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Network topology and interaction logic
determine states it supports

Check for updates

Tomáš Gedeon

In this review paper we summarize a recent progress on the problem of describing range of dynamics
supportedbyanetwork.Weshow that there is natural connectionbetweennetworkmodels consisting
of collections of multivalued monotone boolean functions and ordinary differential equations models.
We show how to construct such collections and use them to answer questions about prevalence of
cellular phenotypes that correspond to equilibria of network models.

The goal of this review paper is to describe recent progress on describing
capacity of regulatory networks to exhibit different phenotypes in different
conditions. In several types of models of regulatory networks we associate
different phenotypes to equilibria admitted by the model. Other dynamical
phenotypes like cell cycle progression and circadian rhythm can be also
investigated by the approach we describe1,2, but will be not discussed here.

This work relies on several papers in specialized mathematical3,4 and
theoretical computer science5 literature that were firmly rooted in problem
of parameterization of ordinary differential equations (ODE) network
models. The recent realization of the connection between monotone boo-
lean functions and parameterization of switching ODEs5,6 facilitated suc-
cessful applications to study of steady states in developmental networks7,8.
The goal of this review is to provide a concise and accessible entry point to
the DSGRN approach for the systems biology audience with emphasis on
description of steady states in monotone boolean models of developmental
networks.

One of our motivations is analysis of developmental networks that
determine cell’s fate. Here equilibria of the model represent differentiated
cell types and presence of multiple stable equilibria (multistability) suggests
that different developmental pathways may lead to different cell types. In
such networks it is important to understand what types of multistability are
possible, which include the number of coexisting stable equilibria, their
prevalence under changing conditions and the types of equilibria that are
able to co-exist. When we will use boolean description, the type of the
equilibrium is determined by which genes are expressed high, and which
ones are expressed at low levels.

Networks are qualitative models of pairwise interactions/influences
between nodeswhich can representmRNA, protein concentrations, or even
different conformations of proteins if they have differential impact on other
network nodes. The pairwise interactions are directed from one node to
another and may model transcriptional regulation, post-translational
modifications like phosphorylation, ubiquitination as well as conforma-
tional changes.

Behavior of any network that include feedback loops where a sequence
of nodes influence each other in a circular fashion is very difficult to

understand without a mathematical model. This is especially true for larger
networks.Wewill concentrate here on two seemingly very different types of
models, boolean models and ordinary differential equations models (ODE).
Booleanmodels describe state of eachnode as “active" andassign to this state
value 1, or inactive, and assign to this state value 0. In closely relatedmul-
tivalued booleanmodels a state of eachnode i is described by a set of integers
Xi = {0, 1,…, t} expressing level to which the node is able to activate some,
but not all, downstreamnodes. To eachnode iweassociate a booleanupdate
function gi, which describes the state of the node i as a function of its inputs.
Boolean functions that respect the type of network interactions (activating
vs. repressing) are called monotone boolean functions (MBF). Dynamics of
these models consists of regular updates of the state of each node i. Syn-
chronous update updates all nodes at the same time, while asynchronous
update updates nodes one at the time.While synchronous update leads to a
deterministic dynamics, the implied presence of a clock that synchronizes
the update schedule makes it biologically unrealistic. Since in the asyn-
chronous update the future state depends on the order of nodes that are
being updated, this update is represented by amultivaluedmapwhere states
can evolve differently based on which node is updated first. Although
boolean networks are often presented as “parameter free" models, different
choices of the boolean update functions that are compatible with the same
network may lead to different types of dynamics and different types of
equilibria supported by the network.

In contrast to booleanmodels, ODEmodels describe evolution of state
in continuous time. Regulatory network models often use monotone sig-
moid Hill functions to describe network interactions. Specification of each
Hill nonlinearity typically requires four parameters and these parameters
are difficult to obtain experimentally. In addition, these biological para-
meters are fundamentally different than the parameters of physics models
that are the gold standard of scientific modeling. Mass of an object is a
parameter that is independent on the model used; any model attempting to
describe motion will need to have this parameter present. Since network
ODE models are not derived from first principles, changing a nonlinearity
from a Hill function to, say, a polynomial, necessitates re-fitting of all the
parameters. Thus, the values of the parameters are model dependent. It is
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therefore difficult to justify spending experimental effort and resources on
measuring precise parameter values at which the network operates. Perhaps
it is more realistic to try to establish a range for each parameter. However,
even if he ranges are successfully established describing all dynamics of an
ODE system across ranges of parameter values is a very difficult problem.

One approach to approximate such description is sampling the para-
meter space, simulating each resulting ODE system and collect statistical
data about the behavior across the samples. However, since the number of
parameters for even a small network is very high, such sampling is always
sparse. In addition, there is no theory that would guarantee that certain
sample size is sufficient to sample all possible behaviors, or even a high
proportionof all behaviors.This is partially a consequenceof the fact that the
set of all possible behaviors for ODE is uncountable, preventing its prob-
abilistic description. Along these lines, Randomized Circuit Perturbation
(RACIPE)9 is a sampling approach that judiciously tries to sample pre-
dominantly biologically relevant parameters.

In this review, we describe an alternative approach, DSGRN (Dynamic
Signatures Generated byRegulatoryNetworks)3,5,10). DSGRNassociates to a
network an ODEmodel with piece-wise constant monotone nonlinearities
consistent with the network structure. Since the nonlinearities only assume
finite number of values, there are two important simplifications compared
to a general ODEmodel. First, the ODE solutions in the phase space can be
described by a finite state transition graph (STG) and second, the con-
tinuous parameter space can be decomposed to finite number of domains
such that for all parameters in a domain the STG, and hence the dynamics
defined by STG, is the same. This turns analysis of an ODE system with its
continuum phase space and continuum parameter space into a finite
combinatorial problem. In addition, the piecewise constant nonlinearities
can be perturbed to Hill function models, ramp function models or any
other sigmoid nonlinearities and theoretical results guarantee that the
analysis of the combinatorial dynamics is valid for nearby continuum
models11.

Numerical investigation comparing the repertoire of equilibria, pre-
valence of bistability and multistability described DSGRN and the same
repertoire described using RACIPE9 was done in ref. 12 for two networks:
toggle switch13 and toggle triad (Fig. 1a). Since the RACIPE simulates Hill
modelswithfinite value ofHill coefficientn, the paper12 examinedhow large
the value of n should be for RACIPE and DSGRN results to agree. Sur-
prisingly, DSGRN predicts RACIPE results even for relatively small values
of n. Since the DSGRN analysis is computationally many orders of mag-
nitude faster than sampling and simulation of RACIPE, this suggests that
DSGRN may be a valuable tool for the first pass analysis of the range of
behaviors that the network is able to support.

Importantly, DSGRN approach bridges the divide between boolean
models andODEmodels. It can be shown5, that eachparameter domain of a
switching ODE is described by a collection of monotone boolean maps
(MBF). Coarse STG dynamics of any ODE parameterized by a parameter
from such a domain agrees with the dynamics of the asynchronous update
of a particular multivalued monotone boolean map (mMBF). This bridge
between boolean models and ODE model suggests description of potential
network dynamics by enumerating all multivalued monotone Boolean
functions compatiblewith the network and, for each such choice, describing
its set of equilibria. This approach is limited by the exponential growth of
number of mMBFs compatible with a network as a function of the number
of its nodes and edges. We describe potential ways to address this curse of
dimensionality by focusing of particular small subsets ofMBFs that seem to
represent the behavior of the entire set.

Example: (Toggle triad)
Before we describe our approach in detail, we illustrate it on a simple
example. Consider toggle triad network in Fig. 1a. with three nodes a, b, c
and pair of repressive edges between any two nodes, This network was
anayzed in refs. 7,14 as a network responsible for Th1/Th2/Th17 immune
cell differentiation.

