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Tablet-based arithmetic fluency
assessment reveals developments in
math cognition and math achievement
from childhood to adolescence
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Arithmetic fluency is regarded as a foundational math skill, typically measured as a single construct with
pencil-and-paper-based timed assessments. We introduce a tablet-based assessment of single-digit
fluency that captures individual trial response times across several embedded experimental contrasts of
interest. A large (n = 824) cohort of 3rd- 7th grade students (ages 7–13 years) completed this task,
revealing effects of operation and problem size in “common” problems (i.e., 5+ 3) often examined in
studies of mathematical cognition. We also characterize performance on “exceptional” problems (i.e.,
4+ 4), which are typically included in fluency tests, yet excluded from most cognitive studies. Overall,
individuals demonstrated higher fluency on exceptional problems compared to common problems.
However, commonproblemsbetterpredictedstandardized testsscoresandexhibiteddistinctpatternsof
speed-accuracy tradeoffs relative to exceptional problems. The affordances of tablet-based assessment
to quantify multiple cognitive dynamics within chained fluency testspresent several advantages over
traditional assessments, thus enriching the study of arithmetic fluency development at scale.

In recent years, the field of cognitive science and neuroscience have looked
to generate large-scale datasets to better understand how cognitive devel-
opment unfolds in diverse, representative populations1–3. A challenge for
these studies, which include data from thousands of participants, is
administering rapid yet valid assessments of cognitive abilities that capture
nuanced views of cognitive constructs within a domain. To this end, in the
present study, we introduce a novel, tablet-based assessment capturing
fluency in single-digit arithmetic within a large, diverse cohort of third, fifth,
and seventh grade students.

Due to the importance of single-digit arithmetic for later success in the
domain ofmathematics4–6, educators and researchers have developed a range
of assessmentsdesigned toefficiently assess a learner’sfluencywith these types
of problems.Assessments of single-digitfluency are critical for understanding
the relationship of basic numerical cognition and math achievement, as
opposed to assessments of mixed and multi-digit arithmetic, which often
require strategic flexibility7 and domain-general cognitive processes8,9.

In the domain of education, single-digit fluency is frequently assessed
using pencil-and-paper assessments, which operationalize fluency as the
number of correct answers provided in a given amount of time (typically

1–3min). Many suchmeasures exist including theWoodcock-Johnson test
ofmathfluency10,Math4Speed11, and theWechsler IndividualAchievement
Test12. These assessments place an emphasis on accuracy andcanbe thought
of as a measure of chained-fluency where students answer as many pro-
blems as they can in a given time frame to form a single global fluency score
based on the total number of correct responses.

In particular, many studies have used the Woodcock-Johnson math
fluency subtest as a way to measure math ability13,14, diagnose learning
disabilities, such as developmental dyscalculia15–17, and predict achievement
on high-stakes standardized tests18,19. Thewidespread use of theWoodcock-
Johnson acrossmultiple, large-scale studies illustrates the utility of chained-
fluency assessments for efficiently assessing large populations of learners.
However, the global fluency scores generated by chained-fluency assess-
ments do not consider item-level properties and may be influenced by
several factors. While some of these constructs might be specific to
mathematics (i.e., fluency across different arithmetic operations), global
fluency scores may also be impacted by other factors, such as fatigue and
motivation, that may not be as relevant for specifically understanding the
fine-grained cognitive mechanisms underlying mental arithmetic.
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In contrast to these chained-fluency assessments, studies of numerical
cognition based in cognitive psychology have leveraged discrete-trials
paradigms to explore cognitive constructs in single-digit arithmetic. These
approaches typically leverage trial-by-trial accuracy and reaction time data
to define single-digit fluency as the amount of time needed for an individual
to execute elementary cognitive processes to arrive at a solution20. Whereas
chained-fluency assessments typically placemore emphasis on accuracy as a
measure of mastery, discrete-trials paradigms allow for the examination of
both the reaction time and accuracy dynamics of single-digit arithmetic.
Whereas, accuracy-based approaches and curriculum standards tend to
suggest that fluency with single-digit arithmetic does not develop after early
elementary school21, evidence from discrete-trials research has demon-
strated that although accuracy plateaus in mid-to-late elementary school,
reaction time dynamics continue to evolve during this time period20,22,23.
These results suggest that each subsequent year of engagement with
mathematics keeps reactivating, integrating, andautomating the elementary
mental operations underlying single-digit arithmetic.

In addition to these developmental dynamics, studies using discrete-
trials paradigms have also revealed that individuals demonstrate higher
fluency on addition problems compared to subtraction24 and that fluency
decreases as a functionof problemsize25. Furthermore, discrete-trials studies
examining specific operations, such as identity (N ± 0; e.g., 4+ 0), successor
(N ± 1; e.g., 6− 1) or ties (N ±N; e.g., 2+ 2), have found these problems
elicit different significantly higher accuracies and lower reaction times
compared to other problems26. These problems are thought by some
researchers to be solved using rapid fact retrieval or the application proce-
dural rules27–29, whereas other problems are thought to be solved using amix
of computational strategies and fact retrieval, depending on the individual’s
ability in mathematics30.

When we examine the set of items present in both chained-fluency
assessments and discrete-trials research, it is apparent that there is a class of
problems that are common across both paradigms10,12. The problems
included in both chained-fluency assessments and discrete-trials research,
henceforth known as common problems, follow lawful patterns based on
the operation and problem size of the problem at hand25. However, per-
formance on identity, successor, and tie problems is largely independent
from problem features known to impact common problems, such as
operand distance, operation, and problem size27,31. Thus, most studies of
numerical cognition using discrete-trials paradigms exclude these “excep-
tional” problems from their analyses32–34.

Despite the omission of exceptional problems from discrete-trials
research, general measures of single-digit arithmetic that combine perfor-
mance from both common and exceptional problems have been shown to
predict later success in math4,35,36. However, as previously mentioned, these
global fluency metrics do not differentiate between common and excep-
tional problems and it remains unclear how fluency with these different
problem types relates to broader achievement inmathematics. Interestingly,
differences in brain activation while verifying the solution to common
problems has been shown to predict math scores on a standardized exam37,
highlighting the importance of fluency with common problems for broader
math achievement. However, this result provides no insight into the rela-
tionship between exceptional problems and math achievement and raises
questions about the utility of these items in chained-fluency assessments.

