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Temperature compensation and robustness to biological noise are two key characteristics of the circadian clock. These features
allow the circadian pacemaker to maintain a steady oscillation in a wide range of environmental conditions. The presence of a time-
delayed negative feedback loop in the regulatory network generates autonomous circadian oscillations in eukaryotic systems. In
comparison, the circadian clock of cyanobacteria is controlled by a strong positive feedback loop. Positive feedback loops with
substrate depletion can also generate oscillations, inspiring other circadian clock models. What makes a circadian oscillatory
network robust to extrinsic noise is unclear. We investigated four basic circadian oscillators with negative, positive, and
combinations of positive and negative feedback loops to explore network features necessary for circadian clock resilience. We
discovered that the negative feedback loop system performs the best in compensating temperature changes. We also show that a
positive feedback loop can reduce extrinsic noise in periods of circadian oscillators, while intrinsic noise is reduced by negative

feedback loops.
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INTRODUCTION

Oscillations are everywhere, both in the physical and biological
domains. Essential biological processes such as cell cycles’,
pacemaker cell's response*™, circadian rhythms®~, calcium
oscillations®, transcription factor responses® '3, hormone secre-
tion'®, fertility cycles'® are only a few examples of biological
oscillations'®. In all of these systems the emergence of oscillations
results from a delayed negative feedback loop (NFB)'”. Based on a
study by Novak et al.'®, nonlinear reaction kinetics, and opposing
chemical processes with correct balanced timeframes are also
required to create oscillations.

Among different types of biological oscillations, circadian
oscillation is widely spread, as the internal clock of most
organisms gets synchronized to the environmental day/night
cycle changes. Nearly all living organisms maintain an internal
clock with a free-running period close to 24h'®. Even in the
presence of metabolic fluctuations, the circadian clock functions
as a precise biological timekeeper?®. An examination of the
nitrogen-fixation property of a cyanobacterium Synechococcus sp.
provided the first solid evidence for circadian rhythms in
prokaryotes®'. Genetic studies in the fruit fly Drosophila melano-
gaster® and the model filamentous fungus, Neurospora crassa®?,
which were later extended to mammals®3, revealed that circadian
oscillations are formed at the molecular level. The core clock
genes in mammals (Per1, Per2, Per3, Cryl, Cry2, Clock, Bmall, Rev-
erba, and Rora) cause the rhythmic gene expression and govern
the physiological features of circadian rhythms?*2>. The 2017
Nobel Prize in Physiology or Medicine was awarded to three
scientists (Jeffrey Hall, Michael Rosbash, and Michael Young) who
identified the working principles of circadian clocks?®. One of the
most well-known fundamental aspects of circadian period home-
ostasis is temperature compensation?’-?®, which is the main-
tenance of relatively constant period at varying temperatures.

Another unique feature of a circadian oscillator is its robustness
against random fluctuations?>>°, The network motifs or detailed
mechanisms that determine temperature compensation and
robustness of circadian rhythms remain largely unknown.

Detailed mathematical models have been proposed to explain
the behavior of the circadian oscillator. Some of the models
contain a relatively small number of species and interactions to
generate sustained oscillations. Goodwin developed the simplest
model for limit cycle oscillations caused by negative feedback on
gene expression®'~33, Further studies suggest that the presence of
positive feedback (PFB) in a circadian clock controls the regulation
of the peak concentration of proteins**. Combination of a PFB
with substrate depletion can also cause sustained oscillation®®.
Later advances have revealed that the presence of PFB improves
the robustness of circadian oscillation. PFB induces oscillations in
NFB loops without requiring a high degree of cooperativity
coefficient (a Hill coefficient of at least 8)3. This Hill coefficient can
also be reduced by introducing more variables in a NFB model.
Based on the underlying mechanism, positive feedback may be
divided into three categories: self-activation, Michaelis—Menten
degradation, and cross-activation®’. Ferrell et al. implied that a
circadian oscillatory network with interlinked positive and
negative feedback is more suited for creating oscillations with
configurable frequency and constant amplitude’.