We assume each node can be either active of inactive and these are
represented as boolean states inB ¼ f0; 1g. Each node receives two inputs
and the state of each node is updated by a monotone boolean function
f : B2 ! B. In Fig. 1b, we list all such functions. In the first columnwe list
all potential values of boolean inputsX and Y. Assume for themoment that
these represent states of nodes a, b respectively. Since all edges of the net-
work are repressive, second column lists the values that are transmitted by
the edges to their target c. The update function fc takes this pair of boolean
values and produces the new state of node c. Therefore fc is a composition of
themapBwhich reverses the boolean inputs andwhich depends on the fact
that both edges are repressive, and the second map g which takes this
reversed input to its final value. There are six choices for a monotone
boolean function g listed in the last six columns. These choices only depend
on the fact that the node c has two inputs, but not on whether these are
activating or repressing—that information is encoded in the map B. The
potential functions g are the constant functions 0 and 1; functionX (Y) that
repeats the values of the input X (Y) and functions ∧ (∨), which are logical
AND (OR), respectively. This set of functions can be organized as a partially
ordered set (poset) in Fig. 1c where two functions are connected by an edge
when they differ in exactly one output.

All possible MBF that are consistent with the toggle triad are triples
f = (fa, fb, fc). Therefore there are 6

3 = 216 boolean network models.

Fig. 1 | Toggle triad network analysis. a Toggle
triad network (b) Set of possible update boolean
functions f : B2 ! f0; 1g where f = g ∘ B. Left col-
umn: input values u are all possible values of pair of
boolean variablesX and Y. Second column; values of
function B(u). Columns 3–8: Collection of all pos-
sible monotone boolean functions g : B2 ! f0; 1g:
function 0 and the 1 function are constant; function
X (Y) repeats the values of input X (Y) and functions
∧ (∨) are logical AND (OR) respectively. c The
partially ordered set of all MBFs g : B2 ! f0; 1g;
neighboring functions differ by exactly one values.
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We investigate howmanyof thesemodels support a constant equilibria
(000) and (111), howmany support equilibrium (001) where only one gene
is active and two are suppressed and how many support equilibrium (110)
where two genes are active and one is suppressed. Because of the symmetry,
the number of functions f supporting (001) and the number supporting
(010) (as well as (100)), is the same. The key observation is that an equili-
brium Q= (uvw) is supported by f = (fa, fb, fc) if, and only if,

f aðQÞ ¼ u; f bðQÞ ¼ v; f cðQÞ ¼ w: ð1Þ

With this inmind, a direct inspection of table in Fig. 1 shows that (000) is an
equilibrium when

f að00Þ ¼ 0; f bð00Þ ¼ 0; and f cð00Þ ¼ 0:

There is only a single combination of functions, f = (0, 0, 0), that satisfies
these conditions. Therefore the phenotype (000) has prevalence 1/216 in
toggle triad. Similarly, the equilibrium (111) is only supported by the
parameter (1, 1, 1) and has prevalence 1/216. We conclude that both con-
stant phenotypes are rare in toggle triad.

Now we count number of boolean networks that support equilibrium
(001). This requires

f að01Þ ¼ 0; f bð01Þ ¼ 0; f cð00Þ ¼ 1:

Thefirst and the secondconditions are satisfiedby any functions fa, fb∈
{0,∧,Y} and the third condition by by fc∈ {∧,X,Y,∨, 1}. Therefore there are
3 × 3 × 5 = 45 parameters supporting this equilibrium. Similar calculation
shows that also (110) is supported by 45 boolean networks, as would be
expected from the symmetry considerations. We conclude that toggle triad
supports mixed phenotypes, where one gene, or two genes are active with
prevalence 45/216. This is higher than the prevalence of constant pheno-
types. These results agree with ref. 14 which found using RACIPE sampling
that the constant equilibria are negligible phenotype and most of the
monostable dynamics shows convergence to either singly activated (100) or
doubly activated (110) types of equilibria.

We close the introductionwith a comment on non-degenerate boolean
functionswhichwe return to later in the text. Among the sixMBFs in Fig. 1b
the constant functions 0, 1 are considered degenerate, as their output does
not dependon the input values. Further, ifwe assume that thenetwork edges
have been experimentally determined, there must be conditions at which
these edges influence the state of the target node. Under this assumption,
function g(XY) = X is also degenerate, since the input Y does not influence
the result; the same is true for the function g(XY) = Y. Therefore the only
non-degenerate functions g(XY) =X∧Y and g(XY) =X∨Y. The concept of
non-degeneratemonotone boolean functions allows us, for larger networks,
to restrict our attention to only essential boolean networks f where each

component function is non-degenerate. Note that there are only 8 essential
boolean networks out of 216 boolean networks; none of these support
constant equilibria (000), (111), but 2/8 support mixed equilibria (001)
and (110).

Astute reader certainly notices that there are sixmixed equilibria (100),
(010), (001), (110), (101), (011) each of which is supported by two out of
eight essential networks. This is only possible when some of the essential
networks support bistability ormultistability. This is indeed the case, andwe
postpone the computation of prevalence of bistability and multistability to
the “Multistability in toggle triad”.

The paper is organized as follows. “Ensemble of multivalued
monotone boolean functions compatible with the network” is devoted
to theoretical description of DSGRN methodology that builds a col-
lection of all multivaluedmonotone boolean functions compatible with
network structure and organizes it into parameter graph PG. Each
node of the parameter graph gives rise to potentially different dynamics
captured by a state transition graph (STG); the long term behavior of
STG dynamics is captured by aMorse graph. Theoretical developments
are illustrated along the way on a E2F-Rb network responsible for
commitment to the S-phase during the mammalian cell cycle. In
“Essential boolean parameters” we use our methodology to analyze
three networks: E2F-Rb network and two networks implied in immune
commitment networks: toggle triad and toggle tetrahedron. We con-
clude by the “Discussion” section and leave the description of con-
nection between the parameter graph PG and the ODE network
models to “Connecting parameter graph PG to ODE models”.

Ensemble of multivalued monotone boolean functions
compatible with the network
In addition to the toggle triad example in the introduction we will illustrate
our methods on a network that plays central role in transition fromG1 to S
phase in cell cycle in eukaryots. Amammalian network (Fig. 2a)was studied
by ref. 15 and then further analyzed by refs. 1,16. The essential elements of
this network is a family of E2F transcription factorswhich are sequestered in
aheterodimerbyRb innon-proliferating cells inG1phase.Release ofE2Fby
phosphorylation of Rb results in initiation of S phase of the cell cycle. The
principal controls of Rb are cyclin/kinase complexes CycD/Cdk4,6 and
CycE/Cdk2. The initial phosphorylation of Rb releases E2F, which up-
regulates the kinaseCycE/Cdk2, which then completes the phosphorylation
of Rb and finishes the release of E2F1,15–19. In Fig. 2a the node Rb represents
complexE2F-Rb andnodeE2F a freeE2F that is able toact as a transcription
factor. Interestingly, the mammalian network and the yeast S. cerevisiae
(Fig. 2b) network have identical structure in spite of the fact that individual
genes having limited homology20,21. The central dynamical feature of both of
these networks is ability to exhibit bistability between anOn statewhereE2F
is high, Rb low and CycE high, and anOff state where E2F is low, Rb high,
and CycE is low.

Fig. 2 | G1/S restriction point network. a G1/S
restriction point network in mammalian cells (b)
START network in yeast (c) Reduced network
example.
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In Fig. 2c, we depict a simplified network where we removed the
activating self-edge on E2F. We ask whether this simplified network still
supports required bistability, and, if so, what is the prevalence of this
phenotype.