In the present study, we introduce a novel, tablet-based assessment of
single-digit fluency that looks to capitalize on the strengths of both chained-
fluency and discrete-trials assessments of arithmetic fluency in an efficient
manner that is compatible with the time constraints of large-scale studies.
With just a fewminutes of assessment time, this tablet-based paradigm can
rapidly generate raw fluency scores similar to those provided by chained-
fluency assessments like the Woodcock-Johnson. However, in addition to
accuracy, this novel formof assessment alsomeasures reaction time for each
trial, as well as other item-level characteristics, such as operation, problem
size, and problem type (i.e., common and exceptional). The use of trial-by-
trial recordings enables us to identify various constructs within single-digit
arithmetic reported by past discrete-trials studies. The segmentation of

chained-fluency data into discrete events enables us to move beyond tra-
ditional raw scores and develop amore nuanced viewof the development of
single-digit arithmetic and its relationship to broader mathematics
achievement.

Using this novel tablet-based paradigm, we have three primary
research objectives: (1) establish the reliability and validity of the single-digit
fluency paradigm, (2) use the trial-level data to understand the differential
relationships between math achievement and fluency with common and
exceptional problems, and (3) combine combining reaction time and
accuracy data to better understand the cognitive mechanisms underlying
single-digit arithmetic.We first look to validate the tablet-based assessment
by calculating split-half reliability and criterion validity of our single-digit
fluency assessment, as well as replicate well-established constructs within
arithmetic fluency, in a large cohort of 3rd, 5th, and 7th grade students.

To replicate well-established constructs within arithmetic fluency, we
conduct several trial-level comparisons across various item-level features,
including operation and problem size.Within each grade level, we expect to
observe increased fluency with addition problems compared to
subtraction24 and a negative relationship between problem size and single-
digit fluency25.We also expect to capture fluency differences between the set
of common and exceptional problems26.

In addition to replicating these established effects from the discrete-
trials literature, we also look to examine how fluency with common and
exceptional problems differentially relate to a student’s performance on a
high-stakes standardized mathematics test. We hypothesize that metrics
combining accuracy and reaction time data from common problemswill be
most predictive of studentperformanceonhigh-stakes standardized tests, in
line with the chained-fluency literature.

We also look to leverage theunique combinationof speedandaccuracy
data afforded by our tablet-based assessment to conduct an exploratory
characterization of the speed-accuracy tradeoffs in single-digit arithmetic.
Recent work by Domingue et al.38 has suggested that depending on the
assessment, increased time usage on a given item may not necessarily be
related to increases in accuracy, and in some cases may relate to decreased
accuracy. In our case, we look to apply this approach to examine speed-
accuracy tradeoffs across both common and exceptional problems and gain
insight into the cognitive mechanisms underlying fluency with these dif-
ferent problem types.

Past work has suggested that exceptional problems become con-
solidated as arithmetic facts or learned as procedural rulesmore readily than
common problems27,31,39. Because exceptional problems are more easily
mastered, they typically elicit much faster reaction times compared to
common problems, which rely on slower computational procedures30,40.
Based on this literature, we hypothesize that a curvilinear speed-accuracy
profile will emerge for single-digit arithmetic problems, as observed in
Domingue et al.38, but that this curve will appearmore linear for exceptional
problems. We also expect that the speed-accuracy curves for each problem
type will appear more similar in both older students and students with
higher levels of mathematics achievement.

Results
Evaluating the reliability and validity of the single-digit fluency
assessment
Before examining any cognitive constructs within the single-digit fluency
module, we first looked to establish the reliability and criterion validity of
our novel tablet-based assessment. To combine speed and accuracy data, we
computed the total number of correct responses perminute (RPM) for each
individual (Note: when computed across all problem types, this measure is
perfectly correlated with total correct responses). Across the entire 3-min
session, RPM proved highly reliable (r = 0.97; Fig. 1, left panel). Exploring
the reliability of the temporal subsets of the data revealed that RPM is highly
reliable with 2min of fluency data (r = 0.95) and moderately reliable with
even just 1min of data (r = 0.92).

We also looked to establish the criterion validity of this novel assess-
ment of arithmetic fluency by predicting a student’s performance on the
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Smarter Balanced Assessment System for California (SBAC; see “Methods”
for more details) using the RPM metrics calculated from the same time
increments as the reliability analysis. We found that 3min of single-digit
fluency served to explain roughly 36% of the variance in standardized test
scores (Fig. 1, right panel). Additionally, we found that using subsets of the
data derived from just the first minute or first 2min of the fluency assess-
ment served to explain over 24% and 32% of the variance in test scores,
respectively.

Chained-fluency assessment on a tablet replicates known
effects from discrete-trials
After establishing the reliability of our tablet-based fluency assessment, we
then looked to assess whether our tablet-task could replicate established
effects found in the numerical cognition literature, specifically problem size,
operation, and problem type20,25,27,32. To do so, for each individual, we cal-
culated RPM within our three constructs of interest and then constructed
two linear-mixed effects models to evaluate the relationship between these
constructs and RPM (see “Methods” for more detail about modeling
approach).

To account for individual differences in fluency, eachmodel included a
random intercept for eachparticipant. In addition to this randomeffect, one
model included fixed-effects of problem size, operation, and their interac-
tion, while the other included a single fixed-effect of problem type. We
included fixed-effects of operation and problem size in a single model to
account for the fact that subtraction problems generally have smaller
solutions than addition, meaning that operation is confounded by problem
size. All reported p values in these models were FDR-corrected36 to account
for multiple comparisons (adjusted pcrit = 0.05).

The model examining the effects of problem size and operation
revealed significant main effects of problem size, operation, and grade.
Students tended to speedupwhensolving smaller problems,with anaverage
decrease in RPM of 2.03 problems per minute with a one-unit increase in
problem size (R2

partial = 0.020, t(10,780) =−16.47, padj < 0.001; Fig. 2a). This
model also revealed that, on average, students correctly answered addition
problems at a slightly, yet significantly, faster rate compared to subtraction
problems (R2

partial = 0.003, t(10,800) =−6.62, padj < 0.001, Fig. 2a) and older
students demonstrated increased fluency compared to younger students
(R2

partial = 0.020, t(2807) = 12.38, padj < 0.001).
In addition to these main effects, this model also revealed a subtle, yet,

significant interaction between problem size and operation (R2
partial = 0.007,

t(10,800) = 9.90, padj < 0.001), suggesting that the slope of the problem size

effectwas slightly greater for subtractionproblems. Thismodel also revealed
negligible interaction effects between operation and grade (R2

partial = 0.001,
t(10,800) =−4.01, padj < 0.001) and between problem size, operation, and
grade (R2

partial < 0.001, t(10,800) = 3.36, padj = 0.009).
The second model that we fit looked to evaluate the differences in

fluency between common problems and exceptional problems, which are
traditionally excluded from numerical cognition studies. This model
revealed significant main effects of both problem set and grade cohort.
Students, on average, responded correctly to exceptional problems at a faster
rate than common problems (R2

partial = 0.050, t(691) =−15.02, padj < 0.001,
Fig. 2, right panel). As with the other two models, we again found that the
older students, on average, exhibited significantly higher fluency compared
to younger students (R2

partial = 0.186, t(830) = 13.52, padj < 0.001). Further-
more, there was subtle yet significant interaction between problem set and
grade cohort (R2

partial = 0.001, t(691) =−2.00, padj = 0.045).

