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Deep learning for detecting and early
predicting chronic obstructive pulmonary
disease from spirogram time series
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Shuhao Mei 1,2,10, Xin Li3,10, Yuxi Zhou1,4 , Jiahao Xu1, Yong Zhang4 , Yuxuan Wan1, Shan Cao5,
Qinghao Zhao6, Shijia Geng7, Junqing Xie8, Shengyong Chen1 & Shenda Hong 2,9

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition characterized by airflow
obstruction. Current diagnostic methods primarily rely on identifying prominent features in spirometry
(Volume-Flow time series) to detectCOPD, but they are not adept at predicting futureCOPD riskbased
on subtle data patterns. In this study,we introduce a novel deep learning-based approach,DeepSpiro,
aimed at the early prediction of future COPD risk. DeepSpiro consists of four key components:
SpiroSmoother for stabilizing the Volume-Flow curve, SpiroEncoder for capturing volume variability-
pattern through keypatches of varying lengths, SpiroExplainer for integrating heterogeneousdata and
explaining predictions through volume attention, and SpiroPredictor for predicting the disease risk of
undiagnosedhigh-risk patients basedonkeypatchconcavity,with predictionhorizonsof 1–5years, or
even longer. Evaluated on the UK Biobank dataset, DeepSpiro achieved an AUC of 0.8328 for COPD
detection and demonstrated strong predictive performance for future COPD risk (p-value < 0.001). In
summary, DeepSpiro can effectively predict the long-term progression of COPD disease.

Chronic Obstructive Pulmonary Disease (COPD) is a progressively wor-
sening lung disease that leads to difficulty breathing, limited activity, and a
decline in quality of life1,2. As the disease progresses, COPD may also
increase the risk of cardiovascular diseases3 and even lead to premature
death. Therefore, timely and accurate COPD detection is crucial to reduce
patient health risks4. Previous studies have shown a strong correlation
between detecting the disease at an early stage and the success of its treat-
ment. Failing to identify the disease during this crucial periodwill worsen its
severity5,6.

Clinical diagnosis often involves identifying COPD patients by deter-
mining if the FEV1/FVC ratio is below 70%7–9. Researchers have discovered
that the FEV1/FVC ratio method is not always accurate when used with
people of different ages10,11. Thismeans that some patientsmight not get the
right diagnosis at the right time, missing out on early and personalized
treatment options.

In recent years, researchers have used deep learning technologies12 to
identify COPD characteristics by analyzing the Volume-Flow curve. This

method helps to overcome the limitations of traditional approaches but
cannot effectively predict an individual’s latent risk of developing COPD.
Moreover, introducing deep learning technology has resulted in models
lacking transparency, making it difficult to gain the trust of medical pro-
fessionals and patients13. Therefore, developing an artificial intelligence
interpretable algorithm that can accurately detect patients with COPD and
early predict an individual’s latent risk of COPD is crucial for slowing
disease progression and preventing patient mortality.

However, most existing methods for COPD risk analysis mainly face
the following four challenges:
• In order to determine the degree of airflow obstruction, it is necessary

to generate Volume-Flow curves based on the original Time-Volume
curves. Nevertheless, current techniques for generating Volume-Flow
curves can yield unstable curves, potentially resulting in incorrect
predictions by the model.

• The length of the Volume-Flow curve varies among individuals due to
differences in exhalation durations. Nevertheless, existing techniques
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commonly handle Volume-Flow curves with varying lengths by either
filling in missing values or truncating through downsampling. The
former can readily add extraneous noise, whereas the latter could
sacrifice important data dependencies.

• Existing deep learning models are still black-box models that can only
produce detection outcomes without offering an explainer for those
results.Models lacking transparencymayfind it challenging to gain the
trust of medical professionals and patients.

• Currently, existing methods can only detect patients who have already
had COPD based on obvious characteristics displayed on the spiro-
gram (In this article, the spirogram specifically involves measuring
Volume-Flow curve time series). However, these methods fail to early
predict an individual’s probability of COPD in the future based on
changes in the spirogram.

To address the aforementioned challenges, we propose DeepSpiro, a
method based on deep learning for early prediction of future COPD risk
(Fig. 1). Specifically, this paper makes four major contributions:
• We apply a method for constructing Volume-Flow curves guided by

Time-Volume instability smoothing (SpiroSmoother), which uses a
curve smoothing algorithm to precisely enhance the stability of the
Volume-Flow curve while retaining the essential physiological
information from the original Volume-Flow data.

• We develop a COPD identification method based on learning from
varied-length key patch variability-pattern (SpiroEncoder). This
algorithm can dynamically calculate the “key patch" number that is
best suited for each time series data patch, thereby unifying the time
series representation and extracting key physiological information
from the original high-dimensional dynamic sequence into a unified
low-dimensional time series representation.

• We propose a method for explaining the model based on volume
attention and heterogeneous feature fusion (SpiroExplainer). This
method combines the probability of having COPD with demographic
data like age, sex, and probability. This information is then used as
input for themodel, which outputs a COPD risk assessment and offers
an explainer for the model’s decisions regarding the individual.

• We developed a method for predicting the risk of COPD based on the
variability pattern of key patch concavity (SpiroPredictor) for the first
time.Ourmethod canprecisely forecast the probability of disease onset

in undiagnosed high-risk patients over the next 1–5 years and beyond.
Additionally, it can accurately categorize these patients, thereby
addressing the current deficiency in early predicting future COPD risk.
Our work has made COPD detection and early risk prediction more

accurate, ultimately contributing to improved clinical decision-making and
patient prognosis. By providing interpretable results and predicting future
risks, DeepSpiro has the potential to become a valuable early screening tool.
This could help delay disease progression and may potentially reduce
patient mortality.

Results
Model detection and prediction performance
In this study, we aim to detect COPD and validate DeepSpiro superiority by
comparing it to a ResNet18 baseline model. Previously, Justin Cosentino et
al. proposed a baseline model in a paper published in Nature Genetics12. It
was trained and evaluated on the UK Biobank dataset, with evaluation
metrics including AUROC, AUPRC, and F1-score. To ensure a fair com-
parison, we used the same dataset and evaluation criteria. In the COPD
detection task, DeepSpiro achieved an AUROC of 83.28%, an AUPRC of
35.70%, and an F1-score of 39.50% as shown in Fig. 2. DeepSpiro out-
performed the baseline model in these metrics by 1.16%, 1.24%, and 1.36%,
respectively.

Table 1 presents a comparison of different metrics prior to and fol-
lowing signal enhancement. Based on the experimental findings, our signal
enhancement technique effectively improves the stability of the Volume-
Flow curve without compromising the essential physiological information
of the original Volume-Flow data. This enhancement greatly aids in eval-
uating patients with COPD.

DeepSpiro emphasizes data integrity and the preservation of key
information, in contrast to the Volume-Flow ResNet18 method (Baseline
model). Based on the experimentalfindings,DeepSpiro betters theVolume-
FlowResNet18method in all categories, as evidencedbyhigher values of key
metrics such as AUROC, AUPRC, and F1-score.

