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Adult neurogenesis is defined as the process by which new neurons are produced from neural stem
cells in the adult brain. A comprehensive understanding of the mechanisms that regulate this process
is essential for the development of effective interventions aimed at decelerating the decline of adult
neurogenesis associated with ageing. Mathematical models provide a valuable tool for studying the
dynamics of neural stem cells and their lineage, and have revealed alterations in these processes
during the ageing process. The present study draws upon experimental data to explore how these
processes are modulated by investigating regulatory feedback mechanisms among neural
populations through the lens of nonlinear differential equationsmodels. Our observations indicate that
the time evolution of the neural lineage is predominantly regulated by neural stem cells, with more
differentiated neural populations exerting a comparatively weaker influence. Furthermore, we shed
light on the manner in which different subpopulations govern these regulations and gain insights into
the impact of specific perturbations on the system.

Adult neurogenesis is the process by which mature neurons are generated
from neural stem cells (NSCs) throughout adulthood. In mammals, adult
neurogenesis takes place in twomain regions of the brain: the dentate gyrus
of the subgranular zone in the hippocampus and the ventricular-
subventricular zone located along the walls of the lateral ventricles1–3. In
this process, NSCs transition from a quiescent to an active state, enabling
self-renewal and differentiation. This results in the generation of transient
amplifying progenitors (TAPs), neuroblasts (NBs), and ultimately neurons.
A schematic of these transitions among the neural populations is shown in
Fig. 1A. With ageing, the number of mature neurons decreases, which may
lead to impaired cognitive function4–7. This phenomenon has been reviewed
in refs. 8,9. Furthermore, it has been found that the number of neural stem
cells declines with age in both the ventricular-subventricular zone10–12 and
thedentate gyrus of the adult hippocampus13,14 (for reviews, see8,9).Asneural
stem cells represent the pinnacle of the neural hierarchy and give rise to the
entire neural lineage, interventions aimed at counteracting the effects of
ageing could potentially have the greatest impact if they targeted stem cells.
Consequently, the study of the dynamics of neural stemcell populations and
their lineage is of fundamental importance for advancingourunderstanding
of cognitive function in the context of ageing.

As experimental studies have their limitations, mathematical methods
can be employed to shed light onto processes that lead to theNSCdynamics

described by the available data (Fig. 1C).Mechanistic mathematical models
of the neural populations, involving non-autonomous linear ordinary dif-
ferential equations (ODEs) with time-dependent system parameters, have
facilitated uncovering trends in the time evolution of these parameters.
Applied to the dentate gyrus of the adult hippocampus14,15 and to the
ventricular-subventricular zone12, they found that NSCs spend increasingly
more time inquiescence as theyprogresswith age.However, suchmodels do
not allow us to infer the regulatory mechanisms driving this behaviour, nor
how different types of perturbations alter the time course of system para-
meters and, consequently, of cell populations. One of the key questions is
how to realistically model system parameters in a way that enables a better
understanding of the underlying regulatory processes.

These regulatory feedbacks are governed by cell-cell interactions
through an elaborated network of signalling pathways. Different cells
produce or interact with signalling molecules and can regulate activation,
self-renewal, differentiation or proliferation. For example, it has been
reported that, in zebrafish, non-glial neural progenitors similar to active
NSCs and TAPs in mammals laterally inhibit the activation of quiescent
NSCs by upregulating Notch ligands at the cell surface16,17. Additionally, in
mice it has been proposed that NSC quiescence is regulated by their
immediate progeny through similar Notch paracrine signals18, as well as
diffusible ones such as the neurotransmitter GABA19. Notch has also been
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suggested to promote NSC proliferation while maintaining them in an
undifferentiated state, in other words promoting self-renewal20. In contrast,
the Ascl1 gene was found to be expressed at varying levels by proliferating
lineage cells (aNSCs andTAPs) and to play a critical role in the activation of
quiescent NSCs. Additionally, its inhibitor HES is expressed by quiescent
cells and promotes the maintenance of quiescence. These are both tightly
regulated byNotch expression, which plays an essential role inmaintaining
quiescent NSCs21. Further signals (among others) expressed in the neural
lineage and involved in its regulation include bone morphogenetic protein
(BMP), interferon (IFN) and Wnt. In particular, an interplay between
canonical and non-canonical Wnt has been reported, with both playing a
role in regulating system parameters.

A very large array of signals from the neural lineage is involved in
coordinating the dynamics of NSCs and their neural lineage, with intricate
interactions, whose study is extremely complex and outside the scope of this
paper. These signals are further influenced by and interact with inputs from
non-neural nichecells22. Ependymal, endothelial cells andastrocytes are some
of the non-neural cell types from the neurogenic niche that contribute to
regulating neurogenesis. Additionally, inflammatory signals such as Inter-
ferons (IFN) are not only involved from within the niche, but also from
outside, for example through microglia or T-cells from the cerebrospinal

fluid23. Overall, adult neurogenesis dynamics are regulated by a complex web
of interactions among many different signalling pathways and cell types
(Table 1), whose balance changes with ageing, and can be disrupted in
neurological diseases23–25. Nevertheless, as a first step, before setting out to
untangle this web, it seems advantageous to gain insights into where the
driving combined signal originates andhow it guides adultneurogenesis.This
concept justifies the scope of our work on developing and employing non-
linearODEmodels, with the aimof reducing the complexity and focusing on
the basic driving actors in adult neurogenesis, their source and target.

The present paper investigates regulatory feedbacks among cells of the
neural lineage that lead to the observed dynamics. Using experimental data
from wild-type (WT) mice, as well as complementary data from two per-
turbation settings, the mathematical model yields insights into the
mechanisms governing the neural lineage. Our strategy is as follows: Based
on previous models that identify temporal variability in key model para-
meters, we first determine the general form of the feedback function. We
then identify this function using model-based data analysis, combining
deterministic parameter estimationwith aBayesian approach touncertainty
quantification. Finally, guided by the shape of the feedback function, we
propose a specific molecular implementation that reproduces both wild-
type data and data from perturbation experiments.

Fig. 1 |Mathematicalmodel and data of cell population dynamics. A Schematic of
the transitions among neural cell types, represented in the mathematical model. The
arrows and rates depicted represent the inflow from the previous compartment.
BMathematical model. System of ODEs describing the time dynamics of the neural
populations depicted in A. The number of amplification steps n = 3, corresponding

to 4 TAP compartments Ti. C Existing data from refs. 12,38: total number of NSCs;
fraction of active cells among label retaining cells, confirmed to be a good approx-
imation of the fraction of active neural stem cells among all neural stem cells; total
number of TAPs and total number of NBs in the ventricular-subventricular zone.
Each data point corresponds to one mouse.

