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Math anxiety impairs performance, but how its state and trait components interact with task
characteristics remains unclear.We examined howstatemath anxiety varies as a function of trait math
anxiety, task paradigm, and temporal dynamics, and how trait math anxiety relates to arithmetic
performance. Results revealed that production paradigms, which require generating answers, elicited
higher state math anxiety compared to decision paradigms, particularly for individuals with high trait
math anxiety. Looking into different task phases, state math anxiety decreased during arithmetic due
to habituation and after arithmetic due to relief. Additionally, the anxiety-complexity effect was
replicated: Individuals with higher trait math anxiety were slower in solving complex arithmetic with a
carry or borrow operation. This study confirmed the situation-dependent characteristics of statemath
anxiety and its dependency on paradigm and trait math anxiety, with implications for designing
interventions that mitigate anxiety and optimize learning.

Mathematics is a fundamental subject in education and an essential skill for
daily life. From science and engineering to finance and technology, math-
ematical skills are needed for numerous fields, making proficiency in math
crucial for academic and professional success. Studies have consistently
shown that math skills are linked to problem-solving skills, logical
thinking1,2, and career opportunities, especially in STEM fields3. However,
despite its importance, mathematics often provokes negative emotions,
particularly math anxiety, which can significantly influence performance
and long-term academic outcomes due to avoidance of the subject.

Math anxiety, characterized by tension and fear that interfere with
manipulating numbers and solving mathematical problems4, has long been
a topic of significant interest in both psychological and educational research.
Math anxiety has consistently been linked to poor math performance5,6.
Moreover, an anxiety-complexity effect was found, indicating that math-
anxious individuals have difficulties particularly with more complex
arithmetic4,7,8. This means that task difficulty affects performance in indi-
viduals with higher levels of anxiety more than in individuals with lower
levels of anxiety. Several theoretical accounts have been proposed to explain
the relationship between math anxiety and performance, which can be
broadly categorized into cognitive disruption explanations, competency-
based explanations, and integrative approaches.

The Disruption Account9,10 postulates that math anxiety triggers
intrusive thoughts and ruminations, which occupy working memory
resources, reduce cognitive efficiency and subsequently impair math

performance. This explains the anxiety-complexity effect, as more complex
arithmetic (such as addition with carry operation and subtraction with
borrow operation) relies on working memory11 and thus is even more
impaired than performance in simple arithmetic. However, recent findings
from network analysis suggest that math anxiety and working memory are
independently linked to math performance, indicating that the relationship
betweenmath anxiety and performance is not solely dependent on working
memory12. Further support for the Disruption Account is provided by the
Processing Efficiency Theory and Attentional Control Theory. The Pro-
cessing Efficiency Theory13 suggests that anxiety reduces the efficiency (not
effectiveness) of cognitive processing by transferring attentional resources to
task-irrelevant worry, thereby leaving fewer resources available for task
performance. The Attentional Control Theory14 further emphasizes that
anxiety disrupts the balance between goal-directed (top-down) and
stimulus-driven (bottom-up) attentional control, leading to impaired con-
centration and thus impairing task performance.

While the Disruption Account emphasizes how anxiety impairs per-
formance through cognitive mechanisms, the Reduced Competency
Account10 offers an alternative perspective, suggesting that math anxiety is
the result of poor math ability, where reduced competency leads to diffi-
culties in learning and performance, ultimately causing anxiety, with indi-
viduals often avoiding math-related tasks and opportunities for
improvement15–17. An extreme example of this is that children with dys-
calculia exhibit higher levels of math anxiety compared to typically

1Department of Psychology, University of Tuebingen, Tuebingen, Germany. 2LEAD Graduate School and Research Network, University of Tuebingen,
Tuebingen, Germany. 3Department of Social Work and Social Administration, University of Hong Kong, Hong Kong, China. 4German Centre for Mental Health
(DZPG), Tuebingen, Germany. e-mail: xinru.yao.tuebingen@gmail.com; hc.nuerk@uni-tuebingen.de

npj Science of Learning |           (2026) 11:10 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-025-00398-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-025-00398-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-025-00398-z&domain=pdf
mailto:xinru.yao.tuebingen@gmail.com
mailto:hc.nuerk@uni-tuebingen.de
www.nature.com/npjscilearn


developing children18. Extending the Reduced Competency Account, the
Interpretation account10 argues thatmath anxiety stems not only from poor
math skills or negative experiences but from how individuals interpret and
appraise their math-related experiences.

Rather than viewing these accounts as mutually exclusive, all different
theoretical accounts can be integrated in a reciprocal theory, stating a
bidirectional relationship between math anxiety and math performance.
Accordingly, math anxiety and mathematics performance influence each
other resulting in a vicious cycle19,20. Taken together, math anxiety shapes
and is shaped by performance and experiences in math.

Based on the state-trait anxiety model21, two distinct forms of math
anxiety can be differentiated22: On the one hand, trait math anxiety refers to
a stable, enduring personality trait reflecting a general tendency to feel
anxious during math-related tasks. On the other hand, state math anxiety
refers to a temporary, situation-specific form of anxiety that arises in
response to math tasks. State math anxiety can be accompanied by phy-
siological responses such as heightened autonomic nervous system
arousal20,22. Crucially, state math anxiety represents the dynamic, moment-
to-moment emotional experience during actual mathematical engagement,
making it particularly relevant for understanding real-time cognitive pro-
cessing and performance.

The relationship between trait and state math anxiety is complex.
Individuals with high trait math anxiety are more likely to experience high
state anxiety during math tasks23, though the two forms of anxiety are
shaped by different factors. Trait math anxiety is influenced by past
experiences and long-term beliefs about math, while state math anxiety is
sensitive to immediate contexts and specific task characteristics24–27. Task
difficulty can be considered as a situational determinant of state math
anxiety, with more difficult math problems being associated with higher
levels of state anxiety in children27,28 and adults24,29,30. The interplay between
state and trait math anxiety and their combined impact on real-time math
performance is a central question. Some studies propose that state math
anxiety directly mediates the negative effect of trait math anxiety on per-
formance, particularly under demanding conditions31. However, Pelegrina
et al.32 found that when both types of math anxiety were examined simul-
taneously, trait math anxiety was a stronger predictor of math performance
than state math anxiety, with the effects of state math anxiety largely
attributable to shared variance with trait math anxiety.

