
npj | science of learning Article
Published in partnership with The University of Queensland

https://doi.org/10.1038/s41539-025-00371-w

Steady-state EEG captures how
elementary classroom instruction drives
plasticity for novel visual words

Check for updates

FangWang1, Elizabeth Y. Toomarian1,2, Radhika S. Gosavi1,2, Blair Kaneshiro1, Anthony M. Norcia3,4 &
Bruce D. McCandliss1,4

Early readers encounter thousands of printed words in children’s books. The frequency with which
they see each word shapes both neural and behavioral responses. Teachers also introduce novel
written words through short, intensive learning experiences. Here we combined steady-state visual
evoked potentials (SSVEP), corpus-based word frequency counts, and a novel two-week classroom
“learning sprint” to examine and compare these two forms of experience-dependent plasticity.
Cortical responses at 4 Hz to contrasts between real words of varying frequency (high: on average
1000 per million; medium: on average 200 per million) and pseudowords were sensitive to corpus-
based frequency estimates—marking the first such finding using SSVEP. Strikingly, newly acquired
low-frequency words (<1 per million)—taught in a child’s own classroom versus counterbalanced
words taught in two other classrooms—elicited cortical responses nearly identical to those evoked by
high-frequencywords versus pseudowords. Furthermore, 1 Hz responses to new vocabulary learning
was linked to individual differences in reading skills, including word decoding and rapid automatic
naming. Together, these findings highlight the causal impact of authentic instruction and the value of
neuroscience-informed methods in education research.

Vocabulary plays a pivotal role in both communication and academic
success. Hence, it is important to understand the neural mechanisms
underlying vocabulary learning, especially in early readers. Children’s
vocabularies grow by thousands of words each year, both through inci-
dental, cumulative encounters with words in books and verbal contexts, as
well as through explicit, systematic teaching in school, where the pro-
nunciation and meaning of novel words are directly taught to children1.

The most established method for investigating the impact of readers’
cumulative experiences with words over their reading lifespan is corpus-
based word frequency. Estimates of word frequency are typically based
on the number of occurrences within a large sample of commonly used
children’s books. Across a range of measures assessing fluency and
accuracy, high-frequency words (HFW) are processed more efficiently
than low-frequency words2, a phenomenon well known as the word
frequency effect (for a review, see ref. 3) and is evident in both early
readers and adults. Our recent work has shown that the brain signals of
early readers (i.e., kindergartners to second graders) in response to visual
word forms are significantly influenced by their cumulative prior
experience with the specific visual word. Specifically, neural circuits

exhibit stronger activation to familiar, HFW compared to unfamiliar
pseudowords4.

Educational neuroscience, an interdisciplinary field addressing ques-
tions neither cognitive neuroscience nor education research can address
alone, seeks to investigate how instructional practices shape experience-
dependent brain plasticity in learning5, providing novel insights into how
educators can design learning experiences that effectively support vocabu-
lary growth and broader academic development. As educational neu-
roscience becomesmore situatedwithin school settings, it becomes possible
to investigate not only how neural responses reflect cumulative exposure to
visual words, but also how deliberate, week-to-week, explicit efforts to teach
new visual words in school drive changes in neural responses to these new
words. Research in this direction has the potential to inform teaching
methods, curriculum development, and educational policies.

Research on the neural mechanisms of new vocabulary learning has
been constrained by its primary reliance on laboratory-based efforts. Such
laboratory studies investigate how learning experiences impact brain
responses by introducing artificially constructed vocabulary items, typically
presented through regimented protocols over a short series of training
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sessions, delivered by computer to individual learners in a controlled lab
setting6,7. Such approaches limit the ecological validity of studying classroom
learning dynamics, particularly in terms of how educational experiences
shape the formation of novel neural representations for newly acquired
vocabulary. To provide more relevant insights into how educational prac-
tices can be optimized to improve learning outcomes, class-based natur-
alistic studies of teaching and learning in schools offer greater relevance than
generic, computer-based learning in a laboratory.

The current study was specifically motivated by this distinction
between generic and educational forms of experience-dependent brain
plasticity. Neural responses to words are known to be influenced by
cumulative exposure to specific word tokens8. Such experience can be
captured through corpus-based measures of word frequency, as well as
through more controlled manipulations in which teachers intentionally
embed new vocabulary into their lessons. Conducting this work in an EEG-
equipped school setting9 allowed us to investigate not only cumulative,
corpus-based effects of word frequency but also the immediate impact of
embedding novel words into authentic classroom instruction over a two-
week period, using counterbalanced teacher-word assignments. This design
provided a unique opportunity to test, for the first time, how direct, short-
term classroom learning shapes the neurocognitive processes that support
the acquisition of new vocabulary in early readers, and to compare such
learning with more generic word-learning experiences captured by corpus-
based approaches. Specifically,we askedwhether newly learnedwords in the
classroom elicit neural responses similar to or different fromwords children
encountered in books in a less constrained context, with learning experi-
ences presumably accumulating over a much longer period of time. To this
end, we contrasted HFW with pseudowords, medium-frequency words
(MFW) with pseudowords, and very low-frequency words (fewer than one
token per million) that were either embedded in the child’s own classroom
lessons for two weeks or instead introduced in a peer classroom (counter-
balanced). Based on previous literature10, we hypothesized that: (1) brain
responses (e.g., topography and amplitude) to the contrast between newly
learned words in a child’s own classroom and words introduced only in a
peer’s classroom (counterbalanced) were expected to resemble those
observed for the contrast between HFW and pseudowords; and (2) HFW
would elicit a higher amplitude thanMFWwhen compared to pseudoword
controls. Our approach builds on previous electrophysiological work with
Steady-State Visual Evoked Potential (SSVEP) paradigms, which have
proven to be highly sensitive to lexical experience-dependent learning in
early readers4,11.