Table 1 | Overview of reported regulatory mechanisms

Function Promoting Inhibiting Key signals References

Activation of qNSCs (r) aNSCs, TAPs, Ependymal,
Astrocytes, Microglia

qNSCs, aNSCs, TAPs, NBs, Astrocytes,
Endothelial, Microglia

Wnt, EGF, FGF2, BMPs, Notch,
Shh, TGF-β, GABA

16,20,23,25,45–48

Self-renewal of
aNSCs (b)

qNSCs, aNSCs, Astrocytes,
Ependymal, Endothelial

TAPs, NBs, Astrocytes, Microglia Notch, Wnt, EGF, FGF2, Shh,
VEGF, BMPs

20,23,25,45–47
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Results
Neural lineagemodel and themotivation for feedback regulation
The model presented in this study builds upon previously established fra-
meworks describing the population dynamics of different cell types12,14. The
main ingredients of the mechanistic model correspond to the transitions
among the neural lineage compartments and, in particular, among the NSC
subpopulations (depicted in Fig. 1A and defined by the ODE system (1) in
Fig. 1B). NSCs can exist in two exclusive states: active, which are actively
cycling, and quiescent, which are not in the cell cycle. Quiescent NSCs
(qNSCs) can become active at a rate r to enter the cell cycle and transition
into the active compartment. An active NSC (aNSC) can divide at a rate pA
into either two qNSCs (symmetric self-renewal) or into two TAPs (sym-
metric differentiation) to advance further along the differentiationpath.The
balance between self-renewal and differentiation is modelled via the so-
called fractionof self-renewal b. This represents howmanyprogenyofNSCs
are NSCs themselves, and at the single-cell level can be thought of as a
probability that the NSC self-renews. Asymmetric divisions can also be
encompassed in the self-renewal parameter without any change in the
model equations (an explanation can be found in refs. 26,27). TAPs are
considered to perform multiple amplification steps28 at a rate pT before
finally dividing into NBs, which can exit the compartment at a rate δ, for
example by death or by migrating to another brain region. According to
biological evidence, a number of n = 3 amplification steps is assumed29–31,
corresponding to four TAP compartments Ti, i∈ {0, . . . , 3}. The equations
(1) describing these assumptions are defined in Fig. 1B12,26.

The question is how to model the system’s parameters, and in parti-
cular, how to link them to signalling pathways that regulate cellular pro-
cesses in order to understand systemic control. Our approach to this
problembuilds on insights gained frompreviousmodels demonstrating that

modelswith constantparameters fail to reproduce thewild-typedynamics12.
Instead, the activation rate of quiescent stem cells must vary over time to
match experimental observations. Perturbation experiments further
revealed a compensatory role of the time-varying self-renewal fraction
during cell division, suggesting it helps buffer age-related changes in acti-
vation (Fig. 2A). These time-dependent parameters were inferred by fitting
data under specific assumptions about the functional formof activation and
self-renewal rates. Figure 2A compares the dynamics of total stem cell
numbers and the fraction of active cells, along with parameter trajectories,
for scenarios in which either both parameters are constant ("no ageing”),
one is time-dependent ("decreasing activation” or “increasing self-
renewal”), or both vary over time ("regulating both”). In a related study,
Dabelow et al.32 applied optimal control theory to explore alternative tra-
jectories of these parameters and concluded that a decreasing activation rate
is the most influential driver of the observed ageing dynamics. However,
these time-dependent models lack mechanistic insight into how such reg-
ulatory changes are implemented in the system. As a result, they fail to
reproduce recovery dynamics following injury, which depend critically on
the internal state of the system at the time of perturbation12. Furthermore,
Harris et al.15 showed that increasing the heterogeneity of the quiescent stem
cell population —by modelling it as a mixture of shallow and deep quies-
cence stateswithdistinct activation rates— cannot replace theneed for time-
dependent activation. This finding underscores that cellular heterogeneity
alone is insufficient to explain the observed dynamics and highlights the
necessity for system-level regulation mediated by signalling molecules.

Identifying the shape of feedbacks
To uncover the regulatory feedbacks underlying the behaviour observed in
experimental data, we employ nonlinearODEmodels. Themodel structure

Fig. 2 | Identifying the time-dependence of system parameters. A Results of the
various scenarios considered in ref. 12 and reviewed in ref. 26. The systemparameters are
given by time-dependent functions rðtÞ ¼ rmaxe

�βr t and bðtÞ ¼ 1
2 ð1þ e�βbtð2bmin �

1ÞÞ introduced in refs. 12,38, which are basic examples of decaying activation and

increasing self-renewal. Plots adapted from ref. 26. B System parameters, i.e., activation
rate r and fraction of self-renewal b from the linear model plotted against values of
various neural lineage populations (scaled up to 1000 cells).C 3D plot of the activation
rate r with respect to various combinations of neural cell subpopulations.
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is defined by the system of equations (1), as shown in Fig. 1B. In contrast to
previous approaches, the systemparametersnamely the activation rate r and
the self-renewal fraction b—are nowmodelled as functions of neural lineage
subpopulation sizes. It is important to note that what is often termed “self-
renewal” in biological literature corresponds, in our framework, to the
combined effect of r and b, two processes that are challenging to disentangle
experimentally. For clarity, we refer to the parameter b as “self-renewal”
throughout this study, while the combined effect of r and b is termed
“effective self-renewal,” following the terminology introduced in ref. 26.

How exactly do activation and self-renewal depend on the cellular
context? By plotting parameter estimates from the linearmodels against the
corresponding NSC counts over time, we observe that the activation rate r
increases with the number of NSCs, whereas the self-renewal fraction b
decreases. Notably, experimental data show that all neural lineage sub-
populationsdecline over time (Fig. 1C), suggesting that both r andb respond
similarly to different subpopulation sizes. This is further illustrated in Fig.
2B, which shows comparable parameter dynamics relative to various neural
cell populations.

It is convenient to assume an activating Hill-like dependence of the
activation rate r, and an inhibitory Hill-like dependence of the self-renewal
fractionb, on cell population size. In otherwords, the systemparameters can
be described by Eq. (1),

r :¼ rðc1ðtÞ; c2ðtÞÞ ¼ r0c1ðtÞ
Kþc2ðtÞ ;

b :¼ bðc3ðtÞÞ ¼ b0
1þβc3ðtÞ ;

ð1Þ

where ci represent some cell subpopulation of the neural lineage, the
parameters r0 and b0 govern the amplitude, and K and β tune the shape of
the Hill functions. The same Hill-like behaviour of r is observed whether c1
and c2 correspond to the same neural subpopulation that promotes
activation, or to different neural subpopulations that regulate activation in
opposing manners. This similarity can be observed in Fig. 2B, C,
respectively.

In the following, we present model identification based on a range of
experimental settings, including wild-type neurogenesis and perturbation
experiments. These insights guided the search for a specific signalling
pathway consistent with the identified regulatory structure.

Model selection for wild-type adult neurogenesis uncovers
quiescent NSCs as the dominant promoter of activation
We consider various scenarios corresponding to different subpopulations
inserted in the ci of our formulas (1). After performing weighted-least-
squares parameter estimation (described in Methods) to find how each
scenario compares with the experimental data fromWTmice, we examine
the results of scenarios grouped by the regulator of self-renewal. Each panel
in Fig. 3 depicts the comparison among data and different hypotheses for
feebacks in the activation rate of qNSCs, for self-renewal regulated by
individual subpopulations (qNSCs, aNSCs, total TAPs, NBs or total NSCs).

