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Predictive mathematical modeling is an essential part of systems biology and is interconnected with
information management. Systems biology information is often stored in specialized formats to
facilitate data storage and analysis. These formats are not designed for easy human readability and
thus require specialized software to visualize and interpret results. Therefore, comprehending
modeling and underlying networks and pathways is contingent on mastering systems biology tools,
which is particularly challenging for users with no or little background in data science or system
biology. To address this challenge, we investigated the usage of public Artificial Intelligence (Al) tools in
exploring systems biology resources in mathematical modeling. We tested public Al’s understanding
of mathematics in models, related systems biology data, and the complexity of model structures. Our
approach can enhance the accessibility of systems biology for non-system biologists and help them

understand systems biology without a deep learning curve.

Biotechnologies, such as next-generation sequencing, high-throughput
screening, single-cell RNA sequencing, and mass cytometry, have gen-
erated a vast amount of biological and biomedical data. Systems biology
integrates these data from various sources through analysis and mod-
eling from multiple cross-linked databases and software tools. Usually,
the data are archived in formats that are designed for data storage and
analysis purposes, such as a variety of XML formats for describing
different types of mathematical models, such as Systems Biology
Markup Language (SBML)' and related constructs such as pathways
coded in Biological PAthway eXchange format (BioPAX)’ and visual
diagrams coded in Systems Biology Graphical Notations format
(SBGN)’. These formats, however, are not designed for human read-
ability and, therefore, necessitate specialized software for proper visua-
lization and result interpretation*'. Meanwhile, comprehension and
proper use of systems biology resources require extensive data-
processing technologies, making system biology a difficult subject for
biologists and/or students who do not have a data science background.
To these users, programming, data formats, and mathematical equations
and models belong to a different realm of expertise. Here, we introduce
an approach leveraging public AI tools (ChatGPT, Perplexity, MetaAl,
etc.) to explore various aspects of systems biology, specifically mathe-
matical models. We also discuss the advantages and disadvantages of
our approach.

Results

Mathematical modeling of system biology

Mathematical modeling is crucial in systems biology, which studies how the
components of biological systems interact with each other. Mathematical
models are widely adopted across disciplines, from pharmacology and
pharmacokinetics'” to personalized models for cancer", highlighting their
cross-cutting importance in scientific research. For example, it has been
shown to bridge the gap between existing clinical knowledge and a
mechanistic understanding of pathological processes'’. The models are not
limited to biology but have been extended to fields like chemistry and
biotechnology”.

In this study, we consider systems biology data stored in community
standards and formats supported by the “COmputational Modeling in
Blology NEtwork” (COMBINE)—an initiative to coordinate the devel-
opment of the various community standards and formats for computa-
tional models'. These standards are supported by a majority of system
biology tools designed to visualize, simulate, and analyze mathematical
models. For example, the Virtual Cell (VCell)*, COPASI",
BioNetGen'”"®, and NEURON" create and simulate mathematical
models. Also, multiple databases are available to store systems biology
data and mathematical models, such as BioModel® and CellML?' data-
bases of mathematical models, and Reactome” and KEGG?* databases of
pathways.
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Despite the availability of system biology resources, understanding
system biology is still challenging with a steep learning curve: The termi-
nology, programming languages associated with different programs and
interfaces, mathematical style definitions, etc. are complex and vary across
different system biology tools. Furthermore, a high mathematics level is
required to explore system biological modeling to its full extent. For
example, differential equations, which are key in modeling biological
processes™, require strong calculus knowledge. As a result, education in
system biology is usually offered post-undergraduate. Meanwhile, biologists
who do not have a data science background very often find system biology
difficult, while they are keen to adopt system biology in research. To address
the challenges, here we introduce an Al-aided approach to help explore
system biology and modeling data with no difficult learning process.