In terms of parameters, DeepSpiro also performs exceptionally
well. In order to demonstrate the specific advantages of our proposed
DeepSpiro with respect to certain parameters, a comparative study is
carried out between DeepSpiro and the Volume-Flow ResNet18 model.
Specifically, Pytorch is used to build both models and utilize the top
library to calculate both models’ parameter count and floating-point
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Fig. 1 | Our input module uses the raw Time–Volume curve time series collected
fromhospitals and patient demographic data, which are then passed into our AI-
basedmodelmodule.TheAI-basedmodelmodule is divided into four tasks (see the
section “Overview” for details). After processing through the AI-based model
module, the output data is handled by the output module. If the AI-based model

diagnoses the individual as a COPD patient, we will output their diagnosis results
and the interpretability figure of the model. If the AI-based model diagnoses the
individual as a non-COPD patient, we will output their risk of developing COPD
over the next 1-5 years.
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operations. The calculation results are shown in Supplementary Table 4.
The results indicate that DeepSpiro’s parameter count and floating-
point operations are significantly lower than those of the Volume-Flow
ResNet18 model.

By leveraging demographic information, the model can gain a
more comprehensive understanding of the patient’s background14 and
on this basis, improve its prediction accuracy. Additionally, incorpor-
ating FEV1/FVC, the gold standard for COPDdiagnosis, into themodel
can enhance the model’s capability in diagnosing COPD. To more
comprehensively reflect the improvement in the model’s diagnostic
capability by demographic information and the FEV1/FVC diagnostic
gold standard15–17, we concatenate the probabilities outputted by
module II (Fig. 8II), demographic information, and the FEV1/FVC
diagnostic gold standard into a new vector and input it into a logistic
regression model. Figure 3 is a nomogram18, from which we can intui-
tively see that the added demographic information and the FEV1/FVC
diagnostic gold standard enhance the model’s diagnostic accuracy.
Therefore, the model explainer method based on volume attention and
heterogeneous feature fusion has a promotive effect on the diagnosis
of COPD.

In summary, traditional pulmonary function assessment indicators
cannot fully reflect the disease’s complexity and patients’ overall health
status. As shown in Table 1, DeepSpiro is more advanced than traditional
pulmonary function assessment indicators and the Volume-Flow
ResNet18 model.

Fig. 2 | Evaluation comparison. a–c Comparison of receiver operating char-
acteristic (ROC) curves for three prediction methods—DeepSpiro COPD risk pre-
dictions, Volume-Flow ResNet18 COPD risk predictions, and FEV1/FVC ratio-
based risk—across three evaluation tasks: All COPD patients (left), future COPD-
related hospitalization (center), and COPD-related death (right). d-fComparison of

precision-recall (PR) curves across three evaluation tasks—All COPD patients (left),
future COPD-related hospitalization (center), and COPD-related death (right)—for
three prediction methods: DeepSpiro COPD risk predictions, Volume-Flow
ResNet18 COPD risk predictions, and FEV1/FVC ratio-based risk. The error bars
represent bootstrapped 95% confidence intervals (n = 100 bootstrapping samples).

Table 1 | Evaluation comparison table

Category Method AUROC AUPRC F1-Score

All FEV1/FVC40 0.7771 0.2266 0.3143

Volume-Flow
ResNet1812

0.8212 0.3446 0.3814

DeepSpiro (non-
smooth)

0.8315 0.3537 0.3913

DeepSpiro 0.8328 0.3570 0.3950

Hospitalization FEV1/FVC40 0.7925 0.2079 0.3024

Volume-Flow
ResNet1812

0.8382 0.3247 0.3703

DeepSpiro (non-
smooth)

0.8527 0.3453 0.3871

DeepSpiro 0.8538 0.3490 0.3900

Death FEV1/FVC40 0.9242 0.0393 0.1206

Volume-Flow
ResNet1812

0.9374 0.0887 0.2026

DeepSpiro (non-
smooth)

0.9419 0.1129 0.2211

DeepSpiro 0.9419 0.1165 0.2304

This table presents the AUROC, AUPRC, and F1 scores for detecting COPD using four different
methods: the FEV1/FVC method, the ResNet18 model, DeepSpiro trained on unsmoothed curves,
and DeepSpiro trained on smoothed curves.
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Future risk prediction analysis
Tobetter explain the results, we categorize the curves into two groups: early-
phase curves (PEF~FEF25 and FEF25~FEF50) and late-phase curves
(FEF50–FEF75 andFEF75+). As shown inFig. 4a, by observing the trend of
changes in the two types of curves, we can see a significant difference in the
degree of concavity. The concavity of the early-phase curves decreases as
disease risk decreases, while the concavity of the late-phase curves increases
as disease risk decreases. By observing Fig. 4a, we find that individuals with
higher disease risk (e.g., 1 year) are more likely to experience curve collapse
in the early phases, whereas individuals with lower risk (e.g., Non-COPD)
tend to exhibit curve collapse in the late phases. As the risk of disease
increases, the phase in which the curve collapse occurs tends to shift earlier.

To more intuitively demonstrate the relationship between disease risk
and the timing of curve collapse, we designed a concavity trend measure-
ment model. This model uses the formula: CðPEF � FEF25Þ +
CðFEF25 � FEF50Þ - CðFEF50 � FEF75Þ - CðFEF75þÞ to measure the
concavity trend of the curve. From the formula, it can be seen that a larger
concavity trend value indicates that the curve collapse (the phase where
expiratory flow rate drops most significantly) occurs in the earlier phases,
whereas a smaller concavity trend value indicates that the curve collapse
occurs in the later phases.

Figure 4b includes the future disease risk of high-risk and low-risk
populations. The model predicts individuals as a high-risk group for those
identified as at risk of disease and as a low-risk group for those predicted not
to have the disease.We plotted the changes in disease risk for both groups as
curves, showing the proportion diagnosed with COPD over time. The X-
axis represents the time elapsed since the pulmonary function test, and the
Y-axis represents the proportion of patients diagnosed with COPD at a
specific timestamp within the population, i.e., the risk of disease. From the
figure, it can be seen that from the time of the pulmonary function test, the
disease risk for the model-predicted high-risk group shows an exponential
increase over time,while the disease risk for the low-risk group remains near
zero, essentially unchanged with a slight and weak increase. High-risk and
low-risk groups also exhibit significant differences, with a p-value of <0.001.

In order to obtain the expected Volume-Flow curve for different per-
iods, we used the k-median algorithm to extract features from themodel for
samples corresponding to different risk periods (1 year, 2 years, 3 years, 4
years, 5+ years, Non-COPD). We then determined the median sample for
each risk period and used it as the expected Volume-Flow curve for that
stage. Similarly, to obtain the expected Volume-Flow curve for different
subgroups, we subdivided the groups according to their classifications and
used k-median analysis to find themedian sample for each subgroup, using
it to represent the expected Volume-Flow curve for that subgroup.

As shown in Fig. 4c, as the onset time progresses, the concavity of the
patient’s Volume-Flow curve decreases year by year. This trend also indi-
cates that the impactof thedisease on lung function ismore significant in the
later stages, and the closer it is to the onset time, the more apparent the
disease becomes.

From the predictive distribution probabilities over future times and the
future disease risk scenarios for high-risk and low-risk populations, it can be
seen thatDeepSpiro can effectively predict the future development trends of
the disease, thereby providing better treatment and management plans for
patients.