A regulatory network RN = (V, E, δ) is a directed graph with nodes V,
directed edges E, and an edge sign function δ: E→ {− 1, 1}. We denote an
edge from node vi to node vj without indicating its sign by vi⊸vj. The edge
vi⊸vj is activating if δji ¼ 1 and repressing if δji ¼ �1. Graphically, an
activating edge is denoted by vi → vj and a repressing edge by vi a vj. The
sources and targets of a node u are given by

SðviÞ :¼ fvk 2 Vjvkvi 2 Eg TðviÞ :¼ fvj 2 V jvivj 2 Eg;

respectively.
In our simplified example in Fig. 2c we have T(v3) = {v1, v2} and S(v3)

= {v2}.

Parameters
In this section, we want to define the set of boolean functions that are
compatible with the network RN. Consider the toggle triad example where
we associated a boolean update function fa to node a. Node a is a source of
two edges to b and c. In real regulatory network, the chemical concentration
xa at node awill likely affect b and c at different levels, which we think of as
different thresholds. Therefore the state of node a should have more than
two states 0 (inactive) and 1 (active); it should at least have states 0 (does not
activate neither b nor c), 1 (activates one but not the other), and 2 (activates
both b and c). This leads naturally to considering multivalued monotone
boolean networks where the state of a node vi is one of the integers
Xi = {0, 1…, ti}, where ti:= ∣T(vi)∣ denote the number of target nodes of vi.
Since each edge vi→ vj is associatedwith a threshold, this integer represents
number of thresholds that get activated by the state of vi.

This extension to multilevel boolean networks enlarges the set of
functions that are compatible withRN. Instead of calling all such collections
“multilevelmonotone boolean networks", we will simply call themDSGRN
parameters of RN, or just parameters of RN. Because of different activation
thresholds, the dynamics of the network may change when the order of
thresholds changes. Even the same collection of multilevel monotone
boolean functions, different order of activation of downstream edges may
lead to different dynamics. Therefore such orders must be included in the
description of the parameters of the network.

An order parameter for node vi is a bijection θi:T(vi)→ {1,…, ti} which
defines anorderingof the out-edges of vi. The set of orderparameters for vi is
denoted byΘ(vi). The set of all order parameters is given by :¼ Q

vi2V ðviÞ.
For the network in Fig. 2c, since ∣T(v1)∣ = ∣T(v2)∣ = 1 and we haveX1 =

X2 = {0, 1} there is a single order parameter in bothΘ(v1) = {θ1} andΘ(v2) =
{θ2}. Since ∣T(v3)∣ = 2, we have X3 = {0, 1, 2} and ðv3Þ ¼ fθ13; θ23g where

θ13ðv1Þ ¼ 1; θ13ðv2Þ ¼ 2 and θ23ðv1Þ ¼ 2; θ23ðv2Þ ¼ 1: ð2Þ

The collection of all order parameters Θ has two elements ðθ1; θ2; θ13Þ and
ðθ1; θ2; θ23Þ. We note that if ∣T(v3)∣ = k the collection Θ(v3) will have k!
permutations θ13; . . . ; θ

k!
3 .

LetB :¼ ðf0; 1g; 0<1gÞ be a two element set with natural order 0 ≺ 1
and letBn be a partially ordered set (poset) of n vectors with elements inB
with order induced component-wise by <. Bn is in fact a Boolean lattice.

Similarly, the

C :¼
Y

vi2V
Xi:

is a Boolean lattice of integer vectors with partial order ≺ induced
component-wise by <. That is, a ≺ b if for every i the i-th component
satisfies ai ≤ bi.

While the assumption that eachvi activatesdownstreamnodes vj∈T(vi)
at different thresholds leads to considering the set of states C, the activation of
a particular node vj∈T(vi) by vionly happens at a single threshold. This leads
to definition of the following function that associates to each state c 2 C the
information on which targets it actually activates andwhich ones it does not.
The state c ¼ ðciÞvi2V produces an input to a node vj via the input map

Bj : C !
Y

i2V
BjSðvjÞj; Bj :¼ ðBj

iÞvi2SðvjÞ

where

Bj
iðcÞ :¼

0; if ci<θiðvjÞ and δji ¼ 1 or ci ≥ θiðvjÞ and δji ¼ �1

1; if ci ≥ θiðvjÞ and δji ¼ 1 or ci<θiðvjÞ and δji ¼ �1

(

:

ð3Þ

Note that for activating edge vi → vj, if ci is below (above) the activating
threshold θi(vj) then the input from vi to vj is 0 (1). This assignment is
reversed if the edge is repressing. Function B ¼ ðBjÞj2V depends on the
structure of the network through functions δji, the number of inputs to each
node and logic parameter θ.

The function B associates to each c 2 C and each node vj ∈ V its
boolean input vector which is an element of BjSðvjÞj. Whether a particular
boolean input activates an output edge vj⊸vi connecting vj to vi ∈ T(vj) or
not, is determined by a logic parameter at node vj that we define next. Logic
parameters capture all potential patterns of combinatorial activation, where
only some combinations of input nodes activate an output edge. In addition,
these patterns may vary from one output edge of vj to the next.

Definition 1.1. A function g : Bn ! ½0; 1; . . . ; k� is a positivemultivalued
monotoneBoolean function (mMBF) if b1≺ b2 implies g(b1)≤g(b2).When k=
1 the function g is positive monotone Boolean function (MBF).

A logic parameter for node vi is a positive boolean mMBF

gi : B
jSðviÞj ! Xi:

Acollection g :¼ ðgiÞvi2V is a logic parameter. The set of all logic parameters
for node vi is denoted LðviÞ, while the set of all logic parameters
is L :¼ Q

vi2V LðviÞ.

Definition 1.2. Consider two logical parameters g; h 2 LðviÞ, where
g; h : Bn ! Xi.We say g≺h if g(b)≤h(b) for all b 2 Bn.With this ordering
the set of logic parameters ðLðviÞ;�Þ is a partially ordered set.

We describe the set of logic parameters for the network in Fig. 2c. At
node v1 sinceS(v1) = v3 andX1 = {0, 1}, the set of logic parameters is the set of
allMBFs g1 : B ! X1. Two of these functions are constant: we denote by 0
the zero function and by 1 the one function. The third function, which we
denote by Idmaps 0 to 0 and 1 to 1 see Fig. 3a. These functions form a poset
shown in Fig. 4a.

Fig. 3 | Logic parameters for the restriction point
network. a Three logic parameters g1 2 Lðv1Þ; b Six
logic parameters g3 2 Lðv3Þ.
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Consider v2. Since S(v2) = {v1, v2} andX2 = {0, 1}, the setLðv2Þ is the set
of MBFs that map g2 : B

2 ! X2. There are 6 such functions which we
denote by 0, ∧, X, Y, ∨, 1. These were depicted in Fig. 1b, c.

Finally, consider the node v3. Since S(v3) = {v2} and the setX3 = {0, 1, 2},
the logical parameters are multivalued monotone boolean functions
g3 : B ! X3. It can be shown5,6, that there are 6 such mMBFs that corre-
spond to ordered pairs (2-chains) in the poset of MBFs from B to B.
Therefore the functions g3 are sums f+ g of pairs of functions f≺ g in the set
f, g∈ {0, Id,1} in Fig. 3a.We list these functionusing the sumnotation inFig.
3b; the poset structure of these functions is in Fig. 4b.

The set of all parameters is the product of logic and order parameters
P :¼ L× . We call PðviÞ :¼ LðviÞ× ðviÞ the set of parameters for node vi;
the set of all parameters is the product P ¼ Q

vi2VPðviÞ.
We have seen that the set of logical parameters has an additional

structure of a partially ordered set, or a graph. In our example, the poset
Lðv1Þ is in Fig. 4a, poset forLðv2Þ is in Fig. 1c, andLðv3Þ is in Fig. 1c.Wewill
call this organization of the set of DSGRN parametersP a parameter graph
PG of networkRN. The following section shows the construction ofPG by
defining adjacency between elements of P.

