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Open problems in synthetic
multicellularity
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Nuria Montserrat6,7 & Michael Levin8,9

Multicellularity is one of the major evolutionary transitions, and its rise provided the ingredients for the
emergence of a biosphere inhabited by complex organisms. Over the last decades, the potential for
bioengineeringmulticellular systemshasbeen instrumental in interrogating nature andexploring novel
paths to regeneration, disease, cognition, and behaviour. Here,we provide a list of open problems that
encapsulate many of the ongoing and future challenges in the field and suggest conceptual
approaches that may facilitate progress.

Life forms in our biosphere fall into two categories: unicellular (UC) and
multicellular (MC). UC organisms act independently, dealing with their
environments autonomously, while MC organisms consist of various cell
types with division of labor and cooperation1,2. UC complexity is energeti-
cally favourable, involving simple replication and minimal life cycles. MC
systems exhibit complex traits like developmental programs, self-main-
tenance, and spatial patterns3.

Experimental and comparative methods have traditionally helped the
study ofMC, while theoretical models and the revolutionary tools provided
by molecular phylogenetics4–6. These studies have revealed unexpected
insights concerning the tempo andmode ofMC change and the role played
by dynamical patterning modules7,8. However, thinking at the organism
level beyond structural patterns, MC also includes other phenomena, such
as movement or cognition, both relevant to our understanding of MC
evolution. This paper considers the potential insights provided by synthetic
alternatives based on diverse approaches to build cellular assemblies, from
microbial consortia on a Petri Dish or cell clusters to organoids and living
bots. Some examples are displayed in Fig. 1, with three examples from
biology (first column) and several synthetic MC case studies with different
levels of complexity. Here complexity is not defined in rigorous terms and
several quantitative measures have been defined9, and specific choices are
usually tied to the nature of the system under consideration.

The first two rows are related to hierarchical and emergent mechan-
isms of pattern generation10. These correspond to top-down (predictable)
versus bottom-up (emergent) mechanisms, respectively, and both are
relevant to our understanding (and engineering) of MC systems. Pro-
grammable MC synthetic systems shown in Fig. 1(b–d) include gradient-

forming microbial consortia and multistable cell fates. On the other hand,
many crucial developmental processes shaping embryos (Fig. 1e) include
emergent phenomena captured by some synthetic MC systems, including
organoids, branching bacterial populations and Anthrobots (Fig. 1f-h).
Finally, the third row showcases the use of evolutionary strategies in the
design ofMC assemblies. The challenge here is to generate simple synthetic
organisms, such as Placozoans (Fig. 1i). Successful evolution in vitro of
simple multicellular systems11,12 has been achieved (Fig. 1 j, k) and in silico
evolutionary algorithms have been used to design reconfigurable
organisms13,14.

Multicellular complexity is a tale of multiple scales, and understanding
its origins, universal properties, and contingencies inevitably calls for an
interdisciplinary picture in which theory has played a crucial role. As
pointed out by the late Brian Goodwin15, the traditional, reductionist
approach to the problem led to an inadequate view of the nature of
organisms. Additionally, feedback loops connecting different levels (such as
genes, gene networks and cell-cell interactions) are deeply constrained by
the laws governing pattern formation16,17. This includes symmetry
breaking18, the structure of attractor landscapes19,20 or collective
properties21,22. Synthetic alternatives23 provide a unique opportunity of
dissectingMCcomplexity24,25. Importantly, they allow the studyof emergent
form, function, and levels of autonomy and agency without an explicit
evolutionary history14. Unlike traditional biologicalmodel systems, sculpted
by aeons of selection, synthetic organisms allow us to observe the plasticity
of life’s agentialmaterials as they solve newproblems26,27. Adaptive structure
and behaviour arise in real-time in novel configurations not previously
tested by evolution.
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The early days of synthetic biology were primarily dominated by
modifyingmicroorganisms, which have become the perfect chassis to build
complex cellular circuits capable of sensing and reacting to their environ-
ments in complex ways. On the other hand, stem cell technology and new
cell culture methods have made it possible to reach new complexity levels
associated with tissue or even organs28,29. Because of their relevance in
bioengineering andpotential biomedical impact, organoidshave emerged as
a unique opportunity for the study of diseases and as a complement to
animal models. Finally, engineering behaviour, motion and self-repair in
embodied, motile living systems have provided unexpected insights30,31.

In most case studies, the complexity of synthetic living agents is
achieved through a combination of design and self-organization. Far from
standard engineering, synthetic MC exploits intrinsic properties of living
matter and offers opportunities for predictable design based on computa-
tional modelling and evolution in silico. Sometimes, the design principles
depart from both natural and human-designed solutions. The current
landscape of synthetic MC systems can be roughly decomposed into three
(partially overlapping) classes:

1. Synthetic multicellular circuits. This class involves cellular circuits that
have beenmodified or introduced through genetic engineering within
living cells, typically used as a chassis32–36. Many designs within this
domain rely on a modular approach to circuit complexity based on
standard combinatorial circuit design37–39. Cellular consortia have been
used as MC implementations of all kinds of simple responses, from
combining Boolean gates40–43 to pattern formation44,45. These designs
involve strains interacting through chemical signals propagating in a
liquid medium or diffusing over short distances on an agar plate.