Result of subgroup analysis
To further explore the diagnostic accuracy of the model across different
subsets of the population, subgroup analyses for various age groups, sex, and
smoking statuses are conducted.

The subgroup analysis results for smokers illustrate the model’s
application scenarios. Among patients with COPD, the prevalence rate in
smokers is higher than innon-smokers19. Forourmodel, as shown inFig. 5a,
the prediction probability for smokers is higher than for non-smokers, and
the prediction range for smokers is alsowider than that for the non-smoking
population. This is consistent with clinical significance. Regarding the
p-value, themodel demonstrates a strong discriminative ability between the
two groups.

The subgroup analysis results for sex showcase themodel’s application
scenarios. The 2018ChinaAdult LungHealth Study,which surveyed 50,991
individuals across 10 provinces and cities, has shown that the incidence rate
among men is higher than that among women, with men at 11.9% and
women at 5.4%. For our model, as shown in Fig. 5b, the prediction prob-
ability formen is higher than forwomen, and theprediction range formen is
also greater than that for women. This aligns with clinical significance.
Regarding the p-value, the model demonstrates a strong discriminative
ability between the two groups.

Age is a significant factor influencing the development of COPD.
Typically, the high-incidence age range for COPD is between 45 and 80
years. Within this age range, patients’ lung functions tend to decline gra-
dually. Particularly after age 45, the trend of declining lung function
becomes more apparent. After reaching 80 years, lung function further
declines, and patients’ immune systems weaken, making them relatively
more susceptible to diseases. Therefore, prevention and early identification
ofCOPDare especially important for this age group.Wedividepatients into
Youth (18–44), Middle (45–55), and Elderly (55 and above) for subgroup
analysis, as shown inFig. 5c.The results indicate thatDeepSpiro’s prediction
probability for smokers is higher than for non-smokers, and the prediction

Fig. 3 | The nomogram of COPD detection. The nomogram illustrates the con-
tribution of demographic information and the FEV1/FVC diagnostic gold standard
to the model’s diagnostic accuracy for COPD. The nomogram allows for visual
estimation of the probability of COPD diagnosis by assigning weighted scores to

each variable. The “threshold” in the figure represents the cutoff value at which the
predicted probability indicates a positive diagnosis for COPD. For instance, a
threshold of 0.5 means that a predicted probability greater than 0.5 would be con-
sidered indicative of COPD.
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range for smokers is also larger than for the non-smoking population,
consistentwith clinical significance. Regarding the p-value, themodel shows
strong discriminative ability between the two groups.

Additionally, we compare the AUROC of DeepSpiro, the Volume-
Flow ResNet18 model, and the FEV1/FVC metric across different sub-
groups, as shown in Table 2. Across all subgroups, DeepSpiro’s AUROC is
the highest, demonstratingDeepSpiro’s applicability in different subgroups.

We also conducted a subgroup analysis for individuals across different
future periods. As shown in Fig. 5d, as the onset time progresses, an indi-
vidual’s concavitymeasure gradually decreases. Compared to non-smokers,
smokers show significantly higher lung function concavity measures, fur-
ther confirming the impact of smoking on COPD. This trend is consistent
with clinical observations, highlighting the association between long-term
smoking and lung function decline.

As shown in Fig. 5e, as the onset time progresses, an individual’s con-
cavity measure gradually decreases. Compared to females, males show sig-
nificantlyhigher lung functionconcavitymeasures,whichare typically related

tohigher smoking rates, different lifestylehabits, andphysiological differences
in men. This aligns with the expected results from clinical research.

As shown in Fig. 5f, as the onset time progresses, an individual’s
concavity measure gradually decreases. Compared to younger patients,
older patients show significantly higher lung function concavity measures,
which may be related to natural lung function decline with age, weakened
immunity, and other factors. This is consistent with clinical observations
and expected results. (Note: Due to the small sample size in the Youth
(18–44) group, it was not possible to subdivide and compare across different
stages, so only the Middle (45–55) and Elderly (55+) groups were
compared.)

Result of SHAP analysis
To further analyze whether the model’s predictions hold clinical sig-
nificance, we conduct a SHAP analysis20.

As shown in the beeswarm plot in Fig. 6a, the relative importance of
features is revealed. The figure shows that the higher the COPD risk

(a) The degree of concavity in different future periods (b) Non-COPD Diagnosis Probability Analysis

(c) Comparison of Volume-Flow curves over different periods

Fig. 4 | Future COPD prediction overview. a The left vertical axis represents the
predicted probability of COPD, while the right vertical axis indicates the concavity
degree based on the directed areametric for each phase. Each plot displays the mean
concavity degree for the respective phase, illustrating how the concavity changes
over time in relation to COPD risk. b This figure illustrates the probabilities of not
being diagnosed with COPD over time for the high-risk and low-risk groups, as

predicted by themodel. TheX-axis represents the time since the pulmonary function
test, while the Y-axis shows the probability of not being diagnosed with COPD at
each time point. Due to right censoring, not all high-risk patients are diagnosed
within the observation period, resulting in probabilities that remain above zero. cAs
the onset time progresses, the concavity of the patient’s Volume-Flow curve
decreases year by year.
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value, the greater its impact on the model. Smoking, being male, and
older age all influence the model’s judgment. DeepSpiro’s findings are
consistent with related research conclusions, indicating that smokers,
males, and older patients have a higher risk of being predicted as hav-
ing COPD.

We examine the relationship between smoking and risk values as well
as age and risk values and present our results with dependency graphs.
Figure 6b shows the relationship between smoking and the risk of COPD.
From the figure, it is evident that the predicted risk value of DeepSpiro is
closely related to smoking status. The higher the risk value, the larger the
proportion of smokers. This aligns with clinical significance. For COPD
patients, smokers are more susceptible to the disease.

Figure 6c illustrates the relationship between age and the risk ofCOPD.
From the figure, it can be seen that the predicted risk value of DeepSpiro is
closely related to age. The higher the risk value, the older the age. This aligns

with clinical significance. For COPD patients, older patients are more sus-
ceptible to the disease.

Model explainer analysis
Healthcare professionals often struggle to accurately identify and locate
disease informationdirectly fromlong sequencedata inCOPDclassification
tasks. To address this issue, we utilize SpiroExplainer, automatically
focusing on the diseased regions of the Volume-Flow data.

The proposedmethod can automatically capture anomalies from long
sequenceVolume-Flow data, providing specific patcheswith abnormalities.
Figure 7 shows that the model can automatically focus on key patches that
distinguish COPD patients. Brighter colors indicate higher attention in the
corresponding areas, while darker colors indicate lower attention.

