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Network topology and interaction logic
determine states it supports

M| Check for updates

Tomas Gedeon

In this review paper we summarize a recent progress on the problem of describing range of dynamics
supported by a network. We show that there is natural connection between network models consisting
of collections of multivalued monotone boolean functions and ordinary differential equations models.
We show how to construct such collections and use them to answer questions about prevalence of
cellular phenotypes that correspond to equilibria of network models.

The goal of this review paper is to describe recent progress on describing
capacity of regulatory networks to exhibit different phenotypes in different
conditions. In several types of models of regulatory networks we associate
different phenotypes to equilibria admitted by the model. Other dynamical
phenotypes like cell cycle progression and circadian rhythm can be also
investigated by the approach we describe'”, but will be not discussed here.

This work relies on several papers in specialized mathematical™* and
theoretical computer science’ literature that were firmly rooted in problem
of parameterization of ordinary differential equations (ODE) network
models. The recent realization of the connection between monotone boo-
lean functions and parameterization of switching ODEs™ facilitated suc-
cessful applications to study of steady states in developmental networks”*.
The goal of this review is to provide a concise and accessible entry point to
the DSGRN approach for the systems biology audience with emphasis on
description of steady states in monotone boolean models of developmental
networks.

One of our motivations is analysis of developmental networks that
determine cell’s fate. Here equilibria of the model represent differentiated
cell types and presence of multiple stable equilibria (multistability) suggests
that different developmental pathways may lead to different cell types. In
such networks it is important to understand what types of multistability are
possible, which include the number of coexisting stable equilibria, their
prevalence under changing conditions and the types of equilibria that are
able to co-exist. When we will use boolean description, the type of the
equilibrium is determined by which genes are expressed high, and which
ones are expressed at low levels.

Networks are qualitative models of pairwise interactions/influences
between nodes which can represent mRNA, protein concentrations, or even
different conformations of proteins if they have differential impact on other
network nodes. The pairwise interactions are directed from one node to
another and may model transcriptional regulation, post-translational
modifications like phosphorylation, ubiquitination as well as conforma-
tional changes.

Behavior of any network that include feedback loops where a sequence
of nodes influence each other in a circular fashion is very difficult to

understand without a mathematical model. This is especially true for larger
networks. We will concentrate here on two seemingly very different types of
models, boolean models and ordinary differential equations models (ODE).
Boolean models describe state of each node as “active” and assign to this state
value 1, or inactive, and assign to this state value 0. In closely related mul-
tivalued boolean models a state of each node i is described by a set of integers
X; =10, 1, ..., t} expressing level to which the node is able to activate some,
but not all, downstream nodes. To each node i we associate a boolean update
function g;, which describes the state of the node i as a function of its inputs.
Boolean functions that respect the type of network interactions (activating
vs. repressing) are called monotone boolean functions (MBF). Dynamics of
these models consists of regular updates of the state of each node i. Syn-
chronous update updates all nodes at the same time, while asynchronous
update updates nodes one at the time. While synchronous update leads to a
deterministic dynamics, the implied presence of a clock that synchronizes
the update schedule makes it biologically unrealistic. Since in the asyn-
chronous update the future state depends on the order of nodes that are
being updated, this update is represented by a multivalued map where states
can evolve differently based on which node is updated first. Although
boolean networks are often presented as “parameter free" models, different
choices of the boolean update functions that are compatible with the same
network may lead to different types of dynamics and different types of
equilibria supported by the network.

In contrast to boolean models, ODE models describe evolution of state
in continuous time. Regulatory network models often use monotone sig-
moid Hill functions to describe network interactions. Specification of each
Hill nonlinearity typically requires four parameters and these parameters
are difficult to obtain experimentally. In addition, these biological para-
meters are fundamentally different than the parameters of physics models
that are the gold standard of scientific modeling. Mass of an object is a
parameter that is independent on the model used; any model attempting to
describe motion will need to have this parameter present. Since network
ODE models are not derived from first principles, changing a nonlinearity
from a Hill function to, say, a polynomial, necessitates re-fitting of all the
parameters. Thus, the values of the parameters are model dependent. It is
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therefore difficult to justify spending experimental effort and resources on
measuring precise parameter values at which the network operates. Perhaps
it is more realistic to try to establish a range for each parameter. However,
even if he ranges are successfully established describing all dynamics of an
ODE system across ranges of parameter values is a very difficult problem.

One approach to approximate such description is sampling the para-
meter space, simulating each resulting ODE system and collect statistical
data about the behavior across the samples. However, since the number of
parameters for even a small network is very high, such sampling is always
sparse. In addition, there is no theory that would guarantee that certain
sample size is sufficient to sample all possible behaviors, or even a high
proportion of all behaviors. This is partially a consequence of the fact that the
set of all possible behaviors for ODE is uncountable, preventing its prob-
abilistic description. Along these lines, Randomized Circuit Perturbation
(RACIPEY’ is a sampling approach that judiciously tries to sample pre-
dominantly biologically relevant parameters.

In this review, we describe an alternative approach, DSGRN (Dynamic
Signatures Generated by Regulatory Networks)**'%). DSGRN associates to a
network an ODE model with piece-wise constant monotone nonlinearities
consistent with the network structure. Since the nonlinearities only assume
finite number of values, there are two important simplifications compared
to a general ODE model. First, the ODE solutions in the phase space can be
described by a finite state transition graph (STG) and second, the con-
tinuous parameter space can be decomposed to finite number of domains
such that for all parameters in a domain the STG, and hence the dynamics
defined by STG, is the same. This turns analysis of an ODE system with its
continuum phase space and continuum parameter space into a finite
combinatorial problem. In addition, the piecewise constant nonlinearities
can be perturbed to Hill function models, ramp function models or any
other sigmoid nonlinearities and theoretical results guarantee that the
analysis of the combinatorial dynamics is valid for nearby continuum
models".

Numerical investigation comparing the repertoire of equilibria, pre-
valence of bistability and multistability described DSGRN and the same
repertoire described using RACIPE’ was done in ref. 12 for two networks:
toggle switch" and toggle triad (Fig. 1a). Since the RACIPE simulates Hill
models with finite value of Hill coefficient #, the paper'” examined how large
the value of n should be for RACIPE and DSGRN results to agree. Sur-
prisingly, DSGRN predicts RACIPE results even for relatively small values
of n. Since the DSGRN analysis is computationally many orders of mag-
nitude faster than sampling and simulation of RACIPE, this suggests that
DSGRN may be a valuable tool for the first pass analysis of the range of
behaviors that the network is able to support.

Importantly, DSGRN approach bridges the divide between boolean
models and ODE models. It can be shown’, that each parameter domain of a
switching ODE is described by a collection of monotone boolean maps
(MBF). Coarse STG dynamics of any ODE parameterized by a parameter
from such a domain agrees with the dynamics of the asynchronous update
of a particular multivalued monotone boolean map (mMBF). This bridge
between boolean models and ODE model suggests description of potential
network dynamics by enumerating all multivalued monotone Boolean
functions compatible with the network and, for each such choice, describing
its set of equilibria. This approach is limited by the exponential growth of
number of mMBFs compatible with a network as a function of the number
of its nodes and edges. We describe potential ways to address this curse of
dimensionality by focusing of particular small subsets of MBFs that seem to
represent the behavior of the entire set.