The SSVEP paradigm typically elicits a neural response between two
categories of stimuli presented at two distinct, experimentally defined per-
iodic rates. For example, word oddballs may be presented at 1 Hz (once
per second), embedded within a stream of pseudowords presented at 3 Hz
(three times per second), forming a 1 Hz oddball and 3Hz base stimulation
frequency. This temporally periodic presentation elicits periodic neural
responses at the predefined stimulation frequencies and their harmonics
(i.e., all integer multiples of the stimulus frequency). One of the most
attractive features of this approach formeasuring cortical responses is that it
has been shown to elicit much higher signal-to-noise ratio (SNR) responses
than other EEG paradigms12. In fact, these benefits are so large, that the
SSVEPparadigm enables reliablemeasurement of neural responses for each
condition with just 10 trials of 10 s each (i.e., 100 s of data4). This approach
offers practical advantages that complement traditional Event-Related
Potential (ERP) methods. It enables the simultaneous assessment of word
learning effects andword frequency sensitivitywithin a single, time-efficient
session—particularly valuablewhenworkingwith young children in school-
based settings. The brief and engaging format helps sustain children’s
attention and allows the entire session tofitwithin blocks of a typical school-
day schedule, an important consideration for maintaining classroom
routines.

Taken together, this approach for quantifying the impact of different
forms of learning experiences on cortical responses to specific word tokens
enabled us to carry out this entire study, including EEG data collection,

within an elementary school setting, seamlessly integrating the protocol into
the natural rhythms and demands of the school day. This feat was facilitated
by an existing Research-Practice Partnership (RPP) between our university
research group and a local school9; Researchers and practitioners co-
designed the study over the course of nearly a year. Learning strategies and
activities reflected teachers’ authentic daily practices. During the two-week
“learning sprint”, teachers led their class in learning a list of uncommon
vocabulary words for ~15min per school day. Moreover, students were not
only participants but also played an active role in the research process
through constant interactions with researchers and teachers. Cognitive
processes underlying newword learningwere assessed using EEG, recorded
in a dedicated laboratory inside the school9. The study’s design, which
randomized the selection of words for teaching while reserving others as
controls, is positioned to investigate a causal link between specific learning
activities and neural changes in word representations.

Class-based, naturalistic learning studies such as the current investi-
gation provide a unique extension of existing knowledge on children’s
vocabulary learning. Such studies may also shed new light on theories of
word reading development, specifically by highlighting the causal role of
classroom learning experiences intentionally scaffolded by teachers around
specific vocabulary. These studies may also yield practical advantages, such
as insights for educational interventions and activities that promote efficient
vocabulary acquisition and improve reading fluency.

Results
Evidence for new word learning at the level of behavioral
responses
Within each of the three classrooms, mean accuracy changed significantly
(all p < 0.001) for the words students learned in their own class, but not for
words in other classrooms. A one-way ANOVA showed no significant
difference across the three classes (F(2, 83) = 0.86, p = 0.43) in the word
learning effect. The range, mean, and standard deviation (M ± SD) of
accuracy from the behavioral word familiarity task (modeled after common
lexical decision tasks used with early readers) for each class and each word
group (one group learned by the student and two groups not learned) are
summarized in Fig. 1 and Table 1.

Evidence for newword learning at the level of cortical responses
Results frombase frequencies generally reflect visual processing common to
all stimulus classes in each trial,while theoddball results focus specifically on
the contrasts between two stimulus classes. Given our focus here on con-
trasts between stimulus classes, results from analysis of base frequencieswill
be reported in the supplement.

For responses to all three stimulus contrasts/conditions, only the first,
maximally reliable component (RC1) contained significant signals (i.e.,
significant permutation test p-values and at least one significant harmonic).
Results are summarized in Fig. 2.

Figure 2A displays topographic visualizations of the spatial filter for
RC1 in three conditions. RC1 topographies were highly correlated (r > .81)
across the three conditions and maximal over left occipito-temporal area.
Thebarplots inFig. 2Bpresent amplitudes, statistically significant responses
were observed at first and fourth harmonics (all pFDR < 0.01, corrected for 6
comparisons) for HFW-PW and LFWLearned- LFWUnlearned; but only at the
first harmonic (pFDR < 0.001, corrected for 6 comparisons) in MFW-PW.

One-wayANOVAof response amplitudes at the first harmonic (1 Hz)
did not show a main effect of condition (F(27, 54) = 0.09, p = 0.92,
η2p ¼ 0:64), indicating comparable response amplitudes at the first har-
monic across three conditions. However, one-way ANOVA at the fourth
harmonic (4 Hz) showed a significant condition effect (F(27, 54) = 5.17,
p < 0.01, η2p ¼ 0:49). To contextualize the effect size results, our sample size
and design provide 80% power to detect partial η2p values as low as 0.28
(Cohen’s f = 0.98), as calculated using the pwr package inR. Post-hoc paired
t tests (one tailed) showed that response amplitudes at 4 Hz in conditions
HFW-PW and LFWLearned- LFWUnlearned were significantly larger (both
pFDR < 0.01, corrected for three comparisons) than that in MFW-PW
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condition. No significant difference (t(27) = 1.60, p = 0.12) was found
between HFW-PW and LFWLearned- LFWUnlearned. These results indicated
similar responses between HFW and LFWL.

Individual differences in new vocabulary learning
For the contrast of LFWLearned-LFWUnlearned, we found significant correla-
tions between EEG amplitudes at 1 Hz and both word decoding ability
(measured by Woodcock–Johnson letter word identification, WJ-LWID,
R2 = .27, p < 0.01) and rapid naming ability for color (RANcolor, R2 = .3,
pFDR < 0.01, Fig. 3). Children with smaller response amplitudes to new
vocabulary learning had better reading performance (faster RAN and better
word decoding). No significant correlations were found for amplitudes at
4 Hz (allR2 < .1,p > 0.11) in this contrast. For the contrasts ofHFW-PWand
MFW-PW, no significant correlations were found between response
amplitudes and reading scores (all R2 < .12, p > 0.1).