To compare models, we compute the Akaike Information Criterion
corrected for small sample sizes (AICc). This approach assigns eachmodel a
score that reflects its ability to explain the data while penalising complexity
to avoid overfitting.Differences in these scores allow for the identification of
a “best-scoring”model,while the correspondingAkaikeweights indicate the
relative likelihood that a given model is truly the best among those con-
sidered (see Methods for details). However, due to the very limited number
of experimental data points, the AICc scores are subject to considerable
uncertainty and may shift substantially with additional data. Therefore,
rather than selecting a singlemodel, we focus on the top-scoring candidates,
testing their predictions through perturbation experiments and using their
structure to explore biologically plausible mechanisms involving signalling
molecules.

A first observation from Fig. 3 is that the subpopulation that inhibits
activation is located further along the differentiation path than the one
promoting the activation. Interestingly, the scenarios in which qNSCs

promote activation capture the dynamics of the experimental data the best.
Some hypotheses that align with the summary in Table 1 also provide an
acceptable fit, but not as good as the former. Furthermore, themathematical
models clearly show that the quiescentNSCsdonot have an inhibitory effect
on both the activation rate and the fraction of self-renewal (Supplementary
Fig. 1A). These modelling results suggest that, even though evidence of
qNSCsmaintaining quiescence and proliferating cells promoting activation
exists (Table 1), this is not the primary mechanism involved. Instead, the
balance between the combined effect of neural subpopulations and thus
signalling pathways tips towards a dominant effect from qNSCs in driving
activation.

There exist a large number of possible combinations of the cell types ci
from Eq. (1), some more plausible than others. Previous experimental
studies have proposed that activation of qNSCs is promoted by aNSCs and
TAPs with the aim of sustaining neurogenesis, and inhibited by NBs. In
contrast, it is also reasonable to consider that the activation rate r may be
inhibited by proliferating cells, such that the quiescent population is con-
served when enough cells are already cycling, as was reported in zebrafish16.
Intuitively, an activation rate that increases with the number of qNSCs is
also a reasonable assumption: an abundance of qNSCs allows them to
activate, as the main goal of the system is to produce neurons, not only
conserve its stem cell pool. An alternativemay be that all NSCs, quiescent or
active, express the same driving signals for activation or self-renewal, so that
the system does not distinguish the source of the feedback. As far as the
regulation of self-renewal is concerned, other biological systems such as
hematopoiesis33,34 suggest that it is inhibited by cells at the end of the dif-
ferentiation spectrum (mature cells, analogous to our NBs). Such strategy
seems logical if the purpose is to replenish a small NB population, since it is
more efficient to first produce more stem cells that then proliferate at the
same rate as before, than to proliferate faster and differentiatemore33,34. Self-
renewal may also be inhibited by NSCs (active or quiescent), since a large
number of stem cells may promote differentiation.

In the following, we focus on a few scenarios, based on the biologically-
motivated reasoning and having confirmed their good fit (Fig. 3). These are
described by Eqs. (2–6) and their fits are shown in Fig. 4A, with the
respective dynamics of their system parameters (Fig. 4B). One important
aspect to be noted is related to a bifurcation that appears at the point where
the parameter b0 = 1/2 (see mathematical analysis in Methods). In parti-
cular, if b0≤ 1/2 the systemonly has the trivial steady state, whereas if b> 1/2
there exists a stable positive steady state. Depending on the regulatory
feedbacks considered, upon parameter estimation, we obtain cases of good
fits in which the system slowly converges to zero, and cases in which the
system converges to the positive steady state (Fig. 4A). Interestingly, we
observe that the estimations for scenarios in which qNSCs are also involved
in regulating self-renewal (Fig. 4A, Eq. (3,5)) lead to dynamics with positive
steady state.

rðQ;AÞ :¼ r0QðtÞ
K þ AðtÞ ; bðAÞ :¼ b0

1þ βAðtÞ ð2Þ

rðQ;AÞ :¼ r0QðtÞ
K þ AðtÞ ; bðQÞ :¼ b0

1þ βQðtÞ ð3Þ

rðQ;AÞ :¼ r0QðtÞ
K þ AðtÞ ; bðNÞ :¼ b0

1þ βNðtÞ ð4Þ

rðQþ A;Qþ AÞ :¼ r0ðQðtÞ þ AðtÞÞ
K þ ðQðtÞ þ AðtÞÞ;

bðQþ AÞ :¼ b0
1þ βðQðtÞ þ AðtÞÞ

ð5Þ

rðQ;T0Þ :¼
r0QðtÞ

K þ T0ðtÞ
; bðNÞ :¼ b0

1þ βNðtÞ ð6Þ
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Fig. 3 | Comparison among various scenarios for the regulation of activation rate,
grouped by the inhibitor of the self-renewal. A Self-renewal inhibited by qNSC,
b(Q). B Self-renewal inhibited by aNSC, b(A). C Self-renewal inhibited by TAPs,
b(∑Ti). D Self-renewal inhibited by NBs, b(N). E Self-renewal inhibited by total
number ofNSCs, b(Q+A). As a notation rule, r(c1, c2) corresponds to activatingHill
functions (1) in which c1 promotes (is in the numerator) and c2 inhibits (denomi-
nator) r. Here, NSC counts represent Q(t) + A(t), fraction of active corresponds to

A(t)/(Q(t) + A(t)), TAP counts is considered the sum
P3

i¼0 TiðtÞ and NB counts is
given by N(t). Solid lines represent scenarios in which the estimated parameter b0 <
0.5 and the system only admits the trivial equilibrium. Dotted lines correspond to
scenarios in which b0 > 0.5 and thus a stable positive steady state exists. X-axis
represents Time, i.e., the age of mice in days. Y-axis is on log-scale in all except the
plot depicting the fraction of active cells. For readability, in the plot legends, we write
the multivariate functions r(c1) ≔ r(c1, c1).
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To confirm the validity of our parameter estimation methods and
results, we quantify the sensitivity of the model to initial conditions and
parameters by employing Bayesian methods. First, by assuming a Gaussian
distribution of initial conditions with mean and variance derived from the
available data points (please see Methods), we observe that all solution
trajectories converge to the originally obtained time dynamics (Supple-
mentary Fig. 2A), indicating robustness. This supports our choice to fix
initial conditions to reduce the dimensionality of the parameter space (see
Methods). Furthermore, employing the AdaptiveMetropolis algorithm35 to

generate Markov Chain Monte Carlo (MCMC) chain samples for our dif-
ferent model choices, we obtain posterior distributions for the model
parameters that yield highly consistent trajectories (Fig. 4E). We observe a
wide distribution of parameter K, which means a little influence on this
parameter on the system feedback function. Therefore, this parameter
cannot be confidently estimated from the available population dynamics
data. Because of the high variability of K, we manually limited its range
duringMCMCsampling. The plots show also that the key parameters of the
activation and self-renewal, r0 and b0 respectively, are weakly correlated,

A

Time (days)

B

500 1000 1500 2000

0.2

0.4

0.6

Activation rate r
r(Q,A) & b(A)
r(Q,A) & b(Q)
r(Q,A) & b(N)
r(Q+A), b(Q+A)
r(Q,T0) & b(N)