2. Programmable synthetic assemblies. The next step towards engineer-
ing MC systems exploits the predictable properties displayed by
adhesion-driven spatial morphodynamics. Again, this bottom-up
engineering allows predicting (i. e. programming) the outcome of the
final spatial structure. It was early understood that cell sorting due to
different adhesion energies could easily explain the self-organized
aggregation of a set of randomly mixed cells46,47. Despite the self-
organized nature of the process, it is possible tomake some predictions
concerning the spatial arrangements at steady state.

Fig. 1 | Natural and synthetic multicellularity. These case studies include three
natural examples (left column) of patterns and processes associatedwith hierarchical
and emergent mechanisms and evolutionary dynamics. A classic example of a top-
down mechanism in morphogenesis is the formation of gradients and stripes in
Drosophila (aData from the FlyEx database). These processes can be approached by
(b) a synthetic band-pass filter using engineered E. coli138 (image courtesy of Ron
Weiss), (c) the generation of multiple coexisting cell fates73 (image courtesy of
Michael Elowitz) and (d) programmable symmetry breaking-induced structure
formation (from ref. 78, image courtesy of Wendell Lim). Morphogenetic processes
are spatially organized throughmultiscale feedback loops shaping embryos (e; image

courtesy of James Sharpe). Synthetic counterparts of the underlying emergent
phenomena include (f) kidney organoid development, (g) Turing-like branching
morphogenesis of bacteria (g, h) the development of Anthrobots. The simplest,
aneural metazoans are exemplified by Placozoans (image courtesy of Sebastian R.
Najle, CRG) (i), while evolved cell assemblies emerge under synthetic selection
mechanisms, including cell-cell adhesion to escape from predators (j; adapted from
ref. 12. with permission), yeast MC aggregates (k; adapted from ref. 156, with per-
mission) and Xenobots (l). The latter were obtained through a combination of in
silico evolutionary algorithms and bioengineering.
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3. Synthetic morphology and agential materials. One way of moving
beyond cell-level engineering involves considering cell collectives as
agential materials. These systems exhibit emergent properties at the
system level that cannot be understood in terms of the properties of the
constituents (genes and cells). This approach takes advantage of
higher-order properties of embodied living matter (such as memory,
context-sensitive navigation of problem spaces and homeostasis) to
perform computations and design morphologies beyond the bottom-
upprinciples of synthetic biology26,48. This class includes organoids and
biobots. The latter can be defined as a fully biological agent designed
and engineered to perform specific tasks. It is created using living cells,
often through computational models that guide their self-organization
and assembly into functional structures. Unlike traditional robots,
biobots are entirely composed of biological material and can move,
adapt, and interact with their environment with some degree of
autonomy.

Synthetic multicellular classes
The three domains listed above have contributed to a new wave of
exploring biological complexity and interrogating the principles of living
systems. They have also provided a great source for novel biomedical
research and applications. While some constraints need to be addressed
(such as the limits to organoid size), some engineered constructs have
revealed unique properties that question some old assumptions con-
cerning the nature of computation or agency. The following section
summarises each class’s key features before defining our challenges and
open questions.

Synthetic multicellular circuits
While standard engineering design has exploited inert matter, bioengi-
neering constructs are made of molecular and cellular substrates tied to
living structures (or their components).What is different? If we compare
with physical systems, physicist John Hopfield argued that what makes
biology different is its potential to perform computations49. More

precisely, biological agents that navigate their environments searching
for resources (and thus involving purpose) “compute” incoming infor-
mation (internal and external) and respond to it in adaptive ways.
However, this general connection should not be seen as a claim that cells
are machines50. In particular, the distinction between hardware and
software that characterizes computer architectures is largely blurred
when dealing with living agents.

The first (but incomplete) layer to approach this problem from
synthetic biology involves building logic circuits, including a whole
array of logic gates, oscillators, band-pass filters, sensing-reacting
networks and even sophisticated circuits capable of making decisions,
such as targeting and killing cancer cells51–55. Complex dynamical states
(such as critical states) have also been engineered56. Some of these
examples, associated with UC implementations, are depicted on the left
lower wall in Fig. 2a., where a space of synthetic biology designs has
been depicted. Some case studies from nature, such as protozoans and
biofilms, have also been included. They are indicated as small spheres,
but a more nuanced view should display them as a more extended
domain since they span a broad range of agencies. In this space, one axis
introduces the main target of most designs: computational complexity,
which describes the diversity of computational tasks performed by each
circuit design. A second axis weights the relative role played by inter-
actions between different engineered strains. Moving up, MC designs
are represented by swarms57, learning consortia58, or MC
computation59. Some examples, such as synthetic swarms, still need to
be implemented. In all these examples, cell populations live in a well-
mixed medium.

As the field advanced, a limitation in engineered design predictability
became evident. Circuit design complexity in cells often causes cross-talk: a
transcription factor linking genes disrupts other processes. This “wiring
problem” arises from the evolved nature of cellular circuits, differing from
standard designs due to natural selection and reuse of parts60. This is par-
ticularly relevant when comparing computers and living systems regarding
hardware and software separation. In living systems, modularity and

Fig. 2 | Synthetic cellular computation. Engineering cells at the gene level have
provided a broad range of simple computational circuits, including both unicellular
(UC) and multicellular (MC) designs. In (a), a biocomputation space involving
implementations based on consortia is shown.Here, the locations are relative to each
other. We use three axes in this space: agency, computational complexity and the
diversity of network interactions among cells. The bottom left of this cube includes
several implementations that use a unicellular chassis, whereas MC consortia are
found close to the right wall (grey area). Some designs, such as flip-flop memory

devices100 or learning systems58, are obtained using a microbial consortium. How-
ever, computational designs can depart from nature and engineering, as shown by
synthetic Distributed Computationmodels41,43,63. An illustration is provided in (b, c).
In (b), a single-cell implementation of a multiplexer circuit (MUX), along with the
truth table (left) and the corresponding combinatorial circuit (right). A simpler two-
cell MUX is shown in (c) and involves much simpler circuits and reusable parts;
notice that the two cells are not connected.
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integration are intertwined. Experiments in evolutionary computation
highlight this difference61: in silico evolved circuits perform better and are
more reliable than human-made ones, though more challenging to
understand.

