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Differential effects of external noise and
situational interest on neurophysiological
responses during video based learning
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Attending a lecture requires remaining focused for extended periods, which is particularly difficult in noisy
environments or when lecture content is less engaging. Yet little is known about how these external (noise)
and internal (interest) factors affect learners’ neurophysiology. We measured brain activity
(electroencephalogram; EEG) and physiological responses (skin conductance) during video-based
learning, and assessed how neurophysiological responses were modulated by the presence of realistic
background noise and by varying levels of interest throughout the lecture. Interest-level showed
pronounced neurophysiological effects, with low-interest segments associated with reduced neural
speech tracking, elevated alpha-power, reduced beta-power, and increased arousal, a pattern consistent
with lower engagement and increased listening effort. Interestingly, background noise had comparatively
limited effects onneurophysiological responses. Thesedissociated impacts of internal and external factors
on speech processing during learning, emphasize the profound impact of content-engagement on
neurophysiological measures associated with learner’s attention, beyond the sensory burden of noise.

Listening to a lecture,whether in a traditional classroomsetting or via online
platforms, requires individuals to focus their attention on the teacher for a
long period of time1–3. However, many factors—external and internal—can
make sustainedattention to a lecturedifficult4,5. For example, thepresenceof
background noise may distract listeners from the lecture or make hearing
more difficult6–9, and features related to the lecture content or delivery (e.g.,
the speaker’s charisma or presentation style) or to the listeners themselves
(e.g., interest in the topic) may prompt mind-wandering or off-task
behavior10,11. Despite ample behavioral evidence (and decades-long intro-
spective insight) that attention can vary and fluctuate throughout a long
lecture, our current understanding of the neurophysiologicalmanifestations
of these fluctuations, and the factors influencing them, is extremely limited.

The disruptive impact of external noise on speech-processing has been
studied extensively. It is well established that the presence of background
noise can reduce speech intelligibility12–15 and requires investingmore effort
due to the increased perceptual and cognitive load14,16,17. Consequently, this
can lead to elevated stress levels18,19 and reduced neural encoding of the
speech17,20,21. That said, not all noise has the same disruptive effects, but can
vary as a function of sound-level, temporal structure, contextuality and
noise-type22–25, and moderate noise can sometimes even improve perfor-
mance, in line with the notion of an inverted U-shape relationship between
arousal and performance26–30 and the moderate brain arousal model31–33.
Therefore, simply assuming that adding noise is detrimental to speech

processing, and consequently impairs attention to speech, is not
straightforward.

Importantly, insights gained from traditional speech-in-noise studies
might not generalize fully to more ecological contexts, such as listening to a
full lecture34–36.One reason for this is the prevalent use of short, highly edited
sentences as stimuli that lack the context and semantic continuity of a
lecture37. Real-life speech, and particularly a lecture, is continuous and
contextual, with a structured narrative and built-in redundancies, factors
that are designed to engage listeners, hold their attention over time, and
which can also potentiallymitigate themasking effects of noise.However, as
anyone who has ever attended a frontal lecture can attest—it is precisely the
continuous nature of lectures that renders their quality non-uniform over
time. In stark opposition from the well-controlled stimuli of experimental
designs (including highly edited and rehearsed audiobooks30,38 or TED-style
talks), the speech in live lectures is generatedby the instructor ‘on thefly’ and
therefore can contain frequent disfluencies, repetitions, ill-formed sentences
and rambling39,40. In addition, the content itself can vary in its clarity, novelty
and interest to the listener as well as speaker eloquence, style and charisma.
These variations in quality over time impact listeners’ level of engagement
and sustained attention to speech, with more engaging and interesting
content leading to higher levels attentional focus and reduced processing
load1, and reduced interest associated with mind-wandering and off-task
behaviors41–43. The current study broadens the scope of investigation of
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natural speech processing to assess the independent effects of external
background noise and of non-uniform levels of interest. We focus specifi-
cally on “situational interest”, a term used in educational and psychological
research to describe fluctuations in interest that are common tomost people
and can be attributed to variations in features of the lecture itself such as
clarity, novelty, relevance, speaker charisma, use of humor etc10,44–47. This is
distinct from “individual interest” which reflects personal preference for
specific topics or other contextual influences that contribute to individual
differences, but is beyond the scope of the current study48–51.

Our aim was to examine how external noise and fluctuations
in situational interest-levels influence speech processing under naturalistic
conditions that require sustained attention, and to link these effects to
changes in neurophysiological metrics associated with arousal, attention
and speech processing. To this end, we measured neural activity (electro-
encephalogram; EEG) and physiological responses (skin-conductance)
while individuals watched an unedited video recording of a real-life frontal-
lecture.We chose a lecture thatwas aimed for a general public audience, on a
relatively unknown topic (Agism). The lecture was rated as “relatively
interesting” in a pre-screening stage and contained substantial minute-by-
minute variability in listeners’ reported interest ratings (details below).
Group-level interest ratings were used to split the lecture into portions with
high vs. low levels of situational interest. In addition, we manipulated the
presence and type of background noise by playing two types of construction
sounds—intermittent and continuous—in 2/3rds of the trials9. We tested
how these two factors—external noise and situational interest—affected
specific physiological and neural metrics associated with arousal, attention
and speech processing. These included: (a) Neural speech-tracking, which
reflects neural encoding of the speech itself and is known to be reduced
under conditions of decreased attention and/or poor speech
intelligibility52,53; (b) Neural alpha-band oscillations, which are often
increased under conditions of low-attention and mind-wandering54; (c)
Neural beta-oscillations, which are associatedwith cognitive processing and
tend to increase under heightened task demands55–57; and (d) Skin-con-
ductance, which reflects level of arousal and is often affected by stress and
cognitive or perceptual effort55,58. Based on previous studies and the hypo-
thesized functional role of these neurophysiological metrics, we expected to
find that during quiet portions of the lecture (without background noise)
and portions reported as highly interesting, neural tracking of the speech
would be improved, we would find lower alpha power and higher beta
power, and modulation of skin conductance, a metric linked to levels of
arousal, relative to portions that contained additional noise and/or thatwere
rated as less interesting.