An interesting phenomenon is that for non-COPD patients, as shown
in Fig. 7a, the Volume-Flow curve in the FEF25–FEF50 area appears “full,"

(a) subgroup analysis for smoking

(b) subgroup analysis for sex

(c) subgroup analysis for age

(d) subgroup analysis of smokers across different future periods

(e) subgroup�analysis by sex across different future periods

(f) subgroup�analysis by age across different future periods

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p < 0.001

Fig. 5 | Subgroup analysis overview. a The subgroup analysis for smoking. b The
subgroup analysis by sex. c The subgroup analysis by age. d As the onset time
progresses, an individual’s concavity measure gradually decreases. Compared to
non-smokers, smokers show significantly higher lung function concavity measures.
e As the onset time progresses, an individual’s concavity measure gradually

decreases. Compared to females, males show significantly higher lung function
concavity measures. f As the onset time progresses, an individual’s concavity mea-
sure gradually decreases. Compared to younger patients, older patients show sig-
nificantly higher lung function concavity measures.
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without the small airway collapse phenomenon near FEF75 at the tail of the
curve. DeepSpiro primarily focuses on these two areas near FEF25–FEF50
andFEF75,whichmatch the characteristics of the non-COPDpatient group.
On the other hand, for COPD patients, as shown in Fig. 7d, the curve’s tail
near the FEF75 area collapses due to a small airway collapse resulting from
COPD. DeepSpiro focuses on the area near FEF75, aligning with the char-
acteristics of the COPD patient group. Thus, DeepSpiro can effectively
differentiate and assess the features of different populations.

In analyzing cases where the model made incorrect predictions, we
found that for some individualswhomight have asthma, as shown inFig. 7b,
due to insufficient inhalation, the curve after FEF75 shows aweak exhalation
characteristic similar to the small airway collapse seen in COPD patients.
Since the model mainly focuses on the area near FEF75, it leads to lower
prediction accuracy for these asthma patients. For some individuals who
might have COPD, as shown in Fig. 7c, due to uneven exhalation effort or
mid-breath inhalation by COPD patients, the Volume-Flow curve might
present double ormultiple peaks, appearing “full" in the FEF25–FEF50 range
similar to non-COPD patients. DeepSpiro primarily focuses on areas near
FEF25–FEF50 and FEF75, which also leads to lower prediction accuracy for
these COPD patients. We believe the model’s predictions are medically
interpretable, and due to the complexity and overlap of disease character-
istics, it is challenging to avoid prediction errors completely.

Discussion
Recent research on COPD has primarily focused on three areas: detection,
prediction, and genetic studies. The application of machine learning and
deep learning has achieved significant progress in disease detection.
Researchers have used advanced deep learning models, such as convolu-
tional neural networks (CNNs), to analyze various types of data like e-nose
signals21, spirometry data12, lung sounds22, and CT images23, playing a vital
role in COPDdetection and classification. To improve diagnostic accuracy,

efforts have also been made to integrate multi-source data, such as com-
bining multi-omics data like proteomics and transcriptomics with disease-
specific protein/gene interaction information24 or integrating imaging data
with questionnaire data25, providing a more comprehensive diagnostic
foundation. In data processing, specialized preprocessing workflows have
been developed to eliminate noise and enhance dataset quality, such as
denoising and feature extraction for lung sounds26. In the field of prediction,
machine learning models have been employed to forecast COPD disease
progression and survival rates27,28, including the use of deep neural networks
to predict COPD stages29, and applying anomaly detection methods to
identify COPD manifestations in chest CT scans30, which have shown
remarkable effectiveness in detecting lung function impairment and disease
severity. In genetic research, bioinformatics approaches have been used to
identify key genes and genetic markers associated with COPD31–34, dee-
pening our understanding of COPD pathogenesis and providing valuable
insights for early detection and potential therapeutic target development.

In this paper, we designed a deep-learning method for detecting and
early-predicting COPD from the Volume-Flow curve time series. Specifi-
cally, we use SpiroSmoother, thereby enhancing the stability of theVolume-
Flow curve. We propose SpiroEncoder, which unifies the temporal repre-
sentation of “key patches" and achieves the conversion of key physiological
information fromhigh to low dimensions. Utilizing SpiroExplainer, we fuse
diagnostic probabilities with demographic information to improve the
accuracy of COPD risk assessment and the model’s explainer. The results
and explainer of the model can provide patients with timely COPD risk
reports. Moreover, we propose SpiroPredictor, by incorporating key
information such as the degree of concavity, the model can accurately
predict the future disease probability of high-risk patients who have not yet
been diagnosed, thereby enabling early intervention and treatment to slow
the progression of the disease. Our proposed DeepSpiro model has two
primary functions. First, it can detect COPD with high performance,
achievingAUCandother performancemetrics that surpass those of current
SOTAmodels. Second, ourmodel can predict the risk of developing COPD
over the next 1–5 years using key patch concavity information, an inno-
vative method we have proposed for the first time. Experimental results
show that our novel method has high accuracy in predicting future
COPD risk.

Our work does have some limitations. First, although DeepSpiro has
shown good performance in detecting and predicting COPD using spiro-
gram time series in the UK Biobank, its generalizability to other population
groups remains uncertain. The characteristics of the spirogram may vary
among different populations, which could potentially affect the model’s
performance.

Second, while DeepSpiro demonstrates high accuracy in predicting
COPDusing spirogramtime series in a researchsetting, furthervalidation in
real clinical environments is crucial. The transition from research to prac-
tical application may present unforeseen challenges, such as variations in
data quality, increased noise, and differences in clinical workflows. These
factors could impact the model’s performance, necessitating additional
adjustments and optimizations in future work.

Third, although our model demonstrated high AUROC values across
most prediction intervals, its performance in terms of AUPRC was less
satisfactory, particularly for predicting COPD onset within 1–2 years. We
attribute this to the inherent class imbalance in the dataset (see Supple-
mentary Table 1), where the proportion of new COPD cases is extremely
low. Since AUPRC is highly sensitive to class imbalance, it may under-
estimate the true performance of the model in such cases. To investigate
whether this issue stemmed from our methodology or the inherent chal-
lenges of the task, we compared our model with the approach proposed by
Cosentino et al.12. The comparison results (see Supplementary Table 2 and
Supplementary Fig. 1) revealed that under similar experimental conditions,
their model also exhibited low AUPRC values, highlighting the general
difficulty of identifying rare COPD onset events in highly imbalanced
datasets. Nevertheless, we observed that for certain prediction windows,
such as those exceeding 5 years, our method achieved comparable or

Table 2 | Comparison of subgroup evaluations

Group Class Model AUROC

Sex Male FEV1/FVC40 0.7719

ResNet1812 0.8166

DeepSpiro 0.8335

Female FEV1/FVC40 0.7629

ResNet1812 0.8196

DeepSpiro 0.8329

Smoke Yes FEV1/FVC40 0.7774

ResNet1812 0.8223

DeepSpiro 0.8266

No FEV1/FVC40 0.6857

ResNet1812 0.7428

DeepSpiro 0.7620

Age Youth FEV1/FVC40 0.6960

ResNet1812 0.7344

DeepSpiro 0.7634

Middle FEV1/FVC40 0.7325

ResNet1812 0.7779

DeepSpiro 0.8022

Elderly FEV1/FVC40 0.7622

ResNet1812 0.8024

DeepSpiro 0.8210

ResNet18 in the table refers to Volume-Flow ResNet18. This table shows the performance of
different methods in detecting COPD across various subgroup analyses. These methods include
the FEV1/FVC method, the ResNet18 model, and DeepSpiro trained on smoothed Volume-Flow
curves.
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superior AUPRC values. This indicates that incorporating concavity fea-
tures fromthe volume-flowcurve alongsidedemographic informationhelps
capture critical features over longer time horizons. From a clinical per-
spective, the importanceof earlyCOPDdetectionoftenoutweighs the riskof
false positives. Individuals flagged as high-risk can undergo further con-
firmatory assessments, such as chest imaging. Additionally, the robust
AUROC performance of our model across various prediction windows
demonstrates its strong discriminative capability, making DeepSpiro a
valuable early screening tool. This, in turn, has the potential to improve
patient care quality and optimize resource allocation in real-world medical
practice.