Data formats used in systems biology

Various data formats are used in systems biology to store data. Thanks to the
“COmputational Modeling in Blology NEtwork” (COMBINE) initiative,
which coordinates the development of community standards and formats
for all aspects of modeling in biology, the number of data formats is relatively
small compared to hundreds of system biology tools and databases. For
example, the SBML format', developed to exchange data in a form suitable
for mathematical modeling, is supported in more than 100 modeling and
simulation tools, including widely used tools like VCell and COPASI. The
Biological Pathway Exchange (BioPAX) format was developed for network
analysis, gene enrichment analysis, and validation and is used in multiple
tools such as PaxTools’. The Systems Biology Graphical Notations (SBGN)
format has been used for visualization and disease maps™*>*°. The BioNet-
Gen Language (BNGL) is a text-based language” for specifying rule-based
models designed in BioNetGen software. NeuroML format™ is used to
define and exchange descriptions of neuronal cell and network models. The
CellML format™ is used to work with the Physiome software”, while Virtual
Cell Markup Language (VCML) describes models done in VCell. The
multitude of system biology data formats enriches data availability across
various software and tools, however, it deepens the learning curve for non-
systems biology, non-data science users.

Overview of public Al tools
Al tools can be applied in system biology learning and exploration. How-
ever, most public Al tools limit free usage (Table 1), e.g. through truncating
content, limiting file attachments, or rejecting to process large pieces of text.
For example, Perplexity, SciSpace, and HyperWrite employ daily token
systems to regulate the number of responses they can generate per day.
Despite these constraints, there are ways to maximize the utility of free
versions, for example by breaking larger files into smaller chunks.
Additionally, public A tools’ requirement to register upfront can limit
users’ experience due to privacy concerns. In this regard, ChatGPT and
MetaAl may be appealing to use as both tools allow an infinite number of
queries in a completely anonymous mode. Also, some Al tools have

employed multiple ways to uncover user’s privacy. Platforms, such as
Gemini, automatically create accounts for users logged into associated
services like Google Chrome. Perplexity, Phind, Microsoft Copilot, and
HuggingChat allow anonymous use for a few questions, after which a user is
prompted to register to unlock the features.

An important feature of Al tools is providing references for generated
answers, which is crucial for verifying and reproducing answers indepen-
dently (Table 1). However, the accuracy and consistency of provided
references vary across the public Al tools. Often, the references have little or
no relevance to an inquiry question.

In addition to tools for general purposes, there are specialized ones that
cater to specific domains. For example, the Deep Origin specializes in
computational biology and drug discovery, but its immediate registration
requirements can discourage a beginner’s use. Stability Al is a text-to-image
generator. Jasper Al focuses on marketing-specific content. And Koala Chat
is an Al assistant and offers consolidated answers by providing access to
other Als including ChatGPT and Claude. The diversity of Al tools and
platforms presents both opportunities and challenges in educational
integration.

Taken together, learning system biology is challenging. Therefore, here
we introduce an easy-to-use approach for using existing public Al tools to
help explore various aspects of system biology for non-system biology and
non-data science learners. Understanding the capabilities and constraints of
various Al platforms can certainly optimize learning and usage experiences.
For example, Al typically generates slightly different responses to the same
question. The variations of responses, even incorrect ones, can inspire cri-
tical thinking at the user’s end.

Use of Al to explore data formats in mathematical modeling
Most existing Al tools are capable of recognizing different biological
formats, and often can quickly provide sufficient descriptions about
formats for further exploration. System biology databases and tools use
different formats to present the data. For example, the Reactome data-
base presents SBML, SBGN, BioPAX2, and BioPAX3 downloading for-
mats. A researcher may be lost in which format to choose. Al tools, such
as ChatGPT, can easily recognize some formats and facilitate under-
standing of the formats and their usage. By analyzing a BioPAX snippet
(Supplementary Note 2), ChatGPT responded with a human-readable
description of the data and a summary of the format, “This RDF/XML
snippet captures structured information about the “EGFR dimerization”
pathway from Reactome in the BioPAX format, emphasizing the entities
involved, their relationships, and associated metadata. It’s structured to
facilitate interoperability and integration of biological pathway data
across different platforms and databases.”

We tested multiple non-human readable data formats on public Al
tools. An XML-based NeuroML format is designed to describe and analyze
neural system models. With the provided NeuroML files, most Al tools
could analyze and interpret the format. For example, we input the NeuroML

Table 1 | Summary of free Al tools that can be used in systems biology learning and exploration. Current as of July 2024

Name Link Free version No sign-up No daily limit No limit on text Providing references
ChatGPT https://chatgpt.com/ . . .