Results
Behavioral data
We analyzed the ratings of situational interest for the different lecture-
segments. First, we compared the reported levels of interest across segments
between these data and an online screening study. Overall interest ratings
were slightly higher in the current study (M= 4.73, SD = 0.34) than in the
online study (M= 4.28, SD= 0.41) [t(61) = 15.32, p < 0.001, Cohen’s
d = 1.946; Fig. 1A], which may indicate overall higher engagement when
performing the task in a lab vs. alone and online. Despite this ‘baseline shift’,
we found that the variation in interest-level ratings for the different lecture-
segments, where highly correlated between the two studies [Pearson’s
r = 0.827, p < 0.001, Fisher’s z = 1.178; Fig. 1B]. This supports the utility of
interest-ratings as objective metrics of variation in situational interest across
the entire lecture, despite potential differences in individual interest and
subjective experience (Song et al. 2021). Accuracy on answering compre-
hension questions about the lecture content was also generally good
(M= 87% correct, SD = 13.22), and was comparable to the online study
[M= 86.2% correct, SD = 15.23; comparison between lab and online studies:
t(29) = 0.468, p = 0.643, Cohen’s d = 0.08].

Behavioral analysis of accuracy on comprehension questions and
interest level ratings showed no significant effect of noise condition [repe-
atedmeasures ANOVA: Accuracy - F(2,62) = 2.098, p = 0.13; Interest levels

- F(2,62) = 1.149, p = 0.324; Fig. 1C,D], suggesting that the addition of noise
did not impact performance or interest-ratings.

However, when comparing accuracy on comprehension questions for
segments rated as high vs. low interest (median split), we found amarginally
significant effect suggesting improved comprehension for lecture segments
rated as more interesting [M = 89.76%, SD = 11.07 vs. M = 83.94%, SD =
15.61, respectively; t(28) = 1.856, p = 0.074, Cohen’s d = 0.345; Fig. 1E].

Galvanic Skin Response (GSR) data
We extracted two main metrics from the GSR data: (1) the mean phasic
activity, representing short-term fluctuations in skin conductance, and (2)
the mean tonic activity, reflecting the slower, sustained level of arousal.

Repeated-measures ANOVA comparing these metrics between the
three noise conditions revealed significant differences between them in the
mean tonic activity [F(2,62) = 20.923,p < 0.001;Table 1, Fig. 2A]. Follow-up
pairwise analyses of differences in tonic GSR levels revealed higher
responses in the noise conditions (average between intermittent and con-
tinuous conditions) relative to the quiet condition [t(31) = 3.15; p < 0.005,
Cohen’s d = 0.55], and higher response in the intermittent vs. continuous
noise conditions [t(31) = 5.552; p < 0.001, Cohen’s d = 0.98] with a large
effect size in both. In contrast, the mean phasic activity did not differ sig-
nificantly between conditions [F(2,62) = 1.182, p = 0.314; Table 1, Fig. 2B].

Wenext testedwhether theGSRmetricsweremodulatedby the level of
interest across lecture segments. Both main metrics showed significantly
higher activity during low- compared tohigh-interest segments [mean tonic
activity: t(31) = 4.326, p < 0.001, Cohen’s d = 0.76; mean phasic activity:
t(31) = 3.566, p = 0.001, Cohen’s d = 0.63; Table 1, Fig. 3].

Neural data: Speech tracking analysis
We estimated Temporal response functions (TRFs) to the speech stimulus
separately for the three conditions (quiet, continuous noise, intermittent
noise). All conditions showed clusters of electrodes with significant pre-
dictive power relative to a null distribution, indicating reliable speech
tracking. Notably, the number of significant electrodes varied across con-
ditions, with the fewest in the intermittent-noise condition (six electrodes;
cluster corrected) and the most in the continuous-noise condition (27
electrodes; cluster corrected).

To assess the effect of noise on speech tracking, we compared the TRFs
in the quiet condition to the average TRFs across both noise conditions [Fig.
4A], and also compared the TRFs in the two noise conditions to each other
[continuous vs. intermittent; Fig. 4B]. All TRFs showed two prominent
positive peaks, approximately around 200 and 350ms, which were maximal
in mid-central electrodes. These peaks were modulated by noise in the fol-
lowing way [Fig. 4A–C]: The early peak (~200ms) was significantly larger in
the quiet condition vs. noise [p < 0.002, cluster-corrected], and larger for
intermittent vs. continuous noise [p < 0.03, cluster-corrected]. The later peak
(~350ms) was larger in the noise vs. quiet conditions [p < 0.004, cluster-
corrected] and was larger in for continuous vs. intermittent noise [p < 0.002,
cluster-corrected]. A complementary decoding analysis, which estimates the
overall accuracy of reconstructing a speech stimulus from the recorded EEG,
also showed significantmodulation by noise condition (Fig. 4D). A repeated-
measures ANOVA revealed a significant main effect of noise condition on
decodingaccuracy [F(2,62) = 6.846,p = 0.002;Table 1], andposthocpairwise
comparisons (Holm-corrected for multiple comparisons) indicated sig-
nificantly better decoding performance in the continuous noise condition
compared to both the quiet condition [t(31) = 3.020, p = 0.007, Cohen’s
d = 0.37] and the intermittent noise condition [t(31) = 3.362, p = 0.004,
Cohen’s d = 0.41].