Tablet derived correct responses per minute (RPM) better pre-
dicts math achievement than traditional scores from chained
fluency assessment
After replicating past effects from the discrete-trials literature, we then
determinedwhether our tablet-based assessment also replicated predictions
of math achievement found in the chained-fluency literature18,19. We also
looked to build on this replication by directly comparing the predictive
strength of our RPM fluency metrics with that of a traditional raw fluency
score, similar to those calculated by chained-fluency assessments, like the
Woodcock-Johnson10. For each individual, we generated a traditional raw
fluency score by summing the total number of correct responses provided
during the single-digit fluency module. We also calculated two RPM sub-
scores: one based on performance for common problems and another one
based on performance for exceptional items. We used the SBAC score as a
measure of math achievement (see “Methods” for description of SBAC).

We first conducted correlation analyses to explore the relation-
ships with math achievement. Pearson’s r showed that the two RPM
metrics significantly correlated with math achievement (common RPM
r = 0.67, p < 0.001); (exceptional RPM r = 0.59, p < 0.001). The tradi-
tional raw score notably showed the weakest correlation of all metrics
(r = 0.42, p < 0.001). We compared the z-transformed r values using
Pearson and Filon’s z-test, which revealed that all three arithmetic
fluency metrics were significantly different from each other (all
p < 0.001). This suggests that, although math achievement is correlated
with traditional raw scores on single-digit fluency assessments, RPM

Fig. 1 | Overview of the reliability and criterion
validity of raw score (blue) and RPM (red) using
different temporal subsets of the data. Shaded
areas represent 95% confidence intervals.
a Spearman-Brown adjusted split-half reliability of
the raw score andRPMmetric for different temporal
subsets of the single-digit arithmetic assessment.
b Explained variance in scores on high-stakes math
exams explained by raw score and RPM metrics
from different subsets of the single-digit arithmetic
task. The vertical line represents the number of
seconds of data after which the variance explained
by RPM increases by less than 1% compared to the
previous point.

0.7

0.8

0.9

1.0

0 50 100 150 200

Seconds
S

pl
it−

H
al

f R
el

ia
bi

lit
y 

(P
ea

rs
on

's
 r

)

a

0.0

0.1

0.2

0.3

0.4

0 50 100 150 200

Seconds

M
at

h 
A

ch
ie

ve
m

en
t V

ar
ia

nc
e 

E
xp

la
in

ed
 (

R
2 )

b

Metric Raw Score RPM

https://doi.org/10.1038/s41539-025-00314-5 Article

npj Science of Learning |           (2025) 10:19 3

www.nature.com/npjscilearn


metrics, especially for common problems, are more highly correlated
with achievement on high-stakes standardized mathematics exams.

Although these correlations suggest a link between the RPM
measures and math achievement, they do not account for demographic
or cognitive factors that may also relate to performance on standardized
math exams. To better understand the relationship between Arithmetic
Fluency and math achievement, we then constructed a series of linear
models predicting SBAC score. We first build a model with grade,
parental income, three measures of domain-general executive function,
and the traditional raw score from the math fluency task to predict
SBAC scores (standardized beta-weights estimated by this model are

presented in Table 1, left column). Thismodel showed significant effects
of grade, household income, Flanker, Spatial Span, and traditional raw
score from the Arithmetic Fluency task (all p < 0.001) and served to
explain roughly 45% of the variance in SBAC scores (Table 1).

We then looked to test thehypothesis thatfluencymetrics that combine
speed and accuracy, such as RPM, predict standardized test scores better
than traditional raw scores typically provided by chained-fluency assess-
ments. To do so, we generated two additional models using either RPM for
common or exceptional problems as a predictor instead of the traditional
raw score, while controlling for the same demographic and domain general
cognitivemeasures as thefirstmodel. Both of thesemodels proved to explain

Table 1 | Model comparisons show that including RPM problem types explains more variance in SBAC scores

Traditional
Raw Score

Common
RPM

Exceptional
RPM

Common+ Exceptional RPM

Predictors Estimates Estimates Estimates Estimates

(Intercept) 0.04 (0.030) 0.03 (0.028) 0.03 (0.029) 0.03 (0.028)

Grade 0.09** (0.040) 0.04 (0.037) 0.007 (0.040) 0.02 (0.038)

Household Income −0.37*** (0.031) −0.27*** (0.030) −0.33*** (0.031) −0.27*** (0.030)

Basic Response Time 0.07 (0.037) 0.07* (0.034) 0.06 (0.036) 0.07* (0.034)

Flanker 0.19*** (0.045) 0.10* (0.042) 0.12** (0.044) 0.10* (0.042)

Spatial Span 0.11** (0.033) 0.10** (0.030) 0.10** (0.032) 0.10** (0.030)

Traditional Raw Score 0.27*** (0.033) – – –

RPM Common – 0.48*** (0.035) – 0.47*** (0.057)

RPM Exceptional – – 0.40*** (0.039) 0.01 (0.061)

Observations 599 599 599 599

R2 0.457 0.543 0.491 0.543

R2
adj. 0.452 0.538 0.486 0.537

Coefficients represent standardized beta-weights with standard error in parentheses.
Significance codes: ***p < 0.001, **p < 0.01, *p < 0.05.
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more variance in standardized test scores than the raw score model. The
model that included exceptional RPM as a predictor explained roughly 50%
of the variance in test scores (R2

adj = 0.486), while the model that included
common RPM explained 54% of the variance in test scores (R2

adj = 0.538),
suggesting thatmeasures that are sensitive to both speed and accuracy better
predict test scores than measures based solely on accuracy.

We then constructed a full model that included both common and
exceptional RPM as predictors. Although this model did not explain more
variance than the common RPM model (R2

adj = 0.545), a likelihood-ratio
test revealed that the full model fit the data better than the reduced models
(F(591) = 66.896, p < 0.001). Additionally, when comparing the full RPM
model and the traditional raw score model, we found that the full RPM
model explained 8.5% more variance in standardized test scores than the
raw score model (ΔR2

adj < 0.098). Further, a Cox test to compare the non-
nested linear models showed that the full RPM model fit the data sig-
nificantly better than the raw score model (z =−17.470 p < 0.001). Exam-
ining the standardized beta-weights of this model revealed that RPM on
common problems was by far the strongest predictor of SBAC scores, even
when considering measures of executive function and parental income (see
Table 1 for full results). Overall, these models suggest that fluency metrics
that combine speed and accuracy, such as RPM, are the best predictors of
achievement on standardized mathematics exams.