Meta Al https://www.meta.ai/ J . .

Gemini https://gemini.google.com/ . .

HyperWrite https://www.hyperwriteai.com/ .

Phind https://www.phind.com/ . L ©
Perplexity https://www.perplexity.ai/ . .
You.com https://you.com/ . . .
HuggingChat https://huggingface.co/chat/ . . 3
SciSpace https://typeset.io/ . .
Microsoft Copilot https://copilot.microsoft.com/ . . .
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of a model that describes a neuron’s simple morphology (Supplementary
Note 3). Phind responds with a description of a simplified model of a neu-
ron’s morphology using NeuroML 2, a standardized format for defining
neural network architectures and cellular components. This model focuses on
the physical structure of the neuron, particularly its soma (cell body), den-
drites, and a spine, which are key components of neuronal architecture
relevant to understanding neural signal propagation and synaptic trans-
mission.” This succinct summary would be helpful for a non-data science
user to understand the given NeuroML model without deciphering the
complex, non-human readable NeuroML code.

Further, we used data formats in biological networks and processes
to test Al tools’ comprehension of complex formats. For example, when a
model in the Systems Biology Graphical Notation (SBGN) format was
provided (Supplementary Note 4), all nine AI tools’ responses varied,
from not recognizing the format to varying degrees of detail about the
structure of the data. Some tools, like Perplexity and Phind correctly
identified and described key elements in the file, including the com-
partment, complexes, reactions, and processes, and concluded their
analysis with the significance of the formation of EGFR dimers. This
concise synopsis was detailed enough for a basic understanding of the
given model, thus prompting the usage of this tool for non-system
biologists to quickly gain a general knowledge of a model without prior
knowledge of the SBGN format.

The BioNetGen Language (BNGL) is one of the most concise modeling
formats. It usually has no annotations; all biological information is con-
tained in abbreviated species names. With a provided BNGL file (Supple-
mentary Note 5), all nine Al tools were able to process it. Given the limited
details in the BNGL file, some Al tools made incorrect assumptions and
began to stray off-topic, for example, Phind Al responded, “feedback loop
and SOS protein interactions”, which do not exist in the given BNGL model.
However, ChatGPT, Perplexity, MetaAl, and HyperWrite responded with
details that correctly identified the various species and how they interacted
in the models. For example, when prompted to explain the biology,
ChatGPT responded with a description of molecules and their interacting
sites used in the rule-based description. The response was in-depth while
remaining concise, and the summary included describing the molecule
types, reaction rules, seed species, and other important factors for a com-
prehensive answer.

Taken together, various system biology data formats, regardless simple
or complex ones, are recognized by public Al tools. All tools can provide
human-readable descriptions of the formats, but cross-validation is
recommended to ensure accurate responses.

Use of Al to explore mathematics in system biology models
System biology modeling papers assume some mathematical back-
ground for readers, thus papers often do not explain mathematical for-
mulas and/or reasons for selecting certain mathematical expressions.
Resultingly, a novice in modeling can easily be confused by math
expressions and selection of mathematical formulas in describing
changes in biological parameters and effects (stimulation or inhibition)
modeled by this mathematics. To alleviate these difficulties, we tested the
extent to which AI can assist in understanding the mathematical
expressions used in system biology.

As one example, we used a recent paper on Aging Phenotypes’'. This
paper describes the timeline of human aging as a function of measured
amounts of blood biomarkers, such as insulin growth factor (with normal to
slightly high levels of IGF-1 generally associated with normal processes such
as growth, metabolism, and cell proliferation) and interleukin 6 (with ele-
vated levels of IL-6 generally associated with negative processes such as
inflammation).