Several earlier and recent research’*4-%° have contributed to an
understanding of the molecular regulatory processes driving
biological oscillations, as well as their beneficial qualities such as
robustness, tunability, entrainment, and temperature compensa-
tion*!. The Arrhenius law*? states that reaction rates increase with
temperature®>#4, As a result, it is expected that oscillation periods
would shorten as temperatures rise®. In contrast, the circadian
clock is temperature compensated and the period is relatively
independent of the temperature within a physiological range**~.
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The primary goal of this paper is to compare key features of basic
circadian oscillatory networks in order to determine network
motifs that are crucial for the robustness and temperature
compensation of oscillation periods.

RESULTS

We present four, greatly divergent, minimalistic models of
circadian oscillations and compare them, to gain a better
understanding of the key dynamical features of circadian
rhythms. Based on the literature*®*°, most biological clocks®®
rely on transcriptional-translational negative feedback loops
(TTFL). In contrast, the cyanobacterial circadian rhythm?* relies
on post-translational changes of a single protein species, making
the clock a post-translational oscillator (PTO), which is controlled
by a positive feedback system*®°', This PTO is driven by three
clock proteins, KaiA, KaiB, and KaiC, of Synechococcus elongatus.
The cyanobacteria circadian clock also demonstrates tempera-
ture compensated oscillations in an in vitro system®2 In this
experiment, KaiA, KaiB, KaiC, and adenosine triphosphate (ATP)

were mixed together to generate sustained oscillation. In vivo,
other proteins also bind to distinct forms of KaiC during the day
or night. KaiC is a hexamer subunit, and it contains two
phosphorylation sites (T432 and S431; abbreviated as T and S).
In 24 h, the states change like — U (doubly unphosphorylated
state) — T (S/pT, single phosphorylated state) — ST (pS/pT,
doubly phosphorylated state) — S (pS/T, single phosphorylated
state) — U (where p stands for the phosphorylated site) through
phosphorylation and dephosphorylation process?'. During the
daytime, KaiC autophosphorylates, and during the night KaiC
dephosphorylates through the same active site. According to
Rust et al.>3, the auto kinase activity of KaiC is increased due to
the presence of KaiA, whereas the auto phosphatase activity is
enhanced by KaiB>**°. Kinetic and biochemical evidence show
that one of these phospho forms limits KaiA activity via
interacting with KaiB, providing the critical feedback that
sustains circadian oscillations®3. We consider the complex model
by Rust et al., which contains several positive feedback loops,
and denote this network in the rest of the text as cyano-KaiABC
(Fig. 1a).
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Fig. 1 Negative and positive feedback driven oscillatory networks. Schematic diagram of Rust’s cyanobacterial oscillatory network in

KaiABC (cyano-KaiABC) which operates through several positive feedback loops (a); Goodwin’s negative feedback loop operating between
two species (Two-Variable-Goodwin-NFB) (b); a single molecule with combined positive and negative feedback that moves through four
chemically modified states while interacting with an external molecule having two states (A and B) (cPNFB) (c) and Selkov’s substrate
depletion oscillatory network, which is the simplest positive feedback loop and substrate depletion driven oscillator (Selkov-PFB) (d).
activation/phosphorylation and inhibition/dephosphorylation reactions are represented by the green and red arrows, respectively. Inhibition
processes are shown by blunt-headed arrows, whereas activation processes are represented by pointed-headed arrows. The reversible
reactions are denoted by the double arrows in both directions. The direct reactions (synthesis/degradation, phosphorylation/
dephosphorylation) are represented with solid arrows whereas the regulatory indirect reactions (activation/inhibition) are represented by
the dashed arrows. Blue shaded parameters are fixed in models reported in Fig. 4 and yellow shaded ones are further fixed in the analysis at
Fig. 5.
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Fig.2 Period of oscillation w.r.t total parameter variations for the four different kinds of oscillatory networks. The graph depicts how the
period of oscillations changes in relation to total parameter alterations (Supplementary Note 2A) for the four distinct oscillatory networks
shown in Fig. 1. At 298 K for 1000 randomly sampled parameter combinations, the four separate networks are shown in different colors. The
inset in the top left lists the percentage of coefficient of variation (% CV) with corresponding colors for all models for 200 sampled parameter
sets in each between 0.005 < Total parameter variation < 0.015 (indicated by dashed rectangle box). Parameters are indicated in the

supporting information in Supplementary Table 1.