Example: (Toggle triad)

Before we describe our approach in detail, we illustrate it on a simple
example. Consider toggle triad network in Fig. la. with three nodes 4, b, ¢
and pair of repressive edges between any two nodes, This network was
anayzed in refs. 7,14 as a network responsible for Th1/Th2/Th17 immune
cell differentiation.

We assume each node can be either active of inactive and these are
represented as boolean states in B = {0, 1}. Each node receives two inputs
and the state of each node is updated by a monotone boolean function
f : B* — B.InFig. 1b, welist all such functions. In the first column we list
all potential values of boolean inputs X and Y. Assume for the moment that
these represent states of nodes a, b respectively. Since all edges of the net-
work are repressive, second column lists the values that are transmitted by
the edges to their target c. The update function f; takes this pair of boolean
values and produces the new state of node c. Therefore f, is a composition of
the map B which reverses the boolean inputs and which depends on the fact
that both edges are repressive, and the second map g which takes this
reversed input to its final value. There are six choices for a monotone
boolean function g listed in the last six columns. These choices only depend
on the fact that the node ¢ has two inputs, but not on whether these are
activating or repressing—that information is encoded in the map B. The
potential functions g are the constant functions 0 and 1; function X (Y) that
repeats the values of the input X (Y) and functions A (V), which are logical
AND (OR), respectively. This set of functions can be organized as a partially
ordered set (poset) in Fig. 1c where two functions are connected by an edge
when they differ in exactly one output.

All possible MBF that are consistent with the toggle triad are triples
f=(fos fir f2)- Therefore there are 6° = 216 boolean network models.

Fig. 1 | Toggle triad network analysis. a Toggle
triad network (b) Set of possible update boolean
functions f : B> — {0, 1} where f=go B. Left col-
umn: input values u are all possible values of pair of
boolean variables X and Y. Second column; values of
function B(u). Columns 3-8: Collection of all pos-
sible monotone boolean functions g : B* - {0, 1}:
function 0 and the 1 function are constant; function
X (Y) repeats the values of input X (Y) and functions
A (V) are logical AND (OR) respectively. ¢ The
partially ordered set of all MBFs g : B* — {0,1};
neighboring functions differ by exactly one values.
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We investigate how many of these models support a constant equilibria
(000) and (111), how many support equilibrium (001) where only one gene
is active and two are suppressed and how many support equilibrium (110)
where two genes are active and one is suppressed. Because of the symmetry,
the number of functions f supporting (001) and the number supporting
(010) (as well as (100)), is the same. The key observation is that an equili-
brium Q = (uvw) is supported by f= (f,, f f.) if, and only if,

flQ=u [ (Q=v, f(Q=w. ¢y
With this in mind, a direct inspection of table in Fig. 1 shows that (000) is an
equilibrium when
fa(Oo) = 07 fb(OO) = 07 and fc(OO) =0.

There is only a single combination of functions, f = (0, 0, 0), that satisfies
these conditions. Therefore the phenotype (000) has prevalence 1/216 in
toggle triad. Similarly, the equilibrium (111) is only supported by the
parameter (1, 1, 1) and has prevalence 1/216. We conclude that both con-
stant phenotypes are rare in toggle triad.

Now we count number of boolean networks that support equilibrium
(001). This requires

fu(OI) =0, fb(()l) =0, fc(OO)= 1.

The first and the second conditions are satisfied by any functions f,, f, €
{0, A, Y} and the third condition by by f, € {A, X, Y, V, 1}. Therefore there are
3 x 3 x5 =45 parameters supporting this equilibrium. Similar calculation
shows that also (110) is supported by 45 boolean networks, as would be
expected from the symmetry considerations. We conclude that toggle triad
supports mixed phenotypes, where one gene, or two genes are active with
prevalence 45/216. This is higher than the prevalence of constant pheno-
types. These results agree with ref. ** which found using RACIPE sampling
that the constant equilibria are negligible phenotype and most of the
monostable dynamics shows convergence to either singly activated (100) or
doubly activated (110) types of equilibria.

We close the introduction with a comment on non-degenerate boolean
functions which we return to later in the text. Among the six MBFs in Fig. 1b
the constant functions 0, 1 are considered degenerate, as their output does
not depend on the input values. Further, if we assume that the network edges
have been experimentally determined, there must be conditions at which
these edges influence the state of the target node. Under this assumption,
function g(XY) = X is also degenerate, since the input Y does not influence
the result; the same is true for the function g(XY) = Y. Therefore the only
non-degenerate functions g(XY) = X A Y and g(XY) = X v Y. The concept of
non-degenerate monotone boolean functions allows us, for larger networks,
to restrict our attention to only essential boolean networks f where each

component function is non-degenerate. Note that there are only 8 essential
boolean networks out of 216 boolean networks; none of these support
constant equilibria (000), (111), but 2/8 support mixed equilibria (001)
and (110).

Astute reader certainly notices that there are six mixed equilibria (100),
(010), (001), (110), (101), (011) each of which is supported by two out of
eight essential networks. This is only possible when some of the essential
networks support bistability or multistability. This is indeed the case, and we
postpone the computation of prevalence of bistability and multistability to
the “Multistability in toggle triad”.

The paper is organized as follows. “Ensemble of multivalued
monotone boolean functions compatible with the network” is devoted
to theoretical description of DSGRN methodology that builds a col-
lection of all multivalued monotone boolean functions compatible with
network structure and organizes it into parameter graph PG. Each
node of the parameter graph gives rise to potentially different dynamics
captured by a state transition graph (STG); the long term behavior of
STG dynamics is captured by a Morse graph. Theoretical developments
are illustrated along the way on a E2F-Rb network responsible for
commitment to the S-phase during the mammalian cell cycle. In
“Essential boolean parameters” we use our methodology to analyze
three networks: E2F-Rb network and two networks implied in immune
commitment networks: toggle triad and toggle tetrahedron. We con-
clude by the “Discussion” section and leave the description of con-
nection between the parameter graph PG and the ODE network
models to “Connecting parameter graph PG to ODE models”.

Ensemble of multivalued monotone boolean functions

compatible with the network

In addition to the toggle triad example in the introduction we will illustrate
our methods on a network that plays central role in transition from G1 to S
phase in cell cycle in eukaryots. A mammalian network (Fig. 2a) was studied
by ref. 15 and then further analyzed by refs. 1,16. The essential elements of
this network is a family of E2F transcription factors which are sequestered in
aheterodimer by Rb in non-proliferating cells in G1 phase. Release of E2F by
phosphorylation of Rb results in initiation of S phase of the cell cycle. The
principal controls of Rb are cyclin/kinase complexes CycD/Cdk4,6 and
CycE/Cdk2. The initial phosphorylation of Rb releases E2F, which up-
regulates the kinase CycE/Cdk2, which then completes the phosphorylation
of Rb and finishes the release of E2F"'*""”. In Fig. 2a the node Rb represents
complex E2F-Rb and node E2F a free E2F that is able to act as a transcription
factor. Interestingly, the mammalian network and the yeast S. cerevisiae
(Fig. 2b) network have identical structure in spite of the fact that individual
genes having limited homology™**'. The central dynamical feature of both of
these networks is ability to exhibit bistability between an On state where E2F
is high, Rb low and CycE high, and an Off state where E2F is low, Rb high,
and CycE is low.