Therefore, to accurately assess math anxiety during arithmetic tasks, it
is essential to consider both trait and statemath anxiety. Trait assessments of
math anxiety are designed tomeasure traits, i.e., stable predispositions of an
individual shown across many situations, but not situational fluctuations.
As trait assessments are often based on hypothetical or retrospective
questionnaires, there might be a tendency to overestimate the anxiety
experienced in mathematical situations due to the intensity bias33–35 and a
bias due to beliefs about one’s own competence in math34. In contrast, state
questionnaires ratherdirectly assess emotions in a certain situation and thus
provide a more accurate reflection by capturing emotions in real-time.
Furthermore, state math anxiety can be captured through different mod-
alities, such as self-report and physiological measures, which may provide
distinct information and relate differently to traitmeasures30,31. This leads to
discrepancies between trait and state math anxiety34,36 and highlights the
value of state assessments for math anxiety24.

In distinguishing between trait and statemath anxiety, other individual
differences – such as test anxiety, math self-concept, math ability, working
memory capacity, and gender – may also play a role24,37. However, the
present study focuses primarily on statemath anxiety and itsdependance on
trait math anxiety.

As state math anxiety is sensitive to situational fluctuations, the way
math performance is assessed might impact state math anxiety. Math per-
formance can be assessed in several ways: Children in school almost
exclusively solve mental arithmetic in production paradigms with an open
answer format, whereas studies in laboratory settings often use decision
paradigms with given answers. Studies have shown that children’s perfor-
mance can vary depending on the response format,with better performance

observed in decision paradigms compared to production paradigms38,39.
Similarly, an experiment in adults showed that decision paradigms (e.g.,
verification, forced-choice, and delayed forced-choice) lead to better per-
formance compared to production paradigms (e.g., written production,
verbal-keyboard production, and simple verbal production)40. Thus, the
response format of an arithmetic task creates different situations so that
performance varies with paradigm.

Moreover,math performance is related tomath anxiety. This raises the
question of whether (state) math anxiety also varies across different para-
digms. Given that state math anxiety is sensitive to the specific situational
context, it is plausible that varying paradigms, each involving distinct
solution processes and different levels of uncertainty about mistakes and
failures, may impact statemath anxiety and its relationship to performance.
The open format of response and the generally lower performance observed
in production paradigms may lead to more anxiety compared to decision
paradigms where possible responses are given, as production paradigms
place higher calculation demands and increase uncertainty about correct-
ness. Therefore, the first objective of this study is to evaluate whether state
math anxiety depends on the paradigm.

Additionally, the relationship between speed and accuracy can vary
with math anxiety levels: compared to individuals with low math anxiety,
who are fast and accurate in arithmetic, individuals with moderate math
anxiety are slower and individuals with highmath anxiety are less accurate4.
Consequently, there is a need to investigate whether specific speed-accuracy
trade-offs can be observed due to math anxiety. The speed-accuracy trade-
off is a strategic adjustment in the decision process that adapts to envir-
onmental demands41,42. As math-anxious individuals may prioritize speed
or accuracy differently depending on the paradigm, potentially influencing
their overall performance, the potential for speed-accuracy trade-offs needs
to be explored.

When investigating state math anxiety, it is important to account for
possible fluctuations throughout a mathematical task. Research shows that
state anxiety anticipated before a math task can negatively affect perfor-
mance. For example, Orbach and Fritz43 found that children’s math per-
formance was impacted by state anxiety before – but not after – completing
math tasks44,45. Similarly, Goetz et al.46 observed higher levels of state anxiety
before a test compared to afterwards, suggesting that the anticipation of the
task plays a significant role. Taken together, these results suggest that state
math anxiety is higher when anticipating amath task compared to the relief
after completing the math task.

Conversely,Conlon et al.47 found that statemath anxiety could increase
after the math task, particularly after challenging problem-solving tasks,
reflecting the cognitive demands and complexity of the task. Supporting this
evidence, physiological markers such as heart rate and skin conductance
revealed that statemath anxiety increased during amath exam, especially in
later stages, likely due to rising time pressure and task difficulty48. These
seemingly contradictory findings highlight the complexity of state math
anxiety and its temporal dynamics, raising the question: How does the level
of state math anxiety change during math tasks? Is it elevated or reduced
compared to the pre-task level?

Resolving these inconsistencies requires a clearer understanding of
how specific phases of a task (i.e., pre-task anticipation, mid-task progres-
sion, andpost-task evaluation) contribute to statemath anxiety. Researchon
anxiety therapies, such as exposure techniques, shows that state anxiety
usually decreases over time due to the process of habituation49. However,
this general decrease over time overlaps with the mid-task and post-task
phases, making it unclear what exactly causes the reduction in anxiety: Is it
only the relief after task completion that reduces anxiety, or rather the
repetitive exposure to the task?This is another objective of the current study.
To distinguish whether these temporal patterns are specific tomath anxiety
or reflect broader anxiety dynamics during task performance, the present
study also assessed general state anxiety.

The present study aims to provide a comprehensive understanding of
the dynamics of math anxiety and its impact on arithmetic performance,
considering both paradigm effects and temporal trends. Specifically, we
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examined how state math anxiety varies as a function of trait math anxiety,
depending on task paradigm and on time, respectively. Additionally, we
further evaluated the relation of trait math anxiety to performance in this
context. The following conceptual hypotheses were preregistered (https://
aspredicted.org/gf8dc.pdf) before data collection:

For math anxiety differences between paradigms (H1), (H1a) state
math anxiety across paradigms (confirmatory)—we expect state math
anxiety to be higher in production paradigms, where participants must
generate the answer themselves, compared to decisionparadigms,where the
correct answer is selected from given options. Additionally, higher trait
math anxiety is expected to be associated with a larger difference in state
math anxiety between the paradigms (interaction between paradigm and
trait math anxiety). (H1b) trait math anxiety and arithmetic performance
(confirmatory & exploratory)—we expect a negative relation between trait
math anxiety and arithmetic performance, with higher math anxiety asso-
ciated with longer response times and lower accuracy. Additionally, we will
explore whether the relation between trait math anxiety and arithmetic
performance differs between production and decision paradigms.