We also study the ‘conservative Goodwin oscillator,” a simple
and well-studied version of a two-component'” negative feedback
loop motif (Fig. 1b), which is a simplified version of the TTFL>S, for
this theoretical analysis. In this specific Two-Variable-Goodwin-NFB
model, mRNA (variable X) is transcribed from a gene and then
translated into protein (variable Y). The latter functions as a
repressor, inhibiting the production of mRNA. To avoid negative
variable concentration, we employed modified two-variable
Goodwin model equations with Michaelis-Menten degradation
kinetics'”.

In a recent study by Hernansaiz et a introduced an
alternative to Rust's model®® that includes all mass action
reactions but a mix of positive and negative feedback to expand
the notion of positive-plus-negative feedback oscillators while
keeping the kinetics simplified. A single molecule in this model
passes through four different chemically modified states depen-
dent on the number of modifications it has: none (00), single (OP/
PO), or double (PP). This core regulator interacts with a molecule
that has two states (A and B). We termed the oscillatory network
as combined positive-plus-negative feedback (cPNFB) (Fig. 1c).

For considering a positive feedback induced oscillator, we
adopt Selkov's substrate depletion system. We termed the
network as Selkov-PFB (Fig. 1d). Because of the presence of
substrate inhibition and product activation reactions, this network
depicts a simplified kinetic model of an open mono-substrate
enzyme (phosphofructokinase) that creates self-oscillations in
glycolysis®*. We include this in our analysis of circadian clock
models to consider an oscillator that relies solely on positive
feedback and lacks a direct negative feedback loop. Still, in this
case we also see that while Y affects U positively, U affects Y
negatively (by turning it to U), which leads to the expected
opposite sign cross effects, necessary to induce oscillations.

In our investigation, we compared these four minimalistic
circadian oscillatory networks. The dynamical mathematical
equations of these networks, containing terms for the tempera-
ture dependence of each parameter, are given in the methods
section. The Time course plot for these oscillatory networks at
298 K temperature is shown in Supplementary Fig. 1. The period of
oscillation at 298 K for all the models is 24 h. In terms of regulatory
network design, this will allow us to better understand the effects
of the key elements of the circadian clock, such as temperature
compensation and robustness.

|57
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Robustness analysis

The four investigated models require special parameter combina-
tions to create oscillations with 24 h period (Supplementary Table
1). From a physiological perspective, it is crucial to maintain this
period in a noisy chemical environment. We test how the periods
of oscillations respond to changes in parameters in the four
investigated models. Following earlier ideas on measuring the
robustness of biological networks>®>°, we generated 1000 random
parameter combinations from a log-normal distribution of all
parameters of the models to measure the robustness of biological
systems against the extrinsic fluctuations in parameters (randomly
chosen from a log-normal distribution for a multiplicative factor
with means equals 1 and standard deviation 0.0142 for all
parameters, Supplementary Note 1 for details). We calculated the
total parameter variation following earlier works>®>°, essentially,
calculated the arithmetic mean (Supplementary Note 2A) of the
reaction rates and displayed it against the periods of oscillations
(Fig. 2). This helps to quantify the noise in individual oscillatory
networks. The plot shows that the Two-Variable-Goodwin-NFB
model has a wider distribution while the cPNFB model has a
narrower distribution in terms of the period of oscillations.