Parameter graph
The parameter graphPG has nodes and edges. The set of nodes is the set of
DSGRN parameters P. The undirected edges will connect adjacent nodes.
Two parameter nodes for a node vi, ðgi; θiÞ; ðĝi; θ̂iÞ 2 PðviÞ are adjacent if
exactly one of the following conditions is satisfied.
• Order adjacency: gi ¼ ĝ i and the values of the order parameters θi and

θ̂i are exchanged on a single pair of neighboring entries on which the
logic parameters agree.

• Logical adjacency: θi ¼ θ̂i and the logic parameters gi and ĝ i differ by 1
in a single input i.e., there exists exactly one d 2 BjSðviÞj such
that giðdÞ ¼ ĝ iðdÞ± 1.

The factor graph for node vi is the undirected graph PGðviÞ :¼
ðPðviÞ; EðviÞÞ whose nodes are parameter nodes for vi and whose edges are
given by adjacency. The parameter graph PG :¼ ðP; EÞ is the Cartesian
product PG :¼ Q

vi2VPGðviÞ. That is, there is an edge ðp1; p2Þ 2 E if and
only if there is a unique vi ∈ V such that ðp1i ; p2i Þ 2 EðviÞ and p1i ¼ p2i
otherwise.

We return to our example in Fig. 2c. Since the set of order parameters
Θ(v1) and Θ(v2) have both only one element, the factor graph PGðv1Þ ffi
Lðv1Þ is isomorphic to the poset of logic parameters Lðv1Þ in Fig. 4a and
factor graphPGðv2Þ ffi Lðv2Þ is isomorphic to theposet of logicparameters
Lðv2Þ in Fig. 1c. The factor graphPGðv3Þ consists of two copies of the poset
of logic parametersLðv3Þ in Fig. 4b, where one copy has order parameter θ13
and the copy has order θ23, see (2). The two copies are connected between
pairs of nodes 0 + 0, Id + Id and 1 + 1 where the change from θ13 to θ23
satisfies oder adjacency condition.

In Fig. 4c we show a logic factor graph for a network node with three
inputs and one output, which consists of 20 monotone boolean functions.
Thenumber ofMBFs,withn inputs, calledn-thDedekindnumber, increases
rapidlywith the number of inputs. The 9thDedekind number has been only
recently computed22.

Essential parameters
There are two types of subsets of the logical parameters that are of special
interest. First,wemayonly be interested in those logical parameters atwhich

Fig. 4 | Logic parameter graphs. a Logic parameter
graph Lðv1Þ consists of MBFs g1 : B ! f0; 1g;
b logic parameter graph Lðv3Þ consists of mMBFs
g3 : B ! f0; 1; 2g written as sums of two ordered
functions (2-chains) from (a); c poset of MBFs with
three inputsX,Y,Z, where α= (X∧Y)∨ (X∧Z)∨ (Y
∧ Z). Blue circles indicate non-degenerate MBFs.
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the associated multivalued monotone boolean function is non-degenerate.
The definition below directly generalizes the concept of non-degenerate
MBF23,24.

Definition 1.3. A variable bk is an essential variable of a multivalued
monotone Boolean function f if there is at least one b ∈ Bn such that
f jbk¼0 ≠ f jbk¼1. An MBF is said to be non-degenerate if all variables are
essential.

Definition 1.4. A parameter p ∈ PG of network RN is essential if the
corresponding logic parameter g is a non-degenerate mMBF.

This agrees with the definition of essential parameter nodes given in
refs. 2,5,25. All non-degenerate mMBFs in Lðv1Þ and Lðv2Þ are in blue
circles in Fig. 4.

Boolean parameters
Another special subset of logical parameters are those that represent MBF
rather thanmMBF. Consider those parameters p ¼ ðg; θÞ 2 PG where the
range of every mMBF gi consists of only two values 0 and ti, i.e., the lowest
possible value and the highest possible value. This can be interpreted as each
input either does not activate any target nodes or it activates all target nodes.
Since such mMBF has only two values, it can be represented as a MBF ~gi.
We call such parameters boolean parameters since the function
~g ¼ ð~g1; ~g2; . . . ; ~gnÞ, as a map from Bn ! Bn, represents a traditional
boolean system where states 0 and 1 are assigned to each variable.

InFig. 4a, c, all parameters are boolean since the rangeof all functions is
{0, 1}. In Fig. 4b there are three Booleanparameters 1+ 1, Id+ Id and 0+ 0.
Notice that not all boolean parameters are essential.

Essential boolean parameters
We now restrict our attention even further to just essential boolean para-
meters. These represent parameters represented by non-degenerate
monotone boolean function. Figure 4c shows 9 non-degenerate MBFs
with three inputs in blue circles. Paper8 studied repressive tetrahedron
network (see “Toggle tetrahedron network” below) where all four nodes
have three repressive inputs from the other three nodes, and in turn repress
all other nodes. Each node has three inputs and three outputs and the
parameter graph PG has about 27 trillion nodes. However, since there are
only nine non-degenerate MBFs, the total number of essential boolean
parameters is only 94 = 6561. Surprisingly, the frequency of observed
equilibria that exists within this small set approximates well the overall
frequency of dynamics across entire PG, as documented by random
DSGRN parameter sampling as well as ODE parameter sampling by
RACIPE8. Clearly, analyzing dynamics of 6561 parameters is computa-
tionally feasible while examining 27 trillion parameters is not. The reason
why this small sample seems tomatch theoverall dynamics remains anopen
problem.

Dynamics
The multi-valued boolean dynamics associated to a network RN ¼
ðV; E; δÞdependsonachoiceofparameterp 2 P, andon the input function
B defined in (3) that reflects the position of the positive and negative in the
network through function δ.

The dynamics occur on the state space C ¼ Q
vi2VXi; introduced

earlier. We call c 2 C a state of the network RN.
We return to the E2F-Rb example and define the functionsB1 : X3 !

B; B2 : X1 ×X3 ! B2 and B3 : X2 ! B, see Fig. 5 for the order para-
meter ðθ1; θ2; θ13Þ, where θ13ðv1Þ ¼ 1 and θ23ðv2Þ ¼ 2. We only list relevant
inputs Xi � C for each i. Since the edge v3 → v1 is activating and since
θ13ðv1Þ ¼ 1, v3 activates v1 at the first threshold the output value changes
from0 to1 at thefirst threshold (see Fig. 5a.) Because the edge from v1 to v2 is
repressive, the first component B2

1 of the function B2 reverses the boolean
input fromnode v1. The second componentB2

3 describes input fromnode v3
to node v2which is activating at the second threshold, seeFig. 5b. Finally, the
function B3 in Fig. 5c reflects the fact that the edge x2⊣x3 is repressive.

Definition 1.5. The dynamics for network RN with the sign function δ at
parameter ðg; θÞ 2 P is defined as an asynchronous update of function f:=
g ∘ B. More precisely,

1. The multi-valued boolean mapf : C ! C is defined by

f iðcÞ :¼ giðBiðcÞÞ ð4Þ

2. The multi-level boolean dynamicsF : CC is a multi-valued map
generated by f and defined by
• If f(c) = c then F ðcÞ ¼ fcg.
• For any vi and η ∈ { − 1, 1} satisfying ηfi(c) > ηci the state

ci ¼ ci þ η; cj ¼ cj for j≠ i

satisfies c 2 F ðcÞ.
Themaps f andF depend on the choice of networkRN and the choice

of parameter ðg; θÞ 2 P. We will explicitly include these dependencies as
arguments as needed.

