several trial lectures™.
Additionally, due to their lack of teaching experience and the reluctance of
some students to reveal their own ignorance, these teachers often struggle to
anticipate the learning difficulties students might encounter, making it
challenging to adequately prepare in advance™. As a result, students in prior
classes may not benefit from the subsequent improvements and refinements
made to the teaching content. This study aims to leverage LLMs to enhance
teaching plans prior to actual teaching, providing novice teachers with
higher-quality teaching content and instructional ideas, thereby reducing
potential educational risks arising from inadequate teaching preparation.
As for research questions 1 and 2, the analysis reveals that the method
proposed in this study, which uses LLMs for simulation and reflection to
enhance teaching plans, effectively improves the quality of teaching plans
and increases the practical value of LLM-generated teaching plans. The
improved teaching plans perform at or above the level of high-quality
teaching plans authored by experienced human teachers across various
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Table 1 | Pairwise Comparisons of Knowledge Modules Across Assessment Dimensions

Dimension Knowledge Modules Avg(SD) Pairwise Comparison H statistic Adj. p
Q1 A:6.711(1.014) F: 6.911(0.821) A< SHFHFE -47.300 0.000
G: 7.067(1.116) S: 7.600(0.580) F < S** -40.500 0.001
Q2 A:6.578(1.270) F: 7.133(0.919) G<S* -29.733 0.024
G: 6.400(1.405) S: 7.178(0.886) G<F* -27.444 0.047
Q3 A:6.356(1.448) F: 6.778(1.064) A<S* -32.356 0.012
G: 6.356(1.554) S: 7.156(1.065) G<S* -28.567 0.039
Al A: 6.578(1.158) F: 6.867(0.661) A< SHrk -42.678 0.000
G:6.511(1.359) S: 7.311(1.062) G < S*** -39.756 0.000
F < S** -34.011 0.004
Cc2 A: 6.733(1.572) F: 7.044(1.043) A<S* -29.800 0.022
G: 6.711(1.660) S: 7.378(1.173)
M1 A: 6.778(1.166) F: 6.933(0.963) G < S** -33.389 0.009
G: 6.267(1.629) S: 7.244(0.981)
V1 A: 6.422(1.305) F: 6.756(0.933) G < S*** -42.844 0.000
G: 6.333(1.398) S: 7.289(1.014) A< SHrk -41.711 0.000
F<S* -31.622 0.015
Context-based A: 6.600(1.643) F: 6.800(1.140) G < S*H* -44.767 0.000
G: 6.489(1.674) S: 7.600(1.053) A< SFHF* -41.900 0.000
F < S¥** -41.867 0.000
Summary-based A: 6.556(1.198) F: 7.044(0.767) A< SHrk -55.922 0.000
G: 6.933(0.963) S: 7.600(0.539) G < S** -39.5178 0.001
F < S** -35.300 0.003
R1 A:6.844(1.413) F: 7.000(0.977) G < S** -39.822 0.001
G: 6.578(1.699) S: 7.556(1.139) F < S** -37.767 0.001
A< S** -36.944 0.002
F A: 6.556(1.358) F: 6.756(0.957) GILSEEE -44.911 0.000
G: 6.422(1.469) S:7.444(1.035) A< SFFE -43.122 0.000
F < S** -39.789 0.001

Note. This table presents post-hoc pairwise comparisons of different knowledge modules across various assessment dimensions. It tests the null hypothesis that “the distribution of the two knowledge
modules is the same.” Progressive significance is displayed using a two-sided test, with the significance level set at 0.05. The Bonferroni correction has been applied to adjust the significance values for
multiple comparisons. In the table, the modules are denoted as A for Algebra, F for Functions, G for Geometry, and S for Statistics. Significance levels are indicated with asterisks: * for p <0.05, ** for

p <0.01, ¥** for p <0.001. Only results showing significant differences after adjustment are listed.

evaluation dimensions and knowledge modules, confirming the practicality
and potential of LLMs in supporting teaching preparation. A deeper
exploration of the reasons for the improvement in teaching plan quality
points to two main factors: the simulation of the classroom teaching process
and the classification of mathematical problem chains.