In the future, we will focus on training and validating the model using
datasets from diverse geographic locations and population backgrounds.
This will help assess the impact of demographic and environmental factors
on model performance and improve its generalizability. Additionally, we
plan to develop user-friendly software tools that allow doctors to con-
veniently apply the model in clinical settings and obtain reliable and
understandable results to assist in diagnosing and treating patients. Finally,
we aim to improve themodel’s generalizability by incorporatingmore high-
quality datasets, enabling it to provide effective predictions in a wider range
of scenarios.

Methods
Problem definition
For a COPDdatasetD = {X, Y} composed ofN instances, whereX = {x1, x2,
…, xj,…, xN} represents themonitoring data forN instances, andY = {y1, y2,
…, yj,…, yN} represents the COPD disease labels for the N instances. The
disease label for the jth instance, yj∈ {0, 1},with0 indicatingnodisease and1
indicating the presence of disease. The monitoring data xj = {sj, dj, aj}
includes the spirogram data sj, demographic information dj = {dgj, daj, dsj,

…}, and key concavity information aj = {aj,pef−fef25, aj,fef25−fef50, aj,fef50−fef75,
aj,fef75+}. Here, the spirogram data is a varied-length sequence sj = {sj,1, sj,2,
…sj,i,…} representing airflow variation over time during exhalation. In the
demographic information, dgj denotes sex, daj represents age, and dsj
indicates smoking status. The key patch concavity information includes
aj,pef−fef25 for the concavity information between PEF and FEF25,
aj,fef25−fef50 for the concavity information between FEF25 and FEF50,
aj,fef50−fef75 for the concavity information between FEF50 and FEF75, and
aj,fef75+ for the concavity information beyond FEF75.

DeepSpiro takes the monitoring data X of N instances as input and
produces predicted disease labels Ŷ ¼ fŷ1; ŷ2; . . . ; ŷj; . . . ; ŷNg, explainer
Ê ¼ fê1; ê2; . . . ; êj; . . . ; êNg, COPD risk values R and the risk coefficients
contributed by each monitoring input dimension Rs, Rdg, Rda, Rds, etc., as
well as the probabilities of future disease occurrence for high-risk undiag-
nosed COPD patients Fcopd, F1year, F2year, F3year, F4year, F5year+, Fnon−copd.
Here, yj∈ {0, 1}, where 0 indicates nodisease, and1 indicates the presence of
disease.

Overview
Figure 8 illustrates the architecture ofDeepSpiro,where the blocks represent
different components of the framework.DeepSpiro is primarily divided into
two tasks: COPD detection and early COPD prediction. The inputs to
DeepSpiro always include spirometry data and demographic information
(such as age, gender, smoking status, etc.). For the COPDdetection task, the
model outputs interpretability data and a COPD risk score. For the early
prediction task, it outputs the probability of the individual developing
COPDwithin the next 1–5 years. It is important tonote thatDeepSpiro only
proceeds with the early prediction task if the detection task determines that
the individual does not currently have COPD. Therefore, if the detection
results indicate that the patient has COPD, the model’s final output is

(a) beeswarm plots

(b) COPD-Detection with smoke (c) COPD-Detection with age

Fig. 6 | SHAP analysis overview. a Brighter colors mean that the feature has a more
positive impact on themodel’s predictions. The blow ratio represents the FEV1/FVC
value, an important indicator of lung function. b Relationship between smoking
status and predicted risk of COPD. The figure illustrates how the risk value predicted
by DeepSpiro correlates with smoking status, indicating a higher risk value is
associated with a larger proportion of smokers. This result is consistent with clinical

findings, as smokers are more likely to develop COPD. c Relationship between age
and predicted risk of COPD. The figure demonstrates that the predicted risk value of
DeepSpiro increases with age, indicating that older individuals have a higher risk of
developing COPD. This observation is consistent with clinical findings, which show
that older patients are more susceptible to COPD.
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whether the patient has COPD. If not, the output includes both the current
COPDstatus and the probability of developingCOPDin the next 1–5 years.

DeepSpiro can be divided into four main modules: (1) SpiroSmoother
(see Fig. 8I): constructing Volume-Flow curves guided by Time-Volume
instability smoothing: This enhances the stability of key physiological
information in the original Volume-Flow data. (2) SpiroEncoder (see Fig.
8II): extracting critical features from the variability-pattern of varied-length
key patches: This dynamically identifies “key patches" and unifies the time-
series representation, achieving the conversion of key physiological infor-
mation from high-dimensional to low-dimensional. (3) SpiroExplainer (see

Fig. 8III): explaining model based on volume attention and heterogeneous
feature fusion: This combines diagnostic probabilities with demographic
information to assess COPD risk and provides an explainer of the model’s
decisions. (4) SpiroPredictor (see Fig. 8IV): predicting the risk of COPD
based on the variability pattern of key patch concavity: This integrates key
concavity information to assess COPD risk for various future periods.

Specifically, the original spirogram data is processed with signal
enhancement technology to obtain smoothed Volume-Flow data. The
smoothedVolume-Flowdata is usedas input inDeepSpiro for varied-length
time series data in order to extract essential physiological information.

(a) non-COPD patients detected as non-COPD

(b) non-COPD patients detected as COPD

(c) COPD patients detected as non-COPD

(d) COPD patients detected as COPD

Fig. 7 | The explainer of the model. The brighter the color, the more attention the
model pays. a A model interpretability figure for cases where non-COPD patients
detected as non-COPD by the model. b A model interpretability figure for cases
where non-COPD patients detected as COPD by the model. c A model

interpretability figure for cases where COPD patients detected as non-COPD by the
model. d Amodel interpretability figure for cases where COPD patients detected as
COPD by the model.
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Subsequently, the model combines the important physiological details and
relevant demographic information using volume attention and hetero-
geneous feature fusion techniques. This process enables themodel to output
a COPD risk assessment and provide an explainer for its decisions. By using
the COPD risk assessment values and concavity information obtained from
the Volume-Flow signals in the feature fusion model, we can make precise
predictions about the probability of future disease in high-risk patients who
have not yet received a diagnosis.

SpiroSmoother: constructing Volume-Flow curves guided by
Time-Volume instability smoothing
The current state-of-the-art (SOTA) method for detecting COPD from the
Volume-Flow curve using deep learning has been proposed by J. Cosentino
et al.12. This method involves converting original Time-Volume curves into
Volume-Flow curves, which can result in instability in the curves (as shown
in Fig. 9C). Extensive experimental validation has been demonstrated that
these instabilities can impact thefinal risk assessment forCOPDpatients.To
address this, we employ SpiroSmoother. This approach precisely enhances
the stability of the original Volume-Flow curves while preserving key
physiological signals within the original Volume-Flow data.

