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Understanding the dynamic states and transitions of heterogeneous cell populations is crucial for
addressing fundamental biological questions. High-content imaging provides rich datasets, but it
remains increasingly difficult to integrate and annotate high-dimensional and time-resolved datasets
to profile heterogeneous cell population dynamics in different microenvironments. Using hepatic
stellate cells (HSCs) LX-2 as model, we proposed a novel analytical strategy for image-based
integration and annotation to profile dynamics of heterogeneous cell populations in 2D/3D
microenvironments. High-dimensional features were extracted from extensive image datasets, and
cellular states were identified based on feature profiles. Time-series clustering revealed distinct
temporal patterns of cell shape and actin cytoskeleton reorganization. We found LX-2 showed more
complex membrane dynamics and contractile systems with an M-shaped actin compactness trend in
3D culture, while they displayed rapid spreading in early 2D culture. This image-based integration and
annotation strategy enhances our understanding of HSCs heterogeneity and dynamics in complex

extracellular microenvironments.

Cellular heterogeneity is a fundamental characteristic of biological systems,
reflecting the diverse functional states and behavior of cells even within a
seemingly homogeneous population'. Understanding these diverse states
and their dynamic transitions is crucial for assessing population phenotype
and addressing fundamental questions in biology, such as how cells respond
to microenvironmental changes. Despite its importance, the temporal
dynamics of heterogeneous cell populations in response to different
microenvironments remain poorly characterized.

Current advancements in single-cell technologies and high-content
imaging have enabled the acquisition of large-scale datasets, offering
insights into cellular heterogeneity””. However, most conventional
approaches, such as single-cell sequencing, primarily capture molecular
snapshots of cellular states at specific time points and are unable to track the
spatial-temporal distribution of molecules within the cell and the dynamic
aspects of cell behavior’. These methods often disrupt cell integrity and lack
time-resolved longitudinal studies on the same cells. While high-content
imaging offers a non-invasive alternative tool to generate extensive imaging
data with rich information"’, integrating and interpreting these high-
dimensional and time-resolved data to fully characterize the dynamic states
of heterogeneous cell populations remains challenging®’. High-content

imaging provides detailed information including cell morphology, intra-
cellular structures, and molecular distributions, representing the highly
interactive molecular networks at the genomic, transcriptomics, and pro-
teomic levels®"°, which is essential for properly governing cellular behavior
and ultimately determining the cellular state responses to microenviron-
mental cues or other stimuli'"">. However, it remains difficult to integrate
this complex information to interpret the dynamic phenotypes such as
membrane dynamics and cell contractility of heterogeneous cell populations
in different microenvironments. Machine learning techniques, both
supervised and unsupervised, have been applied to process high-content
imaging data for phenotypic screening™'*. While supervised machine
learning offered substantial improvements in predicting cellular responses
to various treatments, it required extensive labeled training datasets and
might struggle with rare cell states not represented in the training set.
Unsupervised machine learning has been applied to group subpopulations
by protein location" or drug effect'’. Additionally, most of these image-
based profile studies used static immunofluorescence images as input’,
which overlook the temporal dynamics and the full spectrum of cellular
behavior. Although existing studies have developed live-cell imaging sys-
tems to analyze biological processes, including the dynamic processes of
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epithelial-to-mesenchymal transition'/, cell responses to drugs or
ligands'*", and cell trajectories in distinct cell-cycle phases™”’, capturing the
dynamic states of heterogeneous cell populations in response to 3D collagen
gel microenvironments remains underexplored”.

To address these questions, we proposed a novel analytical strategy to
integrate and annotate these high-dimensional and time-resolved datasets
to profile the dynamics of heterogeneous cell populations in different
microenvironments. First, we acquired extensive image datasets using live-
cell high-content imaging combined with F-actin fluorescent labeling. We
then extracted high-dimensional features from these images, including cell
shape, F-actin texture, and movement features. Next, we applied principal
component analysis (PCA) and unsupervised clustering to systematically
identify distinct cellular states based on their feature profiles and char-
acterize their temporal dynamics. In addition, we identified distinct tem-
poral patterns in cellular shape and texture features using unsupervised
time-series clustering to provide insights into the dynamic processes
underlying cell morphology changes and actin cytoskeleton reorganization.