Simulation has long played a pivotal role in the field of education". It
emerged from learning systems that feature teachable student agents. In
these systems, human students learn by teaching simulated student agents
with lower ability levels. However, these student agents are only capable of
responding to questions but cannot generate their own, which lacks real
experience of classroom teaching™. The advancement of LLM technology
has significantly enhanced the effectiveness of simulations. Agents based on
LLMs not only can assume various professional roles” and simulate human
behaviors™, but also hold the potential to predict future societal
developments”. In the field of education, simulations based on LLMs pri-
marily focus on student roles, learning styles, and personality traits, with
fewer simulations addressing the varying cognitive levels of students®. For
student simulation, some researchers have created roles such as learning
partners, competitors, and troublemakers to stimulate the social and emo-
tional development of real students"’. Other researchers have used data on
students’ learning behaviors, knowledge levels, and memory capacities to
simulate real students*, replacing traditional knowledge tracing methods to
predict learning performance”. However, these simulations still lack a
comprehensive evaluation of their effectiveness'**. In terms of simulating
teachers, some researchers have developed teacher agents from the per-
spective of instructional decision-making, enabling them to design the next
study plans based on course materials and student backgrounds®.

In this study, we focused on students’ common learning difficulties at
various cognitive levels in the classroom. Rather than simulating a single

type of student, we simulated scenarios where students encounter obstacles
in their learning, such as being unable to answer due to gaps in prior
knowledge, or providing incorrect answers due to misconceptions. This
simulation of students’ incorrect responses in the classroom helps the LLM
reflect on the original teaching plan, thereby facilitating its revision and
improvement. However, LLMs tend to directly provide correct answers'*.
Therefore, it is necessary to adjust the design of the prompt instructions by
utilizing chains of thought or reasoning™*, guiding the LLM to generate
incorrect responses that align with the cognitive level of high school
students”. In addition to designing prompts, some researchers have used
fine-tuning of LLMs to simulate the language style of specific roles”.
However, this method presents a high technical barrier for ordinary tea-
chers, making it difficult be widely used in primary and secondary educa-
tion. Reducing the difficulty, time, and effort for teachers to use LLM-based
tools® is crucial for advancing the widespread application of LLMs in
teaching. Therefore, in this study, we adopted a prompt-based design
approach, which allows ordinary teachers to easily implement the method.
By using the role simulation and reflection-improvement capabilities of
LLMs, we depicted the process of teacher-student interaction in the
classroom.

Classroom questions pre-designed by teachers can be categorized into
types such as introduction, progression, diagnosis, inquiry, and
conclusion'®. A combination of these types can facilitate students’ under-
standing of subject knowledge**”. However, due to their lack of teaching
experience, novice teachers often struggle to design high-quality classroom
questions™*. To address this challenge, we attempted to utilize LLMs to
provide novice teachers with ideas for designing questions. In previous
research, we focused on the design of problem contexts by LLMs, which
yielded promising results. However, when it comes to designing more
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advanced questions, such as progressively challenging problems and var-
iation exercises, LLMs struggled to design coherent questions from easy to
difficult. The reason was that LLMs did not fully comprehend the layered
progression of problem chains, such as “Problem Chain 1, Problem Chain 2,
Problem Chain 3,” and thus failed to generate questions that were appro-
priately challenging. Instead, it produced over simplistic content with lim-
ited practical utility.

To address this problem, when designing prompts for this study, we
refined the generic problem chains from the original output format into
three types: context-based problem chains, trap-based problem chains, and
summary-based problem chains. The context-based problem chains cor-
respond to problem contexts and relatively easy questions, which are used to
introduce and explain new knowledge. Trap-based problem chains corre-
spond to medium- to high-difficulty questions, aimed at provoking stu-
dents’ critical thinking and analysis of the key concepts of the lesson. The
design of trap-based problems, as a means of facilitating productive failure™,
helps deepen students’ understanding and application of the core knowl-
edge. For the summary-based problem chain, we aim to design questions
that facilitate students’ review of the knowledge learned in class, which can
help teachers integrate them into their teaching plan™. The results indicate
that this subdivision approach enhances the LLM’s understanding of the
teaching process, progressing from basic to advanced levels, and leads to
better outcomes when designing and improving teaching plans. However,
the analysis also reveals that the usability scores for trap-based problem
chains are slightly lower than those for other types of questions, suggesting
that LLMs still need improvement in designing deep and challenging
questions centered around core knowledge. In future research, we will
explore how to further enhance the effectiveness of LLMs in designing trap-
based problems.