Fig. 2 | G1/S restriction point network. a G1/S
restriction point network in mammalian cells (b)
START network in yeast (c) Reduced network
example.
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In Fig. 2¢, we depict a simplified network where we removed the
activating self-edge on E2F. We ask whether this simplified network still
supports required bistability, and, if so, what is the prevalence of this
phenotype.

A regulatory network RN = (V, E, §) is a directed graph with nodes V,
directed edges E, and an edge sign function §: E — { — 1, 1}. We denote an
edge from node v; to node v; without indicating its sign by vi—v;. The edge
vi—ov; is activating if & =1 and repressing if §; = —1. Graphically, an
activating edge is denoted by v; — v; and a repressing edge by v; = v;. The
sources and targets of a node u are given by

S(vy) :=={v, € Vinwy, € E} T(v) := {v; € Vlvy; € E},

respectively.
In our simplified example in Fig. 2c we have T(v3) = {v;, v,} and S(v3)

= {v,}.

Parameters

In this section, we want to define the set of boolean functions that are
compatible with the network RN. Consider the toggle triad example where
we associated a boolean update function f, to node a. Node a is a source of
two edges to b and c. In real regulatory network, the chemical concentration
x, at node a will likely affect b and c at different levels, which we think of as
different thresholds. Therefore the state of node a should have more than
two states 0 (inactive) and 1 (active); it should at least have states 0 (does not
activate neither b nor ¢), 1 (activates one but not the other), and 2 (activates
both b and c). This leads naturally to considering multivalued monotone
boolean networks where the state of a node v; is one of the integers
X; =1{0, 1..., t}, where t;:= [T(v;)| denote the number of target nodes of v;.
Since each edge v; — v; is associated with a threshold, this integer represents
number of thresholds that get activated by the state of v;.

This extension to multilevel boolean networks enlarges the set of
functions that are compatible with RN. Instead of calling all such collections
“ multilevel monotone boolean networks", we will simply call them DSGRN
parameters of RN, or just parameters of RN. Because of different activation
thresholds, the dynamics of the network may change when the order of
thresholds changes. Even the same collection of multilevel monotone
boolean functions, different order of activation of downstream edges may
lead to different dynamics. Therefore such orders must be included in the
description of the parameters of the network.

An order parameter for node v;is a bijection 0; T(v;) — {1, ..., t;} which
defines an ordering of the out-edges of v;. The set of order parameters for v; is
denoted by ©(v;). The set of all order parameters is given by := [], _/(v,).

For the network in Fig. 2¢, since [T(v;)| = |T(v,)| = 1 and we have X, =
X, =1{0, 1} there is a single order parameter in both ®(v;) = {6;} and O(v,) =
{6,}. Since [T(v3)| = 2, we have X; = {0, 1, 2} and (v;) = {6}, 63} where

9;(1/1) =1, 9;(1/2) =2 and 9%(1/1) =2, 6%(1/2) =1. (2)

The collection of all order parameters ® has two elements (6, , 0,, 9;) and
(6,,0,, 0%). We note that if |T(v3)| = k the collection ®(v3) will have k!
permutations 6}, ..., 6%

Let B := ({0, 1}; 0<1}) be a two element set with natural order 0 < 1
and let B” be a partially ordered set (poset) of n vectors with elements in B
with order induced component-wise by <. B” is in fact a Boolean lattice.

Similarly, the

C:= HX,-.

v,eV

is a Boolean lattice of integer vectors with partial order < induced
component-wise by <. That is, a < b if for every i the i-th component
satisfies a; < b;.

While the assumption that each v; activates downstream nodes v; € T(;)
at different thresholds leads to considering the set of states C, the activation of
a particular node v; € T(v;) by v; only happens at a single threshold. This leads
to definition of the following function that associates to each state ¢ € C the
information on which targets it actually activates and which ones it does not.
The state ¢ = (¢;),, .y produces an input to a node v; via the input map

B.C— H B, B = (Bji)v,'es(v]‘)
ieV

where

5o 0, if ¢;<0,(v)) andd) = 1or¢;> 0,(v)) andd = —1
(o) := . . .
1, if ¢;> 6;(v;) and §; = Lor ¢;<0,(v)) and &, = —1
)

Note that for activating edge v; — v}, if ¢; is below (above) the activating
threshold 6(v;) then the input from v; to v; is 0 (1). This assignment is
reversed if the edge is repressing. Function B = (B');c, depends on the
structure of the network through functions &, the number of inputs to each
node and logic parameter 6.

The function B associates to each ¢ € C and each node v; € V its
boolean input vector which is an element of B'"?)|. Whether a particular
boolean input activates an output edge v;—ov; connecting v; to v; € T(v;) or
not, is determined by a logic parameter at node v; that we define next. Logic
parameters capture all potential patterns of combinatorial activation, where
only some combinations of input nodes activate an output edge. In addition,
these patterns may vary from one output edge of v; to the next.

Definition 1.1. A functiong : B" — [0, 1,.. ., k] is a positive multivalued
monotone Boolean function (mMBF)if b' < b” implies g(b")<g(b*). When k=
1 the function g is positive monotone Boolean function (MBE).

A logic parameter for node v; is a positive boolean mMBF

g BSOI L x,
E i

A collection g := (g;), .y is a logic parameter. The set of all logic parameters
for node v; is denoted L(v;), while the set of all logic parameters

is £:= [, cv L)

Definition 1.2. Consider two logical parameters g,h € L(v;), where
g.h:B" — X, Wesayg<hifg(b)<h(b)forallb € B". With this ordering
the set of logic parameters (L(v;), <) is a partially ordered set.

We describe the set of logic parameters for the network in Fig. 2c. At
node v; since S(v;) = v3 and X, = {0, 1}, the set of logic parameters is the set of
all MBFsg, : B — X,. Two of these functions are constant: we denote by 0
the zero function and by 1 the one function. The third function, which we
denote by Id maps 0 to 0 and 1 to 1 see Fig. 3a. These functions form a poset
shown in Fig. 4a.

Fig. 3 | Logic param-eters for the restriction pOiI.lt ‘ H 0 ‘ Id ‘ 1 ‘ ‘ H 0+0 ‘ 0-+1d ‘ 0+1 ‘ Id+1d ‘ Id+1 ‘ 1+1 ‘

network. a Three logic parameters g, € L(v,); b Six

logic parameters g; € L(v3). ‘ 0 010 1 ‘ ‘ 0 0 0 1 0 1 2 ‘
(1jof1 J1] [1]o 1 1 2 2 2 |
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Fig. 4 | Logic parameter graphs. a Logic parameter
graph L(v,) consists of MBFs g, : B — {0,1};

b logic parameter graph £(v;) consists of mMBFs
g : B — {0, 1,2} written as sums of two ordered
functions (2-chains) from (a); ¢ poset of MBFs with
threeinputs X, Y, Z,wherea = (XA Y) V(XA Z) V (Y
A Z). Blue circles indicate non-degenerate MBFs.

Consider v,. Since S(v,) = {v;, v,} and X, = {0, 1}, the set L(v,) is the set
of MBFs that map g, : B> — X,. There are 6 such functions which we
denote by 0, A, X, Y, V, 1. These were depicted in Fig. 1b, c.