For temporal dynamics of state math anxiety (H2), (H2a) changes
across phases of the task (exploratory)—we will explore changes in state
math anxiety across different phases of an arithmetic task (pre-, mid-, post-
task), i.e., how state math anxiety changes from before to during and after
arithmetic. Additionally, we will examine how trait math anxiety influences
these changes in state math anxiety across the task phases. (H2b) detailed
dynamics during the task (exploratory)—we will further explore the tem-
poral dynamics of state math anxiety in more detail during the arithmetic
task, using sixmeasurement timepoints takenduringbreaks at themidpoint
of each paradigm block. This detailed analysis is based on an additional
related preregistration (https://aspredicted.org/sc87-3ntj.pdf), which was
completed after data collection but before any data inspection or analysis
regarding this hypothesis.

Regarding the relation between trait math anxiety and performance
(H3), (H3a) anxiety-complexity effect (confirmatory)—an anxiety-
complexity effect is expected regardless of the paradigm, i.e., higher levels
of trait math anxiety are associated with larger carry/borrow effects. (H3b)
speed-accuracy trade-off (exploratory)—for trait math anxiety, we will
further explore potential speed-accuracy trade-offs within and between
subjects in the different paradigms.

The operationalization of the study considers measures of trait and
state math anxiety while participants are performing an arithmetic task.
Trait math anxiety (AMAS) was assessed only before the arithmetic task,
while statemathanxiety (SMA)and state anxiety (STAI-SKD)were assessed
before, during and after the arithmetic task. The arithmetic task consisted of

two-digit addition and subtraction problems presented in different para-
digms (decision vs. production). Arithmetic performance outcomes were
accuracy (ACC) and response time (RT).

Results
For data analysis, paradigm effects (H1) and temporal dynamics (H2) were
examined in separate models as they address conceptually distinct research
questions. Results for the anxiety-complexity effect (H3a) and speed-
accuracy trade-off (H3b) can be found in Table S2. Participants’mean trait
math anxiety was 1.98 (SD = 0.68). Descriptive analysis results were shown
in Table 1 and Table S1.

Paradigm-dependent analysis for state math anxiety
Regarding H1a, an LMMwith statemath anxiety as the dependent variable
was conducted including fixed effects for paradigm (production vs. deci-
sion), traitmath anxiety, and their interaction. The LMMfurther included a
random intercept for subject (but not – as incorrectly preregistered – for
item, because state measures were not assessed at an item level but only at a
block level). Additionally, the LMM did not include a random slope for
paradigm, as specified in the preregistration, because incorporating this
would have made the random effects structure too complex given the
limited number of observations.

The final LMM (Model A) included fixed effects for paradigm, trait
math anxiety and their interaction, with a random intercept for subject (see
Table 2, Fig. 1a). The main effect of paradigm indicates that state math
anxiety is higher in production paradigms compared to decision paradigms,
with an estimated increase of 0.29. The main effect of trait math anxiety
indicates that state math anxiety increases with increasing trait math
anxiety, with an estimate of 0.28. The interactionof paradigmand traitmath
anxiety indicates that the effect of traitmath anxiety on statemath anxiety is
larger in production than in decision paradigms, by an estimate of 0.24.
These results imply that state math anxiety is higher in production than in
decision paradigms, particularly for individuals with higher trait math
anxiety.

Paradigm-dependent analysis for arithmetic performance
Regarding H1b, an LMMwith RT as the dependent variable and a GLMM
with ACC as the dependent variable were conducted including fixed effects
forparadigm, traitmath anxiety, and their interaction.The (G)LMMfurther
included random intercepts for both subject and item as well as a random
slope for paradigm.

The final LMM for RT (Model B) included fixed effects for trait
math anxiety and paradigm, with random intercepts for subject and
item as well as a random slope for paradigm (see Table 2, Fig. 1b). The
main effect of paradigm indicates that arithmetic in production para-
digms needs longer by an estimate of 0.41 s to be solved than in decision
paradigms. Themain effect of trait math anxiety indicates that for every
unit increase in trait math anxiety, the response time increases by an
estimate of 0.36 s, so that individuals with higher trait math anxiety take
longer to solve arithmetic.

Similar to RT, the final GLMM for ACC (Model C) included fixed
effects for trait math anxiety and paradigm, with random intercepts for
subject and itemaswell as a randomslope forparadigm(seeTable 2, Fig. 1c).
The main effect of paradigm indicates that accuracy was lower by an esti-
mate of -0.28 in production compared to decision paradigms. The main
effect of trait math anxiety was marginally significant with an estimate of
-0.21, indicating that individuals with higher math anxiety tend to make
more errors in arithmetic.

Together, the results suggest that individuals with higher trait math
anxiety showworse arithmetic performance, and production paradigms are
more difficult than decision paradigms.

Time analysis pre-, mid-, and post-arithmetic task
Regarding H2a, LMMs with state math anxiety (SMA-1) and state
anxiety as dependent variables were conducted including fixed effects

Table 1 | Descriptive statistics of state (math) anxiety
measures across task phases

Category Temporal
progression

State math
anxiety

State
anxiety

three task phases pre-task 2.06 (1.05) 1.82 (0.75)

mid-task 1.66 (0.69) 1.61 (0.57)

post-task 1.46 (0.69) 1.29 (0.51)

mid-task
measurement time

1 2.01 (0.76) 1.84 (0.79)

2 1.84 (0.86) 1.71 (0.74)

3 1.86 (0.92) 1.76 (0.82)

4 1.63 (0.79) 1.54 (0.74)

5 1.49 (0.68) 1.42 (0.62)

6 1.50 (0.69) 1.42 (0.61)

paradigms decision 1.56 (0.61) 1.45 (0.54)

production 1.88 (0.76) 1.78 (0.64)

Notes.Values are presented asM (SD) for eachmeasure. Statemath anxietywasmeasuredwith the
1-item version (SMA-1) before and after the arithmetic task.
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for both the linear (time) and quadratic term of time (time²), trait
math anxiety, the interaction between time and trait math anxiety,
and the interaction between time² and trait math anxiety. The linear
term of time includes 3 time points: pre-, mid- (average across 6
measurement points) and post-arithmetic task. The quadratic term of
time was introduced to account for non-linear trajectories, for
example, an initial increase in anxiety during the task followed by a
decrease at the end after the task is successfully completed. The
LMMs further included a random intercept for subject.

The final LMM model on state math anxiety (Model D) included
fixed effects for time, trait math anxiety, and the interaction between
time and trait math anxiety, with a random intercept for subject (see
Table 2, Fig. 2a & b). The main effect of time indicates that state math
anxiety decreases over time by an estimate of -0.30 per time point. The
main effect of trait math anxiety indicates that for each unit increase in
trait math anxiety, state math anxiety increases by an estimate of 0.60, so
that individuals with higher trait math anxiety show higher levels of state
math anxiety. The interaction effect of time and trait math anxiety with
an estimate of -0.31 indicates that the decrease in statemath anxiety over
time is stronger for individuals with higher trait math anxiety. A similar
analysis was conducted with state anxiety as a dependent variable (for
results see Fig. S1).