To assess whether neural tracking of the speech was modulated by
situational level of interest,weestimatedTRFs separately for segments ratedas
high- and low-interest. A similar number of electrodes shows significant
speech-tracking responses in both conditions, relative to a null distribution
(33 and 34 electrodes, respectively). The TRF amplitudes were significantly
modulatedby level of interest as follows:TwoprominentTRFpeaks– anearly
negative peak (~160ms) and a late positive peak (~350ms) were larger in the
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highvs. low interest condition,while the intermediatepositivepeak (~200ms)
was larger in the low interest condition [all p’s<0.02, cluster-corrected; Fig. 5A,
B]. The complementary decoding analysis also showed that the speech sti-
mulus could be reconstructed more accurately in the high vs. low interest
condition [t(31) = 3.17, p = 0.003, Cohen’s d = 0.56; Table 1, Fig. 5C].

Neural Data: Power spectral density (PSD)
Spectral analysis of the EEG focused on frequency bands with observed
peaks in the PSD which indicates periodic oscillations: Alpha power and

Beta power (Fig. 6A). The averaged alpha-power peak between 7-13 Hz and
beta-power peak between 16-22Hz were calculated across participants and
focusedonpredefinedclusters of electrodesmarkedwithwhite circles inFig.
6B. For each participant, we determined the alpha-power\beta-power peak
as the frequency with the highest average amplitude within their frequency
range and across segments in different conditions (quiet, continuous,
intermittent) and in different level of interest (high or low).

Repeated-measured ANOVA revealed no main effect of noise condi-
tion in either band [Alpha-power: F(2,31) = 1.166, p = 0.318; Beta-power:

Fig. 1 | Behavioral results. AAverage interest values for each lecture segment in the
online screening study (n = 37; gray line) and the EEG study (n = 32; black line).
Error bars represent the standard error of the mean (SEM). B Pearson correlation
between average interest ratings in the EEG and online studies across lecture seg-
ments (r = 0.83, p < 0.001). C, D Box plots showing the distribution of C accuracy

scores (percentage of correct answers) and D interest ratings1–7, across noise con-
ditions. E Box plot showing the distribution of accuracy scores for lecture segments
rated as high vs. low in interest. In all box plots, red lines indicate the median, boxes
represent the interquartile range (IQR), whiskers extend to 1.5×IQR, and individual
dots represent participants’ data points.

Fig. 2 | GSR results (n= 32) across noise condi-
tions. Box plots show the distribution of A mean
tonic activity and B mean phasic activity, both in
microsiemens. The phasic average is shown as a
representative phasic measure, as all phasic metrics
showed similar patterns. In both panels, red lines
indicate the median, boxes represent the IQR,
whiskers extend to 1.5×IQR, and individual dots
represent participants’ data points.

https://doi.org/10.1038/s41539-025-00392-5 Article

npj Science of Learning |           (2025) 10:92 3

www.nature.com/npjscilearn


Fig. 3 | GSR results (n= 32) by level of interest.
Box plots show the distribution of A mean tonic
activity and B mean phasic activity (x10) in micro-
siemens, for lecture segments rated as high vs. low in
interest. The mean phasic activity is shown as a
representative phasic measure, as all phasic metrics
showed similar effects. In both panels, red lines
indicate the median, boxes represent the IQR,
whiskers extend to 1.5×IQR, and individual dots
represent participants’ data points.

Fig. 4 | Neural speech tracking response (n= 32) across noise conditions.
A, B TRFs for A quiet (red) vs. noise (purple) conditions, and B continuous (green)
vs. intermittent (blue) noise conditions, averaged across electrodes showing sig-
nificant speech tracking. Shaded gray areas indicate time windows with significant
differences between conditions. C Topographical maps showing clusters of elec-
trodes with significant differences in TRF amplitudes (p < 0.05, corrected; white

circles) during the relevant time windows for the noise vs. quiet and continuous vs.
intermittent comparisons. D Box plot showing the distribution of speech recon-
struction accuracy (r values) of the decoding model across conditions. Red lines
indicate the median, boxes represent the IQR, whiskers extend to 1.5×IQR, and
individual dots represent participants’ data points.
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F(2,31) = 1, p = 0.373; Table 1]. However, power in both frequency bands
was significantlymodulated by situational interest with higher alpha-power
and lower beta-power in the low vs. high interest conditions [Alpha-power:
t(31) = -2.29, p = 0.029, Cohen’s d = 0.40; Beta-power: t(31) = 2.39,
p = 0.023, Cohen’s d = 0.42; Table 1, Fig. 6C].

Discussion
Here we studied how behavioral and neurophysiological metrics associated
with arousal, attention and speech processing vary while watching a frontal
lecture, as a function of its varying levels of situational interest and the
presence of external noise. Several neurophysiological responses were
modulated by interest level, with portions of the lecture rated as less inter-
esting associated with poorer neural speech tracking, higher skin-
conductance levels, higher alpha-power, lower beta-power and a trend

towards poorer performance on answering comprehension questions.
Interestingly, level of interest had a more substantial effect on neurophysio-
logical responses relative to backgroundnoise,whichdidnot show significant
effects on alpha- or beta-oscillations or on behavioral performance, andhad a
limited (and somewhat inconsistent) effects on skin-conductance and on
neural speech-tracking. This was somewhat surprising, given the vast lit-
erature on the disruptive effect of background noise on speech processing,
albeit under less ecological circumstances. These results highlight the
importance of considering content-related factors when studying natural
speech processing, which in this case had a more prominent effect on neural
encodingof speechand listeners’neurophysiological state thanexternalnoise.

That people have an easier time paying attention when they are
interested is one of the cornerstones of modern pedagogy. Educators have
long observed that students who find a topic engaging exhibit greater focus,

Fig. 5 | Neural speech tracking response (n= 32) by level of interest. A TRFs for
high (black) vs. low (gray) interest segments, averaged across electrodes showing
significant speech tracking. The shaded gray area indicates a time windows with a
significant difference between conditions (p < 0.05, corrected). B Topographical
map showing electrodes with significant differences in TRF amplitudes (p < 0.05,

corrected; white circles) during the significant timewindows.CBox plot showing the
distribution of speech reconstruction accuracy (r values) of the decoding model for
high vs. low interest conditions. Red lines indicate the median, boxes represent the
IQR, whiskers extend to 1.5×IQR, and individual dots represent participants’ data
points.