The paper describes IL6 and IGF-1 dynamics as a “Hill-type kinetic law
with the Hill coefficient (exponent for inhibitor concentration in the
denominator) being 2. In chemical kinetics the Hill coefficient of more than 1
would signify positively cooperative binding—once an inhibitor binds, it
enables easier binding of the next inhibitor.” The paper also provides a

differential equation for the production of IL6. But to a novice in modeling,
neither this description nor the equation is easily comprehensible.

dIL6 kpyg

B 4| S | 1]
dt 1+ (ks IGF1? 1

To help understand the mathematical model, it can be loaded into the
Virtual Cell (Vcell) software in the native VCML format provided in the
manuscript (Supplementary Note 6). Figure 1 depicts the screenshot of
model representation in the VCell interface, showing interactions among
model elements such as IL6 and IGF1 and corresponding kinetic laws.
However, a novice may need further help to interpret this cartoon, such as
the node and line representation and the expression for reaction rate.
Furthermore, no explanations were given in the paper or the associated
VCML model as to the selection of the mathematical expressions, or of what
they represent.

We then tested how Al can assist in explaining the model’s mathe-
matics to a novice. The model in the VCML format, given in the paper’s
supplemental material, was provided to ChatGPT (Supplementary Note 6),
but the format was not recognized.

When the same model in the VCML format was provided to Hyper-
Write, the math in the model was described with great detail:

“Based on the VCML model, the level of IGF1 affects the level of IL6
through the production of IL6 ... IGFI inhibits the production of IL6.
Specifically:

o When IGFI levels are low (i.e., close to 0), the term (ks_IGF *
(IGF1/2.0)) approaches 0, and the rate of IL6 production approaches its
maximum value of kp_IL6.

o As IGF1 levels increase, the term (ks_IGF * (IGF1/2.0)) also increases,
which decreases the rate of IL6 production.

o At very high IGFI levels, the rate of IL6 production approaches 0,
indicating almost complete inhibition of IL6 production by IGF1.

Therefore, the model suggests that IGF1 negatively regulates IL6 pro-
duction, meaning that higher levels of IGF1 lead to lower levels of IL6, and
vice versa.”

That is, the HyperWrite Al correctly analyzed the given mathematics,
successfully identified the most important network information for the
given model, and deduced an inhibitory relationship between IGF1 and IL6.
Its summary statement drastically reduces the learning difficulties for a
novice following the described aging study.

However, other Al tools provided incomplete or incorrect answers.
MetaAl stated that “IL6 production is induced by IGF1 and inhibited by IL6
itself, with a degradation term. IGF1 production is induced by IL6 and
inhibited by IGF1.” When asked a follow-up question to explain, “How does
the level of IGF1 affect the level of IL6?” it gave the opposite answer “IGF1
and IL6 have an inverse relationship, like two opposing forces. As one
increases, the other decreases.” Microsoft Copilot also incorrectly described
the relationships between IGF-1 and IL-6 as “The product is IGF1, influenced
by the modifier IL6.” and “IL-6 enhances the production of IGF-1 by influ-
encing its kinetics.”

Taken together, at this stage, large language models implemented in
ChatGPT, MetaAl, and Copilot are unsuitable for analyzing mathematical
expressions in system biology. However, the HyperWrite Al may provide
some success as exemplified above.

Use of Al to explore model structures in system biology

Being able to accurately describe participants and their interactions in a
biological system is fundamental to understanding a system biology model.
Therefore, given a model description in the standard modeling formats, we
tested whether Al tools can understand the structure of the mathematical
model and whether Al can properly identify the composition and the
reaction processes. In the test described below, we designed a series of simple
mathematical models with increasing complexity.
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Fig. 1| A visual representation of the Aging Phenotypes model in the Virtual Cell software (https://vcell.org™). The red node represents the reaction producing IL6. The

bottom panel describes the expression for the reaction rate (called “J”).

We started with the classical model of EGF ligand binding to the EGFR
receptor, followed by its dimerization and phosphorylation (Fig. 2). This
model has been used in multiple research studies™™*.

Next, we added levels of complexity with the aggregation of multiple
proteins (namely Grb2, Shc, and finally SoS) on the membrane. As common
in modeling, the names of introduced components were highly abbreviated:
A species resulting from the binding of EGF and EGFR is named as Ra
(stands for activated receptor), aggregation of two Ra species forming a
species D (standing for dimer), a species resulting from phosphorylation of
D called Dp (representing the phosphorylated state), aggregation of the
Grb2 species with Dp resulted in the species named DpG, which would
become DpGS when it is aggregated with the Shc protein, DpGSp when
phosphorylated, and finally, DpGsp_Sos when the Sos protein is aggregated
onto the compound.