To address this, a standard approach isolates circuit modules within
cellular circuitry, and modularisation has become a design principle62.
However, a different MC design allows a combinatorial approach, differing
from traditional engineering41,63. We will use this approach to illustrate the
potential for non-standard solutions within bioengineered agents. This uses
distributed computation logic, creating a cell library with minimal engi-
neering and no connections, producing an OR logic output63. Figure 2b–c
illustrates this with a three-input, one-output multiplexer. While the UC
design (b) requires several wires to connect the different genes, an MC
alternative (c) shows that very simple, reusable constructs can be engineered
within two cells, both including a GFP reporter gene and not connected to
each other through communication signals. If one of the reporters is
expressed, we take the system’s response as one ("ON”), whereas if none
does, the output is zero ("OFF”).

We have skipped the third axis of our space in Fig. 2a. It is labelled as
“agency” and reconnects us with Hopfield’s conjecture about the nature
of living systems.Within the context of cells, agency refers to their ability
to sense, respond to, and adapt to their environment through autono-
mous processes64–66. They expend effort to attain specific preferred states,
using different degrees of problem-solving competency, learning, and
active inference to resist perturbations and autonomously project their
actions into new problem spaces. Living systems display agency, and we
situate synthetic UC designs on the left wall since the individual agency is
not modified by adding an extra genetic construct. Instead, complex
circuits generated using cellular consortia (grey area) lack this property
due to their disconnected nature and their special implementation, which
requires all cellular components to perform the computation but not the
interaction as a system with their environments. To incorporate this
feature within synthetic MC systems, we must expand the reach of
standard biocomputation designs. In this context, a pluralist stance,
known as polycomputation31, suggests that living organisms harness
various forms of information processing across different scales and
contexts to control their development, behaviour, and adaptation. As
discussed in the next sections, the embodied nature of MC complexity
facilitates such multiscale processing, sometimes in unexpected
directions.

Programmable synthetic assemblies
Developing complex multicellular agents requires two crucial features:
(1) a mechanism to generate cellular diversity and (2) a predictable
spatial organization that allows coherent system-level responses.
Increasing cell types displays an evolutionary trend: with the rise of
animals, the number of different cellular phenotypes has increased67,68.
The current understanding of generating different cell states is grounded
on the concept of attractors69,70. By using simple models of gene-gene
interactions, it is possible to show that different stable expression states
are accessible from different initial conditions. Small two-gene cross-
inhibitory networks have achieved this71, and synthetic implementations
exist72. But only recently has it been possible to design a circuit that
displays many different states73, see Box 1.

How can we build MC systems with a spatial organization that can be
predicted from the basic units (genes, molecules and cells) and their inter-
actions? Getting closer to organs, organisms, and embryos implies intro-
ducing several extra layers of complexity, and the mapping between these
components and the system-level properties is known tobehighlynonlinear
(Box 2). In other words, the nonlinear dynamics connecting gene network
states with the unfolding of cell-cell interactions is far from trivial. This is
particularly truewith growing systems,where even the boundary conditions
change through development. However, there is a domain of predictability
given by engineering strategies that exploit some hierarchical cell-cell
interactions. The best candidate, which has a long tradition within
embryology and theoretical biology, is based on combining adhesion
molecules.

Adhesion dynamic and the associated cell displacements occur via
energyminimisation46,74. A model can be easily defined by a cell population
onadiscrete lattice.Cell states (cell types or engineered strains) are indicated
as σn ∈ {0, 1, 2, . . . } and cells can move to neighbouring sites. To illustrate
how the model works, consider a three-state example: two cell types plus
empty space, to be indicated as σ1, σ2 and σ0, respectively.

Different cells have different adhesion strengths. These are defined by
means of an adhesion matrixW:

W ¼
ωðσ0; σ0Þ ωðσ0; σ1Þ ωðσ0; σ2Þ
ωðσ1; σ0Þ ωðσ1; σ1Þ ωðσ1; σ2Þ
ωðσ2; σ0Þ ωðσ2; σ1Þ ωðσ2; σ2Þ

0
B@

1
CA: ð3Þ

Box 1 | Synthetic scalable design of cell fates

Natural MC development relies on multiple cellular states expressed by
the same genotype.Mathematically, these states correspond to different
attractors (stable equilibria) of the dynamical system describing the
behaviour of relevant genes. These attractors coexist for specific para-
meter values, making the system multistable. This is similar to the
content-addressable memory in Hopfield networks, where attractors
represent distinct information patterns the neural network converges to
based on its initial state157. This associative memory is analogous to the
differentiation trajectories in MC systems during development. A com-
mon circuit module leading to bistable cellular fates is the mutual inhi-
bition circuit, where two proteins inhibit each other’s expression:

dA
dt

¼ αa þ
βa

1þ Bn � δa A;
dB
dt

¼ αb þ
βb

1þ An � δb B: ð1Þ

Here, A andB are the concentrations of themain regulators of the two
cellular states (usually transcription factors, TFs), normalized to their
repression thresholds. The first two terms represent basal and regulated
gene expression, while the third term is linear protein decay. This model

exhibits two coexisting equilibria, where one transcription factor is
practically absent (if α≪ β), determining the associated cell fate158.