Fig. 6 | Spectral analysis (n= 32). A Full spectrum (2–30 Hz) averaged across all
participants. Shaded areas around waveforms represent the SEM. B Topographical
distribution of the averaged alpha-power peak and the averaged beta-power peak,
with the clusters of central-partial and frontal-central electrodes marked with white

circles, respectively. C Box plots showing the distribution of maximum mean alpha
power (top) and beta power (bottom) across high and low interest conditions. Red
lines indicate themedian, boxes represent the IQR, whiskers extend to 1.5×IQR, and
individual dots represent participants’ data points.
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motivation, and improved learning outcomes44. This principle has been
repeatedly demonstrated in behavioral studies, showing that interest
enhances memory, attention, and cognitive processing10,43,48. For instance,
studies on reading comprehension show that individuals remember and
understand texts better when they find them interesting45. Similarly, when
students perceive a lecture or task as engaging, they persist longer and
maintain focus, even when it is cognitively demanding59. Here we relied on
group-level ratings of interest to capture variations in situational interest,
across segments of the presented lecture, which likely stem from features of
the lecture itself, such as presentation style, clarity, and content delivery.
Ratings were highly consistent both within and across two independent
cohorts (online- screening and lab study), indicating that they reliably
capture common fluctuations in interest levels, above and beyond variance
between individuals due to personal preferences or context44,51. This
approach was further reinforced by content-analysis of the lecture, as
lecture-segments that were rated as “highly interesting” often included
concrete examples, clear visuals, or relatable content that invited reflection
or emotional engagement. In contrast, lower-rated segments tended to be
repetitive or abstract, lacking novelty or practical application. Our choice to
study situational interest is motivated by its affordance for drawing gen-
eralizable group-level conclusions about the impact of interest on speech
processing, and potential implication for teaching styles and pedagogical
design. However, we acknowledge that this approach limits inferences on
variability in interest levels across individuals, efforts that would require
larger datasets and optimized designs for individual-level analyses.

Despite the extensive behavioral literature on interest, and its crucial
role in human communication and learning, to date, little is knownabout its
neurophysiological underpinnings. The scarcity of data is partially due to
the conceptual difficulties in defining “interest”44,60, and partially due to the
operational challenge of quantifying levels of interest and its predominant
reliance on self-reported measures61–63. Nonetheless, some attempts have
been made to advance our understanding of neural correlates of interest,
particularly in learning contexts. In some real-life classroom studies, var-
iations in the spectral profile of students’ EEG signal (e.g., in the delta, alpha
and gamma band) were linked with different levels of interest during a
lesson64,65, and curiosity-driven learning has been associated with modula-
tion of dopaminergic reward circuits66,67. While these studies provide a
proof-of-concept for the impact of interest on so-called “brain states”, they
fall short of providing a comprehensive understanding of how interest
impacts neural processing. In more controlled studies, fluctuations
in situational interest are assessed through analysis of changes in inter-
subject correlation of neural activity over time during the presentation of
natural stimuli such as movies or audiobooks. In these studies, segments
with higher inter-subject correlation values are associated with better
‘joint’ attention and engagement with stimulus material, which is also
predictive of improved memory68–73. In a fMRI study, Song et al. 2021
linked fluctuations in engagement to activity in the default mode
network and dorsal attention network activity, which also predicted
memory encoding, reinforcing the connection between situational
interest and attention.

The current dataprovides amoredetailedmechanistic account forhow
situational interest may affect neural processing during learning. Interest
modulated a multi-faceted neurophysiological “profile”—comprised of
neural speech tracking, the periodic EEG spectrum and skin conductance—
in a manner consistent with modulations observed more generally for
attention to speech. Specifically, for segments rated as less interesting, there
was reduced neural speech tracking of the lecturer’s speech, a pattern
commonly found for impaired speech encoding74–77 and for speech that is
not attended52,78–81. This result is seen both in the decoding analysis, which
reflects overall poorer reconstruction accuracy of the speech in the low-
interest vs. high-interest condition, as well as in the magnitude of the TRF
response, particularly in the early time windows associated with more
sensory levels of processing38,53,82,83. This effect directly links the construct of
“interest” to theway the speech-content is processed in thebrain,whichmay
underlie the well-documented behavioral consequences of reduced interest
on learning outcomes10,43,44,48.

Alongside the direct impact on speech processing, interest level was
also associated with changes in global brain dynamics, as captured by the
periodic EEG spectrum. Segments with low levels of interest were associated
withhigher alpha-power andwith lower beta-power relative to high-interest
segments. This pattern is consistent with the hypothesized role of these
ongoing oscillations in attention and cognitive effort. Alpha oscillations are
the most dominant feature of the EEG signal, and enhanced alpha is often
associated with reduced attention to external stimuli and increased mind-
wandering84–90. We must note, however, that alpha-oscillations are not
monolithic, and in somecases alphaoscillationshavebeen shown to support
active attention by suppressing distracting input and maintaining selective
focus, particularly in noisy or effortful listening conditions54,91. Nonetheless,
the current finding of increased alpha-power in low-interest segments is in
linewithmany studies, particularly in the neuroeducation domain, pointing
to it as a signature for reduced engagement with presented content and
learning activities92–96. The enhanced alpha-power in low-interest segments
was accompanied by reduced beta-power, which is often noted as involved
in processes such as cognitive control, predictive processing, and reward
mechanisms56,97–100, following the notion that interest and motivation can
shape auditory attention in a top-down manner101,102. In the context of
speech comprehension, beta oscillations have been associated with the
integration of auditory input intomeaningful linguistic content, supporting
active engagement with speech and improving comprehension56,100,103–105.
Thesefindings alignwell with the current results, where ostensibly segments
of the lecture that weremore interesting evoked these beta-related processes
more extensively relative to low-interest segments. They are also in linewith
observations that beta activity declines when attention wanes or when lis-
teners adopt a more passive, bottom-up processing mode57,106 as well as
when listeners do not expect the content to be particularly meaningful or
rewarding.