For a better quantitative comparison of the extrinsic noise
tolerance of the networks, we computed the percentage of
coefficient of variation (% CV) of oscillation periods in a narrower
range of parameter variations. The percentage of coefficient of
variation (% CV) indicates that the Two-Variable-Goodwin-NFB
model is the noisiest (% CV = 1.8571). In other words, the Two-
Variable-Goodwin-NFB model is the least robust model while the
combined positive-plus-negative feedback (cPNFB) model is the
most robust. Furthermore, we extended the investigation of the
period of oscillation with regards to total parameter fluctuation to
seven different temperatures ranging from 283 to 313 K (Supple-
mentary Fig. 2a). We chose a wide range of temperatures as our
analysis does not focus on any particular organism. For instance,
cyanobacteria can tolerate a large range of temperatures®®=52, In
Supplementary Fig. 2b we present the relationship of the
percentage of coefficient of variation (% CV) of the oscillation
period changes to the temperature changes in the four different
oscillatory networks (Fig. 1).

At all temperatures, we see that the cPNFB model has the
smallest variation of periods, while the Two-Variable-Goodwin-
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Fig. 3 Dependence of oscillation periods on temperature. For all
four networks (Fig. 1), the period of oscillation reduces as
temperature rises. In the table inset on the top right, the Q¢ values
between 293 and 303K for each model are also presented.
Parameters are listed in the supporting information in Supplemen-
tary Table 1. The lowest Q¢ value in Fig. 3 suggests that the Two-
Variable-Goodwin-NFB model is better temperature compensated
than the other three models. The trend also shows that when the
temperature rises, the duration of the period decreases for all four
models. Two-Variable-Goodwin-NFB performs well in temperature
compensation but poorly in robustness (Fig. 2). As all the models are
imperfectly temperature compensated, further assumptions might
need to be tested.

NFB model has the largest change with respect to the periods of
oscillations. This is true for parameter variations at all tempera-
tures between 283 and 313 K. Only the robustness of the cyano-
KaiABC model shows a major temperature dependence, while
others seem to have a quite temperature independent robustness
(Supplementary Fig. 2b).

The Selkov-PFB model (with the least number of parameters—
i.e, four) and the cyano-KaiABC model with 12 parameters show
similar distributions despite having different numbers of para-
meters. We wondered how the number of parameters affect the
noise canceling capabilities of models. Bayesian Information
Criterion (BIC) is widely used to compare models with altering
parameter numbers. It is mostly used to identify which model
gives the best fit to an observation, while also considering the
number of fitted parameters in the compared models. Thus, BIC is
a method that penalizes more complex models by imposing a
penalty dependent on the number of parameters evaluated in the
model. Following this idea, we examine the correlation between
BIC of matching the desired 24 h period of oscillations by the
various models (Supplementary Note 2B) at different temperatures
(Supplementary Fig. 3). We notice that the Two-Variable-Goodwin-
NFB model is still the noisiest at most temperatures (shows the
largest BIC), irrespective of its size difference from others. The
small Selkov-PFB and the cPNFB models show the lowest noise to
parameter changes in this analysis. Thus, we conclude that the
number of parameters has no significant impact on the robustness
assessment, but it seems the presence of positive feedback in the
network leads to lower noise (Supplementary Fig. 3). This is in
contradiction with textbook claims on the role of positive and
negative feedback in noise increase and decrease, respectively®>.
Here we found the Two-Variable-Goodwin-NFB model as the least
robust, despite it is known that negative feedback can serve as a
noise reducing motif®. In the next steps we will test if negative
feedbacks can help temperature compensation of circadian clock
models.

Temperature compensation analysis

When checking the temperature dependence of robustness
(Supplementary Fig. 2), we can already notice that the models’
average period is changing with temperature changes, but the
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Fig. 4 Dependence of oscillation periods on temperature if a
single reaction rate is temperature independent. The figure
indicates how far the period of oscillations varies with temperature
in all four investigated oscillatory network motifs (Fig. 1), when the
rate of a single reaction is fixed (labeled in legend), but all others are
allowed to respond to temperature changes. Parameters are
indicated in the supporting information in Supplementary Table 1.
Additionally, each model’s Q;, values between 293 and 303K are
shown in the figure. The fixed parameters are shown in the shaded
blue color boxes in Fig. 1.

level of this change is different in the four models. In order to
estimate the temperature compensation properties of these
biological oscillators, we have measured their temperature
coefficient (Q,q) values®*%®. In terms of period length changes,
we simplify the computation as follows®-

_ Period of oscillation at temperature T (in K)
" Period of oscillation at temperature (T 4 10)(in K)

M

Qo

Because circadian oscillators should maintain their approxi-
mately 24 h period, they need to be temperature compensated.
We plotted how the periods of oscillations respond to tempera-
ture changes in all four models (Fig. 3). We can observe that all of
these models perform some temperature compensation, we still
observe a great effect of temperature changes on the periods of
oscillations.