500 1000 1500 2000
0

20

40

60
Fraction aNSC/NSC

r(Q,A) & b(A)
r(Q,A) & b(Q)
r(Q,A) & b(N)
r(Q+A), b(Q+A)
r(Q,T0) & b(N)

500 1000 1500 2000
103

104

105
NB counts

r(Q,A) & b(A)
r(Q,A) & b(Q)
r(Q,A) & b(N)
r(Q+A), b(Q+A)
r(Q,T0) & b(N)

500 1000 1500 2000
102

103

104
TAP counts

r(Q,A) & b(A)
r(Q,A) & b(Q)
r(Q,A) & b(N)
r(Q+A), b(Q+A)
r(Q,T0) & b(N)

500 1000 1500 2000
102

103

NSC counts
r(Q,A) & b(A)
r(Q,A) & b(Q)
r(Q,A) & b(N)
r(Q+A), b(Q+A)
r(Q,T0) & b(N)

C
Scenario

1. r(Q,A), b(A) 0.47 18.7%

23.7%

17.7%

22%

17.7%

0

0.57

0.14

0.58

2. r(Q,A), b(Q)

3. r(Q,A), b(N)

4. r(Q+A), b(Q+A)

5. r(Q,T0), b(N)

∆AICc Akaike wi

500 1000 1500 2000
0.47

0.48

0.49

0.5
Self-renewal b

r(Q,A) & b(A)
r(Q,A) & b(Q)
r(Q,A) & b(N)
r(Q+A), b(Q+A)
r(Q,T0) & b(N)

Scenario 2: r(Q,A), b(Q)Scenario 2: r(Q,A), b(Q)

Fraction A/(Q+A)
10 20 30 40 50
0

0.2

0.4

0.6

0.8
Activation rate r

r(Q,A) & b(A)
r(Q,A) & b(Q)
r(Q,A) & b(N)
r(Q+A), b(Q+A)
r(Q,T0) & b(N)

D

Time (days)

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80
Fraction aNSC/NSC

0 100 200 300 400 500 600 700
0

500

1000

1500

2000

2500
NSC counts

0 100 200 300 400 500 600 700
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
TAP counts

E F
Time (days)

0 100 200 300 400 500 600 700
0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5
Self-renewal b

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5
Activation rate r

be
ta

r0

K

K

b0

b0

Activation rate r

Self-renewal b

Fig. 4 | Model results and comparison among the five scenarios considered,
applied to data from WT mice. A Results showing the dynamics of lineage cell
subpopulations in time, from the parameter estimation forfive different scenarios in
which the system parameters are regulated by lineage cell populations. Here NSC
counts represent Q(t) + A(t), fraction of active corresponds to A(t)/(Q(t) + A(t)),
TAP counts is considered the sum

Pn
i¼0 TiðtÞ and NB counts is given by N(t). The

scenarios considered in these plots are described by equations (2)-(6). Solid lines
represent scenarios in which the estimated parameter b0 < 0.5 and the system only
admits the trivial equilibrium.Dotted lines correspond to scenarios inwhich b0 > 0.5
and thus a stable positive steady state exists. X-axis represents Time, i.e., the age of
mice in days. Y-axis is in logarithmic scale in all plots except for the one depicting the
fraction of active cells. For readability, in the plot legends we write the multivariate
functions r(Q + A) ≔ r(Q + A, Q + A). B Dynamics in time of the system

parameters, activation rate r and fraction of self-renewal b, from the five scenarios
considered in panel A, described by Eqs. (2–6).CModel comparison based on AICc
values and their respective Akaike weights. The best-scoring model according to
Akaike metrics is Scenario 2, Eq. (3) with r(Q, A), b(Q).D Activation rate r plotted
against the fraction of active NSCs A/(Q + A) for the five scenarios, showing an
almost linear correlation. X-axis is A/(Q + A), y-axis is r. E Trajectories of the
solutions to Scenario 2, r(Q, A), b(Q) (Eq. (3)) corresponding to initial conditions
sampled from a Gaussian distribution with mean and variance extrapolated from
the available data, andparameter estimates from250000MCMCchain samples. The
Y-axis is linear scale. F Posterior distributions of model parameters and their cor-
relation plots from the 250000 MCMC chain samples. Right-hand side insets show
the time-course of system feedback functions r and b computed for the selected
parameter values from the MCMC chain.
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while b0 and β are strongly correlated, what can be well explained by the
form of the feedback functions. Moreover, the feedback functions r and b
that govern the dynamics of the solution exhibit no significant variation
across samples. These results suggest a certain robustness of the neural stem
cell system. Importantly, our Bayesian analysis shows that parameters from
posterior distributions give comparable goodness of fit levels to the para-
meter estimates obtained before by the deterministic approach.

With the aim of gaining insight into which cell populations are
involved in regulating the dynamics of the neural lineage, we compared
the model scenarios under consideration. The most prominent differ-
ence among these scenarios emerges between the two groups of trajec-
tories (with b0≤1/2 and b0 > 1/2) converging to different steady states
(Fig. 4A). However, due to the limited time span of the available data and
the fact that the divergence between these groups occurs later in the time
course, beyond the typical lifespan of mice, we cannot determine a priori
which case should be excluded from a biological standpoint. This
underscores the need for targeted experiments that could address this
aspect and inform model selection. A comparison of the AICc scores
across the five scenarios (Fig. 4C) suggests that the hypothesis in which
qNSCs promote and aNSCs inhibit activation, while self-renewal is
negatively regulated by qNSCs (Scenario 2, Eq. (3), “r(Q,A), b(Q)”) is the
best-scoring. However, its Akaike weight of 23.7% indicates only modest
evidence, with Scenario 4, Eq. (5), in which the total NSC population is
involved in both promoting activation and inhibiting self-renewal ("r(Q
+ A, Q + A), b(Q + A)”) following closely at 22%. The other scenarios
cannot be easily discarded either, with their Akaike weights of 17.7-
18.7%. Mathematical analysis further confirms that all five scenarios
exhibit qualitatively similar solution behaviour (see Methods).

Given the similarity in the ability of the different scenarios to capture
the dynamics observed in the data (Fig. 4A, B), we resorted to using more
advanced optimisation methods and model discrimination techniques for
optimisation-based model validation. Specifically, we applied the Multiple
Shooting method in combination with the Gauss-Newton method36,37 to
improve parameter estimation and model selection. These methods were
used to assess whether a better fit could be obtained for some hypotheses,
with the goal of distinguishing among well-fitting scenarios. Since the two
parameter estimation approaches yielded nearly identical parameter values
and fits, we performed F-tests to identify false models and to determine
whether some models were still significantly different. When these tests
were inconclusive, we used an optimal experimental design to explore the
experimental conditions necessary to maximise the discrepancy among
alternative scenarios.

Since discriminating among these hypotheses solely based onWTdata
was not possible, we supplemented our investigations with data from
experiments in which the biological systemwas perturbed. In this work, we
consider two biological perturbation settings, namely 1) killing actively
dividing lineage cells with the chemotherapeutic drug Temozolomide
(TMZ)12 and 2) genetically knocking out the receptors of the inflammatory
signals interferon α − γ (IFNAGR KO)38.