Theeffect of interestonneural activitywas accompaniedbyphysiological
effects, as indicated by changes to phasic and tonic skin-conductance levels.
Skin conductance is a well-established measure of autonomic arousal con-
trolled by the sympathetic nervous system107,108. There is a strong established

Table 1. | Means (M) and standard deviations (SD) of physiological and neural measures across interest and noise conditions

Noise type Interest level

Quiet Continuous Intermittent High Low

GSR tonic activity M = 1.529 SD = 0.25 M = 1.528 SD = 0.26 M = 1.55 SD = 0.27 M = 1.49 SD = 0.24 M = 1.58 SD = 0.29

GSR phasic activity M = 0.039 SD = 0.028 M = 0.038 SD = 0.029 M = 0.04 SD = 0.032 M = 0.037 SD = 0.028 M = 0.042 SD = 0.03

Speech tracking
decoding

M = 0.079 SD = 0.03 M = 0.091 SD = 0.035 M = 0.078 SD = 0.03 M = 0.093 Sd=0.031 M = 0.084 SD = 0.027

PSD alpha power M = 8.38 SD = 8.63 M = 8.14 SD = 8.80 M = 8.62 SD = 9.21 M = 7.98 SD = 8.4 M = 8.64 SD = 9.36

PSD beta power M = 3.12 SD = 1.46 M = 3.10 SD = 1.46 M = 3.17 SD = 1.59 M = 3.14 SD = 1.55 M = 3.04 SD = 1.44

Valuesare shownseparately for eachnoise type (quiet, continuous, intermittent) and interest level (high, low) forGSR tonic andphasic activity, speech trackingdecoding, andspectral power in thealphaand
beta frequency bands.
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relationship between arousal and level of engagement, with levels of arousal
generally associated with higher level of engagement and better
performance109,110, although this relationship is not linear and sometimes
followsan invertedU-shapewherebyhyper-arousal levels actually accompany
poorer performance27,111. Initially, we had expected to find higher levels of
arousal in thehigh-interest conditions,which could reflect higher engagement
with the lecture. However, the current results show the opposite effect with
higher skin-conductance found during low-interest segments. One possible
interpretation for this pattern is that here, skin-conductance levels reflect the
investment of listening effort rather than arousal per-se55,112. In other words,
when listeners find the content boring, but are still required to pay attention,
they may exert additional effort to stay focused, leading to heightened phy-
siological arousal despite reduced intrinsic motivation113–115. This compensa-
tory perspective could, in part, explain the relatively small behavioral effect
found here, with amarginally significant trend towards reduced performance
in the low vs. high interest segments.

Taken together, the current findings demonstrate that momentary
fluctuations in situational interest are accompanied bymeasurable changes in
specific neural processes that are crucial for speech processing. The overall
similarity between the profile of neurophysiological effects observed here and
inmore traditional studied of attention suggest that the constructs of ‘interest’
and ‘attention’ are highly intertwined and share common underlying
mechanisms. This highlights the central importance of including listener-
based factors such as interest in models of speech processing, particularly in
realistic ecological contexts, acknowledging that the human brain exercises
active selection of the information it chooses to process, based on its relevance
and reward to the listener. Nonetheless, several unresolved issues from this
study require additional follow-up research. These include the modest
behavioral effect of interest level relative to the observed neurophysiological
effect, as well as clarifying the role of arousal as reflecting increased interest or
mitigating and compensative for the effects of boredom.

The second factor tested here was the effect of background construc-
tion noise on listeners during a realistic lecture, as part of our attempt to
advance the ecological validity of speech-in-noise studies12,14,116–119. Our
choice to compare continuous vs. intermittent sounds (continuous drilling
vs. intermittent air-hammers) was motivated by competing hypotheses
regarding the role of temporal structure in speech in noise processing, as
discussed at length by Levy et al.9. One possibility is that continuous noise is
more disruptive to listening, due to its constant level of acoustic masking,
whereas for intermittent noise in is possible to ‘listen in the gaps’ and recover
the masked speech information9,120–125. Alternatively, the ‘habituation
hypothesis’ posits that monotonic nature of continuous noisemay render it
more prone to habituation,making it less disruptive126, whereas the frequent
onsets and offsets of intermittent noise may trigger repeated phase-resets of
cortical and arousal responses127,128, ultimately reducing cortical adaptation
and leading to greater disruption of speech processing. In a previous study,
where we studied the effect of these background noises during learning in a
virtual reality classroom, we found that intermittent noise was more dis-
ruptive of performance, reduced the neural speech tracking of the teacher,
and was accompanied by an increase in skin-conductance reflecting
heightened arousal, relative to continuous noise9. Thosefindingswere taken
as supporting the ‘habituation hypothesis’, suggesting that despite themore
substantial acoustic masking of continuous noise, it is less disruptive to
speech processing, potentially due to habituation over time129,130. The cur-
rent results are broadly in line with those findings, as here toowe found that
neural speech trackingwas reduced and skin-conductancewere elevated for
intermittent vs. continuous construction noise, consistent with heightened
arousal or increased listening effort in this condition112,113.

Interestingly, in both the current study and our previous work, the
presence of background noise did not affect ongoing oscillatory activity in the
alpha or beta ranges. This is in contrast to interest level which here showed a
clear modulatory effect on these neural dynamics, as discussed above. Given
the hypothesized functional roles of alpha- and beta-oscillations in attention
and cognitive processing, this replicated null-result is noteworthy, as it sug-
gests that the impact of a noisy background on speech processing on listeners

may be qualitatively different than that of reduced attention or engagement
with the lecture. As discussed by Levy et al.9, mixed results have been reported
regarding the modulation of oscillatory activity in speech in noise studies,
particularly in the alpha-band,with some reporting increased activity in noisy
conditions91,131, somefindingdecreased activity132,133, and some reporting effect
that vary as a function of noise-type or performance97,134. Overall, we can
conclude that although alpha and beta oscillation can play important roles in
perception and attention, they donot constitutemonolithic neuralmarkers of
specific cognitive processes but rather capture global changes in neural
dynamics that can arise from the interaction between stimulus features (e.g.
noise), internal goals and cognitive demands87,98,135–137.