Individual temperature compensated reactions

Instead of expecting that the period of oscillations is temperature
compensated by a compensatory effect of reaction rate responses
to temperature change®’, we can consider that an individual
reaction may be temperature compensated, which have a major
effect in compensating period changes?”**%8, Following ideas by
Hong et al.*® and observations on temperature insensitivities of
key circadian clock reaction’®”", we have checked what happens if
we fix the rates of a single reaction while allowing all others to
respond to temperature change? The goal of this research is to
identify the reactions which could be responsible for temperature
compensation in the various oscillatory networks. We explored
how far the period of oscillations varies with temperature in a pure
NFB (Supplementary Fig. 4b) and pure PFB motif (Supplementary
Fig. 4d) when a single rate is constant, and we also checked the
same in complex oscillatory networks with several combinations
of positive and negative feedback loops (Supplementary Fig. 4a,
Supplementary Fig. 4c) as well. Figure 4 depicts the best
performing models, where a single rate was assumed to be
temperature independent, while all others respond to tempera-
ture changes.

Published in partnership with the Systems Biology Institute
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Fig. 5 Dependence of oscillation periods on temperature if two reactions are temperature change resistant. The image shows how far the
period of oscillations varies with temperature in all four oscillatory network motifs (Fig. 1) when the rates of two reactions are fixed
simultaneously (indicated in legend) while all others are permitted to respond to temperature change. We only plot here the parameter
combinations, which produce the lowest Qo values. Parameters are shown in the supporting information in Supplementary Table 1. The
second fixed parameters along with the primary fixed parameters (Fig. 4) are described in Fig. 1 with yellow and blue shaded boxes

respectively.

It can be concluded that the Two-Variable-Goodwin-NFB model
outperforms the others (Fig. 4) when the a, reaction rate (the rate
at which the activator X triggers the synthesis of its inhibitor, Y,
blue background on Fig. 1b) of the model is temperature resistant.
The other models also improved on their Q;( values but are still
quite sensitive to temperature changes. Interestingly Rust's
cyanobacterial circadian clock model, with rate k3 fixed (the rate
at which the doubly phosphorylated state ‘ST transitions to the
singly phosphorylated state ‘S’, blue background on Fig. 1a), show
a temperature dependence curve with an increase in periods at
larger temperatures.

If we consider temperature independence of two reaction rates,
then we observe strong temperature compensation of the periods
of the oscillators (Fig. 5). The Two-Variable-Goodwin-NFB (plotted
in red color) and cPNFB (plotted in blue color) exhibit the
predicted decrease in period for temperature increase (Fig. 5). On
the other hand, the Selkov-PFB network (plotted in yellow)
contains only four parameters, and it seems, if we fix two of those,
the other two could be quite well temperature compensated, but
the period increases as a function of temperature. The most
complicated model in our analysis is the cyano-KaiABC model
(shown in green), which has a complex temperature response
what shows a minimum around 24 h. The cyano-KaiABC model
works well between 283 and 298 K temperatures, however, the
period of oscillation begins to differ significantly from 24 h at
303 K.