In conclusion, as the capabilities of LLMs continue to develop,
future approaches of instructional design and teaching preparation may
surpass traditional methods™. Specifically, the approach employed in
this study involves using a single LLM to simultaneously simulate dialogs
between different roles via a web interface, thereby simulating a complete
classroom teaching process. Future research can further explore the use
of multi-agent frameworks, such as AutoGen™, to integrate multiple
LLMs to create distinct agents. These agents could represent various
tutor or expert roles—such as engineering experts, mathematics experts,
and literature experts—along with different student roles in group
cooperation, such as recorders, problem creators, and data analysts”.
This approach would enable the simulation of more diverse teaching
scenarios across various disciplines”, thereby enhancing and refining
teaching plans to better suit specific teaching environments and learning
needs’. The method we propose for improving teaching plans through
the simulation and reflection of LLMs is innovative in that it semi-
automates the teacher’s daily preparation, teaching, and reflection pro-
cesses through inquiring on the web interface. This approach lowers the
technical barrier for teachers, eliminating the need to write code to access
LLMs. Additionally, the simulation and reflection process of the LLMs, as
a form of “thinking aloud,” reveals the model’s reasoning and decision-
making processes, which are fully visible on the web interface. This
enhances the interpretability and transparency of the process of
improving teaching plans™. As a result, the design, optimization, and
iteration of teaching plans become more efficient and can be accom-
plished prior to actual classroom instruction. Future research could
incorporate the judgmental role of human teachers to evaluate the
rationale behind the simulated teaching process and the generated
teaching reflection content. This would facilitate a “human-in-the-loop”
approach, where LLMs assist teachers in their teaching preparation.
Lastly, one possible direction for subsequent research is to explore
whether, with the overall improvement of teaching plan quality, future
intelligent tutoring systems could use these high-quality plans to enable
true “machine teaching” rather than having students passively watch
teaching videos, and complete adaptive exercises as part of a monotonous
learning process.

Methods

In this study, we propose a method for enhancing the quality of teaching
plans by utilizing LLMs through simulation and reflection from the per-
spective of teachers’ teaching preparation. We guide the LLM to design and
generate teaching plans (as explored in our previous research), simulate
formal lessons (achieved in this study through the simulation of the teaching
process), and generate post-lesson reflections and enhanced teaching plans.
Finally, we analyze and evaluate the effectiveness of the enhanced teaching
plans through teacher-led manual assessments. The evaluation dimensions,
evaluators, teaching plan framework, prompt design, baseline data, and
dataset used in this study are outlined in detail below.

Evaluation Dimensions and Evaluators

In the design of the evaluation dimensions, we incorporated research
findings and assessment indicators related to PCK theory, teachers’
instructional design abilities, and the quality evaluation of mathematical
problem design™™'. Based on the evaluation dimensions developed in
previous research®™**, we eliminated the assessment of instructional
objectives and teaching priorities and challenges, while introducing new
evaluation dimensions focused on the usability of the context-based, trap-
based, and summary-based problem chains generated by LLMs, as shown in
Table 2. Ultimately, the evaluation framework in this study includes 9
categories and 19 assessment indicators. The 9 categories include problem
chain, teaching activities, knowledge content, teaching methods and stra-
tegies, teaching evaluation, interdisciplinarity, practical value, scope, and
overall score.

To better analyze the effects of teaching plan enhancement, this study
invited three mathematics teachers with more than five years of teaching
experience and teaching credentials to participate in the evaluation. Addi-
tionally, two experienced teachers with over ten years of teaching experience
were invited to balance discrepancies in the scores. First, we provided each
mathematics teacher with a detailed explanation of the meaning and
examples of each assessment dimension, and asked them to review each
teaching plan for at least ten minutes. Subsequently, we randomly selected
15 teaching plans from both Dataset C and Dataset D, and mixed them
together for the teachers to conduct pre-evaluation training. The formal
evaluation was conducted after the three teachers were familiar with the
assessment dimensions. The consistency test for the pre-evaluation had an
ICC (2, 3) value of 0.716, which exceeds the 0.6 threshold, indicating a high
degree of consistency in the teachers’ evaluations after becoming familiar
with the assessment dimensions. Before the formal evaluation, we informed
the three teachers of the sources of each evaluation dataset, while empha-
sizing the importance of maintaining objective and impartial evaluation
standards. For dimensions with significant discrepancies in scores, con-
sultations with the two expert teachers were held to achieve as much con-
sistency as possible. Furthermore, to facilitate comparison with prior
studies, the Likert 8-point scale was used for scoring, in which 8 represents
“strongly agree” and 1 represents “strongly disagree,” with no intermediate
values, to better distinguish between the quality of the teaching plans.