Thus, the simplest Model 1 included only two reactions: binding of an
EGF ligand to an EGFR receptor to form the activated complex Ra and Ra
dimerization (Supplementary Notes 7, 8, veml and sbml formats, respec-
tively). Model 2 included 7 species, adding to the previous model the
phosphorylation to Dp and aggregation with Grb2 to form DpG (Supple-
mentary Notes 9, 10, veml and sbml formats, respectively). Model 3 had

12 species, including Shc followed by Sos aggregating onto the protein
complex (Supplementary Notes 11, 12, veml and sbml formats,
respectively).

These models were saved in VCML and SBML formats in the
Virtual Cell software. Of note, the XML files are very verbose and free Al
tools often limit the size and word count of input files. Thus, we created
“simplified” versions of each of these model files in SBML format by
deleting redundant parts of the code that did not directly relate to or hint
towards the biological processes (e.g. units and parameters) (Supple-
mentary notes 13-15).

With the designed mathematical models with increasing complexity,
we tested whether Al can properly identify the composition of each species
and the processes (binding, modification) that a species participates in.
Table 2 summarizes the findings. Most tools, including ChatGPT, did not
provide an understandable biology summary for the models, describing data
structure such as unit definitions, parameters, and assignment rules.
However, some tools were able to correctly describe the processes (reactions
among species) and make sense of species names, such as understanding
that Dp may be a phosphorylated form of D, and DpG may be a complex of
Dp and G.
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We conclude that some public Al tools can recognize and interpret key
reactions and species in system biology models, but most Al tools struggle
with biological interpretation and focus on the structure of the model and
the code.

Comparison of Al tools in handling various data formats

When using public Al tools in system biology, it is also crucial to compare
AT’s capability to handle the diverse range of existing systems biology for-
mats. By using the same workflow across multiple public Al platforms, we
identified tools most suitable for specific tasks. Results are summarized in
Table 3.

Overall, we found that the free public version of ChatGPT was the most
effective among fully accessible Al platforms, while Perplexity gave better
responses but had daily limits on use. Although Perplexity requires regis-
tration, its consistently high-quality answers across multiple systems biology
formats, along with the fact that it provides references to the information it
generates, were reasons why we ranked it as one of the best platforms. Both
ChatGPT and Perplexity still had problems with at least one of the formats
but for the most part, gave detailed and understandable answers.

HuggingChat was efficient in explaining models in SBML and BNGL
formats while describing only the structure and few details in other formats.
All the answers provided by You.com concentrated on file structures only
and did not explain the biological details of the models.

E membrane Mode|l 2

EGF

Q— Grb

J

é

w

hc
Model 3 S [

Sos

Fig. 2| A typical representation of a mathematical model as a reaction diagram in
the Virtual Cell software. Yellow nodes: reaction processes. Green nodes: chemical
species participating in these processes. In Model 1, the EGF ligand’s binding to an
EGEFR receptor leads to the formation of a complex of EGF and EGFR in the
membrane called Ra, and then the dimerization of two Ra complexes leading to the
formation of a dimer D—a complex on a membrane consisting of two ligands EGF
and two receptors EGFR. In Model 2, Model 1 is extended by adding a reaction of
phosphorylation transforming D dimer into its phosphorylated form Dp, which
binds with the Grb2 protein to form a DpG complex. In Model 3, Model 2 is extended
by adding interactions with Shc and Sos proteins.