Supplementary Figs. 5-8 show all possible combinations of two
temperature compensated parameters for the Two-Variable-
Goodwin-NFB, cyano-KaiABC, c¢PNFB, and Selkov-PFB motifs,
respectively. By comparing Figs. 4 and 5, we can deduce that
Two-Variable-Goodwin-NFB with a single temperature compen-
sated parameter (a,) performs almost identically to the two-
parameter fixed scenario (k;-a,), while the other three networks
show further improvements for the fixation of a second rate (these
rates are labeled by blue and yellow on Fig. 1). It can be observed
that the a, rate of the Two-Variable-Goodwin-NFB network is
directly controlling the negative feedback loop. The reaction rates,
which should be temperature independent in the cyano-KaiABC
and cPNFB models are also controllers of negative feedback loops.
There is no negative feedback loop in the Selkov-PFB, there the
most crucial parameter seems to be the one that controls the

Published in partnership with the Systems Biology Institute

synthesis of the substrate of the positive feedback loop. Still in all
models we see some improvements on temperature compensa-
tion with the fixation of a second reaction rate. The reduced values
of Qq in Fig. 5 make the periods of oscillations better temperature
compensated than shown in Fig. 4, where only one rate was fixed
in each model.

Separating the effects of positive and negative feedbacks

The four above investigated networks have different kinetics and
complexity (Fig. 1), in order to have a systematic approach to
study the role of positive and negative feedbacks in the
robustness and temperature compensation of circadian clock
models, we have extended our analysis with a Selkov-like positive
feedback-based model with an additional negative feedback loop
(Fig. 6a). In order to ensure the compared models have similar
sizes and kinetics, we keep the size of the network the same and
control the strength of a single rate for the positive (ks) and the
negative feedback loop (ks) (parameter values are indicated in the
Supplementary Table 1E, and rate constants at 298 K are displayed
in the Supplementary Table 1E). The temperature compensation
analysis of the combined model (Fig. 6b) suggests that strong NFB
with weak PFB (small ks-large ks case, with red line) leads to better
temperature compensation (lowest Q;o, values) than other
combinations (Fig. 6b). This matches with our above findings
(Fig. 3) that negative feedback improves temperature compensa-
tion. A robustness analysis (Fig. 6¢) in the presence of extrinsic
noise’> shows that robustness of networks has a strong
temperature dependence. Combination of positive and negative
feedbacks (blue) shows the least temperature dependence on
noise, while strong PFB alone (large ks-small ks case, with yellow
line) is less robust. An interesting observation is that strong NFB
(small ks-large ks case, with red line) becomes less robust (Fig. 6¢)
at higher temperatures. This is probably because at higher
temperatures the faster reaction rates reduce the delays of
feedback loops, which is one of the key components for
autonomous oscillations and period determination.

The observation that negative feedback might increase noise
contradicts earlier findings, which showed noise reducing
capabilities of negative feedback loops®. Specifically, previous
work indicated that negative feedback loops could reduce cell-cell
variation due to intrinsic noises®*”2. To investigate potential roles

npj Systems Biology and Applications (2023) 5
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Fig. 6 Selkov-like positive feedback oscillator with an additional negative feedback loop. The wiring diagram of the oscillatory network (a).
The inherent autocatalytic PFB in a Selkov model is indicated by the dashed green arrowhead (ks) and the external additional NFB is denoted
by dashed red line with blunt head (ks). ks and ks rates are highlighted in blue color as these were altered. b Period of oscillation changes with
temperature for the strong NFB - weak PFB (red), weak NFB - strong PFB (yellow) and strong NFB - strong PFB (blue) cases. ¢ Robustness,
measured as the percentage of coefficient of variations (%CV) at various temperatures for the three different cases explained on panel b in the
presence of extrinsic noise. Parameters are listed in the Supplementary Table 1E.
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of each panel Model is reported in the “Methods” section. Parameters are listed in Supplementary Table 1E.

of negative and positive feedback loops with respect to noise, we
performed stochastic simulations of the combined Selkov-like
positive-negative feedback model (Fig. 6a). Stochastic simulations
of this system at various low molecular abundance levels reveal
that at 298 K, strong NFB with weak PFB (small ks-large ks case)
results in the most robust against intrinsic noise, caused by low
molecular abundances (Fig. 7).