In this study, we chose human hepatic stellate cells (HSCs) LX-2 as a
model to track the cellular status change in response to different micro-
environments. HSCs play a central role in liver fibrosis™, where they undergo
phenotypic change in response to sustained liver injury” >, making them a
relevant and informative model for studying cellular dynamics in varying
conditions. The activation of HSCs, which is characterized by morphological
alterations, occurs within the context of a complex microenvironment rich in
ECM proteins, particularly collagen, which provides chemical and physical
signaling cues essential for cellular function®*”. Due to the essential role of
HSCs activity in liver fibrosis pathogenesis, the dynamic behavior of HSCs
including contracting and membrane protruding and the potential transi-
tion of activated HSCs phenotypes in response to microenvironment cues is
important, however, remained incompletely understood. Here, we cultured
HSCs LX-2 cells either on 2D substrates or within 3D matrices with various
collagen densities. In 2D cell cultures, the LX-2 cells were grown on the flat
glass surface, whereas in 3D cell culture, they were embedded in 3D type I
collagen gels to highly simulate the fibrotic liver microenvironment, pro-
viding a platform for dissecting the effects of collagen gels with various
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This novel high-dimensional and time-resolved image-based integra-
tion and annotation strategy enhances our comprehensive understanding of
cellular heterogeneity and dynamic behavior of HSCs, particularly in how
their morphology and actin cytoskeleton organization adapt to varying
conditions. Finally, by combining advanced imaging and analytical tech-
niques, we pave the way for future studies aimed at deciphering the complex
phenotypes and behavior of cell populations, ultimately contributing to the
development of more comprehensive research strategies and a better
understanding of biological systems.

Results

Identification of distinct cell states in 2D and 3D cultures

Our study aimed to elucidate the distinct cellular phenotypes and their
change patterns in response to different microenvironments. We developed
an image-based heterogeneous cell population dynamic profile analytical
platform to capture the potential heterogeneity of phenotypes and dynamic
transitions between different phenotypic states at different time points (Fig.
1). LX-2 cell line was used as a model, which was known to exhibit potential
phenotypic plastic states in response to microenvironments cues™'. LX-2
cells were cultured either on 2D substrates or within 3D collagen matrices
with varying collagen concentrations (ranging from 1 to 9 mg/ml) for 48 h.
We acquire extensive image datasets using live-cell high-content imaging
combined with live-cell F-actin fluorescent labeling. High-dimensional
features including shape, texture, and movement features of each cell were
extracted from the large dataset of time-scale images.

Firstly, the single-cell datasets were aggregated as the mean value for
each feature of LX-2 on each culture condition at each time point. Distinct
dynamic patterns of typical features including cell roundness, compactness,
cortical profile, and speed of cells cultured on 2D substrates or within 3D
collagen gel (3 mg/ml) were shown (Fig. 2a-d). We found that cell round-
ness in 2D culture initially decreased within the first 24 hours before
increasing, while in 3D culture, cell roundness showed a relatively stable
trend and maintained smaller compared to 2D culture (Fig. 2a). Cell
compactness in 2D culture exhibited a gradual increase over 48 hours,
whereas cells in 3D culture displayed larger compactness compared to 2D
culture, with a trend of initial increase followed by a slow decrease (Fig. 2b).
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Fig. 1 | Workflow of high-dimensional and time-resolved image-based integra-
tion and annotation. Firstly, extensive image datasets were acquired using live-cell
high-content imaging combined with F-actin fluorescent labeling, from which high-
dimensional features were extracted. Next, distinct cellular states were identified by
PCA and unsupervised clustering based on their feature profiles. In addition, distinct

K-means clustering

temporal patterns in cellular shape and texture features were identified using
unsupervised time-series clustering to provide insights into the dynamic processes
underlying LX-2 cell morphology changes and actin cytoskeleton reorganization.