Framework of Teaching Plans and Design of Prompts

To better compare with the teaching plans generated using the LLM in our
previous study, we maintained the content structure of the enhanced
teaching plans, which includes: (1) the instructional analysis section
(instructional objectives, teaching priorities and challenges), and (2) the
teaching process section (pre-class introduction, explanation of new
knowledge, consolidation and improvement, comprehensive exercise, and
lesson summary, with a total of five teaching phases).

When designing prompt instructions for simulating the teaching
process, we included few-shot examples of teacher-student interactive dia-
logs as well as the teaching plan content for the lesson in the prompts. In
student simulation, the LLM was instructed to realistically depict various
characteristics of students in classroom®, particularly negative behaviors™.
For instance, it was tasked with imitating students with weaker learning
abilities who are unable to answer questions. This approach aims to guide the
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Table 2 | Dimensions of Teaching Plan Evaluation

Category Label Dimension
Problem Chain Q1 Capable of designing and introducing rich, effective, and scientifically contextualized problem scenarios
Q2 Able to design coherent and progressively challenging learning problems and tasks
Q3 Capable of designing appropriate variation exercises to consolidate learned knowledge
Teaching Activities Al Capable of designing content that fosters teacher-student and peer interactions
A2 Able to design instructional activities that align with instructional objectives and content
Knowledge Content C1 Able to accurately and appropriately explain the fundamental theories and concepts of the subject
c2 Capable of distilling and summarizing the subject matter taught in the lesson
C3 Able to present the historical development of important theories and the mathematical culture of the discipline

Teaching Methods and Strategies M1

Able to choose suitable teaching methods and strategies

M2 Capable of employing a variety of teaching methods and strategies
Teaching Evaluation E1 Able to recognize individual and learning differences among students
E2 Capable of employing various methods to assess students’ learning
Interdisciplinary D1 Able to establish relevant connections with other disciplines and design activities that cultivate students’

interdisciplinary skills

Practical Value V1

This teaching plan offers value for revision and provides a reference for instructional design

Context-based

The designed context-based problem chains offer value for revision and provide a reference for instructional

design
Trap-based The designed trap-based problem chains offer value for revision and provide a reference for instructional design
Summary-based  The designed summary-based problem chains offer value for revision and provide a reference for instructional
design
Scope R1 Able to design content within the scope of the lesson
Overall Score F Overall evaluation of the teaching plan

Note. This table outlines the evaluation dimensions for teaching plans using an 8-point Likert scale, where 8 indicates “strongly agree” and 1 signifies “strongly disagree.” The evaluation encompasses 480

teaching plans across eight datasets.

LLM to reflect on issues students encountered during the teaching process,
enabling more targeted improvements to the original teaching plan. In this
study, we focused specifically on cognitive differences among students. From
the perspective of students’ classroom learning behaviors, we identified five
common performance types, including: (1) answering incorrectly due to
conceptual confusion; (2) being unable to answer due to gaps in prior
knowledge; (3) answering incorrectly due to misconceptions; (4) asking their
own questions; and (5) answering correctly. These performance types were
integrated into the prompts, instructing the LLM to select and simulate
appropriate types of student behavior based on the knowledge being taught.