Discussion
We examined experience-dependent effects in cortical responses to specific
word tokens in early readers using two complementary approaches. The
first approach drew on the predominant corpus-based method, selecting
high- and medium-frequency words from children’s book corpora and
matching them to pseudowords on sublexical properties, isolating differ-
ences arising from children’s prior exposure during typical reading devel-
opment. The second wasmore novel: In collaboration with teachers, we co-
created a classroom-based “learning sprint” in which words were pro-
spectively embedded into twoweeks of instruction, allowing us to test causal
links between experience and cortical responses. Together, these corpus-
and classroom-based approaches provide converging evidence for how
specific word-learning experiences shape cortical processing, advancing the
goals of EducationalNeuroscience to connect practicewith changes in brain
function.

Using learning sprint designs to embed learningmanipulations within
authentic classrooms extends the implications of previous lab-based studies
of experience-dependent effects for visual words. RCA of learned low-
frequency words in the LFWLearned-LFWUnlearned contrast generated a
component that is distributed over the left occipito-temporal (OT)

electrodes.This alignswithprior studies showing robust trainingeffects over
the left OT for whole-word or single-letter processing after short-term
training13–17. However, most training studies to date used stimuli from a
novel language system13,14 or an artificial script15–17 in controlled lab settings,
which limits the generalization to actual pedagogical practice and real
vocabulary learning. For instance, with artificial grapheme-phoneme cor-
respondence training, Pleisch and colleagues found more pronounced
activation for trained than untrained false-font characters in the left OT17.
The current study extends previouswork by demonstrating a learning effect
for real 5-letter words, and crucially, in a natural school context instead of a
laboratory-based training experiments.

The present study additionally extends previous studies by comparing
discriminative responses between learned real words in a child’s own
classroom vs. counterbalanced real words, rather than symbols or pseu-
dowords. The words learned in a child’s own classroom and the counter-
balanced words from other classrooms were well-matched in unigram,
bigram, and trigram frequencies, aswell as orthographic neighborhood sizes
(see detailed statistics in Section “Stimuli”). Such contrasts point towards a
learning effect at the lexical level, rather thanmere visual familiarity—since
the similar amplitude and topography observed for learned low-frequency
and HFW argue against a purely familiarity-based account—or mixed
effects of learning at several levels of analysis (e.g., letter forms, sublexical
and lexical information) thatwere captured inprior learnedwordvs. symbol
contrasts. Our results most likely demonstrate the development of lexical
representation after short-term of learning and critically extend previous
knowledge about the relationship between word characteristics (e.g., word
frequency) and lexical representation’s retrieval.

Although this study focuses on how changes in experience with par-
ticular words influence SSVEP oddball responses to those words versus
more novel forms, our previous work has examined how oddball response
amplitudes relate to individual differences in reading skill at this age. In
general, these earlier studies found little to no association between responses
to frequent words versus pseudowords in both cross-sectional4 and
longitudinal11 samples of early readers in first and second grades. Here, we
replicate this pattern: No significant correlations were observed between
reading skill and oddball amplitudes in the HFW-PW and MFW-PW

Fig. 1 | Newword learning at behavioral level: Lexical decision task performance.
AMean accuracy of behavioral responses towords that children learned in their own
class and those they did not learn (assigned to the other two classes), before and after
the two-week learning sprint; BMean accuracy changes (Post-Pre learning) of

behavioral responses to words that children learned in their own class and those they
did not learn in the other two classes. Children’s accuracy changed significantly for
words they learned but not for those they did not learn. There was no significant
difference across the three classes in the word learning effect.

https://doi.org/10.1038/s41539-025-00371-w Article

npj Science of Learning |           (2025) 10:83 3

www.nature.com/npjscilearn


conditions. When examining the 1 Hz experience-based oscillation, how-
ever, we uncovered a significant brain-behavior correlation between oddball
response amplitude and individual differences in decoding skill. This raises
the question of why our learning sprint approach was more sensitive to
brain-behavior relationships than corpus-based or categorical contrasts
between words and pseudowords. Several factors may be relevant. First,
corpus-based frequency estimates provide only an indirect and stochastic
reflection of a child’s unique lexical experiences, whereas the learning sprint
directly aligns the experiences with the specific words in the learning con-
dition. Second, differences may reflect effects of spaced (i.e., accumulated
experience for high- and medium- frequency words from corpus) versus
massed practice (i.e., two-week learning sprint). Third, individual variability
may be amplified for low-frequency words learned over a short period
compared to high- or medium-frequency words with more established
familiarity. As the present design does not allow us to distinguish among
these possibilities, we focus our discussion on the implications of the brain-
behavior relationship observed within the learning sprint.

Specifically, children with relatively dysfluent decoding skills, as indi-
cated by WJ-LWID scores, showed larger oddball responses to contrast
betweenwords they learned in their ownclassroomversuswords fromother
classrooms (counterbalanced). Word decoding can refer to the mapping of
letters and groups of letters within words to their corresponding sounds—a
process that encompasses a number of lexical and sublexical components
including phonological awareness and orthographic processing18,19. For
typical readers, word decoding has been used as a self-teaching strategy that
establishes new written words in memory20. However, many children with
reading difficulties such as dyslexia have problems with word decoding,
which in turn impacts the development of reading fluency21,22. Our findings
underscore and extend previous evidence showing that decoding ability
plays a crucial role in word recognition23 and reading acquisition24.

The correlation between SSVEPresponses to newly learned vocabulary
words and decoding ability was reinforced by its association with RAN. A
task involving retrieval of associations between visual symbols and

phonological codes (names), RAN predicts reading skills25–27, and impacts
literacy acquisition in elementary school children across different
languages28,29. Some researchers consider RANas amicrocircuit of the later-
developing reading circuitry30,31. For instance30, suggested that RAN taps
object-naming circuits in the left hemisphere that are recruited to form the
basis of the child’s developing visual word recognition system30. Overall,
correlation results in the current study provide further support for the idea
that children rely on phonological decoding skills (the ability to sound out
words/objects) to learn novel words.