Elements of this figure was created with Microsoft Powerpoint using figures and
plots generated in this manuscript.
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Regarding cortical profile, cells in 2D culture initially showed an increase
within the first few hours followed by a decrease, with fluctuations observed
after 24 hours, whereas in 3D culture, cells exhibited smaller cortical profiles
compared to 2D culture, with less variation (Fig. 2c). The speed of move-
ment showed a similar change pattern as cortical profile in 2D and 3D
cultured cells (Fig. 2d).

After calculating the mean values for these features over time, we
observed diverse trends in their temporal changes as mentioned above. To
further comprehensively characterize different cellular states, we employed
the k-means unsupervised clustering on the high-dimensional feature data
(n=180,000). The features selected for clustering analysis are listed in
Supplementary Table 2. We categorized cell objects into distinct groups
based on the similarity between the single-cell high-dimensional feature
profiles. We identified three clusters (Cluster 0, Cluster 1, and Cluster 2),
representing the three cell states mentioned below.

Comparing the relative proportions of each cluster within the LX-2 cell
population under different conditions, we found that Cluster 2 accounted for
the highest proportion of the cell population in both 2D and 3D cultures,
represented the most common cell state, while the other two clusters
accounted for a relatively smaller proportion (Fig. 2e-f). Additionally, we
found that the relative proportion of cell states changed over time, even under
the same conditions (Fig. 2g-h). This indicated that cell states exhibit distinct
levels of plasticity in both 2D and 3D cultures. Cells might transition between
different states at varying rates and times, suggesting temporal dynamics and

complex cellular behavior influenced by microenvironments cues. Therefore,
to understand how cellular populations under different conditions exhibit
various cell states and undergo cell state transition, we need to systematically
and comprehensively characterize each cell state in detail.

Characteristics of distinct cell states in 2D and 3D cultures
Distinct cell states identified based on the shape, texture, and movement
features of LX-2 represent the global manifestation of the structural orga-
nization of the cytoskeleton, reflecting the specific behavior of the cell in
response to the microenvironment cues. To further elucidate the different
phenotypic representations of cellular populations under 2D and 3D con-
ditions, we characterize each cluster in detail based on the typical features
selected above.

Specifically, we observed that cells within Cluster 0 exhibited higher
roundness, while cells in Clusters 1 and Cluster 2 displayed relatively lower
roundness, which meant irregular cell shapes (Fig. 3a). Regarding the
compactness of intracellular actin filaments, cells in Cluster 1 displayed
higher intracellular actin density, while cells in Clusters 0 and Cluster 2
displayed relatively lower actin density (Fig. 3a). The actin filaments located
at the cortical region within Cluster 2 were higher than the other two
clusters. The instantaneous speeds of LX-2 within Cluster 2 were a little bit
faster than those in other clusters. In brief, Cluster 0 was characterized by a
rounded shape and low actin density, Cluster 1 exhibited irregular shapes
with high actin density, while Cluster 2 displayed irregular shapes with more
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Fig. 3 | Characteristics of distinct cell state clus- a
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actin located at the cortical region. By elucidating these distinct cellular
features, our study aimed to shed light on the subtle phenotypic diversity
and functional implications under different cellular states, thereby con-
tributing to a more comprehensive understanding of HSCs dynamics.

We observed that the proportions of relatively rare cell states with
rounded shapes and low actin density (Cluster 0, 23.9%) and cells with
irregular shapes and high actin density (Cluster 1, 8.4%) in 3D culture
(3 mg/ml) were relatively higher than those in 2D cultures, while the pro-
portion of the relatively common cell states with irregular shapes and high
cortical actin intensity (Cluster 2, 67.7%) in 3D culture was smaller com-
pared to those in 2D culture (Fig. 2f). This suggested that in 3D culture, the
heterogeneity in cellular phenotypes was more pronounced, as observed by
the increase in the proportions of cell states with low probability compared
to 2D culture.

Next, we further compared the effects of different collagen con-
centrations (from 1 to 9 mg/ml) on cell state transitions in 3D culture. We
found that the proportions of cells with irregular shapes and high actin
density (Cluster 1) exhibited a unimodal trend with increasing collagen
concentration, peaking at 3 mg/ml (Fig. 3b). And the proportions of cells
with rounded shapes and low actin density (Cluster 0) were highest at 9 mg/
ml (Fig. 3b). These findings suggest that varying collagen concentrations
influence the distribution of cellular states in 3D culture, with distinct effects
on different cell states.