Dynamics between speed and accuracy vary based on problem
type, grade, and math achievement
In addition to the analyses above that provide evidence for differentiated
processing between common and exceptional problem types, we also
leveraged the trial-level accuracy and reaction time data afforded by our

tablet-based paradigm to analyze speed-accuracy dynamics within the
single-digit arithmetic task. Full details of this approach are outlined in the
“Methods” section and in Domingue et al.38 but briefly, each individual’s
response to each single-digit arithmetic question ismodeled as a function of
their reaction time on that item and the probability of them providing a
correct response, as generated by an item-response model. The predictions
from this model can then be plotted to qualitatively examine, on average,
how the probability of a correct response changes with increases in reaction
time. This approach moves beyond the comparison of reaction time and
allows for a more nuanced view of performance on different types of
arithmetic problems.

Past analyses of cognitive tasks have found that simple items tend to
elicit linear speed-accuracy curves, which suggests that these items are
solved through rapid, homogeneous cognitive processes. More complex
items, in contrast, tend to elicit curvilinear speed-accuracy curves, sug-
gesting slower cognitive processes which leave room for strategy shifts,
workingmemory decay, and the depletion of cognitive resources41. Basedon
these findings, we hypothesized that the shape of the SAT curves would
differentiate common from exceptional problems. Specifically, we expected
common problems to involve a range of more complex and time-
consuming cognitive processes, thereby producing curvilinear profiles,
whereas we expected exceptional problems to generate more linear SAT
profiles.

We first fit speed-accuracy curves for common and exceptional single-
digit problems across the entire sample. Plotting these curves revealed
distinct shapes for the curves describing common and exceptional problems
(Fig. 3a).More specifically, the speed-accuracy curve describing exceptional
problems (blue line) illustrates a traditional speed-accuracy tradeoff,
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whereby the longer an individual takes to solve a problem, the more likely
they are to respond correctly. On the other hand, the speed-accuracy curve
for common problems (red curve) has a more curvilinear shape, which
suggests that after a certain amount of time, the likelihood of an individual
providing a correct response actually decreases with additional time spent
on the problem.

To better understand how these speed-accuracy curves differ by edu-
cational experience and academic achievement, we then fit the samemodels
as above within each grade cohort and achievement group, as measured by
grade-normalized achievement quartiles on the SBAC exam. Across the
grade cohorts, we see that the curve describing common problems becomes
more similar to that describing exceptional problems in the older students
compared to the younger students.We also observe this similarity across the
two curves in the highest achievement group, where both curves take on a
more linear shape. Interestingly, however, in the lowest achievement group,
these curves both take on a more curvilinear shape and only become more
linear in the higher achievement groups.

We then looked to quantify the difference between speed and
accuracy across the two problem sets by fitting both linear and quadratic
functions to the SAT data. In the full sample, the addition of a quadratic
term for the model describing common problems explained more var-
iance compared to the linear model (ΔR2 = 0.198), whereas the quadratic
term in the model describing exceptional problems explained far less
additional variance (ΔR2 = 0.070). When we quantify the SAT by
achievement quartiles or grade, we observe that in the youngest students
and lowest achieving quartiles the inclusion of a quadratic term drasti-
cally increases the variance explained for both common and exceptional
problems. However, as we move up the age or achievement groups, the
change in variance explained due to a quadratic term dramatically drops
for exceptional problems but less so for common problems (see Sup-
plementary Fig. 4 for overview).

We further tested the impactof a quadratic termonexplaining the SAT
curve across each decile of math achievement. Paired sample t-tests com-
paring the change in R2 revealed that the inclusion of a quadratic term to
describe the SAT curve for common problems significantly increased the
amount of variance explained compared to exceptional problems (d = 0.65,
t(9) = 2.057, p = 0.035). All together, these figures suggest that in older
students and higher achieving students both common and exceptional
problems demonstrate a speed-accuracy tradeoff, whereas in younger stu-
dents and lower achieving students, these problems elicit different
responses.

Discussion
In the present study, we developed a novel tablet-based task to explore fine-
grained mental arithmetic abilities at various stages of education. Through
this single-digit arithmetic task, we examined how fluency develops in a
large cohort of 3rd, 5th, and 7th grade students with respect to various
problem-level contrasts adopted from cognitive studies of mathematical
cognition such as operation, problem size, and problem type (i.e. whether a
problem belongs to the set of single-digit arithmetic problems commonly
investigated in these studies, or to the set of exceptional problems typically
excluded from such studies). Additionally, we examined how fluency with
common and exceptional problems differentially relate to performance on
high-stakes standardized math exams. Finally, we leveraged the item-level
reaction time and accuracy data afforded by our tablet-based paradigm to
explore the relationship between speed and accuracy within single-digit
arithmetic.

We observed significantmain effects of grade, operation, problem size,
and problem type on correct RPM. Consistent with previous findings in the
literature35, olderparticipants answeredmorequestions correctly per second
than younger participants. Additionally, our analysis examining the effects
of operation and problem size on arithmetic fluency also replicated estab-
lished effects from the literature. Generally, addition has been found to be
easier than subtraction and the distance betweenoperands tends to correlate
with reaction time25,33,34.

When we separated the single-digit arithmetic problems into distinct
types—exceptional problems, such as identity, successor, and tie problems,
and problems that belong to the common set of problems found both in the
discrete-trials numerical cognition literature26 and chained-fluency mea-
sures of single-digit arithmetic– we consistently observed that participants
across all three grade cohorts answeredmore exceptional problems correctly
per minute than common problems, in line with Ashcraft42. All together,
these results suggest that our tablet-based paradigm can effectively replicate
discrete-trials paradigms and capture the cognitive constructs within the
domain of single-digit arithmetic observed in past research.

In addition to replicating these known effects, we also used data from
our tablet-based assessment to replicate associations between performance
on chained-fluency assessments, such as the Woodcock-Johnson, and
achievement on a state-mandated standardized mathematics test18,19. To
explore the specific relationship between standardized test scores and
measures arithmetic fluency, we constructed a series of linear models that
controlled for covariates that have been linked to academic achievement,
such as SES or domain-general cognitive abilities9,43. However, we also
expanded on past findings by comparing the specific relationships between
match achievement and fluency with common and exceptional problems.
Overall, we fit four models; one that used a traditional raw score, much like
the scores provided by traditional chained-fluency assessments of single-
digit fluency, as the primary predictor of interest and three others that used
common RPM, exceptional RPM, or both as the primary predictors.