Finally, consider the node v. Since S(v3) = {v,} and the set X5 = {0, 1,2},
the logical parameters are multivalued monotone boolean functions
g5 : B — X;. It can be shown™, that there are 6 such mMBFs that corre-
spond to ordered pairs (2-chains) in the poset of MBFs from B to B.
Therefore the functions g; are sums f+ g of pairs of functions f < g in the set
f,8€10,1d,1} in Fig. 3a. We list these function using the sum notation in Fig.
3b; the poset structure of these functions is in Fig. 4b.

The set of all parameters is the product of logic and order parameters
P = Lx.Wecall P(v;) := L(v;) X (v;) the set of parameters for node v;
the set of all parameters is the product P = [], ., P(v;).

We have seen that the set of logical parameters has an additional
structure of a partially ordered set, or a graph. In our example, the poset
L(v,) isin Fig. 4a, poset for L£(v,) isin Fig. 1¢,and £(v;) is in Fig. 1c. We will
call this organization of the set of DSGRN parameters P a parameter graph
PG of network RN. The following section shows the construction of PG by
defining adjacency between elements of P.

Parameter graph

The parameter graph PG has nodes and edges. The set of nodes is the set of

DSGRN parameters P. The undirected edges will connect adjacent nodes.

Two parameter nodes for a node v;, (g;, 0,), (&;, 6,) € P(v,) are adjacent if

exactly one of the following conditions is satisfied.

* Order adjacency: g; = g; and the values of the order parameters 6; and

0, are exchanged on a single pair of neighboring entries on which the
logic parameters agree.

o Logical adjacency: 0, = @,— and the logic parameters g; and g, differ by 1
in a single input ie., there exists exactly one d € BS*) such
that g,(d) = g;(d) + 1.

The factor graph for node v; is the undirected graph PG(v,) :=
(P(v,), £(v;)) whose nodes are parameter nodes for v; and whose edges are
given by adjacency. The parameter graph PG := (P, ) is the Cartesian
product PG := [], .,PG(v;). That is, there is an edge (p', p*) € & if and
only if there is a unique v; € V such that (p!,p?) € E(v;) and p! = p?
otherwise.

We return to our example in Fig. 2¢. Since the set of order parameters
©(v;) and O(v,) have both only one element, the factor graph PG(v,) =~
L(v,) is isomorphic to the poset of logic parameters £(v,) in Fig. 4a and
factor graph PG(v,) = L(v,)isisomorphic to the poset of logic parameters
L(v,) in Fig. 1c. The factor graph PG(v;) consists of two copies of the poset
of logic parameters £(v;) in Fig. 4b, where one copy has order parameter 0}
and the copy has order 92, see (2). The two copies are connected between
pairs of nodes 0 + 0, Id + Id and 1 + 1 where the change from 9; to 6§
satisfies oder adjacency condition.

In Fig. 4c we show a logic factor graph for a network node with three
inputs and one output, which consists of 20 monotone boolean functions.
The number of MBFs, with n inputs, called n-th Dedekind number, increases
rapidly with the number of inputs. The 9th Dedekind number has been only
recently computed™.

Essential parameters
There are two types of subsets of the logical parameters that are of special
interest. First, we may only be interested in those logical parameters at which
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the associated multivalued monotone boolean function is non-degenerate.
The definition below directly generalizes the concept of non-degenerate
MBF**,

Definition 1.3. A variable by is an essential variable of a multivalued
monotone Boolean function f if there is at least one b € B" such that
Sly=o #fly=1- An MBF is said to be non-degenerate if all variables are
essential.

Definition 1.4. A parameter p € PG of network RN is essential if the
corresponding logic parameter g is a non-degenerate mMBF.

This agrees with the definition of essential parameter nodes given in
refs. 2,5,25. All non-degenerate mMBFs in £(v,) and L(v,) are in blue
circles in Fig. 4.

Boolean parameters
Another special subset of logical parameters are those that represent MBF
rather than mMBF. Consider those parameters p = (g, 0) € PG where the
range of every mMBF g; consists of only two values 0 and ¢;, i.e., the lowest
possible value and the highest possible value. This can be interpreted as each
input either does not activate any target nodes or it activates all target nodes.
Since such mMBF has only two values, it can be represented as a MBF g;.
We call such parameters boolean parameters since the function
g2=10(8,,8,---,8,) as a map from B" — B", represents a traditional
boolean system where states 0 and 1 are assigned to each variable.

In Fig. 4a, ¢, all parameters are boolean since the range of all functions is
{0, 1}. In Fig. 4b there are three Boolean parameters 1 + 1,1d + Idand 0 + 0.
Notice that not all boolean parameters are essential.

Essential boolean parameters

We now restrict our attention even further to just essential boolean para-
meters. These represent parameters represented by non-degenerate
monotone boolean function. Figure 4c shows 9 non-degenerate MBFs
with three inputs in blue circles. Paper® studied repressive tetrahedron
network (see “Toggle tetrahedron network” below) where all four nodes
have three repressive inputs from the other three nodes, and in turn repress
all other nodes. Each node has three inputs and three outputs and the
parameter graph PG has about 27 trillion nodes. However, since there are
only nine non-degenerate MBFs, the total number of essential boolean
parameters is only 9*=6561. Surprisingly, the frequency of observed
equilibria that exists within this small set approximates well the overall
frequency of dynamics across entire PG, as documented by random
DSGRN parameter sampling as well as ODE parameter sampling by
RACIPE’. Clearly, analyzing dynamics of 6561 parameters is computa-
tionally feasible while examining 27 trillion parameters is not. The reason
why this small sample seems to match the overall dynamics remains an open
problem.

Dynamics

The multi-valued boolean dynamics associated to a network RN =
(V, E, 6) depends on a choice of parameter p € P, and on the input function
B defined in (3) that reflects the position of the positive and negative in the
network through function 6.

The dynamics occur on the state space C = ][, .X;, introduced
earlier. We call ¢ € C a state of the network RN.

We return to the E2F-Rb example and define the functions B! : X; —
B,B?: X, xX; — B? and B’ : X, — B, see Fig. 5 for the order para-
meter (0, 6,, 6;), where Gé(vl) =1land 0§(v2) = 2. We only list relevant
inputs X; C C for each i. Since the edge v; — v; is activating and since
6; (v;) = 1, v5 activates v, at the first threshold the output value changes
from Oto 1 at the first threshold (see Fig. 5a.) Because the edge from v, to v, is
repressive, the first component B? of the function B’ reverses the boolean
input from node v,. The second component B describes input from node v;
to node v, which is activating at the second threshold, see Fig. 5b. Finally, the
function B’ in Fig. 5c reflects the fact that the edge x,—Ix; is repressive.

B
E

O~ O
— — O

01
(a) b) ()

Fig. 5 | Functions B', B, B, where we only list the relevant inputs. Note that the
presence of negative edge between v; and v, is manifested in the reversal in the first
coordinate B? of B* and negative edge between v, and vs is reflected in reversal in

function B’.

Definition 1.5. The dynamics for network RN with the sign function § at
parameter (g, 0) € P is defined as an asynchronous update of function fi=
g° B. More precisely,

1. The multi-valued boolean mapf : C — C is defined by

fi(e) == gi(B'(0) (4)

2. The multi-level boolean dynamicsF : CC is a multi-valued map
generated by fand defined by
o Ifflc) = c then F(c) = {c}.
» Foranyv;and n € { — 1, 1} satisfying #f,(c) > rc; the state

G=c+7n, Ej =cjforj¢i

satisfies ¢ € F(c).