Identification of temporal patterns of cellular shape features
The temporal changes in cell state proportions described above illustrated
that cells might undergo transitions between different cellular states over

time even under the same conditions. These cellular states are defined based
on a comprehensive combination of cell shape, texture, and movement
features. To further elucidate the independent contributions of these fea-
tures and their temporal variation patterns to cell phenotypes, we applied
k-means unsupervised time-series clustering methods to classify the
dynamic patterns of individual features. Firstly, we employed two key shape
features, roundness, and area, for time-series clustering analysis because cell
roundness and area change patterns may indicate membrane
deformation™” and cell behavior including cell spreading, protruding, and
membrane trafficking.

For roundness, four trend clusters were identified (Roundness-trend-
cluster 1 to 4). Cell roundness first decreased and then remained constant in
Roundness-trend-cluster 2, while it remained stable in the early stage and
then increased after about 36 hours in Roundness-trend-cluster 3. The
roundness in the other two patterns showed an unsynchronized increase
and then a tendency toward decrease (Fig. 4a). The proportion of cell states
within each roundness trend cluster changes over time (Fig. 4b). It showed a
similarity in the roundness patterns and the trend of proportion for cell state
of Cluster 0 (Fig. 4b), which was identified as cell states with rounded shapes
and low actin density above. We further compared the proportions of four
roundness patterns of LX-2 on the 2D surface with those in 3D cultures with
different collagen concentrations (ranging from 1 to 9 mg/ml). We found
that the proportion of cells changed from round to irregular shape
(Roundness-trend-cluster 2) in 3D culture was higher compared to that in
2D culture, with the highest proportion found at 9 mg/ml 3D collagen
culture (Fig. 4¢). The proportion of cell roundness remained stable in the
early stage and then increased (Roundness-trend-cluster 3) in 3D culture
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Fig. 4 | Identification and Characterization of diverse dynamic patterns of cell

shape features. a, d Identification of 4 roundness or area trend clusters, respectively.
The k-means time-series clustering method is proposed for trend clustering based on
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roundness or area change pattern, respectively. The color legends (C0, C1, and C2)
represented the three cell state clusters identified above in Fig. 2e. ¢, f The proportion
of roundness or area trend clusters in 2D cultures and 3D cultures with different
collagen concentrations (ranging from 1 to 9 mg/ml), respectively.

was lower than that in 2D culture, with relatively higher proportions
observed at 3 mg/ml 3D collagen culture (Fig. 4c).

Additionally, four area trend clusters were identified as well (Area-
trend-cluster 1 to 4). We found that the cell area remained stable in the initial
stage and then spread in Area-trend-cluster 1 and 4, while cells showed a fast
spread and then shrunk asynchronously in Area-trend-cluster 2 and 3 (Fig.
4d). The area trend was similar to the trend of proportion in cell state of
Cluster 2, which referred to irregular cell morphology and high cortical actin
intensity (Fig. 4e). This suggests that the main driving force during cell
spreading is the polymerization of actin filaments that push the cell mem-
brane forward. We further revealed that Area-trend-cluster 2 and 3
accounted for the main proportion of cells on the 2D surface (Fig. 4f), which
suggests a fast spread mode in the initial stage of the LX-2 cultured on 2D
substrates. However, LX-2 in 3D culture with different collagen con-
centrations showed diverse patterns of spreading and shrinking.

To further explore the relationship between roundness and area trends,
we identified a Spearman correlation of -0.72 in 3D cultures and -0.66 in 2D
cultures. These negative correlations indicate that as cell area increased, cells

tended to become less round (i.e., more elongated or irregular in shape), and
as cell area decreased, they tended to become more rounded. We performed
an overlap analysis between roundness trend clusters and area trend clusters
and found more overlapped cells between clusters where roundness and
area exhibited opposing trends (Supplementary Table 1). This further
demonstrates that most cells exhibited a negative correlation between
changes in roundness and area.