Model validation based on perturbation experiments
Model of TMZ treatment suggests regulation of the system by the
entire NSC population and describes feature selection upon injury.
Temozolomide (TMZ) is a chemotherapeutic drug that can be used
experimentally to kill actively proliferating cells, which in our system
comprise of aNSCs (A) and TAPs (Ti). The authors of ref.

12 performed
experiments perturbing the system with TMZ in young (2-months old)
and old (22-months old)mice, and recorded the recovery trend at 1, 9 and
35 days post-treatment. It was shown that in old mice the recovery is not
as efficient as in young mice, so that either the numbers of proliferating
cells do not recover back to the values pre-treatment, or it is much slower
such that it is not seen in the first 35 days post-treatment. To gain insights
into the mechanisms of recovery and the differences between young and
old mice, we applied the various scenarios of the nonlinear model to the
available data from the TMZ-perturbed system.

By performing the TMZ experiments in silico with the parameters
estimated inWT data, and plotting the results, we observe that the recovery
is too slow compared to the data from youngmice and too quick compared
to that from old mice (Supplementary Fig. 1B, left). Even when trying to
perform parameter estimation to fit all WT data and young and old TMZ
data togetherwith the same set of parameters (potentially allowing a slightly
worse fit of WT data than before), the results are not satisfactory (Supple-
mentary Fig. 1B, right).We can thus conclude that perturbing the biological
system by administering the TMZ drug changes not only the behaviour of
system parameters (r and b functions) but values of individual model
parameters as well.

Next, in the attempt to maintain the view as general as possible, we
checked whether we can fit the data from TMZ-perturbed young and old
micewith the same parameter set, but different from that estimated forWT.
Intuitively, even if we keep the same model parameters in both cases, the
recovery could be different due to the regulatory feedbacks among cell
populations of different sizes. This is, however, also not the case, suggesting
that not only doesTMZchange the properties (parameters) of the cells but it
does it differently when administered at different ages. Thus, the parameter
estimation should be performed separately for young and old mice.

Proceeding step by step, wefirst assumed that the proliferation rates pA
and pTwere the same as inWT and not influenced by TMZ treatment, and
only allowed model parameters in r and b to change. Even though the data
itself could be well fitted, the solution converged to a different steady state
that was high above the one from the healthy non-perturbed WT data
(SupplementaryFig. 1B,middle). This seemsunreasonable as itwouldmean
that applying a chemotherapeutic drug that kills cells makes the biological
system performing much better long-term. Even though this could be the
case short-term, one would not expect that such a strong aggressive per-
turbation would prevent ageing in the long run. This result suggests that
either TMZ treatment changes the parameters for a short period of time and
later the system switches or transitions back to theWTparameters, or there
is a different process at play, one that allows the recovery after death as well
as a return to the WT behaviour after some time, whilst keeping the para-
meters that were estimated based on the recovery trend data. The latter was
further investigated by also allowing pA and pT to change upon TMZ
treatment.

Once again, by trying to keep the model as simple as possible and the
changes due to TMZ treatment as few as possible, in order to find the
essential aspect that changes upon treatment, we took a stepwise approach
by allowing as few parameters as possible to differ from those fromWT.We
found that in youngmiceall parameters can remain identical as inWTapart
from the proliferation rate of TAPs, pT, the estimated value of which is
reduced by approximately 60% compared to untreated WT mice. This
means that TMZ treatment affects TAPs such that they proliferate much
slower than before (lengthening of cell cycle duration). Considering a het-
erogeneous population of proliferating cells with respect to their cell cycle
length, our model parameter pT represents a mean value of the hetero-
geneous proliferation rates. In this context, our results suggest that TMZ
kills fast proliferating TAPs and thus selects for slow dividing ones, which
corresponds to the decreased value of pT after treatment in the model.
Nevertheless, properties of aNSCs seem to be unaffected by the perturba-
tion. As far as old mice are concerned, TMZ treatment also reduces pT (by
approximately 80%), and in addition the r0 parameter is decreased by one
order of magnitude, whichmeans that NSCs become arrested into a deeper
state of quiescence, leading to a smaller mean r0 of qNSCs. This is also in
agreement with previous results12 that stated that quiescent NSCs in old
mice are more resistant to injury-induced activation. Additionally, we find
that proliferating cells of young mice are more resistant to TMZ treatment
than old mice, with a death rate of approximately 1.5-fold difference upon
drug administration. With these assumptions, the model is able to recover
the dynamics observed in the data (Fig. 5A-A’). We observe that some
neural populations are increasedpost-treatment and their dynamics remain
above those of the unperturbed system, while the opposite is true for others
(Fig. 5B-C’). In youngmice, the population of TAPs after recovery is bigger
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than that in WT and this is due to the slower proliferation rate pT, which
eventually leads to a slower differentiation into NB and thus less exit from
the neural system (Fig. 5B bottom). In old mice, the dominant parameter
post-treatment is r0, the decrease of which preserves a more quiescent
population and, togetherwith the lower value of pT, leads toa lower recovery
of proliferating and differentiated cells (Fig. 5B’, bottom).

Aiming at selecting a model scenario with the help of the additional
TMZ perturbation insights, we computed the Akaike scores and weights as
before. In this case, the best-scoring scenario was that in which the system
parameters are both regulated by the total population of NSC, Eq. (5), with
Akaike weights of 37.6% for young mice and 31.1% for old mice (Fig. 5D).
Surprisingly, the best-scoring scenario found for the WT data scored the
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lowest in the case of the TMZ perturbation. Furthermore, in an attempt
to better discriminate amongmodels, we applied optimal experimental
design methods to determine the age of mice to receive TMZ treatment
in order to have asmuch discrepancy between scenarios as possible.We
found that the optimal treatment age was in the interval [60,500] days
old and again suggested that having available measurements of the
qNSC subpopulation after treatment would increase our confidence of
the model selection results, as this compartment showed the greatest
differences across scenarios.

Overall, the modelling of TMZ experiments has provided interesting
insights into the behaviour of the neural lineage system and the changes that
appear due to treatment, and suggested that upon injury the system para-
meters are regulated by the entire NSC population.

Model of IFNAGR Knock-Out stays in agreement with insights from
wild-type and describes involvement of non-neural cells in mod-
ulating activation. Proceeding further with our plan to uncover the
most likely regulatory feedbacks, we decided to re-tackle the IFNAGR
KO perturbation from ref. 38. A closer look at the data on the fractions
of active NSC among all NSC (Fig. 6A, top right), suggests that in the
KO mice the values grow with ageing. Additionally, we observe that
generally the values of these fractions are very well, almost linearly,
correlated to the activation rate (Fig. 4E), which implies that the
activation rate in KO data also increases in time. Due to the way in
which the time-dependent r and b functions were defined in38, the
linear non-autonomous models were not able to capture the slight
increase in the fraction of active NSC.