npj Systems Biology and Applications (2023) 5

DISCUSSION

The mechanisms for temperature compensation of biological
oscillators remain an unsolved puzzle. We have shown here that
robustness and temperature compensation of circadian oscillators
come at the cost of one another. It is clear from Fig. 2 and Fig. 3
that Two-Variable-Goodwin-NFB is the least robust for parameter
fluctuations (possesses a high % CV value for period of
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oscillations) while it is better temperature compensated (lower Q;¢
value) compared to the others. On the other end of the scales, the
cPNFB circadian oscillatory network is the most robust and least
temperature compensated (Fig. 2 and Supplementary Figs. 2, 3).
These are two extreme examples of robustness and temperature
compensation in the four models that we interrogated. Based on
these results and on the systematic analysis of a combined
positive plus negative feedback systems (Fig. 6) we can conclude
that pure NFB cannot reduce noise in the system efficiently (Two-
Variable-Goodwin-NFB), whereas the presence of a PFB in the
network increases robustness of the system (at high temperatures)
without reducing much on the temperature compensating
capabilities of negative feedback loops in the presence of extrinsic
noise (Fig. 6). In contrast, a NFB increases the robustness of the
system in the presence of intrinsic noise (Fig. 7).

The cyano-KaiABC model of Rust et al.>* is a quite complex
model, containing both positive and negative feedbacks and
highly nonlinear kinetics. This model shows good temperature
compensation when k3. and k3 are both fixed (Fig. 5), but it is not
the most robust or best temperature compensated model even
though it has the highest number of parameters (k=12).
Furthermore, we believe that the linear mass action kinetics in
the cPNFB circadian oscillatory network might be the distinguish-
ing factor for its least noisy behavior when compared to the other
models, where nonlinear terms might exaggerate any noise in the
system (“Methods” section). Mass action kinetics provides preci-
sion even at low input signal values, whereas nonlinear kinetics
such as Hill or Michaelis—-Menten lack precision due to overly
complicated combinations and scaling factors of different reaction
rates used to define the kinetics”.

Minimal models of the plant circadian clock with various levels
of complexity were also tested for temperature compensation by
Avello et al.”*. Our systematic analysis revealed that negative
feedback loops are needed for good temperature compensation
and the combination of positive and negative feedback loops can
lead to lower noise in circadian clocks. We also see that
temperature independence of reactions, which are crucial for
negative feedback loops can help the whole systems to drive
temperature compensated oscillations. These results could explain
why in higher eukaryotes the classical delayed negative feedback
loop-based system drives circadian clock, while in the cyanobac-
teria in vitro circadian oscillator we see a positive feedback-based
KaiC system, where the temperature compensation is achieved
through temperature independence of the key reactions in the
system®’. These results also support earlier ideas that positive
feedbacks can make circadian clock more robust'°,

Feedback loops can be constructed in many different ways on
the molecular level”>. Feedbacks can drive activation or inhibition
steps or affect both. Furthermore, kinetics of reactions could also
have an effect of the precise dynamics of oscillators. We have
investigated here a wide selection of such systems but system-
atically tested only a single combination model (Figs. 6 and 7).
Thus, our analysis has its limitations and could be further
expanded by studying effects of various kinetics, regulatory
effects, and basal reaction rates.

Despite these limitations, the proposed model engineering
and comparing strategies can be useful for the designs of
synthetic circuits, which are desired to act robustly against
environmental fluctuations, including temperature changes. This
could be relevant to engineering technologies of cyanobacteria
species for biomass production, involving light-harvesting”®. We
believe that our study will further support this blooming
research field.
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METHODS

Here we present the mathematical models (A-D) of the four
oscillatory networks (Fig. 1) and an additional oscillatory network
described in Fig. 6a (E):

A. cyano-KaiABC network
U=kaiC—-T-D-5 (2)

Where, U= unphosphorylated form; T=threonine phosphory-
lated kaiC; D = double phosphorylated kaiC (= ST); and S = serine
phosphorylated kaiC. The dynamical equations and parameter
values (Supplementary Table 1A) for this model are taken from the
original model of Rust et al.”>.