Identification of temporal patterns of cellular texture features
Distinct temporal patterns of cellular shape features described above
showed the different shape, spread and contraction patterns of cells in
response to 2D and 3D microenvironments. In addition to cell shape, actin
cytoskeleton dynamics play a central role in driving cellular state changes
and regulating multiple cellular behavior in response to microenviron-
mental cues™”. Here, we applied k-means time-series clustering analysis
on the compactness and cortical profile of actin filaments, to access the
dynamic pattern of the distribution and location of cytoskeletal actin
filaments.
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The color legends (C0, C1, and C2) represented the three cell state clusters identified
above in Fig. 2e. ¢, f The proportion of compactness or cortical profile trend clusters
in 2D cultures and 3D cultures with different collagen concentrations (ranging from
1 to 9 mg/ml), respectively.

Four compactness trend clusters were identified (Compactness-trend-
cluster 1 to 4). The compactness showed a bimodal trend in Compactness-
trend-cluster 1, a unimodal trend in Compactness-trend-cluster 4, a slow
upward trend in Compactness-trend-cluster 2, and a slow downward trend
in Compactness-trend-cluster 3 (Fig. 5a). The compactness trend was
consistent with the trend of proportion in cell state of Cluster 1, which
referred to irregular cell shapes and high actin density (Fig. 5b). We also
found that Compactness-trend-cluster 2 accounted for the highest pro-
portion of cells on 2D culture (Fig. 5¢), indicating that most 2D-cultured
cells showed a slow increase in actin density. The proportion of compactness
showed a bimodal trend (Compactness-trend-cluster 1) in 3D culture was
higher than that in 2D culture (Fig. 5¢). This suggests a higher active actin
cytoskeleton of LX-2 in the 3D collagen microenvironments.

As for cortical profile trend clustering (Cortical-profile-trend-cluster 1
to 4), the cortical actin intensity decreased slowly and then increased
asynchronously in Cortical-profile-trend-cluster 1 and 2, increased slowly
and then decreased in Cortical-profile-trend-cluster 3, and increased and
then remained stable in Cortical-profile-trend-cluster 4. (Fig. 5d). We found
that the Cortical-profile-trend-cluster 4 was consistent with the trend of

proportion in cell state of Cluster 2, which referred to irregular cell mor-
phology and high cortical actin intensity (Fig. 5e). The proportion of cortical
profile showed an increase trend (trend cluster 4) in 2D culture and 3D
culture with low density of collagen was higher than that in 3D culture with
high density of collagen (Fig. 5f), which indicated an active actin cortex of
the LX-2 cultured on the 2D substrates and in the low-density 3D col-
lagen gel.

Discussion

We developed an image-based heterogeneous cell population dynamic
profile integration and annotation strategy to elucidate the distinct cellular
states and the dynamic phenotypic transitions of HSCs in response to dif-
ferent microenvironments (Fig. 6). Our study highlighted the importance of
temporal dynamic analysis techniques in capturing the full spectrum of cell
population phenotypes.

Through comprehensive analysis of the shape, texture, and movement
features of HSCs LX-2, we identified three cell states in both 2D and 3D
cultures, including round shape and low actin density, irregular shape and
high actin density, and irregular shape and high cortical actin density. The
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Fig. 6 | Overview of distinct cellular states and the
dynamic phenotypic transitions of HSCs in
response to 2D and 3D microenvironments.
Through comprehensive analysis of the shape, tex-
ture, and movement features of HSCs LX-2, we
identified three cell states in both 2D and 3D cul-
tures, including round shape and low actin density,
irregular shape and high actin density, and irregular
shape and high cortical actin density. The identifi-
cation of dynamic patterns of specific features rela-
ted to cell shape and cytoskeletal organization
showed that cells exhibited higher complexity in
their membrane dynamics and contractile systems
in 3D microenvironments compared to 2D micro-
environments. Elements of this figure was created
using Microsoft Powerpoint.

2D Cell Culture

~Identification of time-series dynamic patterns

Identification of three cell states

3D Cell Culture

study revealed that cells exhibit heterogeneous responses to different
microenvironments, with varying proportions of cell states and dynamic
transitions over time.