Reading development involves a shift in how different levels of
representations are recruited, from basic visual features to letter forms,
sublexical letter combinations, and ultimately lexical items32. The negative
correlationpattern between learning andphonological decodingmay reflect
differences in the balance between whole-word and sublexical processing
across readers with varying skill levels. For example, a recent SSVEP study
showed that sublexical orthographic sensitivity correlates positively with
reading experience: More experienced readers exhibit larger SSVEP
amplitudes when comparing orthographically legal versus illegal letter
combinations, indicating greater sublexical tuning11.

Contrasting theoretical frameworks for word recognitionmay provide
distinct interpretations of this correlation pattern. From a Dual-Route
perspective33, these negative brain-behavior correlations can be understood
as reflecting a race between a lexical route and a sublexical decoding route.
The outcome of this race depends on both the strength of lexical knowledge
and the efficiency of sublexical processes. For children with weaker sub-
lexical skills, extensive practicewith specificwords can strengthen the lexical
route, allowing it to win the race. Thus, larger learning effects in weaker
decoders reflect a shift in balance between the two pathways. For unfamiliar
words, the sublexical route dominates. Once a critical subset of words is
learned well enough for lexical processing to outpace sublexical decoding,
the brain undergoes a state shift in processing. The learning-sprint effect,
and its relation to decoding, may therefore be explained as weaker decoders
dynamically switching between lexical and sublexical pathways once
per second, producing large oddball amplitudes, whereas stronger decoders
consistently rely on the sublexical route, resulting in smaller oddball effects.

An alternative account comes from computational models of visual
word recognition that begin without pre-specified mappings between
orthography andother linguistic systems, and insteadbuildingphonological
and semantic connections through learning34. These models do not posit
distinct mechanisms for lexical versus sublexical knowledge; rather, they
apply the same learning principles across multiple grain sizes, from letters
and rimes to entire words35. Within this framework, less skilled readers
initially rely on larger grain-size mappings (e.g., whole word orthographic
codes mapped to whole word phonological codes), which accentuates dif-
ferences between learned and novel words. When phonological networks
are stronger, newwords are represented as weightedmappings that capture

Table 1 | Lexical decision task performance (accuracy) pre-
and post-learning across three classes

Class Pre Post

Range Mean(SD) Range Mean(SD)

Class 1 0.15–0.7 0.47 (0.27) 0.95–1 0.99 (0.02)

Class 2 0.05–0.35 0.19 (0.15) 0.8–1 0.97 (0.35)

Class 3 0–0.79 0.28 (0.28) 0.5–1 0.91 (0.39)

Range, mean, and standard deviation (SD) of response accuracy for the magic word learning task
are shown for each class.

Fig. 2 | Comparison of brain responses to con-
trasts ofHFW-PW,LFWLearned- LFWUnlearned, and
MFW-PW. A Topographic visualizations of the
spatial filters for the first reliable component (RC1)
in three conditions; B Amplitude of responses at
each harmonic of the oddball. Only neural responses
at 1 Hz and 4 Hz were significant. At 1 Hz, com-
parable response amplitudes were found across
three conditions. At 4 Hz, HFW-PW and
LFWLearned- LFWUnlearned evoked significantly
higher (both pFDR < 0.01) amplitude than MFW-
PW; no significant difference was found between
HFW-PW and LFWLearned-LFWUnlearned.
**pFDR < 0.01, ***pFDR < 0.001. Error bars are ±1
SEM. HFW-PW high frequency words-pseudo-
words, LFWLearned- LFWUnlearned learned low fre-
quency words-unlearned low frequency words,
MFW-PWmedium frequency words-pseudowords,
FDR fase discovery rate.
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recurring correspondences between sublexical orthographic and phonolo-
gical codes, which results in known and unknownwords being encoded in a
more similar fashion. The SSVEP learning-sprint effect and its relation to
decoding can be conceptualized in terms of similarity among orthographic-
phonologicalweights acrosswords.Apoordecodermayproduce large shifts
in similarity space once per second, yielding a stronger 1Hz signal. A skilled
decoder, however, would produce relatively smaller shifts in similarity space
when switching from learnedwords in a child’s own classroom tounlearned
words (assigned to other classrooms), resulting in a weaker SSVEP oddball
effect.

Although these contrasting frameworks cannot be directly dis-
tinguished by the current data, they create a generative tension that can
motivate future studies and potentially inform different approaches to
teaching. For instance, one implication of linking the SSVEP oddball effect
to route switching in theDual-RouteCascadedmodel is that no comparable
effect should arise when contrasting well-formed versus poorly formed
nonword strings. In contrast, the computational framework that posits
word recognition and learning as operating equivalently across multiple
grain sizes would predict oddball effects from contrasts between learned vs.
novel words at various levels, for example, in a learning study focused on
rime units.

In addition to revealing fresh insights into vocabulary learning in
natural classroom settings, we found that both high- and medium-
frequency words, in contrast with pseudowords, evoked activation over
left occipito-temporal regions, which has been challenging in previous
SSVEP studies36,37. We used a relatively explicit repetition detection task
and slower presentation rates, potentially explaining this disparity. The
task in our study may have directed more attention to linguistic aspects,
unlike previous studies that may have focused more on implicit visual
discrimination processes (e.g., color detection task in ref. 37). Addition-
ally, the presentation rates used in previous studies (e.g., 1.2 Hz oddballs
and 6 Hz base in ref. 36) might have been too high for early readers,
impacting higher-order processes. Our findings of lexical cortical tuning
to print over left OT in early readers might reflect either direct access to
lexical representations as indicated by numerous fMRI studies showing
that left vOT regions, especially anterior, are engaged in lexical
processing38,39. Alternatively, it may also reflect indirect lexical access
through phonological decoding or grapheme-phoneme mapping, as
suggested by phonological mapping hypothesis40. As an example, a
combined EEG/fMRI study showed that activation of VWFA is respon-
sible for grapheme-to-phoneme conversion, especially during early
reading phases when direct lexical mapping of orthographic information
has yet to be built38.

A largenumber of studies have examinedword frequency effects across
different writing systems using different neuroimaging techniques8,41,42.
Low-frequency words consistently elicit larger EEG/MEG responses and
stronger fMRI activations over the left vOT compared to HFW, aligning
with behavioral findings showing shorter reading time for HFW43.