The number of cell fates in the mutual inhibition circuit described
above scales linearly with the number of cellular components, as each
new transcription factor addsonly oneextra statewhereonly that factor is
present. Supra-linear scalability requires multiple transcription factors,
complex DNA promoter regions and intricate regulatory architecture. A
simpler solution is using dimerization among circuit proteins for mutual
inhibition73. In this case, heterodimers sequester monomers, which
activate gene expression as homodimers:

dAi

dt
¼ αi þ

βi A
2n
i

1þ A2n
i

� δi A� γ
XN
j¼1

Ai Aj: ð2Þ

This model shows scalability, with interaction terms included in the
last term. Stability analysis and experiments with zinc-finger TFs and
unique dimerization domains demonstrate that mixed fixed points with
multiple TFs can be stable in large parameter spaces73.
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As defined, we have:ω(a, b) =ω(b, a), andω(σ0, σ0) = 0. An energy function
H that is defined for each lattice site μ i. e.:

Hμ ¼
X
ση2Γμ

ωðσμ; σηÞ ð4Þ

where Γμ is the set defined by the nearest neighbours of a cell in
position μ each of which occupies a position η, and has a defined state
ση. If we try to swap one cell to one of its nearest locations, we first
determine the new energy H0 using the same expression. The energy
difference between the original and the chosen location is
ΔH ¼ H0 �H�. The probability associated to this is given by the so-
called Boltzmann rule:

Pðσμ ! σηÞ ¼
1

1þ eΔH=T
ð5Þ

where the parameter T is a noise factor tuning the degree of random-
ness associated to ourmodel. The Boltzmann factor eΔH=T acts in such a
way that if ΔH ¼ 0, the probability of swapping is 1/2. For small T, the
probability of swapping rapidly increases whenΔH > 0, whereas is very
small when ΔH < 0. The relative weights of the matrix elements induce
a hierarchy that allows to predict the kinds of patterns that can result

from a given engineering design associated to adhesion properties
(see75 for details).

This simplemicroscopic setof rules provides the causal framework that
explains re-aggregation experiments, as shown in the sequence of Fig. 3a–c
displaying a set of dissociated cells (two types of retinal cells) evolves to a
segregated structure76. Following these basic principles, orthogonal cell
adhesion toolboxes have been designed to exploit the weight hierarchy,
leading to synthetic programmable morphologies77,78. Furthermore, using a
stochastic recombinase genetic switch allows programmable symmetry
breaking and commitment to downstream cell fates79. This synthetic
induction of SB could be an important step towards inducing differentiation
in organoids.

The predictable nature of these designs faces challenges when dealing
with the reality of more complex cellular aggregates and developmental
processes. Along with symmetry breaking, population growth and the role
played by physical forces beyond differential adhesion need to be con-
sidered, as well as intrinsic properties of cells and tissues as agential
materials26.

Synthetic morphology and agential materials
The predictable nature of the previous examples becomes less reliable as we
move towards complexMCsystems, fromorgans to full organisms.The lack
of predictability is due to the nonlinear nature of the genotype-phenotype
mapping (see Box 2). In a formal fashion, it is a mapping Ω between the

Box 2 | Multicellularity, irreducible complexity and the genotype-phenotypemapping

The absence of a simple theory for the evolution of biological complexity
is tied to the nonlinear nature of the genotype-phenotypemapping. Such
mapping ismediated by several networks associatedwith different levels
of organismal complexity. To illustrate this concept, let us start with a
(single cell) gene network, where the expression level of a set of genes,
{xi}, i = 1, . . . , n, can be described by159:

dxi
dt

¼ Gi

XN
j¼1

ωij xj � θi

0
@

1
A� δi xi; ð6Þ

where ωij∈W defines the interaction matrix and δj the decay (degradation)
rates. Gene networks display emergent patterns in the architecture of the
underlying attractorsX�

k = (x
�
1; :::; x

�
n)k, obtained from the conditiondxi/dt=0.

The properties of the attractor landscape emerge from the nature of bifur-
cations associated with the nonlinear dynamical equations and are, in par-
ticular, dependent on the density of connections69. Spatial patterns can be
generated, for example, by expanding the previous dynamics over a MC
system. The new set defines a discrete version of a tissue:

dxμi
dt

¼ Gi

XN
j¼1

ωij x
μ
j � θμi

0
@

1
Aþ Di

X
α2Γi

xαi � qi x
μ
i

" #
� δi xi; ð7Þ

where the terms on the right-hand side are associated with gene-gene
interaction (as defined in the previous equation), passive diffusion
between concentrations in the μ-the cell and its qi nearest cell neigh-
bours (with a rateDi, with Γi indicating the set of nearest cells) and decay
terms, respectively159–161. Introducing spatial degrees of freedom
expands the possibilities of phenotypic complexity due to the reaction-
diffusion couplings. Space allows further emergent patterns relevant to
morphogenesis, from spatial gradients and oscillation-driven

somitogenesis to symmetry-breaking instabilities18,162,163 and noise-
induced phenomena164. How is the landscape of spatial patterns Φ (our
phenotypes) connected to the space W of gene wiring networks? This
mapping can be expressed as a function Ω,