The maps fand F depend on the choice of network RN and the choice
of parameter (g, 0) € P. We will explicitly include these dependencies as
arguments as needed.

This definition provides a connection between each parameter (g, 6) €
P and a discrete dynamics on C given by map F. As we show in “Connecting
parameter graph PG to ODE models” each such map F also represents
behavior of continuous solutions of switching ODE system that models
continuous network dynamics. Therefore the parameter graph PG con-
nects continuous dynamics of ODEs and asynchronous update dynamics
induced by discrete map F.

Remark 1.1. Consider all boolean parameters p = (g, 8) € PG where the
logical parameter g gives rise to the same boolean function g, but where they
differ in the order parameter. Then it is easy to see that the dynamics at all
these parameters will be the same since the order of thresholds is irrelevant
for the resulting update function f(c) = g(B(c)). Therefore boolean para-
meters are fully described by their logic parameters and such logic para-
meters correspond to collections of mMBFs.

Morse graph
The recurrent dynamics of F(-; p) are encoded by a Morse graphMG(p).
The Morse graph MG = (SCC, A) is a directed graph with nodes con-
sisting of strongly connected components of STG(C, p). The Morse graph is
the Haase diagram on SCC of the reachability relation A on the strongly
connected components within STG(C, p). We label each strongly con-
nected component s € SCC according to the following.
 Ifs € SCC consists of a single recurrent state, s = {x}, then x is a fixed
point of F and we label s by FP(x).
» Ifs € SCC is not an FP then we label s as a partial cyclePC or a full
cycleF C. The strongly connected component sis a PC if s is constant in
at least one coordinate i.e., there is a node u € V'and an integer k such
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Fig. 6 | Asynchronous update functions. a Compositions f, = g, ¢ B> for all 6 choices of function g’. b Compositions f = g3 » B’ for all six choices of function g’.

that x € s implies x,, = k. If s is not an FP or an PC then s is an FC. If
s € SCC has no out-edges in MG(p), we call sstable Morse node.
Otherwise, s is unstable.

Applications
We now illustrate our approach on three examples. First, we investigate the
ability of E2F-Rb network without self-loop on E2F (Fig. 2¢) to support the
bistable phenotype between On and Off state that characterizes the switch-
like entry into S phase in the cell cycle. Then we look at two networks that
have been studied in the context of differentiation of immune cells subtypes:
toggle triad and toggle tetrahedron. For toggle triad we look at prevalence of
different types of bistability and for toggle tetrahedron we summarize the
results on prevalence of different types of equilibria, that are described in
more details in ref. 8.

In all of these examples we focus our attention to essential boolean
parameters as this small set is amenable to theoretical analysis. The analysis
across entire parameter graph PG is possible using DSGRN software’”.

E2F-Rb network
In this section, we find fixed points for the E2F-Rb network at different
parameters. Fixed points fulfill the satisfiability condition

s € Cisafixed point, iff f,(s) = gi(Bi(s)) =s, i=123 (5
whereg, € L(v;), the set of logical parameters. Recall that £(v, ) is in Fig. 4a,
L(v,) in Fig. 1c, and the £(v;) in Fig, 4b. The functions B are listed in Fig. 5.
The set of composite functions fi:= g o B X3 — X,, where g, € £, is
identical to that in Fig. 3a. All possibilities for the second composite function
for= g5 0 B X x X3 — X,, for all choices of g, are listed as columns in Fig. 6a.
We list all compositions f3:= g3 o B X, — X in Fig. 6b.

These tables make direct verification of Eq. (5) possible, albeit for larger
network this poses a combinatorial problem as the satisfiability of (5) is
equivalent to logical satisfiability problem™ which is NP complete™.

We consider two potential fixed points that are biologically important.
First the state s,,, = (1, 0, 2) represents the state On; that is, a commitment to
transition from GI to S phase of the cell cycle, since both v; (CycE) and v,
(free E2F) are at their highest states, and v, (E2F-Rb dimer) is at the lowest
state. Consider two parameters p;: = (Ly, 6) and p,: = (L,, 6) with the order
parameter 6 := (0,,0,,0}) used above and the only two essential logic
parameters

Li=@g=Hd,g=nNg=Id+1d), L,=(g =1Idg=V,g=Id+ Id).

Then for parameter p; we get
fGson) = (1, 0, 2) = (fi(2), /(12), £5(0)) = (1, 0, 2),
SO S,y is a fixed point, but for parameter p, we get

Flson) = (1,0, 2) = (£(2), £,(12), f3(0)) = (1, 1, 2).

Therefore s,,, is a fixed point for p;, but not for p,. Similar calculation
shows that s,= (0, 1, 0) that represents the Off state where cell is pausing in
G1 phase, is a fixed point under p,, but not under p;.

We remark that there are two other essential parameters p, := (L,, 0)
and p, := (L,, ) with the same logical parameters L,, L,, but order para-
meter 0 = (6,, 0, 9%). The results are similar: one of the parameters sup-
ports only s,, and one of them supports only sy

Since E2F-Rb network is assumed to act as a bistable switc we
would like to investigate if there are other, non-essential parameters where
both s,, and sy are fixed points. Examining Fig. 6 for columns where
f3(12) =0 and f3(00) = 1 we find that the only such function arise from logical
parameter g>(X;, X3) = X;. This represents function where the input to v,
from v; does not affect the outcome since the function g, only depends on
the input from v;. Erasing the edge v5 — v, from the network we get a
network that consists of single positive loop. Such a reduced network is
known to support bistablity.

Our analysis can be interpreted in two ways:

* the smaller network consisting of a positive loop v;=v,, v,-v; and
v3 — v supports the bistability;

o the self-edge E2F to E2F is needed for the original network to support
the bistability at the set of essential parameters.

1,15,16

Both interpretations provide valuable insight into interplay between
the structure of the network and bistability.

Developmental networks
Multistability in toggle triad
We now investigate parameters that support bistability and multistability in
toggle triad. We only consider essential boolean parameters which, by
Remark 1.1, can be represented as g=(g,, g» &) where each g; is a non-
degenerate monotone boolean function.

Using the update functions f; = g;  B' for i = a, b, ¢, where the B(XY) =
(=X 1Y) reverses both inputs (see Fig. 1b), the essential boolean parameters
that support so called mirror bistability between (001) and (110) must satisfy

f.0n=0, f(10)=1
fb(OI) =0, fb(lo) =1

Direct inspection of table in Fig. 1b shows that there is unique choice of
functions for both g;(X, Y) = Yand g,(X, Y) = Y. On the other hand any g;(X,
Y) € {V, Y, X, A} works. Therefore there are 4 boolean parameters which
support this type of bistability. However, none of these parameters are
essential.

On the other hand, non-mirror bistability between (001) and (100) is
supported by all parameters for which

f.0n =0,  f,(00)=1
fh(()l) =0, fb(lo) =0
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Then any combination of choices g,(X, Y) € {A, Y}, g(X, Y) € {0, A} and
2(X, Y) € {A, X} satisfy these equations. These combinations form eight
parameters supporting this bistability, and one of them, g = (A, A, A) is an
essential boolean parameter.