Time analysis during the arithmetic task
RegardingH2b, LMMswith statemath anxiety (SMA) and state anxiety
as dependent variables were conducted including fixed effects for time
(6 measurement times during arithmetic), the quadratic term of time
(time²), trait math anxiety, the interaction between time and trait math
anxiety, and the interaction between time² and trait math anxiety. The
LMMs further included random intercepts for subject and paradigm.
Paradigm was included as a random effect to account for paradigm-
specific effects.

The final LMM model (Model E) included fixed effects for time,
trait math anxiety, the interaction between the time and trait math
anxiety, with random intercepts for subject and paradigm (see Table 2,
Fig. 2c & d). The main effect of time indicates that for each repetition of
the arithmetic task, state math anxiety decreases over time by an esti-
mate of -0.11. The main effect of trait math anxiety indicates that for
each unit increase in trait math anxiety, state math anxiety increases by
an estimate of 0.40, so that individuals with higher trait math anxiety
show higher levels of state math anxiety. The interaction of time and
trait math anxiety with an estimate of -0.07 indicates that, as time
progresses, individuals with higher trait math anxiety tend to experi-
ence a decrease in statemath anxiety at a slightly faster rate compared to
those with lower trait math anxiety. This suggests that while initial

Table 2 | LMM/GLMM results

Predictors β CI t / z p R²

Model A: LMM for paradigm and traitmath anxiety on statemath anxiety 0.87

(intercept) 1.57 1.42 – 1.72 20.74 < 0.001

paradigm 0.29 0.21 – 0.38 6.64 < 0.001

trait math anxiety 0.28 0.06 – 0.50 2.52 0.013

paradigm × trait math anxiety 0.24 0.11 – 0.37 3.64 < 0.001

Model B: LMM for trait math anxiety and paradigm on response time 0.42

(intercept) 3.96 3.75 – 4.16 37.58 < 0.001

paradigm 0.41 0.30 – 0.52 7.43 < 0.001

trait math anxiety 0.36 0.06 – 0.65 2.38 0.017

paradigm × trait math anxiety

Model C: GLMM for trait math anxiety and paradigm on accuracy 0.15

(intercept) 2.68 2.53 – 2.82 35.42 < 0.001

paradigm -0.28 -0.40 – -0.16 -4.46 < 0.001

trait math anxiety -0.21 -0.41 – 0.00 -1.93 0.053

paradigm × trait math anxiety

Model D: LMM for three-time points analysis on state math anxiety 0.70

(intercept) 1.73 1.59 – 1.87 23.95 < 0.001

time -0.30 -0.39 – -0.22 -7.32 < 0.001

trait math anxiety 0.60 0.39 – 0.81 5.63 < 0.001

time × trait math anxiety -0.31 -0.43 – -0.19 -5.07 < 0.001

time2

time2 × trait math anxiety

Model E: LMM results for six-time points analysis on state math anxiety 0.75

(intercept) 1.72 1.48 – 1.96 14.03 < 0.001

time -0.11 -0.13 – -0.08 -8.96 < 0.001

trait math anxiety 0.40 0.18 – 0.62 3.65 < 0.001

time × trait math anxiety -0.07 -0.11 – -0.04 -3.96 < 0.001

time2

time2 × trait math anxiety

Notes. All models shown here are reduced models. t value for LMM and z value for GLMM. Bold values indicate statistical significance. Time and trait math anxiety were centered. Paradigm was dummy
codedwith decision paradigm as reference for production paradigm. ConditionalR² quantifies the proportion of variance explained by the entire model, including both fixed and random effects. Excluded
factors from the full models are shown in italics. Full model specifications and model selection procedures are detailed in Table S3.
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anxiety levels may be elevated, individuals with higher trait math
anxiety may adapt or regulate their state math anxiety over the progress
of the task. A similar analysis was conducted with state anxiety as
dependent variable (for results see Fig. S1).

Discussion
This study explored the dynamics of state math anxiety across different
paradigms and its relation to trait math anxiety and arithmetic perfor-
mance. The findings highlight three key insights: (1) Production para-
digms elicit higher state math anxiety than decision paradigms,
especially for individuals with higher levels of trait math anxiety. (2)
Higher trait math anxiety is associated with worse performance, espe-
cially in production paradigms. (3) State math anxiety decreases over
time from before to after the arithmetic task as well as during the
arithmetic task, especially for individuals with higher trait math anxiety
who start with higher levels of statemath anxiety, suggesting habituation
and regulation mechanisms in managing anxiety.

The response format in math tasks indeed influences emotional
states. In line with the interaction model of anxiety50, situational char-
acteristics such as paradigm can modulate momentary (state) anxiety.
Higher state math anxiety in production paradigms compared to deci-
sion paradigms suggests that generating answers, rather than choosing
from answers, imposes greater emotional demands. In decision para-
digms, performance is better and various strategies can be used to solve
arithmetic40. For instance, estimation strategies, verifying the correctness
of a given answer, or rejecting incorrect answers contribute to more
efficient and accurate task performance51,52. Better task performance was
also shown to be associated with lower state math anxiety24, so that the
paradigm effect on state math anxiety might be driven by performance
differences. In contrast, production paradigms require individuals to
generate answers without the aid of pre-existing choices, like in real
world contexts. This demands a higher cognitive load and is associated
with less security, leading to higher state math anxiety, as found in the
current study. In sum, production paradigms in arithmetic increase
difficulty and state math anxiety compared to decision paradigms.

Notably, the production-induced increase in state math anxiety was
predicted by trait math anxiety. Individuals with higher trait math anxiety
are particularly sensitive to the cognitive demands imposed by the pro-
duction paradigm, and thus experience especially more state math anxiety
when they are required to exactly calculate the result without checking
preexisting solutions. Previous research7,53 has primarily demonstrated that
high trait math anxiety reduces performance, particularly under complex
task conditions, reflecting the anxiety-complexity effect, which is replicated
in the current study4,7,8. Our findings show that state math anxiety is simi-
larly affected by the interplay of trait math anxiety and complex task
demands (by paradigm). However, state math anxiety might be rather an
accompanying phenomenon for affective experiences in a situation (as
measured by state math anxiety) than a factor that further impairs
performance24.