We first observed differences in dynamic patterns of various cellular
features, including cell roundness, compactness, cortical profile, and speed,
between 2D and 3D cultures which highlighted the influence of micro-
environmental cues on HSC behavior (Fig. 2a-d). 3D culture introduced a
more physiologically relevant tissue-like architecture, including spatial
constraints and cell-ECM interactions. In this context, the observed changes
in cell morphology may indicate adaptations to the 3D microenvironment,
including cell spreading and cytoskeleton organization within the 3D col-
lagen matrix. LX-2 in 3D culture exhibited more irregular morphology and
larger compactness compared to 2D culture might reflect differences in the
activation state of LX-2 cells (Fig. 2a). The altered morphology of LX-2 cells
in 3D culture could be influenced by mechanical forces exerted by the
surrounding ECM™. Cells might respond to these forces by adopting a more
elongated or compact cytoskeleton morphology (Fig. 2b), which could have
implications for their functional behavior, including ECM remodeling and
fibrogenesis. Additionally, the temporal changes of cortical profile and
speed (Fig. 2c-d), showed similar patterns in both 2D and 3D cultures,
suggesting correlative regulatory mechanisms underlying these dynamic
processes”.

While traditional statistical methods based on the average level of
individual features at various time points above provided valuable infor-
mation, they might tend to focus on overall trends and could overlook the
potential presence of diverse cell phenotypes, especially rare ones, which
might exhibit spatially and temporally heterogeneous responses to external
stimuli. To address these limitations, we employed unsupervised clustering
to categorize cells into distinct groups based on their feature profiles (Fig.
2e). We identified three clusters representing different cell states. The first
cell state (Cluster 0) with a round shape and low actin density was often
associated with a less activated state of HSCs™ reduced capacity for
mechanical support or a high extracellular space constraint. It also suggested
cells with more stable and less dynamic actin cytoskeleton, which might
indicate cells in a resting state or one that was not actively engaged in
activated processes. The second cell state (Cluster 1) with an irregular shape
and high actin density was associated with a stable cytoskeleton with
mechanical support and force generation capacity, indicating a typically
more plastic phenotype®. The third cell state (Cluster 2), with an irregular
shape and high cortical actin density, indicating a high degree of plasticity
and the ability to interact dynamically with the surrounding micro-
environments, counted for the highest proportion relative to the others.
Actin filaments were concentrated in the cortical region, potentially

corresponding to processes for force generation, including the formation of
stress fibers*’, lamellipodia*, or filopodia®, which were essential for cell
adhesion and interaction with the extracellular matrix. The observed dif-
ferences in cell state proportions between 2D and 3D cultures shed light on
the complex interplay between cell morphology and microenvironmental
cues. The increase in heterogeneity in cellular phenotypes in 3D culture, as
shown by the higher proportion of those relatively rare cell states occurring
less frequently (Fig. 2f), underscored the importance of considering the
dynamic transitions in cellular states that represent the spatial organization
and cell-matrix interactions in different contexts.

The specific features including cell area, roundness, actin compactness,
and the cortical actin profile are well-established indicators of membrane
deformation™” and cell contractility™**. The interaction of cells with the
surrounding microenvironment leads to trigger membrane deformation
that allows cell spreading™, as well as cytoskeletal rearrangement and cell
contraction that drives cell migration®’. These activities are closely related to
the cell ability to navigate through complex 3D matrices® and the broader
signaling pathways that govern cellular mechanosensation and response to
extracellular cues. Then we applied k-means time-series clustering
methods to classify the dynamic patterns of these specific features to further
elucidate their diverse temporal patterns and their independent contribu-
tions to cellular activities. We found a higher proportion of cells cultured in
3D with a tendency to change from round to irregular shape (Fig. 4c),
indicating higher membrane dynamics in 3D collagen microenvironment.
The rapid spread pattern of LX-2 in the early stage of culture in the 2D
microenvironments illustrated a different spreading mode compared with
that in the 3D microenvironments. The negative correlation between
roundness and area trends was particularly significant in 3D cultures, where
cells adapted to a more mechanically complex environment. The increase in
cell area accompanied by decreased roundness likely reflects the need for
greater membrane flexibility and contractile properties, facilitating cellular
navigation and interaction with the mechanically complex extracellular
matrix. These morphological adaptations reflects cytoskeletal reorganiza-
tion and mechanical responsiveness to environmental stiffness and matrix
density, which are critical in HSC activation and fibrosis™"". Temporal
trends in compactness and cortical profile of actin filaments correlated with
shifts in the proportions of specific cell states, suggesting a link between
cytoskeletal dynamics and cellular phenotypic transitions. The higher
proportion of an M-shaped compactness pattern with two distinct peaks in
the 3D collagen microenvironments indicated the enhanced actin cytos-
keletal reorganization and cell contractility in this context. LX-2 cells cul-
tured on 2D substrates and in low-density 3D collagen gel exhibited a more
active actin cortex, suggesting enhanced cell adhesion activity. It indicates
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the sensitivity of HSCs to spatial constraints and physically complex
extracellular matrix”/, which requires a higher degree of membrane flex-
ibility and contractile force generation to enable spreading and migration.