The current study, for the first time, examined the word frequency
effect using an SSVEP paradigm. We contrasted high- and medium-
frequency words separately with pseudowords to examine lexical retrieval.
In comparison with the MFW vs. pseudowords contrast, the HFW vs.
pseudowords contrast elicited larger amplitude responses, particularly at the
fourth harmonic (i.e., 4 Hz), suggesting facilitated access to lexical repre-
sentations compared toMFW44,45. Responses at any one of the harmonics of
the oddball presentation rate are indicative of neural discrimination of the
alternating categories. The fact that not all of these harmonics reflect word
frequency indicates that the oddball response is not due to a single process,
as a single process would be expected to show the effect at all of its har-
monics. Rather, the oddball response may represent a mixture of different
underlying neural mechanisms, operating either in parallel or in sequence,
only one of which is subject to word frequency. Although a direct contrast
between high- and medium-frequency words was not included in our
design, our goal was to isolate lexical access by comparingwords of different
frequency levels against well-matched non-lexical controls (pseudowords).
This approach allowed us to assess relative lexical processing strength while
minimizing confounds, and it serves as a benchmark for examining the
extent to which newly vocabulary words are learned. Future studies incor-
porating a direct comparison between high- andmedium-frequency words
could further elucidate the frequency-dependent dynamics of lexical access
observed here.

Our research team, in partnership with a local school, bridges educa-
tion and neuroscience through collaborative studies in real-world educa-
tional settings. This enduring partnership facilitates classroom-based
training studies, where educators co-design teaching activities and strate-
gies. Additionally, the partnership includes a permanent EEG recording
studio at the school, enabling direct investigation of how schooling impacts
children’s brain development. The partner school is an independent, non-
profit transitional kindergarten-8th grade institution located in Northern
California, enrolling approximately 300 students, with about 20% receiving
financial assistance. Although the school’s student-to-teacher ratio is
smaller than the average in public schools, the learning strategies and
activities implemented in our studies reflect the teachers’ authentic daily
practices. As such, we believe the instructional dynamics observed in this
context are representative of effective, generalizable approaches that can
inform broader educational settings. Pursuing research through this novel

Fig. 3 | Statistically significant correlations
between reading and new vocabulary learning,
after outlier removal. A Correlation between
amplitudes at 1 Hz for LFWLearned- LFWUnlearned

and word decoding ability (WJ-LWID);
B Correlation between amplitude at 1 Hz for
LFWLearned- LFWUnlearned and Rapid Automatic
Naming (RAN, color). Children with smaller
response amplitudes to new vocabulary learning had
better reading performance in word decoding and
rapid automatic naming. No significant relations
were found for the other two contrasts: HFW-PW
and MFW-PW. HFW high-frequency words, MFW
medium-frequency words, LFW low-frequency
words, PW pesudowords.
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partnership approach also expanded the researchers’ ability to study nat-
uralistic learning environments, gave teachers space to engagewith research
and reflect on their practice, and offered students a sense of agency in
exploring how we learn new words and how those experiences shape
the brain.

In summary, the present study revealed some converging evidence in
support of a causal relationship between short-term classroom-based
learning and word lexical representation-building via a RPP. This was
demonstrated by the emergence, after two weeks of classroom-based
learning, of discriminative responses between learned low-frequency words
and unlearned low-frequency words, which are similar to the response
pattern in the contrast of HFW vs. well-controlled pseudowords. In addi-
tion,wealso found significant correlationsbetweennewvocabulary learning
and reading skills, including word decoding and rapid automatic naming.
The correlation results provide support for the notion that children rely on
phonological decoding skills to learn novel words. Furthermore, responses
to HFW (vs. pseudowords) were higher than that to MFW (vs. pseudo-
words), replicating the classic word frequency effect; however, as our design
did not include a direct comparison between high- and medium-frequency
words, this observation should be interpreted with caution. Taken together,
thepresent results fromanatural school context extendprevious laboratory-
based knowledge on learning of new vocabulary words. Research in this
direction could be utilized to support effective learning approaches.We also
highlight the RPP approach as an effective way to conduct neuroscience in

ecologically valid educational settings, drawing more direct connections
between education and neuroscience.

Methods
Participants
Forty-eight monolingual, native English-speaking children from three
classes at an independent school participated in this two-week learning
study. All participants completed a behavioral lexical decision task both
before andafter the learning sprint.Of these 48participants, 30 children (ten
from each class), with normal or corrected-to-normal vision and no known
history of reading disabilities or neurodevelopmental/psychiatric disorders,
participated in EEG sessions after the classroom learning sprint. Two par-
ticipants (from different classes) were excluded due to data quality issues,
resulting in N = 28 participants ranging in age from 6.75 to 8.89 years old
(m = 7.69 years, s = 0.57 years, 14 males). The 28 participants whose EEG
datawere analyzed included 16first graders (m = 7.32 years, s = 0.38 years, 9
males) and 12 s graders (m = 8.19 years, s = 0.38 years, 5 males). First and
second graders were in the samemixed-grade class at the school. The study
was conducted in the second half of the school year.

General cognitive assessments
Each participant completed a 30-min individual behavioral session, on
average two days (s = 3 days) after the EEG session. All children were tested
for handedness (Edinburgh Handedness Inventory46), phonological
awareness and rapid naming abilities using two sub-tests (Rapid Auto-
matized Naming of letters and colors) of the Comprehensive Test of Pho-
nological Processing, SecondEdition (CTOPP-II47), word reading efficiency
(Test ofWord Reading Efficiency, Second Edition, TOWRE-248), and word
decoding ability using the sub-test of letter word identification
(Woodcock–Johnson Tests of Achievement, Fourth Edition, WJ-IV,49.
Results of the behavioral assessments are summarized in Table 2.