Can the network support tristability? The natural candidates for three
fixed points are (001), (100), (010). This adds additional conditions (third
column below) to the conditions above

f,(01) =0, f,(00)=1 f,(10)=0
f(01) =0, fp(10)=0 f,(00)=1
f.(00) =1, f.(10)=0. f.(01)=0

Direct calculation shows that g = (A, A, A) supports the tristability (001),
(100), (010). Similar calculations shows that the only parameter that sup-
ports tristability between (110), (011), (101) is g = (V, V, V).

We close this part by discussion of all 8 essential boolean parameters.
From the discussion in the introduction, the equilibrium (001) is supported
by two essential parameters g = (A, A, V) and g = (A, A, A). By symmetry, the
equilibrium (010) is supported by g = (A, v, A) and g = (A, A, A) and, finally,
the equilibrium (100) by g = (V, A, A) and g = (A, A, A). The second one of
these, logical parameters g(A, A, A), supports tristability. Similar argument
shows that the parameters with two copies of g; = V and one copy of g; = A
support a single equilibrium in the set (110), (011), (101). We conclude that
no essential boolean parameter supports bistability in the toggle triad. While
we examined a very small subset of essential boolean parameters, our results
are consistent with'* which found that the prevalence of tristability among
(100), (100), (010) is greater than any other type of tristability and that
bistability is comparatively rare.

The methodology in this paper also allows us to ask us what happens if
we perturb parameters away from essential boolean parameters. Perturbing
essentiality leads to consideration of 216 choices of boolean functions dis-
cussed in the introduction. Perturbing boolean functions to the class of
multivalued boolean functions is possible within the structure of the para-
meter graph and will result in potentially different dynamics.

Toggle tetrahedron network

In this section, we briefly review extensions of the results from toggle triad to
toggle tetrahedron®. Motivation for studying this network is differentiation
of naive CD4+- T cells into four different types denoted Th1, Th2, Th17,and
Treg. Each of these four types of cells is characterized by a lineage specific
transcription factors and these factors repress each other.

Therefore toggle tetrahedron has four nodes a, b, ¢, d that are fully
connected without self-edges and each node receives three repressive inputs
from other three nodes. We again focus on computing the number of
essential boolean parameters g = (¢, g go £4)> Where each g; is a non-
degenerate monotone boolean function, that support a particular type of a
steady state. The types we are interested in include all-high (1111) and all
low (0000) states, as well as states with one (1000), two (1100) or three (1110)
active components. Poset of all MBFs with three inputs in Fig. 4c has 20
functions with 9 non-degenerate MBF marked in blue®*.

We now summarize results from”.

We first note that, similarly to toggle triad, the only parameters that
support constant equilibria (0000) and (1111) are (0, 0,0,0) and (1,1, 1, 1),
respectively. Further, by symmetry for every parameter supporting equili-
brium (1000) there is a parameter that supports equilibrium (0111), since
the logic parameter functions are simply negated.

Therefore we only need to consider equilibria of type 3—-1 where three
genes have different expression levels than the fourth gene and the equilibria
of type 2-2 where two genes are active and two are inactive. Similar analysis
to the one for toggle triad gives the following.

Theorem 0.1. (°) Out of total of 9*=6561 essential boolean parameters,
there are
e 2%2%2%9 =72 essential boolean parameters that support any 3-1
equilibrium.

e 7' = 2401 essential boolean parameters that support any 2-2
equilibrium.

As discussed in detail in ref. 8 significantly higher prevalence of 2-2
equilibria than prevalence of 3-1 equilibria may indicate that the direct
differentiation from precursor cell into individual cell types, represented by
a 3-1 state, is less likely that a two step differentiation, where in the first step
cells attain a mixed state represented by a 2-2 equilibrium, followed by a
subsequent differentiation to individual cell types.

Connecting parameter graph PG to ODE models
The switching system dynamics™'*"'™ associated to a regulatory network
RN is a system of ordinary differential equations
X =A,x)—yx;, i€V 6)
where x = (x;), oy € R, y; € R is the decay rate of x;, and 4; is a pie-
cewise constant function which captures the effect of the sources S(i) on the
node i. The function A = (A4, ..., A,) is defined for parameter p = (g, 6) €
P as follows.
1. We associate a continuous variable x; to each node v; € V.
2. Weassociate a threshold values 8;; j € T(i) to each edge i—ojand assume
that these thresholds are distinct 6; # 6y, for any j, k € T(3).
3. The thresholds 6); form a rectangular grid G:={x ¢ RY |
x = Gji7 u eV, je T(@)}. The set R’ \ G is a collection of a finite
number of open domainsD where x € D if all components of vector x
lie between the thresholds. Observe that a collection of all domains D is
in one-to-one correspondence with space C. This is expressed via a map

px): RING—C x> (ky, ..o k),

»n
where k; is an integer k; € X; such that k; < x; < k; + for all i. This map
associates to each x € R’} \ G a signature ¢ € C of its domain d € D.

4. Then we set

Ai(x) := yf i(9;(x) = 7:8:(B(9i(x))) @)

In an open domain d € D, the function A is constant and the flow of
(6) is directed toward the target pointA(x). All trajectories in d are straight
lines towards the target point. If the target point is contained in d then the
target point is an asymptotically stable fixed point of (6). If the target point is
not in d, then the trajectories continue in a straight line until they hit the
boundary of d. For a generic set of initial condition in d, trajectory hits a co-
dimension one boundary of d where x = 0;; for single threshold of 6;;. If j # i,
then the sign of %; does not change at x; = 6;; and the trajectory can be
extended by continuation into a new domain d'. If i = j and the edge i  j is
repressing, then it is possible the sign of x; may change on x; = 8,;. However,
since only one component of A changes at 0;; all the components of the
vector field Ax(x), k # i remain the same between d and d’. Therefore a
sliding motion along the hyperplane x; = 0;; between d and d’ is well defined.
As a consequence, if the target point of d does not lie in d, for generic set of
initial conditions in d, the solutions can be continued to some neighboring
domain d'. This observation has been used in ref. 2 to define state transition
graphs even for systems with negative self-edges.

This description shows that the dynamics of (6) are well defined for
every parameter p = (g, ) € P and determined by the target point func-
tion f= g B, see eq. (4). Furthermore it is easy to see that the trajectories of
(6) that exit domain d may enter any domaing F (d). Therefore transition of
the state transition graph defined by F capture all possible transitions by
solutions of (6). It follows, that the Morse nodes denoted by FP of MG
contain fixed points of ODE system (6) and any Morse node PC or FC hasa
potential to contain periodic solutions of (6).

The precise correspondence between invariant sets of (6) which are
central objects in study of dynamical systems* and the Morse nodes is
complex and beyond the scope of this paper''. The ongoing current work
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aims to show that the Morse graph recovers Morse decomposition of a wide
class of smooth ordinary differential equations that are approximated by the
switching system (6). We describe briefly the main ideas for a restricted class
of functions, where A has a form of product-of-sums"'~** and which have
been used extensively in DSGRN™**”. In product-of-sums systems, the

functional form for A, is restricted to be a product of sums of switching

functions
L, if §,(x; — 6,)<0
M) =11 > oj(x)  04(x) == ! RO
jes(i) (N () Uij’ if S,J(xj — 9,1) >0
®)

where 0 < L; < Uj;are the lower (L) and upper (U) values for the effect of v;on
v;. The advantage of the product-of-sums description for A is that the
parameters L and U are easy to interpret in applications.