Our study proposed a novel analytical strategy designed for high-
dimensional, time-resolved analysis of cellular morphology in both 2D and
3D microenvironments. Using the novel analytical strategy, we revealed the
heterogeneous cell states and dynamic activities that were not well-
characterized before. Our study demonstrates new insights into cell beha-
vior, particularly by identifying complex membrane dynamics and con-
tractile systems in LX-2 cultured in 3D microenvironments. These findings
suggest that 3D collagen microenvironment influenced membrane flex-
ibility and cell contractility of HSCs, which are critical for cellular processes
such as spreading and migration, both of which play key roles in HSCs
activation and their fibrogenic response’®”. This can help elucidate how
cells regulate their mechanical properties in response to external cues and
how alterations in cell-matrix interactions affect cell membrane deforma-
tion and cell contractility. Our study focused on cell morphology and
dynamic behavior, which are believed to provide a foundational perspective
that bridged morphological changes with regulatory systems®”. It has been
reported that the complex interactions between cells and their micro-
environment, particularly in 3D collagen matrices, influence intracellular
signaling pathways that regulate membrane tension and cytoskeletal
contractility*®*®. For example, previous studies have shown that mechanical
cues from the ECM are transduced via integrin-mediated focal adhesions
and activate RhoA/ROCK signaling pathways, driving changes in actin
polymerization and cell contractility”’~". These pathways are key to
understanding how HSCs respond to ECM stiffness during fibrosis pro-
gression, providing a functional link between the morphological changes we
observe and underlying regulatory networks*>”. Our findings provided a
critical basis for such mechanistic studies, offering new insights and
hypotheses that can be further investigated in the context of systems biology.
Our study provides a valuable platform and resource that can be integrated
with molecular mechanistic studies in future research to elucidate the
potential system biological mechanisms involved.

In conclusion, our study provides a novel analytical strategy for image-
based integration and annotation to profile the dynamics of heterogeneous
HSCs cell populations in different microenvironments, highlighting their
dynamic nature and sensitivity to microenvironmental cues. This high-
dimensional and time-resolved image-based integration and annotation
solution is able to be broadly applied to other cellular systems and condi-
tions, uncovering additional critical insights into cellular dynamics and
environmental responses. Future studies should focus on exploring the
molecular mechanisms underlying these phenotypic transitions and their
implications for treatment.

Methods

2D and 3D cell culture

Human HSCs cell line LX-2** was purchased from Procell Life Science &
Technology Co., Ltd. (CL-0560, China). In 2D cell cultures, LX-2 cells were
grown on the flat glass surface of the CellCarrier Ultra 96-well microplate
(Revvity, USA) and maintained in Dulbecco’s Modified Eagle medium
(DMEM, Gibco, USA), supplemented with 2% (vol/vol) fetal bovine serum
(FBS, Gibco, USA) and 1% penicillin/streptomycin (Gibco, USA).