Gemini, Meta, HyperWrite, and Phind were able to provide high-
quality descriptions for some systems biology formats and responded with
brief or partially false answers with others. Meta, for example, identified key
interactions in BioPAX such as “Ligand binding: EGF-like ligands bind to
EGFR” and “Receptor dimerization: Two EGFR molecules bind to form a
dimer.” Gemini generated good responses for SBGN, VCML, and NeuroML
identifying all the key components in the models and providing detailed and
concise answers in a bulleted format. It explained SBML models, “The code
you provided describes a biochemical pathway involving a molecule called
EGF (Epidermal Growth Factor). EGF binds to a receptor (EGFR) on the
surface of a cell. This binding can trigger a series of reactions inside the cell”.
HyperWrite, similarly to MetaAl did a good job with BioPAX and was able
to discuss EGFR dimerization as “two instances of a protein complex com-
posed of EGFR and EGF-like ligands, which are bound to the plasma mem-
brane...combine to form the product.” Phind was relatively strong with
SBML, describing the model and highlighting “the process of EGFR (Epi-
dermal Growth Factor Receptor) dimerization” but not describing the spe-
cific species involved in the reaction. HyperWrite was the only Al tool in our
tests that could properly understand and explain Math expressions in XML
formats. Microsoft Copilot provided a good analysis of many formats, but
could also give completely irrelevant explanations, e.g. describing the aging
model from Supplementary Note 6 as “Fluid Mosaic Model”. And SciSpace’s
answers were generic and concentrated on the data structure rather than on
the biological content, but it was able to recognize multiple formats and
generate meaningful brief responses. However, for formats not recognized,
SciSpace provided answers and sources that were completely irrelevant.

Based on our tests, the SBML format was the most compatible across
different AI platforms, which is not surprising given the wide acceptance of
models in this format. Every Al application was able to process SBML, but
the quality differed based on the size and levels of complexities of user
input files.

Proposed approach/workflow for using Al tools in systems
biology

Al is evolving and learning all the time. As a result, the following proposed
workflow (Fig. 3) may be outdated later on, but it still can serve as a guideline
for questioning Al to obtain desired results.

Please note that asking questions to ChatGPT (or any Al-based con-
versational model) is not as straightforward as it may seem. When asking
questions to AI the user must be as specific and clear as possible, provide
relevant context or background, break down complex queries into smaller
parts, and iterate and refine questions if the first response doesn’t meet
your needs.

Al remembers previous questions during the session, so the user may
need to restart or use a new session in an incognito browser to prevent bias
from the previous questions. One of the significant issues working with Al
tools is that they are trained on a large body of knowledge that may be
contradicting to the data contained in the systems biology resource (model,
pathway, diagram). To overcome this issue, there are several strategies:

1. Specify a data input that has to be used and ask to use only it, e.g., “Using
only the information provided below, summarize it in biological terms”

Table 2 | A summary of Al description of model codes

Al tool Model recognition features M1 M2 M3

Meta Al Recognized species names, e.g. that Dp might represent a phosphorylated form of the molecule D, DpG appears to be acompound that P P P
represents the complex formed by the interaction of Dp (a phosphorylated form of protein/molecule D) and Grb2.

Phind Described interactions as conversions, e.g. describing aggregation of Dp and Grb2 as a “conversion of Dp into DpG, facilitated by Grb2”. P P P

Perplexity ~ Correctly described small models, stating that Ra is a Receptor-ligand complex and dimerization of two activated receptor complexes F w w

forms a Dimerized receptor complex. However, for larger models Perplexity generated different answers and was never able to accurately

describe what the model was depicting.

The columns M1, M2, M3 correspond to comprehension of Models 1-3 by Al, with F meaning Full, P—partial, and W—wrong. Other tools from Table 1 not listed here describe data structure only, providing

no biological interpretation.
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Table 3 | A comparison of 10 Al platforms and their responses across seven common biological modeling formats

Understanding of data provided in the following formats

Al tool SBML BNGL BioPAX SBGN VCML NeuroML
ChatGPT Mostly code Correct Correct Correct Missing details Code only
Meta Al Mostly code Correct Correct Correct Missing details Correct
Gemini Missing details Not recognized Not recognized Correct Correct Correct
HuggingChat Correct Correct Mostly code Correct File is too large Code only
HyperWrite Correct Correct Correct Correct Correct Correct
Microsoft Copilot Incorrect Correct Correct Correct Incorrect details Correct
Phind Missing details Incorrect details Code only Correct Missing details Correct
Perplexity Correct Correct Correct Correct Correct Correct
SciSpace Missing details Incorrect Code only Correct Incorrect Missing details
You.com Code only Missing details Not Code only File is too large Code only

Based on tests as of July 2024. Provided is a short description of each platform’s performance for various formats. “Correct” is determined based on accurately identifying various species and reactions in
the model, while “Missing details” represents a partial lack of these key species and reactions. “Mostly code” or “Code only” refer to answers solely focusing on the format and the code rather than providing
abiological description. Answers that include incorrect details while also being partially correct are labeled “Incorrect details,” while completely incorrect answers are labeled “Incorrect.” If a platform cannot
process or identify the format, it is labeled “Not recognized” while a lack of processing due to file length is labeled “File is too large.”

q Describe Ask specific
Provide the . q 5 N
code to Describe biological questions based
analyze the code details in the on provided
y provided data data only

Fig. 3 | A proposed workflow for questioning AI. The workflow is composed of a
series of questions that were used when analyzing the Aging Phenotypes model in
VCML format.