Study procedure and learning sprint
Before initiating the classroom learning sprint, teachers were briefed on the
general research idea, then engaged in collaborative brainstorming sessions
with the research team to generate ideas and insights from their practice to
assist with study design and implementation. Drawing from their collective
feedback and existing teaching approaches, the research team assembled a
tailored set of teaching strategies focusing on phonemic awareness, spelling,
as well as handwriting, and developed a list of “magic” words for the sprint
(see Section “Stimuli”). Following this, a research plan was collaboratively
crafted to guide the study’s launch and initiate the learning sprint (Fig. 4A).

Table 2 | Performance on behavioral assessments

Sex (female/male) 14/14

Handedness (right/left) 26/2

Age in years 6–8 7.7 (±0.6)

Test of word reading
efficiency (TOWRE)

73–126 90.6 (±23.5)

Rapid automatic naming of
colors (RANcolor)

22–51 34.0 (±7.3)

Rapid automatic naming of
letters (RANletter)

14–41 21.0 (±5.5)

Word decoding ability (WJ-LWID) 32–88 53.9 (±12.3)

Values are range and mean(±SD). TOWRE: Number of real words and pronounceable nonwords
read in 45 s. RAN: Time (s) used to quickly and accurately name all stimuli (e.g., letters or colors) on a
test form. WJ-LWID: Number of correctly named letters and words. Note: All scores are grade-
scaled scores.

Fig. 4 | Study procedure. A Counterbalancing new
vocabulary words. Researchers and teachers colla-
borated to design teaching strategies and create
vocabulary lists. Sixty new low-frequency words
were semi-randomly assigned to three classes (20
words per class); B Learning sprint. During a two-
week learning sprint (15 min daily, 5 days per week),
teaching activities focused on: (1) phonemic
awareness (hear, identify, and manipulate pho-
nemes in spoken words); (2) phonics (connect gra-
phemes to phonemes in written words); and (3)
writing (creating a handwritten representation of a
word---whether by illustrating it, writing it from
dictation, or using skywriting); C EEG recording at
school. After completing their learning activities,
participants individually visited the “brainwave
recording studio” in their school for EEG recording.
During the session, participants were shown words
they had learned in their own class as well as words
they had not learned because they were assigned to
the other two classes.

A.
60 low-frequency words, each five letters in length

20 words
Class 1

20 words
Class 2

20 words
Class 3

B. classroom-based words learning (10 days)

writing phonemic 
awareness phonics

~ 15 minutes / day

C.
belle waxen chafe

own class

other class other class
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During the two-week classroom-based learning sprint, each teacher led
their class in learning a unique list of 20 assigned new low-frequency
vocabulary words (see Section “Stimuli”). Display boards, featuring lami-
nated velcro cards labeledwith the selectedwords, served as interactive tools
for teachers to dynamically engagewith their students. Participants engaged
with the assigned word list for a minimum of 15–20min per day, 5 school
days perweek, for twoweeks total. A comprehensive tracker was created for
each classroom, providing both teachers and studentswith a tangible, visual
representation of their progress over the course of the learning sprint.
Teachers implemented activities that were collaboratively designed in the
earlier phase of the study, focusing specifically on: (1) phonemic awareness,
(2) phonics, and/or (3) writing, encompassing activities such as vocabulary
flashcards, spelling games, memory exercises, poetic exploration, Kahoot
quizzes (an online game-based learning platform), creative writing, and
more, which were all organic to the students’ learning environment and
classroom practices (Fig. 4B). These parameters and activities were deter-
mined in partnership with school instructional leaders, intended to ensure
instructional variety and emphasize the relationship between sounds and
letters. This approachwas specifically designed tohelp students attend to the
internal structure of each word—particularly the grapheme-phoneme
relationships—rather than relying on rote visual memorization. After each
class finished their two-week learning sprint, participants individually vis-
ited the EEG “recording studio” lab in the school. Experimental sessions
tookplace during the school day, allowing students to participate in research
and expediently return to class (Fig. 4C).

Stimuli
Sixty low-frequencywords (LFW, <1 permillion), eachfive letters in length,
were chosen from the MRC psycholinguistic database50 and were semi-
randomly divided into three lists, each consisting of 20 items. Unigram,
bigram, trigram frequencies, number of phonemes and syllables, and
orthographic neighborhood size were well matched across these three word
lists (all F(2, 59) < 0.57, all p > 0.57), which were randomly assigned across
the three classes. To enhance student engagement, we referred to these low-
frequency words as “magic words”.

To better evaluate the degree of classroom-based word learning
and compare short-term and long-term word learning, the study also
involved HFW and MFW, all comprising five letters. The HFW
(mean = 1006 per million, range 523–1821 per million) and MFW
(mean = 221 per million, range 200–246 per million) were chosen
from The Educator’s Word Frequency Guide51. Finally, five-letter
pseudowords (PW) were included for the examination of lexical level
representations compared to real words. PW were built on an item-
by-item basis by shuffling letters across the set of high- and medium-
frequency words used in the current study. PW were thus

pronounceable and well-matched for orthographic properties (at
both letter and structure level) of high- and medium-frequency
words. Unigram, bigram, and trigram frequencies (all t < 1.98, all
p > 0.05) and orthographic neighborhood sizes (t(69) = 1.29, p = 0.20)
were matched between words and pseudowords. Detailed psycho-
linguistic characteristics of stimuli used in the study are summarized
in Supplementary Table 1.

In all, the stimulus set comprised 20 HFW, 20MFW, 60 LFW, and 80
PW, for 180 exemplars total.We investigated three experimental conditions
as summarized in Fig. 5. In order to examine the effect of newword learning,
in condition 1 (Fig. 5A), learned low-frequency word oddballs from a stu-
dent’s own class were embedded in a stream of low-frequency words from
the other two classes (LFWLearned-LFWUnlearned). To examine the extent to
which thenewvocabularieswere learned in a short period of time, two other
conditions were included: Condition 2 (Fig. 5B) involved HFW oddballs
embedded in a stream of well-matched pseudowords (HFW-PW), while
condition3 (Fig. 5C) involvedMFWoddballs embedded in a streamofwell-
matched pseudowords (MFW-PW). Condition orders were counter-
balancedacrossparticipants and classes.All three conditionswerepresented
at a base frequency of 3Hz and a oddball frequency of 1Hz. Thismeans that
three stimuli per second were presented at a constant rate (3 Hz) and—in
condition 1 for example—the three stimuli presented in a given second
always comprised one learned low-frequency word (1 Hz) followed by two
low-frequency words (LFWUnlearned-LFWUnlearned-LFWLearned) introduced
in other classrooms. Of note, to avoid potential confounding of stimuli
repetition in SSVEP studies52, the pseudowords used in the HFW-PW
condition were different from the pseudwords in the MFW-PW, which is
why there are more pseudowords than word exemplars.