When designing prompts for generating teaching reflections, we
included few-shot examples of teaching reflections, along with the teaching
plan and corresponding text of teaching process for the lesson. Building on
findings from prior research, we focused the reflection process on addres-
sing key limitations commonly observed in teaching plans generated by
LLMs, such as exceeding the knowledge scope of the curriculum, difficulties
in designing differentiated teaching activities, and the lack of alignment in
problem chain design with core knowledge points. This led to the identifi-
cation of nine categories of reflective dimensions, which include: (1) whe-
ther students’ prior knowledge was considered; (2) whether the design of the
problem chain was overly context-based; (3) whether the problem chain
design accounted for students of varying levels; (4) whether the problem
chain reflected the definition and analysis of core knowledge concepts; (5)
whether the teaching content exceeded the scope of the current lesson; (6)
whether the content incorporated relevant mathematical history and cul-
ture; (7) whether the summary of core knowledge concepts was appropriate;
(8) whether the transitions between knowledge points were effectively
connected; and (9) whether there were problems in the choice of teaching
methods and the design of teaching activities. These reflective dimensions
were incorporated into the prompts, instructing the LLM to systematically
perform teaching reflections for each dimension by synthesizing the
teaching plan and the simulated teaching process text.

When designing prompts for improving teaching plans, we incorpo-
rated the original teaching plan and the corresponding teaching reflection
text for the lesson into the prompts. The output format of the enhanced
teaching plan remained consistent with that used in previous studies. Prior
research demonstrated that LLMs performed well in establishing instruc-
tional objectives and identifying teaching priorities and challenges. There-
fore, this study retained the instructional objectives and teaching priorities
and challenges generated in earlier studies, without prompting the LLM to
regenerate these elements. In the prompts, the LLM was instructed to focus
solely on improving the teaching process section of the teaching plan.
Additionally, the output format for problem chains in the prompts was
refined. The previous generic format (e.g, “Problem Chain 1, Problem
Chain 2, Problem Chain 3...”) was categorized into three distinct types:
context-based, trap-based, and summary-based problem chains. Each type
was supplemented with corresponding examples to guide the LLM.

Assessment Baselines and Datasets

The evaluation dataset in this study comprises a total of 480 teaching plans,
including four baseline teaching plan datasets and four enhanced teaching
plan datasets. These were derived from the high school mathematics cur-
riculum, which consists of 21 chapters divided into four primary knowledge
modules. Fifteen lessons were randomly selected from each module,
resulting in 60 lessons used for evaluation. Specifically, the baseline datasets
include: (1) Dataset A, teaching plans generated by GPT-4 using prompts
meticulously designed based on PCK theory and the mathematical problem
chain format; (2) Dataset B, teaching plans generated directly by GPT-4
without incorporating mathematical problem chains; (3) Dataset C, high-
quality teaching plans authored by experienced high school mathematics
teachers (with over ten years of teaching experience) and sourced from
China’s National Primary and Secondary School Smart Education Platform;
and (4) Dataset G, teaching plans written by five pre-service teachers during
a two-week induction training program following one year of internship
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experience. The enhanced teaching plan datasets include: (1) Dataset D,
teaching plans improved in one round by GPT-4 based on Dataset A; (2)
Dataset E, teaching plans further refined through a second round of
improvement by GPT-4 based on Dataset D; (3) Dataset F, teaching plans
improved in one round by Claude 3.5 Sonnet based on Dataset A; and (4)
Dataset H, teaching plans improved in one round by GPT-4 based on
Dataset G.

For the teaching plan datasets generated by LLMs, this study adopted a
step-by-step approach where the five teaching phases were generated
sequentially and then merged into a complete teaching plan. This method
aimed to ensure that the teaching plans generated were as detailed and
comprehensive as possible. Similarly, for the enhanced teaching plan
datasets, the same step-by-step generation and merging approach was
applied during all three stages: simulating the teaching process, generating
teaching reflections, and improving the teaching plans. During the simu-
lation of the teaching process, the LLM was required to mimic at least two
types of student responses for each teaching phase other than giving correct
answers. In generating teaching reflections, each teaching phase needs to
produce 4-5 reflective statements. If the content or format generated by the
LLM at any teaching phase did not meet the specified requirements, we
would re-prompt the model and regenerate the content. This study aimed to
employ a method accessible to teachers for improving teaching plan quality
using LLMs. Thus, all interactions with the LLM, including queries and
content generation, were conducted via a web-based interface (both GPT-4
and Claude 3.5 models).

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

Code availability

The underlying code for this study is not publicly available but may be made
available to qualified researchers on reasonable request from the corre-
sponding author.
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