Ω : W�!Φ; ð8Þ

and has been systematically studied for some special pattern-forming
models165,166. Connectivity thresholds give an example of the implica-
tions of the GPM nonlinearity: once a critical value is reached, all pos-
sible spatial patterns are accessible167. The nonlinearity of this mapping
goes far beyond gene regulatory network (GRN) wiring diagrams when
growth and pattern formation occur together. These morphodynamic
processes add additional layers of nonlinearity to theGPM10. The upper
layers of this organismal complexity hierarchy deal with behaviour and
cognition. For neural agents, this means another network, where vari-
ables are neuron activity and threshold-like propagation dynamics,
along with learning and memory. Classic formulations of these net-
works follow sets of nonlinear coupled equations:

dxi
dt

¼ ρ xi tanhðxiÞ þ g
Xn
j¼1

Jij tanhðxjÞ � ηi xi: ð9Þ

In this picture (which is a simplified one), the matrix of couplings Jij,
which would be affected by genetics, development and the interaction
with the environment. However, even without neurons, learning and
memory are possible in physical networks168,169, and in cells and tissues
as living materials26. Finally, to address agency, embodied interactions
among different networks need to be considered170. In summary, the
GPM is a multilayer network structure171 that connects organismal
complexity across scales, each one involving emergent properties, each
one irreducible to the properties of the lower layers.
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space of genotypes G and the space of (possible) phenotypes Φ:

Ω : G�!Φ: ð10Þ

In a nutshell, while the nature of adhesion rules allows programmable
designs, living agents are the result of developmental programs that require
growth and self-organisation, as well as regeneration, reproduction and
behaviour. The information at the level of genes and gene-gene interactions
will typically be incomplete in explaining the next complexity layers because
the phenotype is not only the result of open-loop emergent complexity, but of
directed navigation of anatomical morphospace guided by perception-action
loops and setpoints encoded in bioelectrical, biochemical, and biomechanical
properties. One crucial but traditionally ignored aspect is the presence of
agency, i.e., the capacity for goal-directed changes to one’s self and the
environment27,80. Agency itself is not only a general feature of life but also a
multiscale property, because living organisms are composed of numerous
layers of overlapping cooperating and competing agents which distort the
option landscape for their parts and provide abstraction layers of competent
subroutines for the systems they in turn comprise (?). Two synthetic coun-
terparts to these MC agents are discussed here: organoids and living robots.

One successful implementation of embodied MC systems is provided
by organoids, representing the last part of a timeline starting from re-
aggregation experiments81,82. In a nutshell, organoids are in vitro tissue-
engineered cell models that can behave as miniature versions of the full-
fledged organs they represent. Along with the self-organised component of
their development83,weneed touse adult stemcells or pluripotent stemcells.
The latter, in particular, have been exploited to generate different organoids,
bringing the right conditions for a given set of cell types to emerge and get
together. Afterwards, cell-cell interactions, both in signalling and mechanic
forces, take control of morphodynamics.

Stem cell engineering has been used to study gene circuits and physical
cues inmorphogenesis. One particularly groundbreakingworkwas the self-
organized emergence of optic cup organoids, later followed by brain orga-
noids with regional identities using soluble compounds83. In all these cases,

onemajor challenge is reproducibility,makingorganoids scalable and closer
to their reference organs, and generating vascular or neural networks for
realistic contexts. It is worth noting that improvements in the field have
benefited from the emulation of native tissue properties like stiffness and
geometry. Similar results in whole embryo models, known as gastruloids,
reveal symmetry-breaking mechanisms and axis formation in models of
early embryogenesis84,85.

The previous case studies lack two critical components of MC com-
plexity. One is the order for free resulting from intrinsic system properties,
which allow the material to exploit its nested multiscale competency. Sec-
ondly, two innovations were required for the rise of cognitive complexity in
metazoans:movement and sight86.Movement is likely aprecondition for the
rise of the firstmulticellular cognitive agents87,88. Perhaps not surprisingly, it
has beenalso suggested that thesenew classes ofMCagents emerged around
the Cambrian explosion with the rise of predators and associative
learning89–92. Along with sensors, it allows the existence of behavioural
patterns. Can these nontrivial features be implemented in engineered MC
agents? Are the synthetic designs necessarily grounded in engineered gene
networks or signalling circuits?

Biology features problem-solving at each level of organisation—a kind
of agential material with agendas, homeostatic loops, and the ability to
maximizeorminimize specific goal stateswith various degrees of robustness
despite novel circumstances. This is well-known in neuroscience, where the
CNS provides a learning interface that allows simple stimuli, such as reward
and punishment, to drive complex internal rearrangements that the trainer
could not achieve via micromanaging the molecular details. Numerous
examples of learning93, problem-solving, and optimization in biological
systems such as molecular networks, cells, and tissues represent highly
tractable targets for engineering top-down. The previously discussed
examples cannot incorporate many aspects of agency we can find in the
living world. The gap in the space of Fig. 2a is a reminder that designed
computational circuits and programmable spheroids impose some restric-
tions on the behavioural repertoire of these constructs. There is a twilight
zone that requires extra features capable of exploiting the intrinsic agential
properties of cells and tissues.