More broadly, when comparing the effects of noise and interest-level on
the neurophysiological profile of responses, the current results show internal
consistency in that conditions that both noise and low interest level were
associated with reduced neural tracking of the lecture and with increased
arousal.At the same time, themagnitudeof effectswas larger for interest levels
and, as discussed here, also included modulation of alpha- and beta-
oscillations. This pattern suggests that internal factors, such as top-down
attention or interest in the content, may ultimately play amore central role in
the way that listeners process and comprehend speech, than external acoustic
interference. We put forth this hypothesis for testing in future studies.

To summarize, the current study contributes to endeavors to enhance
the ecological validity of speech processing research and identify the neu-
rophysiological underpinnings of fluctuations in attention and engagement
to a continuous narrative over time. By demonstrating that fluctuations
in situational interest-levels over time are intrinsic to naturalistic speech,
and comparing the effects of interest-level and external noise on neuro-
physiological measure associated with arousal, attention and speech pro-
cessing, this work advances current thinking about how environmental and
internal factors influence neural processing in real-life. Results converge
with previous research to emphasize the multi-faceted neurophysiological
‘profile’ of responses that are modulated by listener engagement and by the
presence of background noise, indicating that no single metric is sufficient
for capturing the mechanistic underpinnings of real-life speech processing.
This work focuses on a specific commonplace example that requires sus-
tained attention to speech—watching a video of an educational lecture.
While we acknowledge that this context lacks many aspects of live learning
environments, such as interactive instruction and social interactions138,139, it
still captures a form of learning that has become a staple of modern edu-
cation, particularly since the COVID-19 pandemic. This work, together
with previous studies using video or virtual reality-based learning9,96,140–144

lay the foundation for future studies investigating neurophysiological fea-
tures of attention and speechprocessing in live learning contexts, an exciting
emerging research field95,140,145,146. Another limitation of the current results is
that the neurophysiologicalmetrics used here (e.g., speech tracking, spectral
power and skin-conductance) lack sufficient sensitivity for quantifying
fluctuations on a moment-by-moment basis, but require averaging data
across large portions of the experiment. This is due to their relatively poor
signal to noise and non-specific nature147. Our hope is that future advances
in signal processing techniques will improve and validate the single-trial
reliability of these metrics, which would provide much needed insight into
the temporal dynamics of attention to speech and the nature of its fluc-
tuations over time.

Methods
Participants
Datawas collected from32 adult volunteers (20 female, 12male), ranging in
age between 19 and 28 (M = 23.54, SD = ± 1.97). Sample size was deter-
mined based on results from a similar previous study in our lab9, where we
found that a sample of at least N = 28 is required to detect within-group
effect sizes of Cohen’s d = 0.55 with a two-sided α = 0.05, and power of 0.8.
All participants were fluent Hebrew speakers with self-reported normal
hearing and no history of psychiatric or neurological disorders. The study
was approved by the Institutional review board of Bar Ilan University
(approval # ISU202106003), and participants gave their written informed
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consent prior to the experiment. Participants were either paid or received
course credit for participating in the experiment.

Stimuli
The stimuli consisted of a 35-minutes video recording of a public lecture,
given by Prof. Liat Ayalon on the topic of Ageism. As shown in Fig. 7, the
video recording included the lecturer herself as well as the slides accom-
panying the talk. Prof. Ayalon gave her approval to use these materials for
research purposes.

For the noise stimuli, we used recordings from a real-life construction
site (recordedusing amobile phone; iPhone12). The continuousnoisewas a
1-minute-long recording of drilling, and the intermittent noisewas a 1min-
long recording of air hammers (see Fig. 7). The continuous and intermittent
noise stimuli were equated in loudness to each other.

Online stimulus screening study
The lecturematerials were pre-screened in an online study conducted using
the webservice Qualtrics (Provo, UT; https://www.qualtrics.com). 37 adult
volunteers (29 female, eight male), ranging in age between 20 and 29
(M= 22.54, SD = ± 1.76), participated in the screening study. Participants
watched the lecture on their phone or computer in a quiet environment. As
in the main experiment, the lecture was presented continuously, but was
split into in 63 segments ranging from23 to40 s each (M= 32.6, SD = ± 4.2).
After each segment participants were asked to rate their level of interest in
the segment, on a scale from 1 to 7 (“How interesting was this segment?”; 1-
not at all, 7- extremely)63,148. To ensure that participants were indeed paying
attention to the lecture, after every 20–23 segments, participants were asked
to answer ten multiple-choice questions about the recent content of the
lecture. Participantswho achieved less than 70%correctwere excluded from
analysis of the screening study. In the screening study no noises were added
to the lecture segments, and served as a baseline for testing whether adding
noise in the main experiment affected ratings of interest. They were also
used to ensure that the lecture-segments allocated to different noise con-
ditions in the main experiment did not vary significantly in their interest-
level ratings.

Main Experiment
The experiment was programmed and presented using OpenSesame (ver-
sion: 3.3.14 https://osdoc.cogsci.nl149). Participants were seated on a com-
fortable chair in a soundattenuatedboothandwere instructed tokeep as still
as possible and blink and breathe naturally. The video of the lecture was
presentedonacomputermonitor in front of theparticipants, and the lecture
audio was presented through a loudspeaker placed behind the monitor.

The lecture was presented continuously, but was split into 63 segments
ranging from 23 to 40 seconds each (M= 32.6, SD = ± 4.2). The varied
lengthswerenecessary to ensure that the segmentsdidnot cut-off the lecture
mid-sentence or mid-thought. This duration provided participants with
enough time to engage with the content, while also being suitable for our
analyses (e.g., TRF), and allowing for a sufficient number of data points to
assess behavioral and self-reported measures of interest throughout the
experiment.