Interestingly, across all four regression models, RPM metrics derived
from the arithmetic fluency assessment proved to be the strongest predictor
of standardized test scores, even when controlling for household income
and domain general executive functions. This link between arithmetic flu-
ency and mathematics achievement across all four models illustrates the
importance of fundamental mathematical skills, such as arithmetic fluency,
for higher level mathematics achievement44. However, when we compared
our regression models, we found that models that included RPM metrics
explained a higher proportion of the variance in standardized test scores
compared to the traditional raw score model, suggesting that tablet-based
measures that capture both speed and accuracy better predict individual
achievement than pencil and paper measures that simply record the total
number of correct responses.

Furthermore, although exceptional RPMserved to explain over 40%of
the variance in standardized test scores on its own, the combined RPM
model revealed that common RPM was the strongest predictor of stan-
dardized test scores, even when controlling for domain-general cognitive
skills or socioeconomic status. This suggests that the responses to excep-
tional problems on chained-fluency assessments may not necessarily be the
most informative for understanding individual math achievement. How-
ever, it bearsmentioning that exceptional items are generally easier andmay
serve as an attention check or confidence boost for individuals who may
struggle with math anxiety.

Additionally, we leveraged the trial level data captured by our tablet-
based assessment to explore the speed-accuracy dynamics across different
problem types and subsets of our sample. Visual inspection of the speed-
accuracy profiles of commonand exceptional problems revealed that, across
all participants, exceptional problems demonstrate a more linear relation-
ship, and common problems take on a curvilinear speed-accuracy profile.
As presented in Fig. 3, exceptional problems elicit a typical speed-accuracy
tradeoff, whereby the probability of an individual providing a correct
response increases with the amount of time they spend on a given item. On
the other hand, analysis of exceptional problems led to more curvilinear
speed-accuracy curves that suggested that after a certain amount of time, the
probability of a correct response actually decreased with additional time.

Past work examining speed-accuracy tradeoffs has suggested that
homogenous cognitive processes, such as fact retrieval, produce linear
speed-accuracy curves, whereas more complex processes that involve
multiple strategies and cognitive resources result inmore curvilinear speed-
accuracy profiles41. In the case of mental arithmetic, when children first
begin solving single-digit arithmetic problems, they initially rely on slower
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procedural strategies20,45–48 before consolidating problems into a rapidly
accessible arithmetic fact repository after repeated practice20,25,42,49,50. How-
ever, it has been suggested that individuals consolidate exceptional pro-
blems, as either arithmetic facts or procedural rules, more rapidly than
common problems27,31,39. Taken together, these past findings and the speed-
accuracy curves observed in the present study suggest that individuals are
likely engaging in fact retrieval when solving exceptional problems and
relying on a range of computational strategies when solving common
problems.

Interestingly, we also find that higher achieving students demonstrate
more linear speed-accuracy profiles for both common and exceptional
problems, whereas lower achieving students demonstrate curvilinear pro-
files for both problem types. It could be the case that in the present sample
high achieving individuals rely on rapid retrieval-based strategies to solve
both common and exceptional problems, whereas lower achieving indivi-
duals have only rapid access to exceptional problems and rely on slower
computational processes to solve common problems. In fact, past work has
shown that learners who struggle in mathematics struggle to retrieve
arithmetic facts from memory and rely on counting procedures to solve
these more complex problems51.

However, it also bears mentioning that, according to the Overlapping
Waves theory52, as learners develop new arithmetic strategies, they do not
simply discard one strategy andmove on to the next strategy but rather use
an overlapping combination of both new strategies and those they have
already mastered. Based on this, when solving problems, learners will have
multiple strategies at their disposal to arrive at the correct answer. However,
these various strategies will be employedmore frequently depending on the
age and experience of the learner andmay relate differently to achievement
in the domain of mathematics.

Nevertheless, the results from both the regression models and speed-
accuracy analyses suggest the consolidation of more complex single-digit
arithmetic problems into math facts serves as a key building block from
which individuals can begin to solve more sophisticated math problems,
suchas theones foundon standardized tests.Weobserved a cleardistinction
between common and exceptional problems across all grade ranges and
levels of academic achievement.However, it bears repeating that in students
with higher levels ofmathematics achievement, the differences in the speed-
accuracy profiles between the two problem types decrease, suggesting a
potential shift in the cognitive strategies used to solve common problems.

Findings from the neuroimaging literature, which have observed dis-
tinct cortical networks responsible for arithmetic fact retrieval and proce-
dural strategies46, provide evidence for this proposed shift. The networks
associated with single-digit arithmetic differ between children and adults53

and patterns of brain activity vary between children who primarily rely on
procedural strategies and children who use fact retrieval to solve arithmetic
problems54. Interestingly, when engaging in mental arithmetic, individuals
with higher scores on a standardized math exam demonstrate increased
activation in regions associated with fact retrieval, whereas lower per-
forming individuals demonstrated higher levels of activation in cortical
regions involved in numerical processing37. Furthermore, developmental
differences in a range of neural circuits, including parietal-frontal circuits
involved in working memory and hippocampal circuits involved in
declarative memory, have been linked to distinct patterns of mathematical
cognition55,56 and increased parietal specialization has been observed older
individuals engaging in arithmetic more fluently compared to younger
individuals57. All together, this evidence suggests there is a shift in brain
activation associated with expertise in mathematics. The sensitivity of our
tablet-based assessment to differences in the speed-accuracy curves gener-
ated by common and exceptional problems presents an initial step towards
developing a behavioral metric that corresponds with the fronto-parietal
shift observed in past neuroimaging studies.

The more nuanced view of math development afforded through these
distinct problem types will provide a clearer picture of the developmental
dynamics of arithmetic fluency and has several implications for educational
practice. Whereas existing chained-fluency assessments only identify a

general weakness, the trial-level data afforded by the present tablet-based
assessment can help pinpoint specific aspect(s) of arithmetic in which a
learner might need additional support. By identifying these areas, the pre-
sent tablet-based assessment can open the door for the development of
personalized teaching strategies and tailored interventions to help learners
improve in the aspects of arithmetic in which they most need support. For
example, a recent study found that learners diagnosed with dyscalculia
showed no difficulties solving problems requiring fact retrieval but did have
difficulties solving problems that required procedural operations58. The
present tablet-based assessment allows educators to identify students
struggling with procedural operations and intervene appropriately.

Furthermore, the present assessment captured these effects after just
3min of use and did not require anymanual scoring, suggesting that similar
tablet-based approaches to assessing arithmeticfluency lend themselveswell
to contexts that may not have the requisite time or resources to distribute,
administer, and score traditional pencil-and-paper tests or sophisticated
experimental software. This will not only allow for practitioners to rapidly
and efficiently assess their students but also allows for researchers to study
numerical cognition at a population level. For a range of logistical and
practical reasons, numerical cognition studies relying on discrete-trials
paradigms do not lend themselves well to large-scale studies and are
therefore limited in their generalizability. However, the current results
demonstrate how tablet-based assessments allow for a more nuanced
understanding of the cognitive mechanisms underlying single-digit arith-
metic at scale and open the door for the development of similar tools that
can be made accessible to the larger education and research communities.