Using the nonlinear models with population-dependent r and b, we
infer that, in order for r to increase in time, we need a slight decrease with
respect to cell counts. This hints towards an inhibitory-typeHill function for
r in the case of IFNAGR KO mice, similar to that for the self-renewal
parameter b. Therefore, in order to allow capturing the time evolution of
neural subpopulations from both WT and KO mice with the same
hypothesis, we assume the following function for r whilst keeping the b
function as before.

r :¼ rðc1ðtÞ; c2ðtÞÞ ¼ r1 þ r0c1ðtÞ
K þ c2ðtÞ

b :¼ bðc3ðtÞÞ ¼ b0
1þ βc3ðtÞ

ð7Þ

As a result, our five scenarios from Eq. (2-6) are extended for the
IFNAGR KO setting to Eq. (8-12).

rðQ;AÞ :¼ r1 þ r0QðtÞ
K þ AðtÞ ; bðAÞ :¼ b0

1þ βAðtÞ ð8Þ

rðQ;AÞ :¼ r1 þ r0QðtÞ
K þ AðtÞ ; bðQÞ :¼ b0

1þ βQðtÞ ð9Þ

rðQ;AÞ :¼ r1 þ r0QðtÞ
K þ AðtÞ ; bðNÞ :¼ b0

1þ βNðtÞ ð10Þ

rðQþ A;Qþ AÞ :¼ r1 þ r0ðQðtÞ þ AðtÞÞ
K þ ðQðtÞ þ AðtÞÞ ;

bðQþ AÞ :¼ b0
1þ βðQðtÞ þ AðtÞÞ

ð11Þ

rðQ;T0Þ :¼
r1 þ r0QðtÞ
K þ T0ðtÞ

; bðNÞ :¼ b0
1þ βNðtÞ ð12Þ

The simulation results for these scenarios are depicted in Fig. 6A and
show that all model scenarios are very well able to capture the trend of the
data. As expected based on the construction as in Eq. (7), both the activation
rate r and the fraction of self-renewal b increase in time (Fig. 6B).Depending
on the different estimated values of r parameters (i.e., r0, r1 and K), this
definition of the r function (Eq. (7)) allows to capture both the decreasing
fraction of active cells in WT and the increasing one in KO mice. The
previous activation mechanisms modelled in the WT setting by the acti-
vating Hill-type function (Eq. (1)) is a particular case of the model with
system parameters given by Eq. (7), with r1 = 0. The posterior distributions
obtained from the MCMC chains simulated with the Adaptive Metropolis
algorithm, further emphasize the importance of the r1 ≠ 0 parameter in the
IFNAGRKOexperiment (Supplementary Fig. 2B–C).An additional insight
that we can draw from the comparison between WT and IFNAGR KO
results (Fig. 6C, D), is that in KO mice the activation is disregulated and
consequently the self-renewal compensates (Fig. 6C, D), acting as a sec-
ondary layer of regulation, as also previously suggested38. Because a higher
activation rate that does not decreasewith ageing can lead to a fast depletion
of theNSCpool, the self-renewal has amoredrastic increase to counteract it.
Additionally, parameter estimation suggests that the proliferation rate of
TAPs is slightly higher than that in WTmice, corresponding to a cell cycle
length of approximately 16h (parameter values in Supplementary Table 1).

Once again, Scenario 2 (Eq. (9)) is found as best-scoring by the Akaike
model comparison framework, closely followed by Scenarios 1 (Eq. (8)) and
4 (Eq. (11)), similar to theWT setting. Mathematical modelling thus allows
us to gain new insights into the dynamics of neural lineage cells and into the
dialogue between neuroinflammation and adult neurogenesis, despite not
clearly uncovering how the regulation is performed.

Interpretation in the context of signalling molecules
The dynamics of the system parameters r and b arise from a complex
network of signalling pathways acting both within and beyond the neural
niche. By analysing how these parameters depend on various system
components, we can begin to identify which cells produce or respond to
signalling molecules that regulate activation and influence the balance
between self-renewal and differentiation. To explore this mechanistically,
we extend the feedbackmodel (Eq. (7)) to explicitly represent the dynamics
of the signalling molecules mediating feedback. This approach essentially a
reverse quasi-steady-state reduction is inherently challenging, as the
observed regulatory effectsmay result from the combined action ofmultiple
signals.

Wemay capture this complexity in a tractable form by introducing
two effective signals, Sr and Sb, which serve as representative examples
of the underlying regulatory mechanisms. These abstract variables
substitute for the parameters r and b, and their dynamics are governed

Fig. 5 | Model results and comparison among the five scenarios considered,
applied to data from TMZ treatment. Panels are split into young (letter X) and old
(letter X'). A–A'. Results showing the recovery of proliferating cells (BrdU positive,
consisting of aNSCs and TAPs) after TMZ treatment, in young (2MO) and old (22MO)
mice. Throughout Fig. 4, black (solid and dotted) lines correspond to 2 scenarios of the
WT unperturbed dynamics. More specifically, the twoWT scenarios depicted are: r(Q,
A), b(A) (solid line) and r(Q,A), b(Q) (dotted line). Solid lines (bothWTandperturbed)
correspond to models where b0 < 1/2 (with trivial steady state), and dotted lines to
scenarios in which b0 > 1/2 (having a stable positive steady state). B–B' Dynamics of
aNSCs (top) and TAPs (bottom), which together form the BrdU cells from panel A, in

young (B) andold (B')mice.C–C'Dynamics of thepopulations of qNSCs (top) andNBs
(bottom) in time, as a result of TMZ intervention on BrdU cells, in young (C) and old
(C')mice.DTable comparing thefive scenarios based onAICc values, and their Akaike
weights quantifying the individual probabilities for selection. The model in which the
entire population ofNSCs (Q+A) regulates both r and b scores the highest (Scenario 4,
Eq. (5), “r(Q + A, Q + A), b(Q + A)''). E–E' Activation rates r in the case of TMZ
treatment compared to theWT setting, in young (E) and old (E') mice. F–F' Fraction of
self-renewal b upon TMZ treatment in comparison to the case of the unperturbedWT
setting, in young (F) and old (F') mice. For readability, in the plot legends, we write the
multivariate functions r(Q + A)≔ r(Q + A, Q + A).
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by additional differential equations (Eq. (13)) that account for signal
production, degradation, and internalisation. Terms associated with
cell types ci describe their contribution to the signal pool either as
producers or consumers—depending on the sign of the corresponding
term. Basal production from non-lineage supporting cells is captured

by positive constants, while degradation is modelled through negative
linear terms.

Assuming fast signal kinetics, we the extended model can be reduced
back to thenonlinear feedback formulationwithHill-type regulation. In this
way, the effective signals Sr and Sb illustrate how abstracted feedback terms
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may reflect more complex, mechanistically grounded regulatory interac-
tions. (see39,40):

dSr
dt

¼ R1 þ R0c1 � Sr � βrc2Sr ¼ 0

dSb
dt

¼ 1� Sb � βbc3Sb ¼ 0

9>>=
>>; $

reduction

expansion

r :¼ �rSr ¼
�rR1 þ �rR0c1
1þ βrc2

¼:
r1 þ r0c1
K þ c2

b :¼ �bSb ¼
�b

1þ βbc3
¼:

b0
1þ βc3

;

8>>><
>>>:

ð13Þ

with r0 ¼ �rR0=βr , r1 ¼ �rR1=βr ,K = 1/βr, b0 ¼ �b and βb = β, to recover the
form and notation from before.