Fig. 3 | A space for synthetic embodied MC. Spatial self-organization (SO) rules
associated with cell-cell nonlinear interactions are responsible for SO phenomena
such as re-aggregation of tissues (a–c) due to differential adhesion (image adapted
from ref. 76). This SO rule is part of the processes shapingMCembodied complexity,
captured in (d) using a 3D space for natural (dark spheres) and engineered or
artificially evolved multicellular systems (light spheres). Each system is located in
terms of its relative positions, not in quantitative terms. Here, the three axes include
(a) spatial complexity (how different cells are distributed over space), (b)

developmental complexity (the relative relevance of self-organization and hierarchy
participates in the building of the agent) and (c) computational complexity axis. The
latter aims to capture the complexity of the computational decision-making actions
displayed by each system. The current synthetic MC designs occupy the left corner,
where synthetic circuits (dark grey) and embodied systems (light grey) are high-
lighted. A large void on the right reminds us of the large gap between current
achievements and the natural counterparts of MC complexity.
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A novel approach to the previous questions that provides one way to
explore the voids in these spaces is provided by Xenobots13 and
Anthrobots94, which show that endogenous functional capacities can be
reached with no genetic editing or synthetic circuits. Xenobots are con-
structed from the skin and heart cells of the African clawed frog (Xenopus
laevis). These choices allow them to move in predictable ways, pushing
objects andworking collectively (although their learning capacity and ability
to achieve specific ends is only beginning to be investigated). Moreover,
because of the chosen cells, they have self-repair properties. Importantly,
they were designed using an evolutionary optimization algorithm that
explored the space of soft physical shapes that could crawl in (a virtual)
space. The optimal shapes were then sculpted in living tissue using
microsurgery13,14. Anthrobots, on the other hand, are self-constructed
moving spheroids obtained out of human lung cells that allow cilia-driven
propulsion. By contrast to Xenobots, they require no evolutionary algo-
rithms,manual sculpting, or embryonic tissues. Instead, they grow and self-
organize into three-dimensional, living structures. Through precise biolo-
gical and chemical cues, the cells naturally assemble into functional forms
that can move and interact with their environment.

In both cases, instead of implementing desired functionality explicitly
with transcriptional circuits, these living robots featured no genetic editing
or synthetic circuits. Their capabilities, suchas group reproduction, repair of
neural wounds, etc., are endogenous and novel functions controlled by
behaviour-shaping, not bottom-up engineering.

Regenerating and developing systems offer numerous examples of
biological systems navigating the anatomical morphospace to solve novel
problems. This capacity is a highly tractable set of built-in softwaremodules
accessible to the bioengineer, in addition to the specific pathways and
molecules that are usually targeted. More recently, it has been claimed that
living tissue can be understood (and efficiently controlled) as an agential
material—a substrate with its own competencies and agendas in tran-
scriptional, anatomical and physiological problem spaces that can be
manipulated using the tools of behaviour science, not only biochemistry95.
Indeed, work to understand the policies by which the homeodynamic set
points scale, from the humble metabolic goals of single cells to the dynamic
maintenance of grandiose construction projects such as regenerating limbs,
has led to newapproaches to combat the failure of this scaling, in the formof
cancer96,97.

The three classes of synthetic MC systems reveal a very wide space of
possibilities for further exploration. On one hand, the combinatorial nature
of genetic circuits and programmable adhesion hierarchies provides a
potential source of logic functionalities that can be combined with other
features, particularly embodied architectures. On the other hand, the rea-
lization that key aspects of agency can be available for free, both in living
tissues and in engineered biobots, reveals some unexpected properties of
livingmatter that could be exploited to understand evolutionary constraints
to the evolution of MC forms15,16,98 while pushing the boundaries of the
possible. In the next section, we propose several open problems regarding
this potential for synthetic multicellularity.

Open problems
Synthetic developmental programs: the possible and the actual
The suggestion that there is a universal toolkit defining a finite set of
dynamical patterning modules8 could be studied within the synthetic MC
framework. The programmable design of MC aggregates using adhesion
molecules and symmetry-breaking mechanisms79 would be one example
within this validation of the theory. The advantages provided by scalable
generation of cell types73 and that can recapitulate the Waddington land-
scape concept99, combined with using other developmental modules
(introducing polarity or dynamic oscillations), could lead to a taxonomy of
possible embodied designs.

Embodied memory and learning
Current synthetic designs dealingwithmemory circuits rely on the standard
approachof electronic switches. Syntheticflip-flops have been implemented

using MC consortia100, and theoretical models have shown how learning
could be implemented using MC consortia58. Can we move beyond these
standard metaphors? It has been shown that learning in living systems can
occur without a neural substrate93 and that GRNs and pathways can learn
with no genetic changes needed101,102. Moreover, memory can also be
mediated by electrical, rather thanbiochemical, signals, as shown recently in
bacterial biofilms103. Learning can also be implemented at the global reg-
ulatory network level to interpret the nonlinear high-dimensional projec-
tion of time-dependent external signals by intracellular recurrent networks
of genes and proteins104,105. NewMC constructs using organoids or biobots
could benefit from memory enhancements grounded in these novel views.