Despite the insights into mental arithmetic afforded by the present
results, theymust be interpretedwithin the context of a few limitations. First,
although the present sample includes a diverse set of participants, some
participantsweremissing demographic information and thus omitted from
our analyses. This omission may bias the results the present sample thus
limiting generaliz to the broader population. Although sensitivity analyses
suggested that the observed effects of operation, problem size, and problem
type did not change when these excluded participants were included in the
analysis, future research should look to replicate these findings in an inde-
pendent sample. Furthermore, the participants in the present analysis are all
from the same geographic region and the resultsmay not generalize to other
geographic contexts. Nevertheless, future large-scale studies, such as the
Adolescent Brain and Cognitive Development study (ABCD)1, that were
adapted from these specific tablet-based behavioral assessments will likely
bewell-positioned to serve as amore valid generalization dataset the present
results.

Additionally, the design of the present fluency assessment leads to
some limitations in our comparisons of raw score and RPM metrics.
Because the filler multiplication trials were excluded from our analyses, the
top performerswere all capped at amaximumraw score of 62, whereas their
RPMmetrics hadmore variability, due to the incorporation of reaction time
data. The higher correlation between RPM and standardized test scores
compared to raw scores may be partially due to the decreased variance
present in raw scores for the highest performers. Although various sensi-
tivity analyses demonstrated, across various temporal subsets of thedata and
different participant groupings, that RPM consistently explained more
variance in test scores that raw scores (Supplementary Figs. 6, 7), future
iterations of this assessment may consider removing the presence of filler
trials to allow for a more direct comparison of RPM and raw scores.

Furthermore, the data from this assessment cannot fully explain
the cognitive mechanisms underlying arithmetic fluency. Although
our speed-accuracy curves allow us to speculate that high achieving
students may rely on fact retrieval to solve both common and excep-
tional problems, whereas struggling learners may rely more heavily on
procedural calculations, we cannot determine the exact cognitive
mechanisms each individual uses to solve arithmetic problems without
specifically asking participants how they solved a given problem.
Despite this limitation, the present tablet-based approach to assessing
fluency allows for the application of discrete-trials methodologies in
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large-scale studies to develop a more nuanced view of single-digit
arithmetic compared to traditional chained-fluency assessments.

In summary, we used a novel assessment of arithmetic fluency
accounts for different types of single-digit arithmetic problems to explore
mental arithmetic in a large cohort of 3rd, 5th, and 7th grade students. This
assessment proved reliable and replicated established effects from the
numerical cognition literature, such as effects of operation, problem size,
and problem type. Furthermore, fluency in both common and exceptional
problems, as measured by RPM, were more strongly linked to achievement
on standardized math exams compared to traditional global raw scores.
Fluency with common problems also partially mediated the relationship
between parental income and math achievement. Additionally, these dif-
ferent problem types elicited different speed-accuracy profiles, though these
profiles became more similar in high achieving students. All together, this
nuanced approach to arithmetic fluency is crucial to better assess where
diverse populations of individual learners such as that found in the ABCD
study, stand on their journeys as emerging mathematicians.

Methods
Participants
The participants in the present study come from the first time point of a
2-year accelerated longitudinal study exploring the development of various
cognitive and academic abilities in third to eighth grade students in one of
nine schools from northern California. Overall, 977 students completed the
tablet based arithmetic modules at the first time point. Across the three
grade levels, 53 individuals were identified as outliers and excluded from the
analysis.

Outliers were determined in agreement with other analyses using this
sample22,59,60 and were defined as individuals with either mean accuracy or
reaction time that fell outside three median absolute deviations61 of the
median performance for a given grade cohort. Furthermore, to avoid ana-
lyzing data where participants repeatedly and rapidly entered random
responses, trials where with a response in less than 200 milliseconds were
excluded from the analysis. Overall, after cleaning the data, participants
completed between 17 and 51 addition or subtraction problems.

Wemeasured socioeconomic statususingparental income.Thoughwe
did not have access to exact parental income information, participants were
classified as low-income using the definition employed by the state of
California of coming from a household earning less than 70% of the state
median income59,60. Using this binary scale, we dummy coded participants
with low-income parental income as 1 and participants with average/above
average parental income as 0. Based on this definition, 287 participantswere
classified as low income,542as average incomeorhigher.Twoschools in the
sample declined to share demographic information about their students
(n = 100). To avoid biasing results through imputation of demographic
variables62, we excluded individuals without this information from our
analyses.

The final sample consisted of 824 students who successfully completed
the single-digit arithmetic task and provided information about socio-
economic status. Within this final sample, there were 230 third graders
(mean age = 8.73 years old, standard deviation = 0.32), 226 fifth graders
(mean age = 10.60 years old, standard deviation = 0.37), and 468 seventh
graders (mean age = 12.51 years old, standard deviation = 0.38). The final
samplewas31.1%Asian, 24.6%Latinx, 16.4%white, 4.9%Filipino, 4.1%two
or more races, and 1.7% Black. Additionally, 8.73% of the participants
received some form of Special Education services at school. Furthermore,
the final sample consisted of data from 339 female participants, 345 male
participants.

Each student also provided information about their yearly perfor-
mance on the mathematics portion of the Smarter Balanced Assessment
(SBAC). In the state of California, this exam is completed annually by
students in 3rd grade through 8th grade and again in 11th grade. This exam
is a computer adaptive test based on Common Core State Standards
designed to measure a student’s ability to apply their knowledge in the
domain of mathematics across multiple grade-level standards63.

Tablet-based single-digit arithmetic task
Participants completed the present single-digit arithmetic task as part of a
larger tablet-based assessment that probed various cognitive and academic
abilities. These assessments were administered in a group setting within
each classroom and supervised by their teachers and members of the
research team. Within each classroom, each participant was provided an
individual tablet device to complete these assessments. The single-digit
arithmetic module was part of a suite of individual mathematics modules
that also included a dot enumeration task, an arithmetic verification mod-
ule, and a double-digit arithmetic task, which we will not discuss here. All
participants completed the dot enumeration task immediately before the
single-digit fluency module. This fixed order was intentionally designed to
ensure that subjectswerewarmedup64 onquickly executing touchresponses
on the digital number pad before the single digit fluency task began.