This definition provides a connection between each parameter ðg; θÞ 2
P andadiscretedynamicsonC givenbymapF .Aswe show in “Connecting
parameter graph PG to ODE models” each such map F also represents
behavior of continuous solutions of switching ODE system that models
continuous network dynamics. Therefore the parameter graph PG con-
nects continuous dynamics of ODEs and asynchronous update dynamics
induced by discrete map F .

Remark 1.1. Consider all boolean parameters p ¼ ðg; θÞ 2 PGwhere the
logical parameter g gives rise to the same boolean function ~g, but where they
differ in the order parameter. Then it is easy to see that the dynamics at all
these parameters will be the same since the order of thresholds is irrelevant
for the resulting update function f ðcÞ ¼ ~gðBðcÞÞ: Therefore boolean para-
meters are fully described by their logic parameters and such logic para-
meters correspond to collections of mMBFs.

Morse graph
The recurrent dynamics of F ð�; pÞ are encoded by a Morse graphMGðpÞ.
The Morse graph MG ¼ ðSCC;AÞ is a directed graph with nodes con-
sisting of strongly connected components ofSTGðC; pÞ. TheMorse graph is
the Haase diagram on SCC of the reachability relation A on the strongly
connected components within STGðC; pÞ. We label each strongly con-
nected component s 2 SCC according to the following.
• If s 2 SCC consists of a single recurrent state, s = {x}, then x is a fixed

point of F and we label s by FPðxÞ.
• If s 2 SCC is not an FP then we label s as a partial cyclePC or a full

cycleFC. The strongly connected component s is aPC if s is constant in
at least one coordinate i.e., there is a node u∈ V and an integer k such

Fig. 5 | Functions B1, B2, B3, where we only list the relevant inputs. Note that the
presence of negative edge between v1 and v2 is manifested in the reversal in the first
coordinate B2

1 of B
2 and negative edge between v2 and v3 is reflected in reversal in

function B3.
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that x ∈ s implies xu = k. If s is not an FP or an PC then s is an FC. If
s 2 SCC has no out-edges in MGðpÞ, we call sstable Morse node.
Otherwise, s is unstable.

Applications
We now illustrate our approach on three examples. First, we investigate the
ability of E2F-Rb network without self-loop on E2F (Fig. 2c) to support the
bistable phenotype betweenOn andOff state that characterizes the switch-
like entry into S phase in the cell cycle. Then we look at two networks that
have been studied in the context of differentiation of immune cells subtypes:
toggle triad and toggle tetrahedron. For toggle triad we look at prevalence of
different types of bistability and for toggle tetrahedron we summarize the
results on prevalence of different types of equilibria, that are described in
more details in ref. 8.

In all of these examples we focus our attention to essential boolean
parameters as this small set is amenable to theoretical analysis. The analysis
across entire parameter graph PG is possible using DSGRN software26,27.

E2F-Rb network
In this section, we find fixed points for the E2F-Rb network at different
parameters. Fixed points fulfill the satisfiability condition

s 2 C is a fixed point; iff f iðsÞ ¼ giðBiðsÞÞ ¼ si; i ¼ 1; 2; 3; ð5Þ

where gi 2 LðviÞ, the set of logical parameters. Recall thatLðv1Þ is in Fig. 4a,
Lðv2Þ in Fig. 1c, and theLðv3Þ in Fig. 4b. The functionsBi are listed in Fig. 5.
The set of composite functions f1:= g1 ∘ B1: X3 → X1, where g1 2 L1 is
identical to that in Fig. 3a.All possibilities for the second composite function
f2:= g2 ∘ B2:X1 ×X3→X2, for all choices of g2, are listed as columns in Fig. 6a.
We list all compositions f3:= g3 ∘ B3: X2 → X3 in Fig. 6b.

These tablesmakedirect verification of Eq. (5) possible, albeit for larger
network this poses a combinatorial problem as the satisfiability of (5) is
equivalent to logical satisfiability problem28 which is NP complete29,30.

We consider two potential fixed points that are biologically important.
First the state son= (1, 0, 2) represents the stateOn; that is, a commitment to
transition from G1 to S phase of the cell cycle, since both v1 (CycE) and v3
(free E2F) are at their highest states, and v2 (E2F-Rb dimer) is at the lowest
state. Consider two parameters p1: = (L1, θ) and p2: = (L2, θ) with the order
parameter θ :¼ ðθ1; θ2; θ13Þ used above and the only two essential logic
parameters

L1 ¼ ðg1 ¼ Id; g2 ¼ ^; g3 ¼ Id þ IdÞ; L2 ¼ ðg1 ¼ Id; g2 ¼ _; g3 ¼ Id þ IdÞ:

Then for parameter p1 we get

f ðsonÞ ¼ f ð1; 0; 2Þ ¼ ðf1ð2Þ; f2ð12Þ; f3ð0ÞÞ ¼ ð1; 0; 2Þ;

so son is a fixed point, but for parameter p2 we get

f ðsonÞ ¼ f ð1; 0; 2Þ ¼ ðf1ð2Þ; f2ð12Þ; f3ð0ÞÞ ¼ ð1; 1; 2Þ:

Therefore son is a fixed point for p1, but not for p2. Similar calculation
shows that soff= (0, 1, 0) that represents theOff state where cell is pausing in
G1 phase, is a fixed point under p2, but not under p1.

We remark that there are two other essential parameters p3 :¼ ðL1; �θÞ
and p4 :¼ ðL2; �θÞ with the same logical parameters L1, L2, but order para-
meter �θ ¼ ðθ1; θ2; θ23Þ. The results are similar: one of the parameters sup-
ports only son and one of them supports only soff.

Since E2F-Rb network is assumed to act as a bistable switch1,15,16 we
would like to investigate if there are other, non-essential parameters where
both son and soff are fixed points. Examining Fig. 6 for columns where
f3(12)=0 and f3(00)=1wefind that the only such function arise from logical
parameter g2(X1, X3) = X1. This represents function where the input to v2
from v3 does not affect the outcome since the function g2 only depends on
the input from v1. Erasing the edge v3 → v2 from the network we get a
network that consists of single positive loop. Such a reduced network is
known to support bistablity.

Our analysis can be interpreted in two ways:
• the smaller network consisting of a positive loop v1⊣v2, v2⊣v3 and

v3 → v1 supports the bistability;
• the self-edge E2F to E2F is needed for the original network to support

the bistability at the set of essential parameters.

Both interpretations provide valuable insight into interplay between
the structure of the network and bistability.

Developmental networks
Multistability in toggle triad
Wenow investigate parameters that support bistability andmultistability in
toggle triad. We only consider essential boolean parameters which, by
Remark 1.1, can be represented as g = (ga, gb, gc) where each gi is a non-
degenerate monotone boolean function.

Using the update functions fi = gi ∘ Bi for i = a, b, c, where the Bi(XY) =
(¬X ¬Y) reverses both inputs (see Fig. 1b), the essential boolean parameters
that support so calledmirrorbistability between (001) and (110)must satisfy

f að01Þ ¼ 0; f að10Þ ¼ 1

f bð01Þ ¼ 0; f bð10Þ ¼ 1

f cð00Þ ¼ 1; f cð11Þ ¼ 0

Direct inspection of table in Fig. 1b shows that there is unique choice of
functions for both g1(X,Y) =Y and g2(X,Y) =Y.On the other hand any g3(X,
Y) ∈ {∨, Y, X, ∧} works. Therefore there are 4 boolean parameters which
support this type of bistability. However, none of these parameters are
essential.