As shown in Fig. 9c, we observe instability when converting the Time-
Volumecurve into aTime-Flowcurve.Therefore,webelieve that smoothing
the original Time-Volume curve could help enhance the stability of both the
Time-Flow curve and the Volume-Flow curve.

Gaussian filtering is employed to implement instability smoothing
guidance for the original Time-Volume curves. This method achieves
smoothing by taking aweighted average of the areas around the data points,
where the weight of each data point is determined by a Gaussian function.
For a given data point xi its smoothed value yi can be defined as

yi ¼
Pk

j¼�k xiþj � gðjÞPk
j¼�k gðjÞ

ð1Þ

In this formula, g(j) represents theGaussian function, k is thefilter’swindow
size, and xi+j represents the original data point and its adjacent points. The

formula calculates the weighted average of data points around xi, using
weights derived from theGaussian function g(j). This function is centered at
xi, and its standard deviation determines both the range and the degree of
smoothing. Through thismethod, Gaussian filtering effectively smooths the
data while preserving important feature information.

To convert the smoothed Time-Volume curve into a Volume-Flow
curve, we utilize the finite difference method to approximate the first
derivative of the volume data with respect to time. Simply put, it involves
calculating the volume change rate at consecutive time points to obtain
corresponding flow data. The flow Q(t) can be obtained by calculating the
derivative of volumeV(t)with respect to time t, whereflowQ(t) is defined as

QðtÞ � Vðt þ ΔtÞ � VðtÞ
Δt

ð2Þ

where V(t) represents a set of Time-Volume curve data, Δt is the time
interval between two adjacent time points, and t denotes the time points.

We linearly interpolate the calculated flow data to ensure that the
Time-Flow curve is consistent with the original Time-Volume curve in
terms of time data. In this way, we can construct the Volume-Flow curves
FðvÞ using the Time-Flow curves Q(t) and the Time-Volume curves V(t).
The Volume-Flow curvesFðvÞ is defined as

FðvÞ ¼ QðV�1ðvÞÞ ð3Þ

As shown in Fig. 9c, the Time-Flow curve and the Volume-Flow curve
have been constructed using the Time-Volume instability smoothing gui-
dance technique and have effectively eliminated the original fluctuations,
significantly enhancing the data’s stability. In subsequent experiments, we
have used these stable Volume-Flow curves to replace the original data for
model training. Experimental results have confirmed that the curves pro-
cessed through instability smoothing guidance demonstrate superior per-
formance in risk assessment.

SpiroSmoother: Constructing Volume-Flow Curves
Guided by Time-Volume Instability Smoothing
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Fig. 8 | Framework overview. It is divided into four modules. In the first module, we
process the varied-length original volume curve and convert it into a smoothed
Volume-Flow curve. In the second module, we extract features from the varied-
length Volume-Flow curve. In the third module, combined with demographic

information, we output the COPD detection results and model explainer. In the
fourthmodule, based on concavity information, we output the risk values for COPD
at different future periods.
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SpiroEncoder: extracting critical features from the variability-
pattern of varied-length key patches
Existing methods for modeling varied-length time series data generally use
missing value imputation or downsampling truncation. The former intro-
duces external noise, while the latter will likely lose meaningful data
dependencies. We aim to preserve the key signals of the original data and
adapt them to model input. To this end, we propose SpiroEncoder.

First, we need to reconstruct the original data. We have adopted an
adaptive temporal decomposition method, which dynamically calculates
the most suitable “key patches" count for each time series patch, accurately
capturing the key Volume-Flow information within each time patch. By
introducing the hyperparameter k, we can calculate the number of key
patches based on the ratio of the sequence length to k, ensuring that each
patch contains enough information for subsequent analysis. For a given
length of time series L, the number of key patches S can be defined as

S ¼ L
k

� �
ð4Þ

where ⌈ ⋅ ⌉ represents the ceiling function, ensuring that meaningful data
dependencies are not lost even when L is not divisible by k.

We can obtain the number of key patches for each sequence using the
above-mentioned method. Thus, we can divide each sequence into several

key patches.We feed all the key patches into theNet1D network35 to extract
the spatial features between the patches and the temporal features within
each patch. The Net1D network extracts spatial features for us. We must
compress the high-dimensional spirogram space into the same low-
dimensional key patch to adapt these features for our subsequent modules.

First, we determine the length of the most extended sequence in the
dataset anduse this lengthalongwith thepreset hyperparameterk. Calculate
the number of key patches all sequences should have, thereby normalizing
the temporal representation of the data. For the longest sequence length
Lmax in the dataset, the maximum number of patches is defined as

Nmax ¼
Lmax

k

� �
ð5Þ

We perform encoding for the key features of each sequence. This encoding
marks the key patches and records them as a mask. For each sequence, we
create amask vector. Parts of the vector where key patches exist aremasked
as 1, and parts extending from the end of the existing key patches to the
maximum number of patches are masked as 0.

We construct a zero tensor O 2 RN × S×C , where N represents the
number of samples, S represents the number of key patches, and C repre-
sents the number of output channels. Subsequently, we selectively apply
these encodings to the zero tensorOusing themask vector. For each sample,
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(a) Volume-Flow diagrams for different populations (b) conversion of the original Time-Volume curve

(c) smoothing comparison

Fig. 9 | Spirometry curve and smoothing effects overview. a Examples of Volume-
Flow diagrams for different populations. b The conversion of the original Time-
Volume curve. To obtain the degree of airflow limitation, we need to use finite
difference methods on the original Time-Volume curve to calculate the

corresponding Volume-Flow curve. c Smoothing comparison, the original curve
shows fluctuations in some areas when converting to Time-Flow and Volume-Flow
curves. After smoothing, the curves in the same positions become more stable.
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the mask vector indicates where to insert the features of key patches.
Specifically, if the mask vector is one at a certain position, then we insert
the encoding at the corresponding position in the zero tensor O; if the
mask vector is 0 at a position, the zero tensor remains unprocessed at that
position. (This part also constitutes the padding of 0s for the sequence.)
Thus, the zero tensor O transforms into a fixed-length sequence con-
taining encoding information, andwe refer to the transformed zero tensor
O as the feature tensor of key patches O. For each sample i and its key
patches j, we use themask vectorMi,j to decidewhether to apply encoding.
Oi,j,: can be defined as

Oi;j;: ¼ Mi;j � Ei;j;: ð6Þ

where the features extracted by Net1D for each key patch are Ei;j;: 2 RC:
Because the process of constructing the key patch feature tensor O

involves padding with zeros, this padded information may introduce
unnecessary noise when captured by the Bidirectional Long Short-Term
Memory Network (Bi-LSTM). To address this, we aim to effectively ignore
this portion of padded information before entering the Long Short-Term
Memory Network.