In the single-digit arithmetic task, participants spent 3min responding
to single-digit arithmetic problems. These problems were presented on a
tablet device using custom software. To respond to each problem, partici-
pants used an on-screen keypad to type their responses before hitting enter
(Fig. 4).Within the 3-min timeframe,participantswere instructed toanswer
each problem as quickly and as accurately as possible. Arithmetic problems
were randomly drawn without replacement from a set of 62 addition and
subtraction problems designed to resemble those found on theWoodcock-
Johnson III Tests of Achievement10 (see Supplementary Material for over-
view of items). However, unlike the worksheet used in the Woodcock-
Johnson, problems appearedon the screenone at a time.Responses could be
altered in the event of a realizing a mistake was made (e.g., pressing the
wrong number key) by pressing a delete button before submitting the final
answer (Fig. 4). Aswith theWoodcock-Johnson, time spent on such actions
are included in fluency estimates. Participants could not advance to the next
problemuntil a responsewasprovided. Studentswerenotprovidedwith any
feedback after submitting their responses.

Similar to theWoodcock-Johnson, if participants completed the entire
contiguous set of addition and subtraction problems, they began to respond
to multiplication problems. This approach ensured that all participants
ended at the same time, thereby facilitating large-group administration, as
well as minimizing overt opportunities for peer comparison. Roughly 25%
of all participants exhausted the addition and subtraction items in the
problem bank before the 3min had elapsed and therefore responded to a
mix of multiplication, addition, and subtraction trials until the end of the
3min assessment period. To ensure that our analyses focused exclusively on
fluencywith addition and subtraction, we treated all problems, regardless of

Fig. 4 | Schematic representation of the tablet-based single-digit fluency task.
Participants were presented with a series of problems at the top of the screen and
asked to provide a response using the keypad at the bottom of the screen.
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operation type, presented after the firstmultiplication problem asfiller trials
and did not include these in our primary analyses (see Supplementary Table
1 for overview of filler items and number of students who responded to
them). After removing outlier and filler trials, participants completed
between 17 and 51 addition or subtraction problems, overall.

Additionally, the limitations of the task design raise questions
about the extent all participants may change their fluency toward the
end of a 3 min challenge (i.e., fatigue effects). The data for the partici-
pants who exhausted the addition and subtraction item bank may be
somewhat biased as they completed the 62 item test bank of interest
before the end of the 3 min where presumably the fatigue effects would
bemost pronounced. To understand the extent of this potential bias, we
contrasted the first, second, and 3rd minutes of the top performance
quartile (i.e., those who engaged with filler trials) and the second
quartile of performers (i.e., the highest performers who did not exhaust
the item bank). When we compared the minute-by-minute fluency for
these two groups, we found significant group differences, as well as
consistent fatigue effects, but no evidence that the two groups differed in
the extent to which they slowed down (Supplementary Fig. 5).

The structure of the filler trials also presents some issues in generating
fair comparisons between raw scores and RPM, especially in the fastest
participants who exhausted the 62-item problem bank before the allotted
3min had passed. To ensure that the variance in the raw scores for the top
performing individuals was not arbitrarily reduced due to the maximum
possible score of 62, we centered ourmain analyses on the first 126 s of each
participants data, the, the point at which the very fastest participant first
exhausted the bank of 62 contiguous addition and subtraction problems. To
ensure the consistency of the results between the 126 s and 180 s samples, we
also ran our primary analyses on the full data set, excluding filler trials
(Supplemental Text). These two sets of analyses were largely consistent.

Single-digit fluency problems were classified as one of two types:
common and exceptional. Common problems consist of items found in
both the discrete-trials literature and chained fluency assessments, which
have traditionally been studied in past investigations into single-digit flu-
ency. Exceptional problems consist of problems that all participants,
regardless of grade, have likely committed to memory as either arithmetic
fact or procedural rules. These problems included ties (a number plus or
minus itself, e.g., 3+ 3), the successor function (a number plus or minus
one, e.g., 3+ 1), and the identity function (a number plus or minus 0, e.g.,
3+ 0). All other problems were classified as belonging to the common set,
which likely require procedural calculation to solve. In addition to these
fluency types, we also classified items based on their operation and the
distance between the two operands. Problem size was defined as the sum of
the twooperands, in linewithpast studies65,66 andoperation typewas limited
to addition and subtraction.

It should be noted that in the analysis we made sure to analyze
operation in conjunction with solution size. This is because subtraction,
especially in single-digit arithmetic, will result in smaller solutions than
addition. In the current study, the number of small subtraction problems
greatly exceeded the number of small addition problems and the number of
large additions greatly exceeded the number of large subtractions. Due to
this imbalance across solution size and operation, we ensured to analyze
these two factors in conjunction with one another to account for any
solution size effects that might be obscuring operation effects.

We defined reaction time as the time it took a participant to press the
first button, insteadof the submit button.This is due to the fact that for items
that resulted in a double-digit answer (i.e., 8+ 3), participants had to enter
two digits to correctly record their final answer, which would necessarily
result in slower reaction times for these items compared to itemswith single-
digit answers. To validate this decision,we compared the difference between
time to first button press and overall reaction time across common and
exceptional problems. This revealed that the difference between time to first
button press and overall reaction time was not different across the two
problem types (t(2712) =−1.291, p = 0.197), suggesting that for all pro-
blems, participants began their response once they had reached a solution in

their head andwere notmaking on-the-fly calculations as they entered their
response on the tablet (Supplementary Fig. 1).

Correct responses per minute
Oneof the challenges in assessing arithmeticfluency is navigating the speed-
accuracy trade-off. To consider both the speed and accuracy with which
students responded, we computed a composite metric that combined
information about both reaction time and accuracy to gauge arithmetic
fluency. Similar to the procedure outlined by Vandierendonck67, we com-
putedCorrectRPMfor each contrast for eachparticipant.RPMis computed
using the formula:

RPMt ¼
ct

ΣRTt
ð1Þ

where ct is the total number of correct responses provided for condition, t,
and the denominator refers to the sumof all the reaction times for condition
t. RPMthengivesus ametric of thenumberof correctRPM.For example, an
RPM equal to 20 would indicate that a participant answered twenty ques-
tions correctly per minute.

It should be noted that the RPM for the entire 3-minute assessment is
perfectly correlated with traditional raw scores (total correct responses)
calculated by chained-fluency assessments. However, by using event seg-
mentation to calculate RPM, we can better characterize fluency across all
problem typesandmake comparisons across individuals, grade cohorts, and
problem types.

Furthermore, we also examined cross-sectional performance on the
single-digit arithmetic at the first observation using reaction time (RT) and
accuracy separately, which was calculated as the percentage of items
answered correctly (Supplementary Figs. 2, 3).