Taken together, state math anxiety was found to vary with the para-
digm in which arithmetic needed to be solved, likely due to the immediate
situational demands of the task, such as the higher difficulty of producing
compared to selecting an answer. Trait math anxiety moderated the para-
digm effect on state math anxiety, with individuals higher in trait math
anxiety showing larger differences in statemath anxietybetweenparadigms.
This pattern is consistent with theoretical models suggesting that trait
anxiety influences the magnitude of state anxiety responses to situational
demands21,22,24, pointing at the directive role of trait anxiety in generating
state anxiety in specific situations. These findings have significant impli-
cations for educational settings, suggesting that the response format might
be relevant in either mitigating or amplifying anxiety during mathematics
for students with high levels of trait anxiety.

Complementary exploratory analyses further suggest that the heigh-
tened state math anxiety observed in production paradigms may primarily
stem from fear of making mistakes rather than from increased response
times. Specifically, higher levels of state math anxiety were associated with
lower accuracy in production compared to decision paradigms but not with
response time (Table S4). This pattern indicates that emotional tensionmay
arise from concerns about correctness and error likelihood in open response
formats rather than from time pressure.

Fig. 1 | Relation of trait math anxiety to state math anxiety and performance
dependent on paradigm. a shows the interaction between paradigm and trait math
anxiety on state math anxiety. b, c show the effects of paradigm and trait math
anxiety on performance in terms of response time and accuracy, respectively.
Response time analyses were based on correctly solved trials only.

https://doi.org/10.1038/s41539-025-00398-z Article

npj Science of Learning |           (2026) 11:10 5

www.nature.com/npjscilearn


The temporal analysis of statemath anxiety adds another layer of depth
to our understanding of how anxiety changes over time across different
phases of mathematical tasks. State math anxiety was found to be higher
before the arithmetic task, replicating results from Goetz et al.46, decreased
during the task and finally was lower after the task, especially for individuals
with high trait math anxiety. This suggests that while these individuals
initially experience increased expectationanxiety, their engagementwith the
task may activate emotion regulation mechanisms that contribute to the
reduction in state math anxiety as they progress and afterwards, they are
relieved that the task is over. Alternatively, the drop in anxiety during and
after the task may also reflect participants developing a more realistic per-
ception of the actual task demands, with anticipatory anxiety inflated by
generalized math fears being recalibrated once they confront the true dif-
ficulty. The findings align with research showing that activation of frontal
brain regions during the anticipation phase can support cognitive control
and emotion regulation, mitigating performance deficits45.

The multidimensional interaction model of anxiety54 posits that state
anxiety is influenced by interactions between trait anxiety and situational
factors. Individuals with higher trait anxiety may have increased state
anxiety at the start of a math task compared to individuals with lower trait
math anxiety. Therefore, they need to regulate their emotions and thus
anxiety decreases as they become familiar with the task. Consequently, this
reduction is not solely due to habituation but depends on the individual
predispositions and the characteristics of the task. Our results revealed
similar linear decreases in statemath anxiety for individualswithhigher trait
math anxiety frompre to post aswell as during the task.Moreover, the time-
wise correlations (Table S5 and Figure S3) revealed that the association
between statemath anxiety and performancewas strongest at the beginning
of the experiment and gradually weakened over time (for response time).
Thus, both (successfully) completing the task (pre-post task comparison)
and habituation over time (repetitions of the arithmetic task in
different paradigms) play a role in the dynamics of state math anxiety:

(1) anticipation-related mechanisms, which initially drive anxiety, but
become reduced as tasks are successfully performed, and (2) habituation-
related mechanisms, which foster a gradual decrease in anxiety over time.
Broader anxiety theory, consistent with research optimizing exposure
therapy55, emphasizes that therapeutic gains are significantly enhanced by
actively violating negative expectancies, rather than relying solely on repe-
tition. This theoretical perspective raises interesting questions about the
relative contributions of expectancy violation versus habituation in math
anxiety reduction. By distinguishing these two contributing processes, our
results provide new insights into how state math anxiety evolves during
mathematics over time and upon task completion.

From a theoretical standpoint, the effectiveness of exposure therapy as
an intervention for math anxiety might be enhanced if it incorporates
strategies beyond repeated exposure to mathematical tasks56. The reason is
that it would fail to address the critical role of anticipation-related
mechanisms of anxiety. Comprehensive interventions should therefore
incorporate strategies to manage pre-task expectation anxiety, such as
cognitive restructuring or relaxation techniques, alongside a gradual expo-
sure to and training inmathematics57. However, the relative effectiveness of
different intervention components such as reducing anticipatory anxiety or
facilitating habituation should be empirically tested in future studies, as
research on therapeutical approaches for anxiety goes beyond the scope of
the current study.

In summary, our findings underscore that math anxiety is situation-
dependent (state) as well as a personal characteristic (trait), which interact
over time. In individuals with high trait math anxiety, the expectation
anxiety is elevated and decreases stepwise while performing mathematics.
Besides, our data support the use of the state math anxiety scale24 as an
effective tool for detecting situational differences in anxiety levels towards
mathematics. Notably, similar temporal patterns were observed for state
anxiety (Fig. S1), suggesting that the decrease in anxiety over time may
reflect both math-specific and broader anxiety regulation processes.

a.

c.

b.

d.

1
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pre task mid task post task

trait math anxiety

Average
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Low ( 1SD)

1

2

3

4

5

T1 T2 T3 T4 T5 T6
mid task

trait math anxiety
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High (+1SD)
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Fig. 2 | State math anxiety changes across different task phases and
measurement times. a, c show the decrease in state math anxiety across the three
task phases and across the six measurement times during the arithmetic task,
respectively. Error bars represent the standard error of the mean (SEM). b, d show
a simple slope analysis for state math anxiety depending on trait math anxiety

(average level, high level with 1 SD above the average, and low level with 1 SD
below the average) across the three task phases and across the six measurement
times during the arithmetic task. State math anxiety was measured via ques-
tionnaires and therefore reflects all participants regardless of their individual
performance.
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The current study replicated the relationship between trait math
anxiety and arithmetic performance. Consistent with the processing effi-
ciency theory and the attentional control theory13,14, higher levels of anxiety
were associated with slower response times9,58,59. Interestingly, trait math
anxietywas only significantly related to response time, not accuracy, and the
anxiety-complexity effect8 was also observed only in response time instead
of accuracy (Table S2). In absence of a speed-accuracy trade-off (Table S2),
this indicates that math-anxious individuals may respond more slowly
without sacrificing accuracy in tasks that are in principle solvable and not
too difficult (relatively high accuracy leading to ceiling effects), suggesting
that anxiety is primarily associated with disruption in cognitive processing
speed rather thanperformancequality inmanageablemath tasks.While this
is in line with the processing efficiency theory13,14, stating that anxiety
impairs processing efficiency (response time) but not performance effec-
tiveness (response accuracy), other studies found the opposite pattern60,61.
Together, these results challenge the traditional notion of a speed-accuracy
trade-off in anxiety-related tasks42 and suggest that the relationship between
math anxiety, response accuracy, and processing efficiency may vary
depending on task conditions and measurement approaches.