Consequently, this model extension provides a mechanistic inter-
pretation of the previously inferredHill-type feedback functions in terms of
specific signalling processes. Based on this generic formulation, we deduce
that, in wild-type (WT) mice, the signal promoting NSC activation is both
produced and internalised by neural lineage subpopulations—potentially
distinct—corresponding to the c1 and c2 cell types in Eq. (1), respectively. In
this context, we set r1 = 0, assuming no contribution from non-neural
sources to activation. In contrast, the signal controlling the balance between
self-renewal and differentiation of aNSCs appears to be produced by non-
neural supporting cells and consumedbyneural lineage cells (type c3). These
findings align with existing experimental evidence for autocrine and para-
crine signalling. For instance, canonical Wnt signalling secreted by astro-
cytes and vascular endothelial cells and taken up by neural cells—is believed
to play a central role in promoting aNSC self-renewal.

When applying the nonlinearmodel to experimental data from Ifnar1/
Ifngr1 double knockout (IFNAGR KO) mice, we observe that signal pro-
duction by neural populations is impaired, rendering their contribution to
activationnegligible (r0≈ 0).As a result, non-neural supporting cells assume
a significantly greater regulatory role in driving system dynamics.

More complex alternative mechanistic scenarios may also give rise to
Hill-type regulatory functions, providing complementary interpretations
that converge on similar forms of system-level regulation. While several
signalling pathways have been identified as inhibitors of activation, com-
paratively little is known about signals that actively promote it. For instance,
Notch and Wnt signalling are well-established regulators of adult neuro-
genesis and specifically influence key system parameters such as activation
rate r and self-renewal fraction b. It has been shown that aNSCs express
Delta ligands, which bind to Notch receptors on neighbouring qNSCs,
thereby suppressing their activation. Assuming an inverse relationship
between the activation rate r and the Delta signal and applying a quasi-
steady-state approximation to a dynamical model (ODE) describing Delta
dynamics naturally yields aHill-type function for r, see Eq.(14). This formal
derivation provides a plausible mechanistic underpinning for the empiri-
cally inferred feedback structure and illustrates how inhibitory autocrine or
juxtacrine signalling can manifest as effective population-level regulation.

dSr
dt ¼ R0A� Sr � βrSrQ; with rðSrÞ � 1

1þSr

! r ¼ r1þr0Q
KþQþA ¼: rðQ;Qþ AÞ

ð14Þ

Furthermore, Wnt signalling—another key regulator of adult neurogenesis
—is predominantly secreted by non-neural niche components, such as
astrocytes and endothelial cells, and exerts its effects primarily on quiescent
NSCs. This functional specificity is consistent with the inferred shape of the
self-renewal parameterb(Q) in Scenario2,Eq. (9).Taking into account these
regulatory processes leads to a new scenario, “r(Q,Q+A), b(Q)” (Eq. (15)),
which is in fact a combination of our two best-scoring hypotheses (Fig. 6F),
offering a biologically grounded and mechanistically coherent explanation
for the observed dynamics.

rðQ;Qþ AÞ :¼ r1 þ r0QðtÞ
K þ ðQðtÞ þ AðtÞÞ ; bðQÞ :¼ b0

1þ βQðtÞ ð15Þ

A graphical comparison between the additional scenario and the two
previously best-scoring models is shown in Fig. 7A, B. MCMC simulations
of the new scenario revealed that, for data fromWTmice, the parameter r1,
originally introduced to model the IFNAGR KO condition (Eq. (7); Sce-
narios inEqs. (8-12)) andalsoused in theDelta-Notchhypothesis (Eq. (15)),
plays no substantial role, thereby supporting our original model choice
(Eq. (1)). In contrast, for the IFNAGRKOdata, theparameter r1≠0 emerges
as themost influential parameter, overtaking r0.While models forWT data
(with r1 = 0, Eqs. (2-6)) exhibited a strong correlation between r0 and K
(Fig. 4F), this correlation shifts to r1 and K in the extended models for the
IFNAGRKO condition (Eqs. (8-12)) and the Delta-Notch-Wnt hypothesis
(Eq. (15)). Notably, including the additional parameter r1 in WT models
increases uncertainty and reduces identifiability, with no critical impact on
the fit to the data. These observations are consistent across all scenarios.
Figure 7D illustrates how the Delta-Notch-Wnt hypothesis captures the
recovery following TMZ treatment in both young and aged mice (for
simplicity, r1 was set to zero). When comparing AICc values and Akaike
weights for the additional scenario against the two previously best-scoring
ones,wefind all three to be equally plausible in terms of explaining bothWT
and IFNAGR KO data. Consistent with previous observations (Figs. 5D,
6F), analysis of the TMZ-perturbed data favours the scenario in which the
total NSC population regulates both activation r and self-renewal b, with
high confidence (Fig. 7C).

Taken together, these considerations culminate in a biologically
plausible feedback scenario grounded in Delta-Notch and Wnt signalling,
which we propose as a mechanistic explanation for the observed regulation
of activation and self-renewal. However, while this scenario captures key
aspects of the data and aligns with known biology, we acknowledge that
additional, possibly synergistic, signalling molecules may contribute to the
robustness and adaptability of the system. Indeed, the effective signalling
model (Eq. (13)) could be extended to encompass a broader network of
interacting signals. For instance, the activation rate could be modulated by
twodistinct signalling components: a promoting signalSrp and an inhibitory
signal Sri. In this extended framework, Srp would be produced by neural
lineage cells (analogous to c1) and degraded either spontaneously or by non-
lineage cells, whereas Sri would be secreted by non-neural supporting cells
and received by neural lineage cells (as c2). Alternatively, similar regulatory
effects could arise through a double-inhibition mechanism, in which an
inhibitory signal is itself suppressed by lineage cells—mirroring the Delta-
Notch regulation of activation. These more complex signal interactions
illustrate that the feedback architecture inferred here may reflect an aggre-
gate effect of multiple pathways. Elucidating the precise molecular

Fig. 6 | Model results and comparison among the five scenarios considered,
applied to data from IFNAGRKOmice. A Simulation results showing the dynamics
of lineage cell subpopulations in time, from fitting to the IFNAGRKOdata, for the five
different scenarios. The scenarios considered in these plots are given by Eqs. (8–12).
Parameter estimation finds b0 > 0.5 in all five scenarios and thus the systemhas a stable
positive steady state towhich it converges.X-axis representsTime, i.e., the ageofmice in
days. Y-axis is in logarithmic scale in all plots except the one depicting the fraction of
active cells.BDynamics in time of the systemparameters, activation rate r and fraction
of self-renewal b, from thefive scenarios considered inpanelA.CComparison between