Flanker task
The Flanker Task68 measured selective attention in participants. For this
task, participants were presented with an array of five letters (A, B, C, or D)
and asked to identify the center letter, while ignoring the four flanking
letters. Participants recorded their response by tapping the button that
corresponded to the center letter. The session beganwith 20practice trials to
learn the response mapping, 20 additional practice trials, and then 50
experimental trials. The initial maximum response time for this task
was 800ms.

Spatial span task
The Spatial Span Task was based off of the Corsi Block Stimuli Task69 and
probed an individual’s visuospatial working memory. In this task, partici-
pants viewedanarrayof 20black circles. These circleswere thensequentially
cued by changing color to green. In the Forward condition, participants
were prompted to tap the circles in the order inwhich theywere cued. In the
Backward condition, the circles were highlighted in blue instead of green
and participants were prompted to tap the circles in the reverse order in
which they were cued. The experimental portion of both conditions was
divided into levels. Participants started out on the first having to recall a
three dot sequence. After correctly completing two consecutive trials of a
given level, participantswould advance to the next levelwhere theywould be
prompted to recall an additional cue. After two consecutive incorrect trials,
the task ended.We then added performance on the Forward and Backward
conditions to obtain a composite Spatial Spanmeasure for each participant.

Reliability and validity analysis
To assess the internal reliability and criterion validity of our single-digit
fluency measure, we constructed a series of temporal subsets of our data.
These subsetsbeganwith just thefirst 15 s of the assessment and increased in
length by 15 s until the entire dataset was used. Within each subset, we
calculated both a raw score using the total number of correct responses, as
well as our RPM metric. Both of these metrics were computed using only
addition and subtraction problems and excluded responses from filler trials
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that occurred after the initial 62 addition and subtraction items. To assess
the internal reliability of our single-digit fluency measure, we calculated the
Spearman-Brown adjusted split-half reliability70,71 of the correct RPM and
raw score using data from each first temporal subset of the dataset.

To establish the criterion validity of our tablet-assessment, we fit a
series of linear mixed-effects models predicting SBAC performance from
each participant’s overall fluency. As with the reliability analysis, we began
by fitting our model from the first 15 s of the assessment and sequentially
added 15 more seconds of data until we reached the full 3-minute sample.
We chose mixed-effects models because they account for interindividual
differences not captured by ordinary least squares models. These SBAC for
each individual, i, was modeled as follows:

SBACi ¼ β0i þ β1RPMi þ ei ð2Þ

Where,

β0i ¼ γþ vi

Where γ is the mean SBAC score across all participants and the indi-
vidual deviation from the intercept, vi, is assumed to be normally dis-
tributed with mean 0 and standard deviation σ. We first built a baseline
random-effect model predicting standardized-test scores with no fixed
effect of RPM and each participant as a random effect. This baseline
model allowed us to establish the total amount of variance in test scores
at the individual level across the entire sample. We then constructed a
second model that included the RPM from each temporal subset of the
single-digit fluency module as a fixed effect. We then calculated the
change in variance in SBAC scores explained at the individual level
between the full and reduced model.

Modeling known effects from numerical cognition literature
To examine the effects of problem size, operation, and problem type on
RPM, we again fit a series of mixed-effects models that included a random
intercept to account for individual differences in fluency and various fixed
effects, including our predictors of interest, aswell as covariates of grade and
household income.

The model examining the effects of operation and problem size on
RPM was specified as follows:

RPMi ¼ β0i þ β1OperationTypeþ β2SetSizeþ β3SetSize

þ β4Gradeþ β5Operation
�SetSizeþ β6Operation

�Gradeþ β7SetSize
�Grade

þ β8Operation
�SetSize�Gradeþ β9HouseholdIncomeþ ei

ð3Þ

where,

β0i ¼ γþ vi

Where γ is the mean RPM across all participants and the individual
deviation from the intercept, vi, is assumed to be normally distributed with
mean 0 and standard deviation σ.

Similarly, themodel examining the effect of problem type onRPMwas
specified as follows:

RPMi ¼ β0i þ β1ProblemTypeþ β2Grade

þ β3ProblemType�Gradeþ β4HouseholdIncomeþ ei
ð4Þ

Where,

β0i ¼ γþ vi

Where γ is the mean RPM for a given problem type across all participants
and the individual deviation fromthe intercept, vi, is assumed tobenormally
distributed with mean 0 and standard deviation σ.

Predicting SBAC achievement
To examine the specific relationship between arithmetic fluency and math
achievement, we constructed a series of linearmodels predicting SBAC score.
For each of these models, the independent variables were standardized to
allow for the comparison of effects across models. Due to issues with model
convergence,weopted to use ordinary least squares regressionmodels for this
analysis.Wefirst built a baselinemodel predicting SBAC fromgrade, parental
income, Basic Reaction Time (BRT), Flanker, Spatial Span, and traditional
raw score from the math fluency task. Traditional raw score was derived by
taking the total number of correct responses across the 3-minute session.We
thenfit three additionalmodels that replaced traditional rawscoreswitheither
RPMoncommonproblems, RPMon exceptional problems, orRPMonboth
common and exceptional problems (entered as individual predictors).

Speed-accuracy analysis
We conducted our analysis of speed and accuracy within the single-digit
fluencymodule using the approachoutlined inDomingue et al.38. Briefly, for
each individual and single-digit fluency item, a Rasch mode72 is fit to esti-
mate the probability of a correct response as a function of two parameters:
latent individual ability, θj, and item difficulty, δi. These probability esti-
mates, along with estimates from a flexible b-spline basis mapping of
reaction time, are then entered into a linear fixed-effectsmodel tomodel the
within-person associations between accuracy and time-usage.

As highlighted in Domingue et al.38, the use of the b-spline basis
function is important for capturing potential curvilinear associations
between time usage and accuracy,while the linearfixed-effectsmodel allows
for computational flexibility while controlling for various time-invariant
covariates. It is important to note, however, that this approach does not
account for variation in item difficulty within a given category, nor does it
allow for potential shifts in individual ability over the course of the assess-
ment. After fitting themodel with these assumptions, themodel predictions
can be plotted as speed-accuracy curves and qualitatively analyzed to
describe the relationship between speed and accuracy. When exploring the
speed-accuracy profiles for different problem types or subgroups of our
overall sample, we simply filtered the data to include only our problem type
and group of interest before fitting the speed-accuracy models to the data.

All analyses were carried out using R version 4.2.173 and linear-mixed
effects models were fit with the lme4 package (version 1.1.30)74.

Data availability
Thedata that supported this study are available upon request from the iLead
consortium authors and completion of a data use agreement. The data are
not publicly available due to privacy and ethical restrictions. This study was
not preregistered.

Code availability
The code used for these analyses is publicly available at: https://github.com/
earoy/tablet_based_fluency/.
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