First, we calculate the effective length Lengthi for each sequence, which
is the number of valid key patches in the sequence i. The effective length
Lengthi can be defined as

Lengthi ¼
XS
j¼1

Mi;j ð7Þ

Then, we create a new tensor P 2 RT ×C , where T ¼ PN
i¼1 Lengthi,

that is, the sum of the effective lengths of all sequences, andC is the number
of output channels. Following the sequence order, we copy the features of
valid keypatches from the key patch feature tensorO into the tensorP. After
the above steps, the tensor P contains only valid key patch features.

After the tensor P enters the Bidirectional Long Short-Term Memory
network (Bi-LSTM)36, the variability-pattern relationships among key pat-
ches are obtained.

SpiroExplainer: explainingmodel based on volume attention and
heterogeneous feature fusion
Existing deep learningmodels still function as black boxes, capable only of
producing diagnostic outcomes without offering an explainer for those
results. In order to establish credibility with medical professionals and
patients, the model must offer a decision-making process that is more
open and easily understood by both parties. Therefore, through the
dynamic volume attention integration method, we accurately highlight
the time patches crucial for model predictions using a method for
explaining models based on volume attention and heterogeneous feature
fusion.

Data enters the first linear transformation layer as it passes through the
volume attention layer. This layer provides an initial feature representation
for each time step, which is specifically manifested as

X0 ¼ W1X þ b1 ð8Þ

Here,W1 and b1 are the weight and bias of the linear layer, respectively.
To perform a nonlinear transformation,We follow up by applying the

Swish activation function to the linearly transformed data X0. The Swish
activation function helps to improve the model’s ability to capture complex
features. The transformed data after applying Swish activation function is
given by

X00 ¼ X0 � σðX0Þ ð9Þ

where σðX0Þ ¼ 1
1þe�X0 is the sigmoid function applied element-wise to X0.

Next, we apply a bilinear transformation to the activated data X” by using a

bilinear weight matrix. This is specifically represented as

X000 ¼ X00Wbil ð10Þ

whereWbil is the bilinear weight matrix.
After passing through the bilinear transformation, the data X000 goes

through another linear layer to calculate the attention scores S for each time
step. Finally, the S scores are normalized using the softmax function to
obtain the volume attention weights.

We combine the volume attention information with the smoothed
Time-Volume curve data. The decision-making process within the deep
neural network model can be transformed into visualized graphs. The
graphs provide a clear representation of the specific data regions that the
model prioritizes when making decisions, thereby improving the trans-
parency of the model and bolstering the credibility of its decision-making
process.

Research indicates that there is a significant correlation between
smoking, age, and other demographic information with COPD. Therefore,
we aim to incorporate some demographic information to enhance the
effectiveness of our model. For this purpose, after passing through the
volume attention layer, we first conduct an initial COPD assessment
through a fully connected layer, resulting in P̂ ¼ fp̂1; p̂2; . . . ; p̂j; . . . ; p̂Ng,
where P̂ represents a series ofCOPDassessment values for the samples, with
p̂j 2 ½0; 1� denoting the assessment value for the jth sample. In the sub-
sequent steps, we use these evaluation values to generate the feature
Fprobability, representing the probability of disease. Specifically, Fprobability is
obtained by applying the Softmax function to P̂, as follows:

Fprobability ¼ Softmax ðP̂Þ ð11Þ

Additionally, we extract features Fstruct from demographic and other
structured data. Then, we combine these features with Fprobability using the
following fusion operation:

Ffusion ¼ Fprobability � Fstruct ð12Þ

where⊕ denotes the concatenation of features.
Byutilizing theGradientBoosting framework (Catboost) toprocess the

fused features Ffusion, we predict the risk of COPD. The COPD risk
assessment obtained in this manner outperforms the assessment results
derived solely from unstructured varied-length Volume-Flow curve data.

SpiroPredictor: predicting the risk of COPD based on the
variability-pattern of key patch concavity
In future risk prediction tasks, we used the degree of concavity in individual
Volume-Flow graphs as one of the features for prediction. As shown in
Fig. 9a, high-risk individuals and COPD patients exhibit more significant
concavity, while low-risk individuals exhibit fewer concavity than high-risk
individuals and COPD patients. The following provides a detailed expla-
nation of how this feature of concavity is extracted.

Since the spirogram itself is not strictlymonotonic, each phase consists
of a set of concave and convex curve segments (such as the FEF50–FEF75
phase inFig. 10a),making it difficult to simply judge thedegree of collapse in
the curve. Therefore,wehave defined a concavity-baseddirected areametric
to approximate the degree of collapse in such non-monotonic curves, in
order to characterize the overall concave-convex nature exhibited by
the curve.

First, given the Volume-Flow curveFðvÞ for a particular phase s, we
define its baseline BL(s, v) as the straight line connecting the starting and
ending points of the curve in that phase, where the starting volume of the
phase curve is B(s) and the ending volume isG(s). The slope of the baseline
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BL(s, v), denoted as m(s), can be defined as:

mðsÞ ¼ FððGðsÞÞ �FððBðsÞÞ
GðsÞ � BðsÞ ð13Þ

The intercept b(s) of the baseline BL(s) can be defined as

bðsÞ ¼ FðBðsÞÞ �mðsÞ×BðsÞ ð14Þ

Thus, the baseline BL for a given phase s can be expressed as: where v is a
specific volume value on the Volume-Flow curve. Next, we define a
concavitymeasureCðsÞ based on directed area, which is the directed area of
phase s:

CðsÞ ¼
XGðsÞ
v¼BðsÞ

ðBLðs; vÞ �FðvÞÞ ð15Þ

Therefore, if the curve of phase s is convex, meaning that the Volume-
Flowcurve of this phase lies above itsbaseline (as in thePEF–FEF25phase in
Fig. 10a), the directed area is negative, i.e., the concavitymeasure is negative.
Conversely, if the curve of phase s is concave, meaning that the Volume-
Flowcurveof this phase lies below its baseline (as in theFEF25–FEF50phase
in Fig. 10a), the directed area is positive, i.e., the concavity measure is
positive. According to the above definition, themore concave a curve is, the
larger the concavitymeasure, and conversely, themore convex a curve is, the
smaller the concavity measure. The concavity measure of a given phase
represents the concavity information for that phase.

Furthermore, for Volume-Flow curves in some phases that are neither
strictlymonotonic increasing normonotonic decreasing, the total concavity
measure of phase s depends on the sum of the concave area (positive value)
and the convex area (negative value). If the concave area in phase s is larger,
the concavity measure is greater (positive value), whereas if the convex area
is larger, the concavity measure is smaller (negative value). For example, in
the FEF50–FEF75phase in Fig. 10a, the concave area ismuch larger than the
convex area. Thus, by calculation, the concavity measures CðFEF50�
FEF75Þ based on the directed area are positive, indicating that this phase
exhibits a significant concave trend rather than a convex one.

If we divide the spirogram into four phases: early (PEF–FEF25), mid-
early (FEF25–FEF50),mid-late (FEF50–FEF75), and late (FEF75+),wefind
that in healthy individuals, the spirogram typically remains full during the
early phases, and collapse does not occur until the late phase (such as in the
FEF75+ phase, as shown in Fig. 10b). In contrast, COPD patients often
experience early-stage collapse (such as in the PEF–FEF25 phase, as shown
in Fig. 10c). Therefore, we aim to use the proposed concavitymeasure based
on directed area to study the relationship between the phase in which
collapse occurs and future disease risk.