Synthetic collective intelligence
Onedominant formof intelligent behaviour that rules the biosphere outside
standard brains is based on collective intelligence (CI). In general terms, it
refers to the enhanced capacity that emerges from the collective interactions
among agents in a group, resulting in solutions that cannot be explained in
terms of single individual actions. Insect societies provide the standard
example106–109. It has been conjectured that the conceptual basis forCI can be
translated into synthetic CI counterparts57. Moreover, electrical transmis-
sionof information inbiofilmshas shown theunexpectedpotential110,111 that
reminds us of some general principles of neuronal tissue dynamics112. In
recent years, collective intelligence has been recognized as a general prin-
ciple in agential MC systems beyond animal societies22. Moreover, it has
been pointed out that multicellular organisms and social insect colonies
share fundamental common organizing principles113. Could we use syn-
thetic MC designs to explore this connection? Can we exploit general
information-sharing and processing principles in MC agents to build novel
forms of embodied CI?

Synthetic neural cognition
Recent advances in microfabrication are allowing the development of pre-
cision neuroengineering methods through which neurons in in vitro cul-
tures can be connected to one another in pre-designed ways114. These
advances are revealing, for instance, the importance of modularity in the
emerging activity of neural networks115, and pave the way for the design of
prescribed collective activity in neuronal assemblies. Can they inspire the
development of augmented embodied agents to expand the cognitive
potential of spheroids, organoids or Xenobots? One obvious possibility is to
follow the path of standard synthetic circuit design on anewscale: instead of
using single cells as a chassis for engineered circuits, use whole cell assem-
blies as the chassis for engineered cell types carrying computational circuits.

Synthetic proto-organisms and life cycles
One challenge for synthetic MC designs is the design and development of
complex assemblies that can be considered simple forms of organisms,
developing from single cells in predictable ways and able to self-replicate
themselves. Theoretical and computational models113,116, have shown that a
discrete set of life cycles seems possible. What kind of life cycles can be
obtained fromsynthetic designs?Aminimal synthetic design should include
the growth of a whole assembly from a single cell and the potential for some
cells in the assembly to leave it by detaching from other cells, which should
then be able to repeat the growth process. A successful example of such a
synthetic counterpart of a life cycle is providedby the snowflake yeastmodel
system11, a strain was been engineered to form groups via aggregation or via
clonal development, and then evolved over many generations117. The
experiments and models give support of clonal development favouring
selection at the group rather than the cellular level. Anthrobots, on the other
hand, also possess some key components for such a goal: they develop in a
predictable way from single stem cells, complete their developmental path
into a multicellular spheroid (with variable size), display phenotypic traits
(associated with a variable shape), and display simple behavioural patterns
including the ability to heal neural wounds. Xenobots, on the other hand,
can display a remarkable (and once again, unexpected) property of orga-
nismality: self-reproduction118: the Xenobot autonomously constructs
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copies of itself using available materials in its environment. Is this an indi-
cation that there are multiple paths to build autonomous organisms and
their life cycles? Further insight concerning the rise of syntheticMC systems
is provided by and ecological scaffolding framework in which MC emerges
after cellsmodify the environment that later becomes the scaffold giving rise
to MC individuality119.

Building novel organs
The organ level of organization is a missing component of current theories
of organismality. Although they are identified as discrete modules within
animal bodies, we do not have a systems-level theory that provides pre-
dictable insights concerning their expected agency, number, nature and
embedding within systems75,120. One possible path towards a better under-
standing of these mesoscale structures would be the synthesis of novel
organs. A proof of concept would require building a stable, self-maintaining
structure within a model organism and being able to perform a given
functionality. Some inspiration in this context can come from the devel-
opmental processes leading tonest construction in social insects121–123,where
self-organization, broken symmetries and specialised parts emerge (and are
maintained and regenerated) out of swarm intelligence.

Multiscale synthetic holobionts
Current and future synthetic biology applications in the biomedical context
often involve single UC agents as potential carriers. One major field of
research involves the study of synthetic microbes used to repair dysbiotic
microbiomes124,125 or even terraforming extant ecosystems126,127. In all these
cases, we deal with the holobiont: an organism that contains other organ-
isms, defining an ecological unit128. However, ongoing research reveals that
wemight need to expand this towards howMCagents can also interactwith
a context defined by tissues, organs or another organism. This includes the
repair behaviour displayed byAnthrobots94 and the swimmingmicrorobots
made out of algae and coated with nanoparticles, used to deliver drugs
directly tometastatic lung tumours129. CouldMC agents persistently coexist
(maintaining their individuality) with tissues and organs within organisms,
defining a new class of synthetic holobionts?

Synthetic behaviour
Work in minimal animals such as C. elegans has shown that sophisticated
experience-dependent behaviour, such as salt attraction or repulsion
depending on previous cultivation conditions130,131, is encoded by small
protein circuits in a single synapse132. This multiscale simplicity level
encourages designing similarly complex behaviours in synthetic minimal
animals.Moreover, the studyof basal cognitionopensnewavenues todefine
behaviour133. Robots have been extensively used to study the evolution of
adaptive behaviour134,135 An interesting avenue could be to use Xenobots to
study fossil behaviour136 as represented by the tracks or burrows of ancient
animals, which has been studied using robot models137. Could living robots
with different levels of behavioural complexity recapitulate the taxonomy of
fossil traces and help understand their origins?