The anxiety-complexity effect was also replicated in the current study
(Table S2)4,7,8, with individuals with higher trait math anxiety needing
particularly more time to solve complex arithmetic (involving carry or
borrow operations). Therefore, math anxiety is disproportionately asso-
ciated with impaired performance under more cognitively challenging
conditions, because the carry and borrow operations require working
memory11 and workingmemory is limited inmath-anxious individuals due
to intrusive thoughts62. These findings suggest that while math-anxious
individuals may maintain accuracy through compensatory strategies, the
cognitive load required for emotional regulation can extend processing time
and reduce problem-solving depth in complex tasks. This supports the
disruption account, which postulates that intrusive thoughts and rumina-
tion consume working memory resources, thereby impairing performance,
particularly on tasks requiring high cognitive demands9. In turn, lower
performancemay induce higher statemath anxiety, potentially contributing
to higher trait math anxiety over time. However, this assumption requires
further investigation, as state math anxiety was not assessed at the trial level
in the current study.

Interestingly, traitmath anxiety interactedwith task difficulty (Fig. S2),
but not with paradigm regarding performance. This difference highlights
that trait math anxiety relates to performance in a way that is distinct from
its relationship with state math anxiety. Trait math anxiety was associated
withmath performance dependent on task difficulty, reflecting its persistent
relationship with individuals’ ability to manage increasingly complex cog-
nitive demands. On the other hand, trait math anxiety explained the
paradigm-dependent increase in state math anxiety but not the paradigm-
dependent drop in performance. This suggests that trait math anxiety is
associated with greater performance challenges posed by task complexity
but not by task format. It should be noted that other individual differences
beyond trait math anxiety, such as test anxiety, math ability, math self-
concept, working memory capacity, and gender may also moderate these
effects. Our relatively homogeneous and high-performing samplemay have
limited variability in such factors, reflecting a need for future studies.

In conclusion, trait math anxiety was associated with lower perfor-
mance, especially in more complex arithmetic. Thus, the anxiety-
complexity effect was replicated, with math anxiety being associated with
reduced processing efficiency without a decrease in performance
effectiveness.

This study offers important educational implications, emphasizing the
role of task design inmanagingmath anxiety. Integratingmultiple-choice or
game-based learning approaches, which have proven effective in typically
developing and dyscalculic children60,63, can reduce cognitive load and
anxiety, particularly for those with high trait math anxiety. Additionally, a
repeated exposure tomathematical tasks can help reduce anxiety over time,
as initial anxiety is often higher before students are familiar with the type of
task they will be completing.

Future research might further investigate the mechanisms behind
the interaction betweenmath anxiety and task complexity, as well as the
temporal dynamics of anxiety during more extended or varied mathe-
matical tasks. Experimentally manipulating anticipatory anxiety
would provide more direct causal evidence for the mechanisms we
observed. For instance, varying pre-task instructions to increase or
decrease performance expectations44, implementing anxiety induction
procedures64, or testing brief anxiety-reduction interventions65 could
help isolate the specific contribution of anticipatory mechanisms to
math anxiety dynamics. Such experimental approaches would com-
plement our correlational findings and provide stronger evidence for
designing targeted interventions.

Our study is limited by several points. Regarding task complexity, the
two-digit arithmetic tasks used in this study may not have been sufficiently
challenging for adults, potentially contributing to the observed decrease in
state anxiety as participants adapted to the task and perceived it as less
difficult than expected. This habituation effect might differ if more complex
math tasks were used (such as those involving fractions, larger numbers or
advanced mathematics), or if time constraints were introduced (that might
induce stress). Especially the task-phase decline of state math anxiety (pre-,
mid-, and post-task) may be specific to tasks that are mastered well (high
accuracy). Otherwise, if tasks would be more or too difficult, expectation
anxiety at the beginning of the task may not decrease as much or may even
increase when individuals fail most of the time. Notably, the high accuracy
across paradigms indicates a potential ceiling effect, which may have
reduced variability in performance and limited sensitivity to detect subtle
relations with anxiety measures. Future studies could therefore consider
adopting more demanding tasks to better capture individual differences in
math performance.

For sample diversity, the relatively small and homogenous adult
samplemay limit the variance in our study to interindividual differencesand
the generalizability of the results, particularly to developmental stages.
Specifically, our university student sample showed relatively high math
competence (as evidenced by high accuracy rate), limiting variability in
math ability. Additionally, the unbalancedgender distribution (71% female)
should be noted, as females typically report higher math anxiety66. We also
did not assess other potentially relevant individual differences such as
working memory capacity. Future research should include a more diverse
population in terms of age, educational background, and cultural context, as
well as standardized measures of math ability to disentangle the effects of
math ability from math anxiety, to validate the findings across different
groups. Neurocognitive approaches would facilitate the development of
more effective, targeted interventions to reduce math anxiety and improve
learning outcomes for both typically developing and math-disabled
students63.

As for feedback mechanisms, this study did not incorporate feedback
for each arithmetic problem. Research shows that feedback can have
complex effects on emotions and learning outcomes, while some studies
indicate that feedback, especially corrective feedback, can evoke negative
emotions and influence learning outcomes67, other research suggests that
feedback may reduce math anxiety, particularly in higher education
settings68. Incorporating different types of feedback in future studies would
provide a deeper understanding of how feedback impacts statemath anxiety
and performance.