Each segment was randomly assigned to one of three conditions: 1)
quiet (21 trials); 2) continuous noise (21 trials); 3) intermittent noise
(20 trials). In the two noise conditions, continuous/intermittent noise
was presented alongside the lecture, at a loudness level of 0.2 (-16 dB)
relative to the lecture. The allocation of segments to the different noise
condition was kept constant across participants. We verified that the
segments assigned to different noise-conditions did not differ on average
in their level of interest, based on results from the online screening study
[mean interest levels in the screening study for the segments later
assigned to each condition: quiet: 4.25, continuous: 4.3, intermittent:
4.31; F(2,19) = 0.044, p = 0.957].

Aftereach segment, participantswere asked to rate their level of interest
on a scale from 1 to 7 (“How interesting was this segment?”; 1- not at all, 7-
extremely). In addition, after every 3 segments, participants were asked to
answer three comprehension multiple-choice questions, regarding the
content of the last three segments of the lecture they heard to ensure that
they were paying attention and to assess their level of understanding/
memory of the lecture content (one question per segment; see Fig. 7).
Participants received feedback regarding the correctness of their answers.
Participants indicated via button press when they were ready to continue to
the next trial. A training trial was performed at the beginning of the
experiment (quiet condition), to familiarize participants with the task and
this trial was excluded from data analysis.

EEG and GSR data recordings
Electroencephalography (EEG)was recorded using a 64Active-Two system
(BioSemi B.V., Amsterdam, Netherlands; sampling rate: 1024Hz) with Ag-
AgCl electrodes, placed according to the 10–20 system. Two external elec-
trodes were placed on the mastoids and served as reference channels.
Electrooculographic signals were simultaneously measured by 3 additional
electrodes, located above the right eye and on the external side of both eyes.
Galvanic Skin Response (GSR), which captures changes in the electrical
properties of the skin due to changes in sweat levels and is considered an
index of the autonomic nerve responses, was measured using 2 passive
Nihon Kohden electrodes placed on the fingertips of the index and middle
fingers of participants’ nondominant hand. The signal was recorded
through the BioSemi system amplifier and was synchronized to the sam-
pling rate of the EEG.

Behavioral data analysis
Behavioral data consisted of accuracy on the comprehension questions
asked about each segment and subjective rating of interest. These values
were averaged across lecture segments, separately for each noise-condition
(quiet, continuous, and intermittent), and for each participant. A one-way
repeated-measures ANOVA was performed using JASP (version: 0.17.3;
JASP Team, 2025; https://jasp-stats.org/), to test whether interest-ratings
and/or accuracy on the comprehension questions differed significantly
across noise-conditions.

In addition, we identified the median interest-level value across all
lecture-segments and used it to classify each lecture-segments as high-
interest vs. low-interest. We then performed a paired t-test to evaluate

Fig. 7 | Illustration of the experimental procedure.Lecture segments were randomly assigned to the quiet, intermittent or continuous conditions. Interest-level ratingswere
given after each segment (scale 1–7) and three comprehension questions about the content of each segment were asked after every three segments.
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whether comprehension-questionaccuracydifferent for segmentswithhigh
vs. low interest level ratings.

GSR data analysis
The GSR data were analyzed using the Ledalab MATLAB toolbox150 (ver-
sion: Ledalab V3.4.9; http://www.ledalab.de) as well as custom written
scripts. The data were downsampled to 16Hz, as per the toolbox recom-
mendation. The raw data were manually inspected for distinguishable
artifacts, which were fixed using a built-in linear interpolation. We per-
formed a continuous decomposition analysis (CDA) on the entire GSR
signal, and then segmented it into trials. The CDA estimates and separates
the continuous phasic and tonic activity using a standard deconvolution.
Initially, 4 metrics were extracted for each trial: (1) the mean tonic activity
across the entire trial (2) themean phasic response, (3) the numberof phasic
skin conductance responses (nSCR), defined as transient changes in the
phasic response that exceed a threshold of 0.01 micro-siemens (muS); and
(4) the sum of SCR amplitudes, estimated as the area under the curve of the
phasic response around SCR peaks (SCR-amp). Since the nSCR and SCR-
amp measures showed highly similar patterns to the mean phasic activity
and did not provide additional insights, only the mean phasic and mean
tonic activity were used in subsequent analyses. For each participant, these
metrics were averaged across trials within each condition.We used a 1-way
ANOVAwith repeatedmeasures to testwhether any of thesemeasureswere
significantly affected by the different noise conditions or by the level of
interest (high or low) asmentioned above. To further examine the effects of
noise, we conducted planned a priori paired t-tests, following the same logic
as in our previous study9: (1) comparing the two noise conditions (con-
tinuous and intermittent) vs. the quiet condition, to evaluate the overall
effect of noise, and (2) comparing between the two noise conditions (con-
tinuous vs. intermittent).

EEG Preprocessing
EEG preprocessing and analysis were performed using FieldTrip (version:
20220729; https://www.fieldtriptoolbox.org)151), a matlab-based toolbox as
well as custom written scripts. Raw data was re-referenced to the linked left
and right mastoids and bandpass filtered between 0.5-40Hz using a zero-
phase, two-pass Butterworth IIR filter to reduce artifacts with extreme high-
frequency activity or low-frequency activity/drifts. The filtered data was
visually inspected and gross artifacts exceeding ±50 μV (that were not eye-
movements) were removedmanually. Entire trials containing such artifacts
were excluded from further analysis, with 1–4 trials rejected per participant
(M= 0.875, SD = 1.21). Independent component analysis (ICA) was per-
formed using the ft_componentanalysis function (method = ‘runica’) to
identify and remove components associated with horizontal or vertical eye-
movements as well as heartbeats (based on visual inspection; 4–10 com-
ponents were removed), with the inclusion of electrooculographic channels
to improve the algorithm’s identification of eye-movement artifacts. Any
remaining noisy electrodes, likely due to bad or loose connectivity, were
replacedwith theweighted average of their neighbors using an interpolation
procedure (either on the entire data set or on a per-trial basis, as needed),
with up to two electrodes interpolated per participant.