We fused theCOPDRisk output from the SpiroExplainermodulewith
the key concavity information of the Volume-Flow curve and input this
combined data into a future disease risk predictor for assessing future risk.
Our future disease risk predictor can be classifiers likeCatboost37, Xgboost38,
Random Forest39, etc. The model, having been obtained in this way, accu-
rately predicts the probability of illness in the next 1–5 years, and beyond for
high-risk patients who have not yet been diagnosed.

Dataset and preprocessing
The data used in our study was obtained from the UK Biobank. We spe-
cifically focused on information from453,558patientswhounderwent their
initial pulmonary function test (The test outputs the Time-Volume time-
series curve). It is worth noting that due to factors such as genetics, envir-
onment, or lifestyle, the spirogram characteristicsmay vary among different
population groups. Therefore, in our data processing, we chose to conduct
experiments only on the largest population group in theUKBiobank, which
is of European descent. The DeepSpiro model relies on detailed and precise
patterns in spirogram time series to detect and predict COPD. Therefore,
incomplete or distorted data may lead to errors in the model’s predictions.
To mitigate the issue of inaccurate predictions caused by poor data quality,
we have implemented several data preprocessingmeasures. Thesemeasures
ensure that only high-quality and reliable data is used formodel training and
validation, thereby enhancing the robustness and accuracy of the
DeepSpiro model.

The original Time-Volume (expiratory volumes over a period of time)
measurements are extracted from UK Biobank field 3066, which contains
expiratory volumes recorded every 10ms in ml. The Time-Volume mea-
surements are used from each participant’s first visit. To ensure the Time-
Volumedata are valid, we consultUKBiobankfield 3061; if the value infield
3061 is either 0 or 32, the expiration is considered valid. If multiple valid
expirations are available, we choose the first one in sequence. To control the
quality of the expirations, we review the UK Biobank fields 3062 (FVC),
3063 (FEV1), and3064 (PEF); if anyof these are in the topor bottom0.5%of
the observed values, any expiratory data will discard from that patient. The
original expiratory volume measurements are converted from milliliters to
liters, and the corresponding flow curves are calculated by approximating
the first derivative with respect to time using finite differences. As shown in
Fig. 9b, the Time-Flow and Time-Volume curves combine to generate a
one-dimensional Volume-Flow curve time series.

We refer to the labelingmethods in Justin Cosentino et al.’s research12.
Specifically, the labels are generatedby combining information fromvarious
sources in the UKBiobank.We use a binary COPD label that is determined
through self-reporting, hospital admissions, and primary care reports to
train DeepSpiro. Self-reported COPD status is derived from codes 1112,
1113, and 1472 in the UK Biobank field 20002. Hospital-reported COPD
status comes fromcodes like J430 and others in theUKBiobankfield 41270,
and codes like 4920 and others in field 41271. The COPD status from

Fig. 10 | Volume-Flow curves illustrating phase-specific concavity and airway
collapse. a A representative Volume-Flow curve divided into four phases: early
(PEF–FEF25), mid-early (FEF25–FEF50), mid-late (FEF50–FEF75), and late
(FEF75+), highlighting concave and convex segments relative to the baseline.

b Volume-Flow curve of a healthy individual, showing airway collapse occurring in
the late phase (FEF75+). c Volume-Flow curve of a COPD patient, showing early-
stage airway collapse in the early phase (PEF–FEF25).
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primary care reports is required using TRUD tomap the UK Biobank’s gp-
clinical to read codes from UK Biobank field 42040, with mapped fields
including codes like J430, among others. For specific extraction of field
codes, please refer to Table 3. In addition, death information is used in
subsequent analyses. Death information is recorded in UK Biobank field
40000. If any value is present in this field, we consider the patient to
have died.

After completing the necessary data processing, the data were cate-
gorized into three groups: All (the complete dataset), Hospitalization
(patients reporting hospitalization), and Death (patients who passed away).
The number of COPD cases in each category is summarized in the Table 4.

Currently, thedataset includes a total of 348,039participants, divided into
training and testing sets at an 8:2 ratio. Specifically, the training set contains
278,431 participants, while the testing set comprises 69,608 participants.

Evaluations
To evaluate the performance of this method, we used a validation set to
calculate the model’s area under the receiver operating characteristic curve
(AUROC), area under the precision-recall curve (AUPRC), and F1 scores.

AUROC: The area under the receiver operating characteristic curve
(AUROC) is a widely used metric for evaluating the performance of clas-
sificationmodels, especially in binary classification problems. It is calculated
by varying the classification threshold to determine the true positive rate
(TPR ¼ TP

TPþFN) and the false positive rate (FPR ¼ FP
FPþTN). The ROC curve

shows the relationship between the true positive rate and the false positive
rate. The value of AUROC is the area under the ROC curve, which can be

approximated as AUROC ¼ R 1
0 RðFÞ dF, where F represents the false

positive rate and R(F) is the corresponding true positive rate. Numerical
methods generally estimate the FPR values f1, f2, …, fn and the corre-
spondingTPR values t1, t2,…, tn. The trapezoidal area approximation of the

AUROC is: AUROC � Pn�1
i¼1

ðf iþ1�f iÞ× ðtiþtiþ1Þ
2 .

AUPRC: The area under the precision-recall curve (AUPRC) is a
commonly used metric to evaluate models for classification problems. The
PR curve is derived by varying the classification threshold to calculate
precision (precision ¼ TP

TPþFP) and recall (recall ¼ TPR ¼ TP
TPþFN). It can be

approximated as ∫P(r)dR(r), where P(r) represents precision, R(r) denotes
recall, and r represents the decision threshold.

F1 score: The F1 score is a crucialmetric for evaluating the accuracy of a
model. It is the harmonic mean of precision and recall
(F1 ¼ 2× precision × recall

precisionþrecall ), providing a single metric that considers both the
accuracy and completeness of the model.

These metrics collectively help us comprehensively assess the model’s
performance across different aspects. In this experiment, the AUROC,
AUPRC, and F1 scores are calculated using functions from the scikit-learn
library and code from Justin Cosentino et al.12.

Compared methods
To assess the effectiveness of DeepSpiro, we compared it against several
baseline methods, including:
• FEV1/FVC ratio: The FEV1/FVC ratio is the GOLD standard in

clinical practice for determining whether an individual has COPD. If
an individual’s ratio is less than 70%, they are considered to have
COPD. Therefore, this method also be used as our baseline.

• ResNet18 (Nature Genetics): The ResNet18 convolutional neural
network (CNN) is capable of efficiently learning features from large-
scale datasets. In a paper published in Nature Genetics, Justin
Cosentino et al. utilized this model for the task of COPD detection12.
Therefore, we also adopt this model as the primary baseline.

Data availability
Data from the UK Biobank, which is available after the approval of an
application at https://www.ukbiobank.ac.uk. UK Biobank received ethical
approval from the National Information Governance Board for Health and
SocialCare and theNationalHealth ServiceNorthWestCentre forResearch
Ethics Committee (Ref: 21/NW/0157).

Code availability
Our code is publicly available at https://github.com/yudaleng/COPD-Early-
Prediction.
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