On the other hand, non-mirror bistability between (001) and (100) is
supported by all parameters for which

f að01Þ ¼ 0; f að00Þ ¼ 1

f bð01Þ ¼ 0; f bð10Þ ¼ 0

f cð00Þ ¼ 1; f cð10Þ ¼ 0:

Fig. 6 | Asynchronous update functions. a Compositions f2 = g2 ∘ B2 for all 6 choices of function g2. b Compositions f3 = g3 ∘ B3 for all six choices of function g3.
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Then any combination of choices ga(X, Y) ∈ {∧, Y}, gb(X, Y) ∈ {0, ∧,} and
gc(X, Y) ∈ {∧, X} satisfy these equations. These combinations form eight
parameters supporting this bistability, and one of them, g = (∧, ∧, ∧) is an
essential boolean parameter.

Can the network support tristability? The natural candidates for three
fixed points are (001), (100), (010). This adds additional conditions (third
column below) to the conditions above

f að01Þ ¼ 0; f að00Þ ¼ 1 f að10Þ ¼ 0

f bð01Þ ¼ 0; f bð10Þ ¼ 0 f bð00Þ ¼ 1

f cð00Þ ¼ 1; f cð10Þ ¼ 0: f cð01Þ ¼ 0

Direct calculation shows that g = (∧, ∧, ∧) supports the tristability (001),
(100), (010). Similar calculations shows that the only parameter that sup-
ports tristability between (110), (011), (101) is g = (∨, ∨, ∨).

We close this part by discussion of all 8 essential boolean parameters.
From the discussion in the introduction, the equilibrium (001) is supported
by two essential parameters g= (∧,∧,∨) and g= (∧,∧,∧). By symmetry, the
equilibrium (010) is supported by g = (∧,∨,∧) and g = (∧,∧,∧) and, finally,
the equilibrium (100) by g = (∨, ∧, ∧) and g = (∧, ∧, ∧). The second one of
these, logical parameters g(∧, ∧, ∧), supports tristability. Similar argument
shows that the parameters with two copies of gi = ∨ and one copy of gi = ∧
support a single equilibrium in the set (110), (011), (101).We conclude that
no essential booleanparameter supports bistability in the toggle triad.While
we examined a very small subset of essential boolean parameters, our results
are consistent with14 which found that the prevalence of tristability among
(100), (100), (010) is greater than any other type of tristability and that
bistability is comparatively rare.

Themethodology in this paper also allows us to ask us what happens if
we perturb parameters away from essential boolean parameters. Perturbing
essentiality leads to consideration of 216 choices of boolean functions dis-
cussed in the introduction. Perturbing boolean functions to the class of
multivalued boolean functions is possible within the structure of the para-
meter graph and will result in potentially different dynamics.

Toggle tetrahedron network
In this section,we briefly review extensions of the results from toggle triad to
toggle tetrahedron8. Motivation for studying this network is differentiation
of naiveCD4+Tcells into four different types denotedTh1, Th2, Th17, and
Treg. Each of these four types of cells is characterized by a lineage specific
transcription factors and these factors repress each other.

Therefore toggle tetrahedron has four nodes a, b, c, d that are fully
connectedwithout self-edges and each node receives three repressive inputs
from other three nodes. We again focus on computing the number of
essential boolean parameters g = (ga, gb, gc, gd), where each gi is a non-
degenerate monotone boolean function, that support a particular type of a
steady state. The types we are interested in include all-high (1111) and all
low (0000) states, aswell as stateswithone (1000), two (1100)or three (1110)
active components. Poset of all MBFs with three inputs in Fig. 4c has 20
functions with 9 non-degenerate MBF marked in blue6,24.

We now summarize results from8.
We first note that, similarly to toggle triad, the only parameters that

support constant equilibria (0000) and (1111) are (0, 0, 0, 0) and (1, 1, 1, 1),
respectively. Further, by symmetry for every parameter supporting equili-
brium (1000) there is a parameter that supports equilibrium (0111), since
the logic parameter functions are simply negated.

Therefore we only need to consider equilibria of type 3–1 where three
genes have different expression levels than the fourth gene and the equilibria
of type 2–2 where two genes are active and two are inactive. Similar analysis
to the one for toggle triad gives the following.

Theorem 0.1. (8) Out of total of 94 = 6561 essential boolean parameters,
there are
• 2 * 2 * 2 * 9 ¼ 72 essential boolean parameters that support any 3–1

equilibrium.

• 74 = 2401 essential boolean parameters that support any 2–2
equilibrium.
As discussed in detail in ref. 8 significantly higher prevalence of 2–2

equilibria than prevalence of 3–1 equilibria may indicate that the direct
differentiation from precursor cell into individual cell types, represented by
a 3–1 state, is less likely that a two step differentiation, where in the first step
cells attain a mixed state represented by a 2–2 equilibrium, followed by a
subsequent differentiation to individual cell types.

Connecting parameter graph PG to ODE models
The switching system dynamics3,10,31–39 associated to a regulatory network
RN is a system of ordinary differential equations

_xi ¼ ΛuðxÞ � γixi; i 2 V ð6Þ

where x ¼ ðxiÞvi2V 2 Rn
þ, γi 2 R is the decay rate of xi, and Λi is a pie-

cewise constant function which captures the effect of the sources S(i) on the
node i. The function Λ = (Λ1,…, Λn) is defined for parameter p ¼ ðg; θÞ 2
P as follows.
1. We associate a continuous variable xi to each node vi ∈ V.
2. Weassociate a threshold valuesθji, j∈T(i) to each edge i⊸j andassume

that these thresholds are distinct θji ≠ θki for any j, k ∈ T(i).
3. The thresholds θji form a rectangular grid G :¼ fx 2 RN

þ j
x ¼ θji; u 2 V; j 2 TðiÞg. The set Rn

þ n G is a collection of a finite
number of open domainsD where x 2 D if all components of vector x
lie between the thresholds.Observe that a collection of all domainsD is
inone-to-one correspondencewith spaceC. This is expressed via amap

φðxÞ : Rn
þ n G ! C x 7! ðk1; . . . ; knÞ;

where ki is an integer ki ∈ Xi such that ki < xi < ki + for all i. This map
associates to each x 2 Rn

þ n G a signature c 2 C of its domain d 2 D.
4. Then we set

ΛiðxÞ :¼ γif iðφiðxÞÞ ¼ γigiðBðφiðxÞÞÞ ð7Þ

In an open domain d 2 D, the function Λ is constant and the flow of
(6) is directed toward the target pointΛ(x). All trajectories in d are straight
lines towards the target point. If the target point is contained in d then the
target point is an asymptotically stablefixed point of (6). If the target point is
not in d, then the trajectories continue in a straight line until they hit the
boundary of d. For a generic set of initial condition in d, trajectory hits a co-
dimension one boundary of dwhere x = θji for single threshold of θji. If j ≠ i,
then the sign of _xi does not change at xi = θji and the trajectory can be
extended by continuation into a new domain d0. If i = j and the edge i a j is
repressing, then it is possible the sign of _xi may change on xi = θii. However,
since only one component of Λ changes at θii, all the components of the
vector field Λk(x), k ≠ i remain the same between d and d0. Therefore a
slidingmotion along the hyperplane xi= θii between d and d0 is well defined.
As a consequence, if the target point of d does not lie in d, for generic set of
initial conditions in d, the solutions can be continued to some neighboring
domain d0. This observation has been used in ref. 2 to define state transition
graphs even for systems with negative self-edges.

This description shows that the dynamics of (6) are well defined for
every parameter p ¼ ðg; θÞ 2 P and determined by the target point func-
tion f = g ∘ B, see eq. (4). Furthermore it is easy to see that the trajectories of
(6) that exit domain dmay enter any domaingF ðdÞ. Therefore transition of
the state transition graph defined by F capture all possible transitions by
solutions of (6). It follows, that the Morse nodes denoted by FP of MG
containfixedpoints ofODE system (6) and anyMorsenodePC orFC has a
potential to contain periodic solutions of (6).