Behavioral lexical decision task
All stimuli in the lexical decision task were the same as those used in the EEG
session. Children were asked to decide whether a stimulus was a real word or
not before and after the learning sprint. They pressed one button for a real
word and one button for a pseudoword using their dominant hand. Mean
accuracy in eachclass for eachwordgroup (onegroupagiven student learned
and two groups they did not learn) was calculated. One-way ANOVA with
within-factor of class was computed on mean accuracy across three classes.

EEG recording procedure
Prior to the EEG recording, a brief practice session was held to familiarize
theparticipantwith the experimental procedure and the repetitiondetection
task. During the EEG recording, participants sat in a dimly lit room 1m
away from the computermonitor. Each stimulation sequence started with a
blank screen, the duration of which was jittered between 1500ms and
2500ms.

A. LFWL⎯LFWUL

deviant: 1 Hz (1 psychological change / second)
base: 3 Hz (3 total presentations / second)

…
deviant deviant deviant

B. HFW⎯PW

…
deviant deviant deviant

C. MFW⎯PW 

1 second

…
deviant deviant deviant

Fig. 5 | Experimental design. Examples of stimuli presented in the experiment. 1 Hz
oddballs were embedded within a 3 Hz base stream in all three conditions. The first
condition assessed processing differences between learned low-frequency words
with well-matched unlearned low-frequency words (A. LFWLearned-LFWUnlearned).

The second condition assessed processing differences between high-frequency
words and well-matched pseudowords (B. HFW-PW). The third condition assessed
processing differences between medium-frequency words and well-matched pseu-
dowords (C. MFW-PW).
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Each trial comprised12 sof stimulation, and each condition comprised
10 trials; thus, each participant completed 30 trials total across the three
conditions. Participants were asked to press a button on an external
response pad with their preferred hand when a stimulus (i.e., target) was
repeated three times in a row. This repetition detection task was chosen
based on pilot work showing that while children of this age can handle two-
alternative forced-choice lexical decision tasks, yet the continuous perfor-
mance format of our SSVEP design made such tasks more challenging. We
therefore needed a task that young readers could sustain across repeated
blocks within a single session, while still engaging lexical processing on each
stimulus. Pilot results and previous findings4,11 confirmed that children
persist and perform well on the repetition task across various stimuli (e.g.,
false fonts, orthographically legal/illegal strings, pseudowords, and words).
Additionally, this task reliably elicits constrainedEEG-SSVEPeffects at both
lexical and sublexical levels, even though it does not explicitly require
orthographic, phonological, or semantic knowledge4.

Among the 10 trials that were pseudorandomly presented for each
condition, there were four “nontarget” trials which contained no repeated
stimuli (Fig. 6A); four “terminal” trials inwhich repeated stimuli appearedat
the end (Fig. 6B); and two “catch” trials with repeated stimuli randomly
appearing elsewhere during the trial (Fig. 6C). Each terminal and catch trial
contained only one target. Participants were given verbal feedback about
their performance after the end of each trial. Due to excessive movements
from the button press, each participant’s two catch trials were excluded in
their entirety from further analysis. Data corresponding to the four terminal
trialswere still includedbecausemovements happened at the endof the trial.
In all, 8 of 10 trials for each condition from each participant were used for
analysis.

EEG data were collected using 128-sensor HydroCell arrays (Mag-
stimEGI), Electrical Geodesics NetAmp300, and NetStation 5.4.2 software,
while stimuli were presented via an in-house software. Data were acquired
against Cz reference at a sampling rate of 500 Hz. Impedances were kept
below 50 kΩ.

Overall, the entire EEG experiment took around 40min per partici-
pant, including setup, practice, and breaks between trials and conditions.

EEG preprocessing
EEG Recordings were bandpass filtered offline (0.3–50Hz) using Net Sta-
tionWaveformTools. Subsequently, datawas preprocessed and re-sampled
to 420Hz. Sensors for which more than 15% of samples from the sensor
exceeded a 60 μV amplitude threshold were interpolated by the average
value from six nearest neighboring sensors.

The continuous EEG data were then filtered with Recursive Least
Squares (RLS) filters53 and re-referenced to average ref. 54. Segmented into

1-s epochs, data were screened for artifacts, excluding epochswith over 10%
of data samples exceeding the noise threshold of 30 μV or any part sur-
passing the 60 μV blink threshold on a sensor-by-sensor basis. If an epoch
exceeded the peak/blink threshold in more than 7 sensors, the entire epoch
would be removed in all sensors. Tomitigate initial transient responses, the
first and last epochs of each 12-epoch, 12-s trial were omitted, leaving 10
epochs (i.e., 10 s) per trial for analysis.

The RLS filters were tuned to each of the analysis frequencies (base
harmonics: 3 Hz, 6 Hz, 9 Hz; oddball harmonics, excluding base harmonics:
1 Hz, 2 Hz, 4 Hz, 5 Hz, 7 Hz, 8 Hz) and converted to the frequency domain
by means of Fourier transform. Complex-valued Fourier coefficients were
decomposed into real and imaginary coefficients for input to the spatial
filtering computations of Reliable Components Analysis (RCA), as
described below.