kaiA = A = max(0,A —2-5) 3)
A
ki = kO + KA -
A Knaie + A @
Where, ij € {U,T,D,S}
dar
dsT
TZkTD-T+k5D'ST—kDT-5T—kD5'ST (6)
ds
E—kug-U+kD5~ST—k5U'5—k5D-S (7)

B. Two-Variable-Goodwin-NFB network
The dynamical equations for this model are taken from
Gonze et al.'”. The parameters for this network are changed
in such a way (Supplementary Table 1B) that the period of
oscillations is 24 hours at 298 K temperature.

ax _ (Zl'k 81'X

dt ~ k+Y  ki+X (8)
dy 8,

—_— =, - X —

dt 2 Ky+Y ©)

C. cPNFB Network
The dynamical equations for this model are taken from
Hernansaiz et al.>’. The parameters for this network were
changed in such a way that the period of oscillations
(Supplementary Table 1C) is 24 h at 298 K temperature.

f—tO:kOZ-B-PP+d1-OO~PO—km A-00 —pg - 00 - PP
(10)

dpp

?:kmAOO+p30PPP—kozBPP—dzoOPP
(1m

P

dd—:):dz-OO-PPfdeO-PO (13)

dB

& — kos-A-PP— ke -B-00 (14)

dt

%:km.s-oofkog-A.PP (15)
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D. Selkov-PFB Network
The dynamical equations for this model are modified
from the original paper by SEL'KOV3?, The parameters for
this network were changed in such a way (Supplementary
Table 1D) that the period of oscillations is 24 h at 298 K

temperature.

ay

=k -k Y —ks-U*-Y 16
dt 1 2 3 ( )
Z_(::kz.Y+k3~U2~Y—k4~U (17)

E. Selkov-like PFB based model with an additional NFB loop

The mathematical model of Selkov-like PFB based model with
an additional NFB loop (Fig. 6a) is presented as:

day ky

=l kY —ky - UPY 18
dt 1+ks-U 2 3 (18)
C;—(::kz-Y+k3-U2-Y—k4~U (19)

Here, ks is the inherent activatory autocatalytic positive-feedback
influence on the species U in a typical Selkov model (Fig. 1d). U
exhibits an additional NFB by imposing inhibition to the synthesis
of species Y with the rate ks. Because of the additional NFB in this
model, the total parameter number (Supplementary Table 2) is
equal to 5.

The mathematical equation represents above can be expressed
in terms of number of molecules by introducing a scaling factor
(V;) on the both sides of the equation. With the Gillespie
approach’’, we utilized the following equation for the robustness
analysis illustrated in Fig. 7:

dNy ky - V2 Ny 2

o sk Ny —ks- (N2 N 20
dt  Vitks-Ny 22y, 4 (20
dNy Ny 2

Ny _ . AN N k- 21
P ky - Ny + ks (V5> Ny — k4 - Ny (21)

Here, Ny and Ny are the number of Y and U species present in
the system.

The calculated reaction rates that apply to low ks or ks values
are roughly one-fifteenth of the larger ks or ks values. With a low
k3 value and a large ks value, the system will have a dominating
NFB (strong NFB - weak PFB), whereas with a large k3 and a low ks,
the system will have a dominant PFB (weak NFB - strong PFB).
When both the rates are large and equal, the system will display
the combined effect of a PFB and a NFB (strong NFB - strong PFB).

The parameter values for the three cases shown in Fig. 6b, c and
Fig. 7 are indicated in the Supplementary Table 1E.

Simulation settings

The dynamical equations discussed above have been simulated in
Matlab (ver. R2021b) using the ODE45 solver tools. Each reaction
rate represented in the ordinary differential equations above, has
been rewritten in an Arrhenius equation form, representing the
temperature dependence of reaction rates as:

rate = A, - e (22)

where the pre-exponential factor for all rates is, A.=383.83
(arbitrary unit, ‘A.U.)?’, and this is the parameter that is randomly
chosen for the robustness analysis. The gas constant =
R=283144598 JK""mol~" and T=temperature is measured in
Kelvin.
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