The precise correspondence between invariant sets of (6) which are
central objects in study of dynamical systems40 and the Morse nodes is
complex and beyond the scope of this paper11. The ongoing current work
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aims to show that theMorse graph recoversMorse decomposition of a wide
class of smooth ordinary differential equations that are approximated by the
switching system (6).Wedescribe briefly themain ideas for a restricted class
of functions, where Λ has a form of product-of-sums41–44 and which have
been used extensively in DSGRN3,5,26,27. In product-of-sums systems, the
functional form for Λu is restricted to be a product of sums of switching
functions

ΛiðxÞ ¼
Q P

j2SðiÞ
σ ijðxjÞ σ ijðxjÞ :¼

Lij if δijðxj � θijÞ < 0
Uij; if δijðxj � θijÞ > 0

(

ð8Þ

where0<Lij<Uij are the lower (L) andupper (U) values for the effect of vjon
vi. The advantage of the product-of-sums description for Λ is that the
parameters L and U are easy to interpret in applications.

In particular, for every function σij there is a sequence ofHill functions,
parameterized by the Hill parameter n, of the form

hnijðxjÞ :¼ Lij þ ðUij � LijÞ
xni

θnij þ xnj
ð9Þ

such that

lim
n!1

hnijðxÞ ¼ σ ijðxÞ pointwise:

This allows comparison between ODE system with Hill functions and
switching systems. Since the repertoire of long-term dynamics of switching
system associated to a network RN is determined by collection of Morse
graphs, parameterized by all multi-valued MBFs in parameter graph PG,
DGSRN provides a bridge between continuous dynamics of networks and
combinatorial, finite collection of Morse graphs in PG.

There is numerical evidence that DSGRN successfully predicts
dynamics of ODE network dynamics8,12. In ref. 12, the results fromDSGRN
computation of equilibria were compared to results from RACIPE9

approach that samples parameters of Hill function network models and
then runs theODE simulations. In particular, ref. 12 examines at what value
of Hill coefficient n the RACIPE and DSGRN results start to agree. Sur-
prisingly, DSGRN predicts RACIPE results even for relatively small values
of n. The paper8 considers toggle tetrahedron network which has 27 trillion
DSGRN parameters which is too large for exhaustive computation. We
hasten to add that computations involving several billion of parameters can
be computed on a laptop in matter of hours. Two alternative approaches
have been used. In one, four random samples of 10,000DSGRNparameters
from the set of all DSGRN parameters were selected and examined for
different types of equilibria and different types of multistability. In the
secondapproach the collectionof all 6561 essential booleanparametershave
been examined. We compared results from both of these approaches to
results fromRACIPE samples and again,we foundgood agreement between
all three measurements. This is surprising as the essential Boolean para-
meters represents a tiny slice of the parameter space, yet it seems to predict
well behavior of the network over a entire parameter space.

Since the DSGRN analysis is computationally many orders of magni-
tude faster that RACIPE this suggests that DSGRN is a valuable tool for the
first pass analysis of the rangeof behaviors that thenetwork is able to support.

Discussion
Cellular regulatory networks describe directed pairwise interactions
between genes and proteins. Some small networks seems to occur statisti-
cally more frequently that others45, which suggests that they are subject to
evolutionary selection. The role of cell regulation is to dynamically respond
to changes in the environment and thus dynamics supported by the reg-
ulatory networks is related to cell’s fitness. It is therefore important to
understand dynamics that these networks can support. Accordingly, theory
ofmotifs46,47 suggested that a particular dynamics of themotifs is responsible

for their overrepresentation within the set of cellular networks. However,
any model of network dynamics depends on choice of parameters which
represent mathematically different environmental resources, external sig-
nals as well as internal resources like number of ribosomes. Since these are
difficult to measure in individual cells, it is natural to try to examine the
entire range of dynamical behaviors that the network can support.

We have reviewed recent progress on the problem of describing
range of dynamics supported by a network. We concentrate here on
description of equilibria, or steady states, rather than more dynamic
behaviors like periodic attractors. We show that there is natural connec-
tion between network models consisting of collections of multivalued
monotone boolean functions and models using ordinary differential
equations. These mMBFs are organized in a parameter graph PG. This
structure allows us to start from a small subset of essential boolean
parameters, examine dynamics at these parameters, and then explore the
neighborhood of these parameters.

We examine three example networks where we discuss prevalence of
different equilibria within the set of essential boolean parameters.

Our approach provides a new tool to answer the questions about range
of dynamics a networkmay exhibit across different conditions. If this range
does not include experimentally observed dynamics, the network is likely
incomplete. When network does exhibit observed dynamics, its prevalence
within PG may be used to rank the networks and focus experimental
efforts1,2,48, and reduce the set of potential hypotheses.

Data availability
No experimental data were used in this article. DSGRN software is available
in GitHub repositories26,27.

Received: 2 February 2024; Accepted: 9 August 2024;

References
1. Gedeon,T.,Cummins,B.,Harker, S.&Mischaikow,K. Identifying robust

hysteresis in networks. PLoS Comput. Biol. 14, e1006121 (2018).
2. Gameiro,M., Gedeon, T., Kepley, S. &Mischaikow, K. Rational design

of complex phenotype via network models. PLoS Comput. Biol. 17,
e1009189 (2021).

3. Cummins, B., Gedeon, T., Harker, S., Mischaikow, K. & Mok, K.
Combinatorial representation of parameter space for switching
systems. SIAM J. Appl Dyn. Syst. 15, 2176–2212 (2016).

4. Cummins, B., Gedeon, T., Harker, S. & Mischaikow, K. Database of
dynamic signatures generated by regulatory networks (DSGRN). In
Koeppl, J. F. H. (ed.) Computational Methods in Systems Biology,
Chap. 19, 300–308 (Springer, 2017).

5. Crawford-Kahrl, P., Cummins, B. & Gedeon, T. Joint realizability of
monotoneBoolean functions. J. Theor. Comp. Sci. 922, 447=474 (2022).

6. Gedeon, T. Lattice structures that parameterize regulatory network
dynamics.Math. Biosci. https://authors.elsevier.com/sd/article/
S0025-5564(24)00085-3 (2024).

7. Duddu, A., Majumdar, S., Sahoo, S., Jhunjhunwala, S. & Jolly, M.
Emergent dynamics of a three-node regulatory network explain
phenotypic switching and heterogeneity: a case study of th1/th2/th17
cell differentiation.Mol. Biol. Cell 33, 46 (2022).

8. Duddu, A. et al. Multistability and predominant double-positive states
in a four node mutually repressive network: a case study of Th1/Th2/
Th17/T-reg differentiation. npj. Syst. Biol. bioRxiv. https://doi.org/10.
1101/2024.01.30.575880v1 (2024).

9. Huang, B. et al. Interrogating the topological robustness of gene
regulatory circuits. PLoS Comput. Biol. 13, e1005456 (2017).

10. Gedeon, T. Multi-parameter exploration of dynamics of regulatory
networks. BioSystems 190, 104113 (2020).

11. Gedeon, T., Harker, S., Kokubu, H., Mischaikow, K. & Oka, H. Global
dynamics for steep sigmoidal nonlinearities in two dimensions.
Physica D 339, 18–38 (2017).

https://doi.org/10.1038/s41540-024-00423-8 Review article

npj Systems Biology and Applications |           (2024) 10:98 9

https://authors.elsevier.com/sd/article/S0025-5564(24)00085-3
https://authors.elsevier.com/sd/article/S0025-5564(24)00085-3
https://authors.elsevier.com/sd/article/S0025-5564(24)00085-3
https://doi.org/10.1101/2024.01.30.575880v1
https://doi.org/10.1101/2024.01.30.575880v1
https://doi.org/10.1101/2024.01.30.575880v1
www.nature.com/npjsba


12. Hari, K. et al. Assessing biological network dynamics: comparing
numerical simulations with analytical decomposition of parameter
space. NPJ Syst. Biol. Appl. 9, 29 (2023).