2. If needed, ask to condense the answer: “Summarize the following
code in less than 100 words, focusing on chemical species and
interactions among them, and exclude technical details about the
format used”.

3. If needed, ask to skip details about the data format.

4. Ask specific questions like “what are interactions in the model”, “what
is the rate of change for a give species”, always mentioning “use the data
above”, and reminding about conciseness when needed.

For example, to inquire about the details of the biological mechanism
in the model coded in SBML format, we had to enter the sequence of
questions:

Question 1: Describe chemical species and interactions among them
for the model described in: [input data].

Question 2: Describe biological pathways related to [input data] only.

Question 3: Based only on the information above, describe relation-
ships between [species A] and [species B].

Question 4: Based only on the information above, describe all inter-
actions of [species A] in the model.

Question 5: Based only on the information above, explain the meaning
of the reaction mathematics for the [interaction name].

Question 6: Based only on the information above, explain how is
[species A] related to [species B]

Sometimes, users need to enforce questions several times, requiring the
Al to concentrate: “Please briefly describe only biological mechanisms in the
file above, skipping all details related to simulations.”

The responses by Al need to be closely monitored and compared, as
they are highly dependent on the small variations in the questions asked.
Anecdotally, there may be very drastic differences in Al responses to
“Describe interactions in [input data]” versus “Describe interactions in the
following text [input data]”.

Note that different Al tools could use different questions or dif-
ferent numbers of questions to achieve a similar concise description of
biology in the supplied data. Some tools like HyperWrite, SciSpace, and
You.com provided a reasonable description of biological mechanisms
after one question. However, many Als discussed the format structure
and needed additional questions to describe the biological processes.
Question 4 proved especially useful in refocusing Als, allowing them to
provide detailed answers focusing solely on the species and reactionsin a
model rather than any redundant information about the code itself.
Some AI tools never resolved to the textual description and always
provided answers concentrating on a data structure rather than pro-
viding a biological description.

Discussion
The overall goal of this paper was not to provide a comprehensive
comparative analysis of various AI tools but rather to provide an
overview of the capabilities of public AI tools as a whole through a
systems biology lens. We concentrate on the analysis of systems biology
resources in mathematical modeling, and specifically on using public
Al to analyze data stored in the formats supported by the “COmpu-
tational Modeling in Blology NEtwork” (COMBINE) initiative to
coordinate the development of the various community standards for
computational models. We found that, overall, public Al could hold
many benefits if used for novice exploration of the field. By testing
systems biology data in multiple formats vs. Al tools, we found that in
most cases public AI was successfully capable of identifying the most
important information and presenting it in a human-readable format,
which is valuable in dealing with complex models. However, each Al
has different pros and cons. Platforms such as Meta Al can identify key
species in modeling files from abbreviated names, such as Dp repre-
senting a phosphorylated D molecule in the EGFR model. HyperWrite
was able to correctly analyze the mathematics in the files describing the
mathematical models and properly explain reasons for selecting spe-
cific mathematical expressions. These are conclusions that a novice in
system biology may have difficulties drawing independently when
provided with just the data. Being able to comprehend complex bio-
logical and mathematical equations and present them in a human-
readable format could prove to be very useful for a novice looking to
learn and explore systems biology models. Based on our tests, the
formats that were most commonly used in various studies (such as
SBML) were most understandable by various public Al tools.

On the other hand, it is important to consider that using public Al may
lead to incorrect conclusions. Some tools correctly identified biological
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sequences, while other tools claimed different ones. Thus, it is important to
always take Al-generated responses with some hesitancy. Moreover, even
within a single AT platform, there is no reproducibility. The same question
asked in a slightly different way may generate completely different answers.
Even further, asking the same question again can generate a completely new
response. Vigilance is important when using public AI to catch these errors,
and repeatedly questioning Al to generate different responses can be helpful
when searching for a desired outcome.