In particular, for every function oj; there is a sequence of Hill functions,
parameterized by the Hill parameter n, of the form

n

Hj(x) = Ly + (U = Lij)m ©)
i
such that
”ILHJO hg(x) = 0;(x) pointwise.

This allows comparison between ODE system with Hill functions and
switching systems. Since the repertoire of long-term dynamics of switching
system associated to a network RN is determined by collection of Morse
graphs, parameterized by all multi-valued MBFs in parameter graph PG,
DGSRN provides a bridge between continuous dynamics of networks and
combinatorial, finite collection of Morse graphs in PG.

There is numerical evidence that DSGRN successfully predicts
dynamics of ODE network dynamics®". In ref. 12, the results from DSGRN
computation of equilibria were compared to results from RACIPE’
approach that samples parameters of Hill function network models and
then runs the ODE simulations. In particular, ref. 12 examines at what value
of Hill coefficient # the RACIPE and DSGRN results start to agree. Sur-
prisingly, DSGRN predicts RACIPE results even for relatively small values
of n. The paper® considers toggle tetrahedron network which has 27 trillion
DSGRN parameters which is too large for exhaustive computation. We
hasten to add that computations involving several billion of parameters can
be computed on a laptop in matter of hours. Two alternative approaches
have been used. In one, four random samples of 10,000 DSGRN parameters
from the set of all DSGRN parameters were selected and examined for
different types of equilibria and different types of multistability. In the
second approach the collection of all 6561 essential boolean parameters have
been examined. We compared results from both of these approaches to
results from RACIPE samples and again, we found good agreement between
all three measurements. This is surprising as the essential Boolean para-
meters represents a tiny slice of the parameter space, yet it seems to predict
well behavior of the network over a entire parameter space.

Since the DSGRN analysis is computationally many orders of magni-
tude faster that RACIPE this suggests that DSGRN is a valuable tool for the
first pass analysis of the range of behaviors that the network is able to support.

Discussion

Cellular regulatory networks describe directed pairwise interactions
between genes and proteins. Some small networks seems to occur statisti-
cally more frequently that others”, which suggests that they are subject to
evolutionary selection. The role of cell regulation is to dynamically respond
to changes in the environment and thus dynamics supported by the reg-
ulatory networks is related to cell’s fitness. It is therefore important to
understand dynamics that these networks can support. Accordingly, theory
of motifs**"” suggested that a particular dynamics of the motifs is responsible

for their overrepresentation within the set of cellular networks. However,
any model of network dynamics depends on choice of parameters which
represent mathematically different environmental resources, external sig-
nals as well as internal resources like number of ribosomes. Since these are
difficult to measure in individual cells, it is natural to try to examine the
entire range of dynamical behaviors that the network can support.

We have reviewed recent progress on the problem of describing
range of dynamics supported by a network. We concentrate here on
description of equilibria, or steady states, rather than more dynamic
behaviors like periodic attractors. We show that there is natural connec-
tion between network models consisting of collections of multivalued
monotone boolean functions and models using ordinary differential
equations. These mMBFs are organized in a parameter graph PG. This
structure allows us to start from a small subset of essential boolean
parameters, examine dynamics at these parameters, and then explore the
neighborhood of these parameters.

We examine three example networks where we discuss prevalence of
different equilibria within the set of essential boolean parameters.

Our approach provides a new tool to answer the questions about range
of dynamics a network may exhibit across different conditions. If this range
does not include experimentally observed dynamics, the network is likely
incomplete. When network does exhibit observed dynamics, its prevalence
within PG may be used to rank the networks and focus experimental
efforts">*", and reduce the set of potential hypotheses.

Data availability
No experimental data were used in this article. DSGRN software is available
in GitHub repositories™”’.

Received: 2 February 2024; Accepted: 9 August 2024;
Published online: 28 August 2024

References

1. Gedeon, T., Cummins, B., Harker, S. & Mischaikow, K. Identifying robust
hysteresis in networks. PLoS Comput. Biol. 14, 1006121 (2018).

2. Gameiro, M., Gedeon, T., Kepley, S. & Mischaikow, K. Rational design
of complex phenotype via network models. PLoS Comput. Biol. 17,
1009189 (2021).

3. Cummins, B., Gedeon, T., Harker, S., Mischaikow, K. & Mok, K.
Combinatorial representation of parameter space for switching
systems. SIAM J. Appl Dyn. Syst. 15, 2176-2212 (2016).

4. Cummins, B., Gedeon, T., Harker, S. & Mischaikow, K. Database of
dynamic signatures generated by regulatory networks (DSGRN). In
Koeppl, J. F. H. (ed.) Computational Methods in Systems Biology,
Chap. 19, 300-308 (Springer, 2017).

5. Crawford-Kahrl, P., Cummins, B. & Gedeon, T. Joint realizability of
monotone Boolean functions. J. Theor. Comp. Sci. 922, 447=474 (2022).

6. Gedeon, T. Lattice structures that parameterize regulatory network
dynamics. Math. Biosci. https://authors.elsevier.com/sd/article/
S0025-5564(24)00085-3 (2024).

7. Duddu, A., Majumdar, S., Sahoo, S., Jhunjhunwala, S. & Jolly, M.
Emergent dynamics of a three-node regulatory network explain
phenotypic switching and heterogeneity: a case study of th1/th2/th17
cell differentiation. Mol. Biol. Cell 33, 46 (2022).

8. Duddu, A. et al. Multistability and predominant double-positive states
in a four node mutually repressive network: a case study of Th1/Th2/
Th17/T-reg differentiation. npj. Syst. Biol. bioRxiv. https://doi.org/10.
1101/2024.01.30.575880v1 (2024).

9. Huang, B. et al. Interrogating the topological robustness of gene
regulatory circuits. PLoS Comput. Biol. 13, e1005456 (2017).

10. Gedeon, T. Multi-parameter exploration of dynamics of regulatory
networks. BioSystems 190, 104113 (2020).

11. Gedeon, T., Harker, S., Kokubu, H., Mischaikow, K. & Oka, H. Global
dynamics for steep sigmoidal nonlinearities in two dimensions.
Physica D 339, 18-38 (2017).

npj Systems Biology and Applications| (2024)10:98


https://authors.elsevier.com/sd/article/S0025-5564(24)00085-3
https://authors.elsevier.com/sd/article/S0025-5564(24)00085-3
https://authors.elsevier.com/sd/article/S0025-5564(24)00085-3
https://doi.org/10.1101/2024.01.30.575880v1
https://doi.org/10.1101/2024.01.30.575880v1
https://doi.org/10.1101/2024.01.30.575880v1
www.nature.com/npjsba

https://doi.org/10.1038/s41540-024-00423-8

Review article

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Hari, K. et al. Assessing biological network dynamics: comparing
numerical simulations with analytical decomposition of parameter
space. NPJ Syst. Biol. Appl. 9, 29 (2023).

Gardner, T., Cantor, C. & Collins, J. Construction of a genetic toggle
switch in escherichia coli. Nature 403, 339-342 (2000).