With respect to self-reported measures, relying solely on self-reported
measures of math anxiety may introduce bias. For instance, the fact that
womenreportmore anxiety in self-reports thanmenhave been attributed to
a response bias with men feeling more uncomfortable to admit anxiety69.
Moreover, there is a discrepancy between state and trait math anxiety with
girls reportingmore trait but not statemath anxiety than boys34, and autistic
boys reporting more state but not trait math anxiety than non-autistic
boys70. Future research should adopt multidimensional assessments, com-
bining behavioral experiments and self-report questionnaires with psy-
chophysiological markers and neuroimaging data to obtain more objective
and comprehensive data24,71.
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To conclude, this study reveals the dynamic nature of state math
anxiety in arithmetic tasks, focusing on the dependency on trait math
anxiety, the effects of paradigms, and temporal trends. The results show that
production paradigms, which require generating answers, increase state
math anxiety compared todecisionparadigms, especially in individualswith
higher trait math anxiety. Over time, state math anxiety decreases linearly
from pre- to post-arithmetic tasks and during repetitions of the task. The
anxiety-complexity effectwasobserved,withhigher traitmath anxiety being
associated with worse performance particularly in complex arithmetic.
These findings offer valuable insights for designing educational approaches
that reduce anxiety and enhance learning outcomes.

Methods
Participants
The sample included 65 adults (17 male, 46 female, 2 diverse; age:
M = 22.86 years, SD = 3.80 years, Range = 19–37 years), taken from the
study on paradigms40. Among all subjects, 57 were right-handed and 8 were
left-handed. Inclusion criteria for participants were an age between 18 and
40 years, native German speakers, and no dyscalculia or other learning
disorders (e.g., attentiondeficit hyperactivity disorder). For participation, all
subjects received student credits or monetary reimbursement. Informed
written consent was obtained from all subjects and the studywas conducted
following the latest version of the Declaration of Helsinki.

Material
To assess trait and state (math) anxiety, we administered the following
questionnaires. TheAbbreviatedMathAnxiety Scale (AMAS)72 was used to
measure trait math anxiety. The questionnaire consists of 9 items with a
5-point Likert scale, ranging from 1 (low anxiety) to 5 (high anxiety). The
scale demonstrated strong internal consistency (Cronbach’s α = 0.90), good
test-retest reliability (r = 0.85), and good convergent and divergent
validity72. In the present study, aGerman translated versionwas used, which
also showed very good internal reliability (Cronbach’s α = 0.89 and ordi-
nal α = 0.94).

The StateMathAnxiety Scale (SMA)24 was used tomeasure statemath
anxiety. The questionnaire consists of 7 items that capture the emotional,
cognitive, and physiological aspects of math anxiety and 2 control items for
enjoyment and boredom, with a 5-point Likert scale ranging from 1 (not at
all) to 5 (very much). The German scale demonstrated strong internal
consistency (Cronbach’s α > .90, ranging from 0.91 to 0.95) and good
validity24. As the SMA is situational with questions relating to themath task
at hand, some questions would be inappropriate if not presented during the
context of a math task (before and after the math task). Therefore, we only
kept one item of the SMA (SMA-1) to measure state math anxiety before
and after the math task: “How math-anxious do you feel right now?”
(adapted from SIMA73). In the present study, the SMA also showed good
internal consistency (Cronbach’s α ≥ 0.80 during the arithmetic task, with
ordinal α ranging from 0.70 to 0.90).

The shortGerman version of the State-Trait Anxiety Inventory (STAI-
SKD)74 was used to measure state anxiety. The questionnaire consists of 5
items reflecting the current emotional state, which should be rated on a
5-point Likert scale ranging from1 (not at all) to 4 (verymuch). The internal
consistency of the STAI-SKD was satisfactory (Cronbach’s α = 0.76)74. In
the present study, the STAI-SKD also demonstrated good internal con-
sistency (Cronbach’s α and ordinal α ≥ 0.80 at each measurement time
point). Both state math anxiety and state anxiety were measured to distin-
guish math-specific emotional responses from broader anxiety dynamics
during task performance; however, the constructs of statemath anxiety and
state anxiety in the math context can be considered the same24.

All questionnaireswere administered using a paper-and-pencil format.
The arithmetic task followed the same procedure as described in our

previous study24. Each arithmetic problem consisted of two two-digit
operands that resulted in a two-digit solution. In a2 × 2design, theproblems
included addition with (e.g., 36+ 27) or without (e.g., 32+ 24) carrying (a
carry operation in addition is required when the sum of the units of the

operands exceeds 9, with a decade to be carried over) and subtraction with
(e.g., 63–25) or without (e.g., 69–23) borrowing (a borrow operation in
subtraction is requiredwhenever theunit of the subtrahend is larger than the
unit of theminuend, and hence a decade has to be borrowed). Each of these
four conditions consisted of 24 arithmetic problems, resulting in 96 pro-
blems within one stimulus set. Six stimulus sets were created24 and were
matched in the numerical magnitude of the operands and the result, overall
problemsize, and counterbalanced in thepositionof the larger operand.The
stimulus sets did not entail trivial cases such as pure decades (e.g., 20), ties
(e.g., 22), or unit/decade repetitions. Subtractionproblemswere constructed
as inverse addition problems. Note that the stimulus sets werematched, but
not identical to avoid trial-specific learning across paradigms. Thedistractor
in decisionparadigmsdiffered from the target at the unit position ( ± 2) or at
the decade position ( ± 10). The dependent variables for arithmetic per-
formance are accuracy (ACC) and response time (RT).

Two types of paradigms were employed in this study: decision vs.
production paradigms (see Fig. 3). In decision paradigms (verification,
forced-choice, delayed forced-choice), participants should decide whether
the given answer was correct or select the correct answer. In production
paradigms (written production, verbal-keyboard production, simple verbal
production), participants should calculate the answer and type it or say it
aloud. The six specific paradigms used were the following (for a detailed
description of the paradigms see Yao et al.24): In the verification paradigm,
participants need to indicate whether the given answer is right or wrong. In
the forced-choice paradigm, participants need to choose one out of two
given answer options presented simultaneously with the arithmetic pro-
blem. In the delayed forced-choice paradigm, first the arithmetic problem
was shown until participants pressed the space bar indicating that they had
calculated the answer in mind; afterwards, the two answer options (target
and distractor) appeared from which participants chose the calculated
answer (with a time limit of 2000ms). In the written production paradigm,
participants need to type the answer directly in a number keyboard. In the
verbal-keyboard production paradigm, participants need to verbalize the
answer while pressing a button on the keyboard (to record response time).
In the simple verbal production paradigm, participants need to verbalize the
answer directly (while response time is recorded by voice key).