File size and truncation issues have also to be noted in our tests.
When using the free versions of various public AI platforms, there are
often limits on file size, even if not explicitly shown to the user. Per-
plexity demonstrated how larger file sizes can cause problematic issues
for Al systems, by generating inaccurate and inconsistent answers at
larger complexity levels in the EGFR model. The answers varied from
those produced with the smaller files, as well as those produced with
the other variations of the larger file size. Another observation for
public AT tools is that although they generally provided accurate and
detailed responses, they often included some false or superficial details
in their responses and could be inconsistent when repeatedly
questioned.

When using Al for analysis, it is crucial to compare how different
platforms can handle the same data. By using the same workflow across
multiple public Al platforms, a user has a higher chance of preventing errors
and false information in their answers.

While using public Al for understanding systems biology resources
is feasible and useful, using public Al for other potential applications,
such as expanding mathematical models in biology, or performing novel
analysis, is still not recommended. Tasks such as “Create an SBML model
of interactions among ligand and receptor” can be performed by most
public AI (and ChatGPT specifically) correctly. The Al-generated models
are useful for learning modeling and modeling formats. De-novo mod-
eling, expanding mathematical models, or model analysis require user-
defined assumptions and data, specific to these assumptions. Precise
formulation of assumptions is often as difficult as the design of a model
itself.

Another issue with using public AI for understanding and
designing systems biology models is the insufficient amount of systems
biology data in the standards discussed in the manuscript. There are
several thousand models in modeling databases, which may be insuffi-
cient for the proper Al training. Thus, mathematical models generated
by AI will have errors. However, Microsoft CoPilot, designed to assist in
coding, serves as an example of Al potential for mathematical modeling.
AT can work in a more supportive role, providing clues about new ele-
ments that can be added to the models or suggesting explanations for the
observed simulation results.

To conclude, public Al tools demonstrate promise in explaining to
users the various types of systems biology data, while also significantly
reducing the burden of learning different data formats, database interfaces,
and software tools. If users pay attention to any inconsistencies and cross-
check the responses, freely accessible Al tools can be valuable learning
devices that can assist non-data science users looking to explore systems
biology data.

Methods
Input files used in our tests and analyses are described here and also available
in the supplemental material.

A VCML file (Supplementary Note 1) was obtained from the sup-
plemental material of the paper by Kaste et al. ** and relevant parts of the
VCML code were input into Al tools to check if not well-documented
nonhuman-readable formats could be converted into understandable
summary, including key biological information. The BioPAX and SBGN
files of the EGFR pathway (Supplementary Notes 2 and 4, respectively)
were downloaded from the Reactome database (https://reactome.org/
content/detail/R-HSA-177922). BioPAX is a very verbose format (61 kB
compared to 2 kB for SBGN description of the same process), so some

tools could not accept it, truncated, or accepted piecewise. The NeuroML
file (Supplementary Note 3) describing a simple cell with a morphology
was downloaded from the NeuroML website (https://docs.neuroml.org/
Userdocs/NeuroMLv2.html). This is a concise file that has no annota-
tions or descriptions of processes. The BNGL file of the EGFR pathway
(Supplementary Note 5) was a tutorial example downloaded from the
bnglViz website (https://bnglviz.github.io/examples.html). The VCML
file of the Aging Phenotypes model (Supplementary Note 6) was saved
from the VCell list of published models (https://vcell.org/biomodel-
245335415). The generated Models 1-3 describing the EGFR signaling
pathway with various levels of complexity and reactions were created in
the Virtual Cell software and exported in both VCML and SBML for-
mats. Model 1 (Supplementary Notes 7 for VCML and 8 for SBML) had
its SBML code “simplified” and condensed to create a smaller file for
easier Al processing (Supplementary Note 13). Model 2 (Supplementary
Notes 9 for VCML and 10 for SBML) and Model 3 (Supplementary
Notes 11 for VCML and 12 for SBML) each had their own “simplified”
SBML files created as well (Supplementary Notes 14 and 15,
respectively).

Data availability
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