13. Gardner, T., Cantor, C. & Collins, J. Construction of a genetic toggle
switch in escherichia coli. Nature 403, 339–342 (2000).

14. Duddu, A., Sahoo, S., Hati, S., Jhunjhunwala, S. & Jolly, M. Multi-
stability in cellular differentiation enabled by a network of three
mutually repressing master regulators. J. R. Soc. Interface 17,
20200631 (2020).

15. Yao,G., Lee, T.,Mori, S., Nevins, J. &You, L. A bistableRb-E2Fswitch
underlies the restriction point. Nat. Cell Biol. 10, 476–482 (2008).

16. Yao, G., Tan, C., West, M., Nevins, J. & You, L. Origin of bistability
underlying mammalian cell cycle entry.Mol. Syst. Biol. 7, 485 (2011).

17. Pardee, A. A restriction point for control of normal animal cell
proliferation. Proc. Natl Acad. Sci. USA 71, 1286–90 (1974).

18. Blagosklonny, M. V. & Pardee, A. B. The restriction point of the cell
cycle. Cell Cycle 2, 102–109 (2002).

19. Sears,R. &Nevins, J. Signalingnetworks that link cell proliferation and
cell fate. J. Biol. Chem. 277, 11617–11620 (2002).

20. Wang, H., Carey, L., Cai, Y., Wijnen, H. & Futcher, B. Recruitment of
cln3 cyclin to promoters controls cell cycle entry via histone
deacetylase and other targets. PLoS Biol. 7, e1000189 (2009).

21. Cross, F., Buchler, N. & Skotheim, J. M. Evolution of networks and
sequences in eukaryotic cell cycle control. Philos. Trans. R. Soc. B
366, 3532–3544 (2011).

22. Jäkel, C. A computation of the ninth Dedekind number. J. Comput.
Algebra 6-7, 100006 (2023).

23. Shmulevich, I., Dougherty, E., Kim, S. & Zhang, W. Probabilistic
booleannetworks: a rule-baseduncertaintymodel for gene regulatory
networks. Bioinformatics 18, 261–74 (2002).

24. Cury, J. E. R., Roxo, P. T., Manquinho, V., Chaouiya, C. &Monteiro, P.
T. Immediate Neighbours of Monotone Boolean Functions. arXiv
preprint arXiv:2407.01337 (2024).

25. Xin, Y., Cummins, B. & Gedeon, T. Multistability in the epithelial-
mesenchymal transitionnetwork.BMCBioinformatics21, 1–17 (2020).

26. Harker, S. Dsgrn software. https://github.com/shaunharker/
DSGRN (2017).

27. Harker, S. & Cummins, B. Code supplemental for “identifying robust
hysteresis in networks”. https://github.com/shaunharker/2017-
DSGRN-IdentifyingRobustHysteresisInNetworks (2017).

28. Milano, M. & Roli, A. Solving the satisfiability problem through boolean
networks. In Lamma, E. &Mello, P. (eds.) AI*IA 99: Advances in Artificial
Intelligence, 72–83 (SpringerBerlinHeidelberg,Berlin,Heidelberg,2000).

29. Cook, S. A. The complexity of theorem-proving procedures. In Proc.
Third Annual ACM Symposium on Theory of Computing, STOC ’71,
151–158 (Association for ComputingMachinery, NewYork, NY, USA,
1971) https://doi.org/10.1145/800157.805047

30. Trakhtenbrot, B. A survey of russian approaches to perebor (brute-
force searches) algorithms. Ann. Hist. Comput. 6, 384–400 (1984).

31. Glass, L. & Kauffman, S. A. Co-operative components, spatial
localization and oscillatory cellular dynamics. J. Theor. Biol. 34,
219–37 (1972).

32. Glass, L. & Kauffman, S. A. The logical analysis of continuous, non-
linear biochemical control networks. J. Theor. Biol. 39, 103–29 (1973).

33. Glass, L. & Pasternack, J. Prediction of limit cycles in mathematical
models of biological oscillations. Bull. Math. Biol. 40, 27=44 (1978).

34. Snoussi, E. H. Qualitative dynamics of piecewise-linear differential
equations: a discrete mapping approach. Dyn. Stab. Syst. 4,
565–583 (1989).

35. Snoussi, H. & Thomas, R. Qualitative dynamics of piecewise-linear
differential equations: a discrete mapping approach. Bull. Math. Biol.
55, 973–991 (1993).

36. Thomas, R. Regulatory networks seen as asynchronous automata: a
logical description. J. Theor. Biol. 153, 1–23 (1991).

37. Thomas, R. Boolean formalization of genetic control circuits. J. Theor.
Biol. 42, 563–585 (1973).

38. Thomas, R., Thieffry, D. & Kaufman, M. Dynamical behaviour of
biological regulatory networks-I. Biological role of feedback loopsand
practical use of the concept of the loop-characteristic state. Bull.
Math. Biol. 57, 247–76 (1995).

39. Thieffry, D. & Romero, D. The modularity of biological regulatory
networks. BioSystems 50, 49–59 (1999).

40. Katok, A. & Hasselblatt, B. Introduction to Modern Theory of
Dynamical Systems (Cambridge University Press, 1995).

41. de Jong, H. et al. Qualitative simulation of genetic regulatory networks
using piecewise-linear models. Bull. Math Biol. 66, 301–40 (2004).

42. Ironi, L., Panzeri, L., Plahte, E. & Simoncini, V. Dynamics of actively
regulated gene networks. Phys. D Nonlinear Phenom. 240,
779–794 (2011).

43. Edwards, R., Machina, a, McGregor, G. & van den Driessche, P. A
modelling framework for gene regulatory networks including
transcription and translation. Bull. Math. Biol. 77, 953–983 (2015).

44. Tournier, L. & Chaves, M. Uncovering operational interactions in
genetic networks using asynchronous Boolean dynamics. J. Theor.
Biol. 260, 196–209 (2009).

45. Milo, R. et al. Network motifs: simple building blocks of complex
networks. Science 298, 824–827 (2002).

46. Alon,U.An Introduction toSystemsBiology (Chapman&Hall/CRC,2007).
47. Alon, U. Network motifs: theory and experimental approaches. Nat.

Rev. Genet. 8, 450–461 (2007).
48. Cummins, B.,Gedeon, T.,Harker, S. &Mischaikow,K.Model rejection

and parameter reduction via time series. SIAM J. Appl. Dyn. Syst. 17,
1589–1616 (2018).

Author contributions
The author conceptualized and wrote the paper.

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Tomáš. Gedeon.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41540-024-00423-8 Review article

npj Systems Biology and Applications |           (2024) 10:98 10

https://github.com/shaunharker/DSGRN
https://github.com/shaunharker/DSGRN
https://github.com/shaunharker/DSGRN
https://github.com/shaunharker/2017-DSGRN-IdentifyingRobustHysteresisInNetworks
https://github.com/shaunharker/2017-DSGRN-IdentifyingRobustHysteresisInNetworks
https://github.com/shaunharker/2017-DSGRN-IdentifyingRobustHysteresisInNetworks
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjsba

	Network topology and interaction logic determine states it supports
	Example: (Toggle triad)
	Ensemble of multivalued monotone boolean functions compatible with the network
	Parameters
	Parameter graph
	Essential parameters
	Boolean parameters

	Essential boolean parameters
	Dynamics
	Morse graph

	Applications
	E2F-Rb network

	Developmental networks
	Multistability in toggle triad
	Toggle tetrahedron network

	Connecting parameter graph PGPG to ODE models
	Discussion
	Data availability
	References
	Author contributions
	Competing interests
	Additional information