Predictable designs?
A generic problem, namely, to what extent the predictability of the MC
designs is feasible, remains to be addressed138,139. Most synthetic systems,
fromUC toMC, are built to live under in vitro conditions, and those used to
target tissues or organs are used as a chassis for an isolated design that is
largely disconnected from the rest of the cellular circuitry. In this context,
one central topic within the study of how MC evolves concerns the con-
straints imposed by organismality on individual cells and their agential
nature140,141. What kind of trade-offs are involved in the evolution of MC
individuals? One fascinating concept, also to be addressed by synthetic
biology, is thepresence of a complexity drain, i.e. a loss of functional diversity
at the cellular level as functional demands are transferred to the higherMC
level142. The dream of understanding this hierarchical complexity under a
top-down view, inways close to standard engineering143might be limited by
the non-standard, tangled nature of cellular circuits and the presence of

emergent phenomena. Although emergence is on our side in many ways24,
shaping organoids and allowing behaviour out of form, we lack a general
picture of the limits of what can be predicted. The voids within the spaces
shown in Figs. 2 and 3 are a reminder of the difficulties associated with
building MC complexity from scratch without the natural developmental
context. Perhaps wemust accept that we cannot engineer the way we did so
far with passive materials, micromanaging everything from the bottom up.
We must collaborate with the materials and take advantage of their basal
cognition.

Discussion
What determines the intrinsic complexity of organisms and developmental
paths?Morphological complexity results from a highly non-linearmapping
between genotype and phenotype144. In this context, self-organization
processes beyond the gene level must be considered when dealing with
tissue, organ and organismal complexity. In this perspective paper, we have
examined the problem of multicellularity under the light of its synthetic
counterparts. We have used a broad range of model systems to achieve this
goal, including engineered microbial consortia, organoids, and biorobots
(Xenobots andAnthrobots).However, the list is not exhaustive, andwehave
not included some fascinating case studies, such as slime moulds, which
occupy an intermediate position at the boundaries between cellular and
multicellular systems145,146. Similarly, Physarum polycephalum, another
slime mould, is a giant multinucleated but unicellular protist that exhibits
multicellular-like traits associated with its morphological complexity147.
They are a good reminder that much needs to be explored in terms of the
deep connections between UC and MC spaces.

A universal outcome of self-organization is the presence of emergent
properties, i.e., qualitative properties exhibited by a system that results from
interactions between units but that cannot be reduced to the properties of
those units. Recent theoretical and experimental studies have shown that
inspiration from thephysics of phase transitionsmight help todealwith these
emergent properties and their universal patterns148–150. The growing ambi-
tions of bioengineering towards creating artificial macroscopic systems face
dealing with emergent patterns, emergent (primitive) cognition and their
scalability. All in all, we have a real world where our goal of designing
increasingly complex cell assemblies is challenged by the underlying non-
linearities that connect genotypes andphenotypes. Figure4 summarises these
difficulties using a metaphor: Waddington’s Demon. This hypothetical
creature is inspired by the famous Laplace’s Demon, proposed by Pierre-
Simon Laplace, capable of knowing the precise location and momentum of
every atom in theuniverse.This information couldpredict thepast and future
of every particle, demonstrating a deterministic universe where the future is
entirely predictable given complete knowledge of the present. Waddington’s
demon,on theotherhand,usingall the availablemolecular informationat the
cellular and subcellular scales, tries to predict the outcome of all the micro-
scopic interactions, but now failing to succeed due to the emergent nature of
multicellular systems. The uncertainties of thismappingmight be reduced by
the presence of constraints16,17 and the universal properties associated with
pattern-formingmechanisms8. In this context, theoretical and computational
models helpus test thedifferent levels of uncertainty andhow theydependon
the presence of modularity and hierarchy151–153.

Is the emergent nature of MC complexity a sharp obstacle to our
understanding of how cells self-organize into tissues, organs or even
organisms? Perhaps not. Although predicting precise properties of a given
layer in the MC hierarchy from lower-level information might be very
difficult or even impossible, someuniversal featuresmight come to our help.
The presence of a set of basic building blocks of developmental complexity,
as defined by the developmental toolkit8 points to a potentially limited
repertoire of possibilities, matching the pervasive character of evolutionary
convergence154,155. Some structural properties of MC complexity might also
be universal, including three layers in embryonic development or funda-
mental body symmetries. Our synthetic alternative to the natural world
might beuseful todetermine if these commonalities (aswell as the forbidden
solutions) are due to contingencies, optimality or inevitable emergence.
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Synthetic biology, stem cell-derived organoids, and the synthesis of
living robots allow us to interrogate nature in novel ways, explicitly con-
sidering emergent properties that allow experimental validation of
hypotheses and formulating models that deal with self-organization and
agency. These tools can collectively bridge the gap between cellular- and
tissue/organ-level biological models, resulting in a more realistic, func-
tionallymeaningful representationof the in vivo tissue spatial structures and
the interactions between the cellular and extracellular environments.
Organoid designs offer a unique opportunity to analyse the nature of
emergence and the limits imposed by context and self-organization on the
generative potential of bioengineering, while Xenobots and Anthrobots are
the front layers that will help us understand complex biology at the orga-
nismal level, from development to behaviour. All the lessons obtained by
answering the open problems discussed above will be instrumental to
understanding the evolution of complexity and they will also allow the
development of new ways to deal with health and disease beyond the
molecular and cellular scales. Agential interventions could be used to learn
about the state of tissues or to execute repairs.
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