Analysis of EEG data
We applied RCA55 to decompose the 128-sensor array into a set of reliable
components (RCs) maximizing between-trials covariance. Unlike analysis
methods that involve the preselection of sensors based on literature or SNR
within a predefined cluster—an approach commonly used in ERP and
SSVEP studies that might lead to a bias in reporting false positives56—RCA
computes weighted linear combinations across the whole montage of sen-
sors, yielding “reliable components” (RCs57). Compared to other spatial
filtering approaches, such as Principal Component Analysis and Common
Spatial Patterns, RCA produces component topographies that more closely
resemble the underlying cortical sources (i.e., lead fields) generating the
observed SSVEPs55. In addition, RCA achieves higher SNR with lower trial
count by maximizing across-trial correlations (i.e., “reliability”) while
minimizing noise power55.

SSVEP response phases remain constant across stimulations, render-
ing RC activations indicative of phase-locked activities. RCA operates on
sensor-by-feature EEG data matrices, deriving linear spatial filters to max-
imize Pearson Product Moment Correlation Coefficients58 across trials.
These filters transform data from sensor-by-feature to component-by-
feature matrices, with each component representing data from a linear
combination of sensors. RC scalp topographies are visualized using
forward-model projections of spatial filter vectors59. Additional details on
this spatial filtering technique are provided in Dmochowski et al.55.

Because signals after 10Hz are very weak, we decided to use fre-
quencies and harmonics within 10Hz (i.e., base frequency and its harmo-
nics: 3 Hz, 6 Hz, and 9Hz; oddball frequency and its harmonics: 1 Hz, 2 Hz,
4 Hz, 5 Hz, 7 Hz, and 8Hz, excluding base harmonics) for analyses.

For oddball analyses, which focus on neural processing disparities
between oddballs and control (e.g., HFW vs. pseudowords), we typically

A. Nontarget Trial

…
deviant deviant

deviant: 1 Hz
base: 3 Hz

deviant

deviant deviant deviant
B. Terminal Trial

deviant deviant
C. Catch Trial

…

…

… …

target

Fig. 6 | Example nontarget, terminal, and catch trials. Twelve trials were pseu-
dorandomly presented for each condition, including four nontarget trials (A), four
terminal trials (B), and two catch trials (C). Catch trials were excluded by design to
minimize EEG contamination frommotor responses associatedwith button presses.

Data corresponding to the four terminal trials were still included because move-
ments happened at the end of the trial, resulting in 8 out of 10 trials per condition per
participant being used for analyses.
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analyze each condition separately to reveal potential similarities or differ-
ences underlying different stimulus contrasts. This encompassed real and
imaginary Fourier coefficients at six harmonics, excluding base harmonics
(1 Hz, 2 Hz, 4 Hz, 5 Hz, 7 Hz, and 8Hz). Given that oddball responses are
weaker than base responses - since they reflect contrast-specific rather than
general visual processing - only one component typically reaches sig-
nificance. Therefore, the analysis includes 6 harmonics × 1 component × 1
condition.

In contrast, base analyses examine signals at the base frequency and its
harmonics (3Hz, 6Hz, and9Hz),which reflect general visual processing and
test whether low-level stimulus features werewellmatched across conditions.
We conduct RCA across all three conditions together, as the stimuli were
carefully matched and we do not expect differences across conditions at the
base frequency. The stronger base signal yields three significant components
(RC1, RC2, and RC3; see Supplementary Fig. 1). Therefore, the base analyses
include 3 harmonics × 3 components × 3 conditions (i.e., LFWLearned vs.
LFWUnlearned, HFW vs. PW, and MFW vs. PW).

We first assessed the significance of each component’s eigenvalue
coefficient using permutation tests. This involved creating null distributions
by generating 1000 surrogate data records with randomized phase spectra
for each trial in sensor space before RCA computation. For more infor-
mation, see ref. 4. Subsequently, we determined the significance of each
harmonic within significant components using Hotelling’s two-sample t2

tests60. Data were projected through spatial filter vectors, then averaged
across epochs and participants before statistical analysis. False Discovery
Rate (FDR61) correction was applied for multiple comparisons. For base
analyses, corrections were made for 27 comparisons (3 harmonics × 3
components × 3 conditions). For oddball analyses, corrections were applied
for 6 comparisons (6 harmonics × 1 component) per condition. Statistically
significant RCs, verified by permutation testing and containing significant
amplitudes in at least one harmonic, were further analyzed and reported in
the results.

For both the oddball and base analyses, we visualized the data in two
ways. First, we present topographic maps for spatial filtering components.
Second, we present bar plots of amplitudes (μV) across harmonics, with
significant responses (according to adjusted pFDR values of Hotelling’s t2

tests of the complex data) indicated with asterisks.

Assessing brain-reading relationships
Brain-behavior analyses were performed to assess individual variations in
the relationship between EEG amplitude with reading scores. The reading
scores analyzed were the participants’ grade-scaled scores of TOWRE,
RANcolor, RANletter, and WJ. Here, we focused on brain responses to
oddballs, which indicate discrimination responses between oddballs and
control stimuli. For the HFW-PW and LFWLearned- LFWUnlearned condi-
tions,where thefirst and fourthharmonics (1 Hz and4Hz)were significant,
linear correlations were performed on the averaged amplitude between
these two significant harmonics. For MFW-PW, we performed linear cor-
relations on projected amplitudes only at 1 Hz, which was the only sig-
nificant harmonic.

If a significant correlation was found, influential data points were
identified using Cook’s Distance62 and removed if they exceeded the
CooksD 4/n threshold (where n is the total number of data points). Cor-
relation analyses were then performed again to determine whether the
significant relationship still held after the removal of influential data points.
Brain response amplitudes to base stimuli were not used for brain-behavior
analyses, since the corresponding neural activity related to processing of
lower-level visualword featureswhichwas expected tobe comparable across
conditions.

Ethics statement
This studywas approved by the Institutional ReviewBoard (Protocol 50742,
PI: McCandliss) at Stanford University. Informed consent was obtained
from participants’ parents/guardians prior to both classroom behavioral
data collection and the EEG experimental session. At the beginning of the

session, participants were given an overview of the experimental protocol
and provided assent before the study began.As a token of appreciation, each
participant received a small prize at the end of the session.

Data availability
Primary data are publicly available (https://osf.io/bwh67/).

Code availability
All analysis scripts are publicly available (https://osf.io/bwh67/).
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