Duddu, A., Sahoo, S., Hati, S., Jhunjhunwala, S. & Jolly, M. Multi-
stability in cellular differentiation enabled by a network of three
mutually repressing master regulators. J. R. Soc. Interface 17,
20200631 (2020).

Yao, G., Lee, T.,Mori, S., Nevins, J. & You, L. A bistable Rb-E2F switch
underlies the restriction point. Nat. Cell Biol. 10, 476-482 (2008).
Yao, G., Tan, C., West, M., Nevins, J. & You, L. Origin of bistability
underlying mammalian cell cycle entry. Mol. Syst. Biol. 7, 485 (2011).
Pardee, A. A restriction point for control of normal animal cell
proliferation. Proc. Natl/ Acad. Sci. USA 71, 1286-90 (1974).
Blagosklonny, M. V. & Pardee, A. B. The restriction point of the cell
cycle. Cell Cycle 2, 102-109 (2002).

Sears, R. & Nevins, J. Signaling networks that link cell proliferation and
cell fate. J. Biol. Chem. 277, 11617-11620 (2002).

Wang, H., Carey, L., Cai, Y., Wijnen, H. & Futcher, B. Recruitment of
cIn3 cyclin to promoters controls cell cycle entry via histone
deacetylase and other targets. PLoS Biol. 7, 1000189 (2009).
Cross, F., Buchler, N. & Skotheim, J. M. Evolution of networks and
sequences in eukaryotic cell cycle control. Philos. Trans. R. Soc. B
366, 3532-3544 (2011).

Jakel, C. A computation of the ninth Dedekind number. J. Comput.
Algebra 6-7, 100006 (2023).

Shmulevich, I., Dougherty, E., Kim, S. & Zhang, W. Probabilistic
boolean networks: a rule-based uncertainty model for gene regulatory
networks. Bioinformatics 18, 261-74 (2002).

Cury, J. E. R., Roxo, P. T., Manquinho, V., Chaouiya, C. & Monteiro, P.
T. Immediate Neighbours of Monotone Boolean Functions. arXiv
preprint arXiv:2407.01337 (2024).

Xin, Y., Cummins, B. & Gedeon, T. Multistability in the epithelial-
mesenchymal transition network. BMC Bioinformatics 21, 1-17 (2020).
Harker, S. Dsgrn software. https://github.com/shaunharker/
DSGRN (2017).

Harker, S. & Cummins, B. Code supplemental for “identifying robust
hysteresis in networks”. https://github.com/shaunharker/2017-
DSGRN-IdentifyingRobustHysteresisInNetworks (2017).

Milano, M. & Roli, A. Solving the satisfiability problem through boolean
networks. In Lamma, E. & Mello, P. (eds.) AI*IA 99: Advances in Artificial
Intelligence, 72-83 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2000).
Cook, S. A. The complexity of theorem-proving procedures. In Proc.
Third Annual ACM Symposium on Theory of Computing, STOC ’71,
151-158 (Association for Computing Machinery, New York, NY, USA,
1971) https://doi.org/10.1145/800157.805047

Trakhtenbrot, B. A survey of russian approaches to perebor (brute-
force searches) algorithms. Ann. Hist. Comput. 6, 384-400 (1984).
Glass, L. & Kauffman, S. A. Co-operative components, spatial
localization and oscillatory cellular dynamics. J. Theor. Biol. 34,
219-37 (1972).

Glass, L. & Kauffman, S. A. The logical analysis of continuous, non-
linear biochemical control networks. J. Theor. Biol. 39, 103-29 (1973).
Glass, L. & Pasternack, J. Prediction of limit cycles in mathematical
models of biological oscillations. Bull. Math. Biol. 40, 27=44 (1978).
Snoussi, E. H. Qualitative dynamics of piecewise-linear differential
equations: a discrete mapping approach. Dyn. Stab. Syst. 4,
565-583 (1989).

Snoussi, H. & Thomas, R. Qualitative dynamics of piecewise-linear
differential equations: a discrete mapping approach. Bull. Math. Biol.
55, 973-991 (1993).

Thomas, R. Regulatory networks seen as asynchronous automata: a
logical description. J. Theor. Biol. 163, 1-23 (1991).

37. Thomas, R. Boolean formalization of genetic control circuits. J. Theor.
Biol. 42, 563-585 (1973).

38. Thomas, R., Thieffry, D. & Kaufman, M. Dynamical behaviour of
biological regulatory networks-I. Biological role of feedback loops and
practical use of the concept of the loop-characteristic state. Bull.
Math. Biol. 57, 247-76 (1995).

39. Thieffry, D. & Romero, D. The modularity of biological regulatory
networks. BioSystems 50, 49-59 (1999).

40. Katok, A. & Hasselblatt, B. Introduction to Modern Theory of
Dynamical Systems (Cambridge University Press, 1995).

41. dedong, H. et al. Qualitative simulation of genetic regulatory networks
using piecewise-linear models. Bull. Math Biol. 66, 301-40 (2004).

42. Ironi, L., Panzeri, L., Plahte, E. & Simoncini, V. Dynamics of actively
regulated gene networks. Phys. D Nonlinear Phenom. 240,

779-794 (2011).

43. Edwards, R., Machina, a, McGregor, G. & van den Driessche, P. A
modelling framework for gene regulatory networks including
transcription and translation. Bull. Math. Biol. 77, 953-983 (2015).

44. Tournier, L. & Chaves, M. Uncovering operational interactions in
genetic networks using asynchronous Boolean dynamics. J. Theor.
Biol. 260, 196-209 (2009).

45. Milo, R. et al. Network motifs: simple building blocks of complex
networks. Science 298, 824-827 (2002).

46. Alon, U.An Introduction to Systems Biology (Chapman &Hall/CRC, 2007).

47. Alon, U. Network motifs: theory and experimental approaches. Nat.
Rev. Genet. 8, 450-461 (2007).

48. Cummins, B., Gedeon, T., Harker, S. & Mischaikow, K. Model rejection
and parameter reduction via time series. SIAM J. Appl. Dyn. Syst. 17,
1589-1616 (2018).

Author contributions
The author conceptualized and wrote the paper.

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Tomas. Gedeon.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material
is notincluded in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

npj Systems Biology and Applications| (2024)10:98

10


https://github.com/shaunharker/DSGRN
https://github.com/shaunharker/DSGRN
https://github.com/shaunharker/DSGRN
https://github.com/shaunharker/2017-DSGRN-IdentifyingRobustHysteresisInNetworks
https://github.com/shaunharker/2017-DSGRN-IdentifyingRobustHysteresisInNetworks
https://github.com/shaunharker/2017-DSGRN-IdentifyingRobustHysteresisInNetworks
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjsba

	Network topology and interaction logic determine states it supports
	Example: (Toggle triad)
	Ensemble of multivalued monotone boolean functions compatible with the network
	Parameters
	Parameter graph
	Essential parameters
	Boolean parameters

	Essential boolean parameters
	Dynamics
	Morse graph

	Applications
	E2F-Rb network

	Developmental networks
	Multistability in toggle triad
	Toggle tetrahedron network

	Connecting parameter graph PGPG to ODE models
	Discussion
	Data availability
	References
	Author contributions
	Competing interests
	Additional information