Procedure
The procedure started with questionnaires on trait math anxiety (AMAS),
state math anxiety (SMA-1), and state anxiety (STAI-SKD). Then the
arithmetic task was conducted computer-based using the OpenSesame
3.3.1076. Each of the 3 decision and 3 production paradigms were presented
in alternating blocks (seeFig. 4),with the order of paradigmblocks following
a Latin Square design40, i.e., participants were evenly assigned to six coun-
terbalanced sequences inwhich eachparadigmappears once in each ordinal
position. This controls for position effects, though it does not completely
counterbalance all possible orders. Each participant completed all six
paradigms (one stimulus set of 96 problems per paradigm), resulting in a
total of 576 arithmetic problems per participant. The arithmetic problems
within each block were presented in randomized order. The participants
were instructed to solve the arithmetic problems as quickly and accurately as
possible. Within each paradigm block, there was a break after half of the
arithmetic problems, in which participants were asked to fill in the ques-
tionnaires on state math anxiety (SMA) and state anxiety (STAI-SKD),
resulting in 6measurements during the arithmetic task. After the arithmetic
task, state math anxiety (SMA-1) and state anxiety (STAI-SKD) were
assessed again (for a flowchart of the experiment see Fig. 4). The whole
experiment lasted ~2 h.

Data analysis
Data exclusion criteria were preregistered and applied as follows (for
details see Yao et al.75, Table S1): Participants were case-wise
removed with missing data in the arithmetic task, with an ACC below
50% per production paradigm or below 75% per decision paradigm
(due to a 50% chance level), or with a mean RT >3 median absolute
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deviation (MAD)76 above or below the group Median for the
respective paradigm. According to these criteria, the final sample size
ranged from 59−65 participants across paradigms (verification:
N = 59; forced-choice: N = 59; delayed forced-choice: N = 63; written
production: N = 63; verbal-keyboard production: N = 65; simple

verbal production: N = 64). In the arithmetic task, trials were
removed from RT analysis according to the following criteria: false
equation trials in the verification paradigm (also for ACC), incor-
rectly solved trials (i.e., errors and missing; 8%), RTs below 200 ms
(anticipations; 0%), RTs >3 MAD above or below the individual
Median for the respective paradigm (outliers; 6%), or distance
between first and second RT >3 MAD above or below the individual
Median for the respective paradigm (delayed forced-choice, written
production, and verbal-keyboard production; 0%).

Trial-level accuracy data (0/1) were analyzed using generalized linear
mixed-effects models (GLMMs) with a binomial distribution and logit link
function77. For analyses at the condition- or subject-level (speed–accuracy
LMM analysis and exploratory correlation analysis in the current study),
logit-transformed accuracy data were used to stabilize variance and
approximate a normal distribution. No transformation was applied to RT
data, as their distributionswere sufficiently normalized following theMAD-
based outlier removal procedure.

In the questionnaires, missing data were handled by calculating mean
instead of sum scores, with higher values indicating higher anxiety. Missing
data were handled by calculating mean instead of sum scores, with higher
values indicating higher anxiety. No more than one item was missing per
questionnaire and participant. For data analysis, we centered continuous
predictors, including trait math anxiety (AMAS), response time (for speed-
accuracy trade-off analysis), and time (3 time points and 6 time points) data
to facilitate the interpretation of their effects on the dependent variable and
to improve the stability of the statistical model78. To center the variables, we
subtracted themean value of the variable in our sample from themean value

pre-task mid-task post-task

trait
state state

T1 T2 T3 T4 T5 T6

state

paradigm A1 paradigm B1 paradigm A2 paradigm B2 paradigm B3

arithmetic task

state state statestate state

paradigm A3

Fig. 4 | Flowchart of the study procedure. T1 to T6 indicate the six measurement
time points during the arithmetic task. Trait math anxiety was measured pre-task,
statemath anxiety with one item and state anxiety weremeasured pre-task and post-
task. State (math) anxiety wasmeasured during the break of each paradigm after half
of the arithmetic problems. Paradigm A and B refer to the two paradigm types
(production vs. decision) presented in alternating order. Subcategories A1, A2, A3
and B1, B2, B3 further distinguish the three production paradigms and the three
decision paradigms. The alternating order of paradigms was counterbalanced across
participants.

Fig. 3 | Different arithmetic paradigms. Each trial
began with a 500 ms fixation, followed by the pre-
sentation of an arithmetic problem. In decision
paradigms (verification, forced-choice, delayed
forced-choice), participants judged the correctness
of a presented solution or selected the correct answer
from two alternatives. The delayed forced-choice
paradigm additionally required participants to
indicate by pressing the spacebar on the keyboard
when they hadmentally calculated the answer before
response options appeared (time limit was 2000ms).
In production paradigms (written production,
verbal-keyboard production, simple verbal produc-
tion), participants generated the answer either by
typing or verbalizing it. An inter-trial interval (ITI)
of 500 ms was used for all paradigms except the
simple verbal production paradigm, which used
3000 ms. No time limit was imposed for problem
solving, except for the response in the delayed
forced-choice condition.
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of each participant so that the centered score represents the deviation of the
individual value from the overall sample.

The preregistered data analysis was conducted using the statistical
computing software R79, including the R packages tidyr80, dplyr81, ggplot282,
afex83, and lmerTest84. Given the hierarchical nature of the data, with
multiple observations nested within participants, we used Linear Mixed
Models (LMMs) and Generalized Linear Mixed Models (GLMMs) to
analyze the data. This approach is widely established in cognitive and
arithmetic research because it accounts for both between- and within-
participant variability andavoids the independence assumptions inherent in
traditional ANOVAs85,86. All LinearMixedModels (LMM) andGeneralized
LinearMixedModels (GLMM) were fitted with the function lmer from the
lmerTest R package, with maximum-likelihood estimation for the fixed
effects and logit as link function for the GLMM. As preregistered, we con-
ducted model selection using a top-down strategy87 based on the ANOVA,
which provides a principled way to balance model fit and parsimony. We
first fitted a full model, then sequentially reduced the random effect struc-
ture, followed by reducing the fixed effect structure, and finally reported the
final model. Detailed model specifications and all selection steps are
reported in Table S3.

Data availability
The materials, data, and analysis code (R scripts) for this study are openly
available on the Open Science Framework (OSF) at https://osf.io/z8cqm/
overview.

Code availability
The R code for analysis for each hypothesis are available in the OSF repo-
sitory (https://osf.io/z8cqm/overview).
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