Neural speech tracking analysis
The clean data was segmented into trials, and the first 420ms of each trial
were removed to avoid onset effects. To estimate the neural response to the
speaker in the different noise scenarios we performed speech tracking
analysis, using both an encoding and a decoding approach. We estimated
linearTRFs using themTRFMATLAB toolbox152, which constitutes a linear
transfer function describing the relationship between a particular feature of
the stimulus (S) and the neural response (R) recorded when hearing it.

The S used here was the speech-envelope stimulus presented in each
trial, which was extracted using an equally spaced filterbank between 100-
10,000 Hz based on Liberman’s cochlear frequency map153. The narrow-
band filtered signals were summed across bands after taking the absolute
value of the Hilbert transform for each one, resulting in a broadband

envelope signal. TheRusedherewas the continuousEEGdata, after ICA for
correcting eye-movements, and bandpass filtered between 0.8 and 20Hz
using a zero-phase, two-pass Butterworth IIR filter. S and R were aligned in
time and were downsampled to 100Hz for computational efficiency.
Encoding and decodingmodels were run and optimized separately for each
noise-condition (quiet, continuous and intermittent). Encoding TRFs were
calculated over time lags ranging from−150 (pre-stimulus) to 1000ms, and
the decoding analysis used time lags of 0 to 400ms.

A leave-one-out cross validation protocol was used to assess the TRF
predictive power. In each iteration, 61 trials are selected to train the model
(train set), whichwas then used to predict either the neural response at each
electrode (encoding) or the speech envelope (decoding) in the left-out trial
(test set). The goodness of fit (predictive power) of the encoding model was
determined by calculating the Pearson correlation between the predicted
andactual neural response at each sensor. Similarly, the goodness offit of the
decoding model was determined by calculating the Pearson correlation
between the predicted and actual speech envelope. To prevent overfitting of
the model, a ridge parameter was chosen as part of the cross-validation
process (λ -predictive power). This parameter significantly influences the
shape and amplitude of the TRF and therefore, rather than choosing a
different λ for each participant (which would limit group-level analyses,
especially for the encoding approach), a common λ valuewas selected for all
participants. Specifically, we tested a range of λ values (from 10-3 to 106) and
selected the λ that yielded the highest average predictive power across
participants, electrodes and conditions. In this dataset, the optimal ridge
parameter was λ = 1000 for both the encoding and decoding models.

To determine which subset of sensors showed a significant speech
tracking response (encoding approach) we used a permutation test, where
we shuffled the pairing between acoustic envelope (S) and neural data
responses (R) across trials such that speech-envelopes presented in one trial
were paired with the neural response recorded in a different trial. This
procedurewas repeated 100 times and an encodingmodelwas estimated for
each permutation. We obtained a “max-chance predictive power” null-
distribution by selecting the maximum r-value from the grand average
across participants for each permutation. EEG channels with predictive
power valueswith the top 5%of the null distributionwere deemed to exhibit
a significant speech tracking response. All subsequent TRF and predictive
power analyses were limited to this subset of electrodes, with ensured that
comparisons between condition were conducted only on electrodes where
speech-tracking estimates are interpretable and meaningful.

Next, we tested for differences in the speech tracking response (TRF)
and its predictive power across the conditions. To assess whether speech
tracking was affected by the presence of any type of noise, we compared
responses in the quiet condition vs. noise condition (average across the two
noise conditions - continuous and intermittent). To test whether the TRFs
were affected by the specific type of noise, we further compared TRFs in the
continuous vs. intermittent condition. In addition, we estimated TRFs
separately for the speech-segments rated as ‘high’ and ‘low’ interest levels
and compared whether the speech tracking was affected by subjective
interest ratings. In all analyses we performed paired t-tests at each electrode
and each time point for TRF comparisons and corrected for multiple
comparisons using spatio-temporal clustering.

EEG Spectral analysis
The second type of analysis performed on the EEG data was spectral ana-
lysis, which focusedon two frequencybandswith observed peaks in thePSD
indicates periodic oscillations: Alpha (7–13Hz), and Beta (16–22Hz). The
range we focus on in each frequency chosen according to the window
surrounding the peaks observed in the PSD. This analysis was performed on
the clean EEG data, across segments (same segmentation as used for the
speech-tracking analysis). We calculated the EEG Power Spectral Density
(PSD) of individual segments using the multitaper fast-fourier transform
methodwithHanning tapers (method ‘mtmfft’ in thefieldtrip toolbox). The
PSDs were averaged across segments for each participant, separately for
each electrode, across noise conditions (quiet, continuous, intermittent) and
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across level of interest (high or low). We then used the Fitting Oscillations
and One-Over-F algorithm (FOOOF154) to decompose the PSD into peri-
odic (oscillatory) and aperiodic components. The periodic portion of the
PSDwas used to extract power-estimations for the specific frequency bands.

For each participant, we identified the frequency with the largest
amplitudewithin the alpha range (7–13Hz) and beta range (16–22Hz), the
only two bandswhere clear periodic activity was observed, and averaged the
response across a cluster of electrodes (21 for alpha, 29 for beta) showing the
strongest activity in the grand-averaged power topography, as determined
by visual inspection across all participants and conditions. The average
power in each band was compared across conditions (quiet, continuous,
intermittent) using 1-wayANOVAwith repeatedmeasures, and across level
of interest (high or low) using paired t-test.

Data availability
Data and codehavebeendeposited on theOpenScienceFramework and are
publicly available at: https://osf.io/z5naf/.

Code availability
Data and codehavebeendeposited on theOpenScienceFramework and are
publicly available at: https://osf.io/z5naf/.
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