In 3D cell culture, LX-2 cells were embedded in gels of controlled
type I collagen density, as described previously™. Briefly, cells suspended
in the culture medium were mixed with an appropriate volume of rat-tail
collagen I (354249, Corning, USA) in a 1:4 (vol/vol) ratio to obtain the
desired collagen concentration (1 to 9 mg/ml). A calculated amount of
1 M NaOH was quickly added to mix the final solution well to achieve a
pH of ~7. The mixed suspension was added to the microplate mentioned
above and immediately placed in an incubator maintained at 37 °C for
40 minutes to allow polymerization. Fresh culture medium as men-
tioned above was added to maintain cell growth. Cells in 2D and 3D
cultures were all maintained in a humidified incubator at 37 °C and 5%
(vol/vol) carbon dioxide.

Live-cell fluorescent stain

CellMask Deep Red Actin Stain (Invitrogen, USA) was used to label the
F-actin as per the manufacturer’s instructions. Cells were incubated in
culture medium with 0.01% CellMask Deep Red Actin Stain and Hoechst
33342 (Thermo Fisher Scientific, USA) for at least 30 minutes at 37 °C
and 5% CO2.

Image acquisition

Live-cell high-content imaging was performed using Opera Phenix High-
Content Screening System (Revvity) at 5% CO2 and 37 °C temperature.
Twenty-five fields of view were imaged for each well, with 20 z-stacks per
field at 5 pm intervals using two channels including Hoechst (excitation,
405 nm; emission, 435-480nm) and CellMask Deep Red (excitation,
640 nm; emission, 650-760 nm). Imaging was performed every 90 min for
48 hours with a 20x water immersion lens in confocal mode to track cellular
phenotypic dynamics using 2x2 pixel binning. A total of 33000 images were
captured for each well.

Imaging processing and feature extraction

An analysis sequence was designed in Harmony Software (Revvity, v5.1).
Firstly, flatfield correction was performed on all images and maximum
intensity projection was made from each plane of images at different focus
depths. Next, images were segmented to identify the cell nucleus and
cytoplasm. Cells with low intensity in any of the channels or located at the
edge of the image were excluded. Multiple phenotypic parameters were then
quantitatively profiled for up to five regions, including cell, nucleus, cyto-
plasm, membrane and ring region. These parameters included classical
features such as intensity or morphology and advanced descriptors such as
STAR morphology and SER texture, which provided statistically robust
measurement of F-actin distribution patterns within cells. The object
tracking process was then performed on the time series measurement. The
time-dependent properties such as current speed or object displacement
were then calculated. Overall, approximately 500 cells were analyzed per
group at a single time point, and a total of 1327 features (shape, texture,
movement, etc.) were measured for individual cells at each time point.

High-dimensional and time-resolved dataset analysis

The high-dimensional and time-resolved dataset was analyzed and plotted
in Python. Firstly, normalization was performed by median absolute
deviation (MAD) normalization. A feature selection procedure was then
performed to eliminate features with low variance, missing values, and
outliers™, and 103 features remained for further analysis (Supplementary
Table 2). In detail, we applied a variance thresholding approach to remove
features with low variance, which could introduce noise or provide little
information for downstream clustering analyses. Features were excluded if
they had a frequency threshold below 0.05 (the ratio of the second most
common value to the most common value was less than 0.05) or a
uniqueness threshold below 0.01 (the number of distinct values was less than
1% of the total number of samples). PCA was performed to extract com-
ponents accounting for at least 95% variability of the dataset. Distinct
clusters were then identified by applying the K-means clustering method
(k=3, n=180,000). The optimal number of clusters k was determined by
the maximum of the average silhouette. As for single-cell time-series pro-
filing, cells that were not tracked successfully for every time point over
48 hours were excluded and 2668 single-cell time-series profiles remained
for subsequent PCA. Distinct trend-clusters of specific cell shape and texture
features were obtained by applying K-means time-series clustering (k = 4) to
obtain dynamic patterns.

Statistical analysis

Experiments were performed at least twice. Statistical analysis was per-
formed with Python packages, including SciPy” and Scikit-learn™. The
details of statistical tests can be found in the legend of each figure. We
represent significance in the following way with asterisks: * (0.01 <P <0.05),
*%(0.001 < P <0.01), *** (0.0001 < P < 0.001), and **** (P < 0.0001).
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Data availability
The datasets used in this study are available in Figshare, https://figshare.
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Code availability
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