WTand IFNAGRKO fits to their respective data for two scenarios: r(Q,A), b(A) (solid
lines, forWT b0 < 0.5) and r(Q,A), b(Q) (dotted lines, forWT b0 > 0.5).DDynamics of
the activation rate and fraction of self-renewal for comparing IFNAGR KO with WT,
for the scenarios considered in C. E Table with AICc values for model selection and
their respective Akaike weights, for the model of IFNAGR KO dynamics. F Overview
table with AICc scores and Akaike weights for each scenario, computed separately for
WT, TMZ and IFNAGR KO, as well as combined for all settings and data together
("Overall''). For readability, in the plot legends, we write themultivariate functions r(Q
+ A)≔ r(Q + A, Q + A).
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Fig. 7 | Model results and comparison among the two best-scoring scenarios and
theDelta-Notch-Wnt scenario “r(Q,Q+A), b(Q)”, applied to data fromWT and
IFNAGR KO mice. A Simulation results showing the dynamics of lineage cell
subpopulations in time, from fitting to theWTdata, for the three different scenarios.
The scenarios considered in these plots are given by equations (9, 11), and (15).
Parameter estimation finds b0 > 0.5 in all three scenarios and thus the system has a
stable positive steady state to which it converges. X-axis represents Time, i.e., the age
of mice in days. Y-axis is in logarithmic scale in all plots except the one depicting the
fraction of active cells. For readability, in the plot legends, we write the multivariate
functions r(Q+ A)≔ r(Q+ A,Q+ A). B Simulation results showing the dynamics

of lineage cell subpopulations in time, from fitting to the IFNAGR KO data, for the
three different scenarios. C Table with AICc values for model selection and their
respective Akaike weights, for the three model scenarios depicted in A–B.
D Simulation results of the three scenarios showing the recovery of the population of
BrdU cells after treatment with TMZ, in young (left) and old (right)mice.E–E'. Plots
of posterior distributions of model parameters and their correlation plots from the
samples of theMCMCchain, inWT (E) and IFNAGRKO (E')mice. The insets show
the dynamics of the solutions corresponding to initial conditions sampled from a
Gaussian distribution with mean and variance extrapolated from the available data
points, and parameters sampled from their posteriors.
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components and their interactions will require targeted experimental vali-
dation and lies beyond the scope of the present study.

Discussion
In this paper, we aimed at deciphering regulatory feedbacks acting
within the neural lineage, which would be leading to the observed age-
related changes in adult neurogenesis in the ventricular-subventricular
zone of adult mice brains. Even though data of healthy neurogenesis
from humans are not available, recent work studying the architecture
and progression of the glioblastoma brain cancer showed on one hand,
that patient tumour samples comprise the entire neural lineage as in
healthy mice, and on the other hand that tumour samples transplanted
into mouse brains show the same properties in the host as in the
donor41. These considerations hint to a good agreement between
human and mouse neurogenic systems. We suggested feedback
mechanisms that replicate the observed dynamics and which are also
plausible from a biological perspective. We additionally derived a
minimal scenario based on biological evidence of signalling among
NSCs via Delta-Notch and Wnt pathways. Although model selection
did not prove entirely conclusive, we found a number of insights that
can guide further experiments and investigations. First of all, we
showed that the decision of a neural stem cell to self-renew or differ-
entiate is negatively regulated by the neural lineage. From the per-
spective of signalling, self-renewal signalling molecules are produced
by supporting cells and bound by lineage cells. Additionally, we found
that the balance between activation and quiescence is mainly regulated
by the neural populations, not unlikely with the involvement of two
different subpopulations acting in opposing directions. The mathe-
matical models presented a few ways through which quiescent stem
cells promote their activation in terms of signalling mechanisms.
Considering the intricacy of the network of signalling interactions
involved in regulating the system parameters in adult neurogenesis, it
is not easy to single out specific genes, but modelling can shed light
onto how and where the regulation acts.

In addition, we highlighted the risks of inference from preliminary
models applied to inconclusive or insufficiently informative data without
conducting a thorough and unbiased investigation, as multiple hypotheses
may lead to similar results despite differing interpretations. Further, to
increase the power of model selection, we used supporting data from two
different perturbation experiments: the treatment with the chemother-
apeutic drug TMZ, and the knock-out of the IFNAG receptors. The
mathematical models applied to these complementary data uncovered
compelling insights. We showed that upon TMZ treatment, the mean
proliferation rate of TAPs is drastically reduced andwe argue that it is likely
a consequence of feature selection in a heterogeneous population: fast-
proliferatingTAPs are killed byTMZand theones that escape are thosewith
longer cell cycle, hence lower proliferation rate. A similar reasoning applies
to old mice, where, in addition, the maximum activation rate is greatly
reduced, leading to a surviving population of more deeply quiescent stem
cells. We observed that due to slower proliferation of TAPs but a steady
influx from the active NSC compartment, the total population of TAPs
decays more slowly after TMZ treatment in young mice, and that this leads
to a trend that lies higher than in the unperturbed systemduring the lifespan
of mice (Fig. 5B, bottom). However, the populations of stem cells remain
smaller than before treatment (Fig. 5B-B’, top). Interestingly, the sub-
population with the most dissimilar behaviour across scenarios is that of
quiescent NSCs (Fig. 5C-C’, top). Although the dynamics is similar, the
values of cell counts differ. Would it be possible to better select the most
plausible model hypothesis if data on numbers of quiescent NSCs after
treatment were available? Such data quantifying qNSCs might improve
model selection assuming the heterogeneity among mice is not too high.
Ideally, an additional experiment could focus on only perturbing either
active NSCs or TAPs, which might help uncover whether feedback origi-
nates solely from the NSC compartments or also from more differentiated
neural subpopulations. Furthermore, perturbation of the Delta-Notch

pathway would provide new data which together with our models could
restrict our set of hypotheses and offer new insights into the regulatory
mechanisms.

With respect to the perturbation by knocking out IFNAG receptors,
considering that data showan ascending trend of the fraction of activeNSCs
among all NSCs, we showed that the activation rate of quiescent NSCs
increases with ageing. From the perspective of signalling, we suggested that
in the IFNAGR KO mice the activation signal is no longer produced by
neural cells, but by supporting cells. Additionally, as the activation of
quiescent NSCs is disregulated in IFNAGR KO mice, self-renewal com-
pensates via an earlier and faster increase. As activation is a major player in
the recovery after TMZ treatment in WT mice, it will be interesting to
perform the TMZ experiment on IFNAGR KO mice and inspect how the
neural cells behave.

Finally, in terms of selecting a model hypothesis, even though no
definitive conclusion can be drawn, observations can be made from simu-
lation results. First of all, parameter estimation for the various scenarios
suggests that if qNSCs are involved in regulating the self-renewal, the system
asymptotically converges to a positive steady state. The nonlinear models
suggest that the driving effect for exit fromquiescencemost likely originates
primarily fromqNSCs.Toour knowledge, experimental studieshave gained
insights into signalling mechanisms that inhibit activation, but not much
has been reported about promoters of activation. Does there exist a
mechanism through which qNSCs actively drive their exit from quiescence,
or is the process solely regulated through a double-inhibitory feedback, as
derived for our Delta-Notch hypothesis? A new angle of experimental
research could be aimed at uncovering potential mechanisms through
which quiescent NSCs directly promote their activation. The table of model
selection scores for the three individual settings (WT, TMZ and IFNAGR
KO) together with their overall score (Fig. 6F, Fig. 7C) suggests that in an
uninjured setting (WTor IFNAGRKO) themain regulator of self-renewal is
the qNSC subpopulation, whereas activation is primarily promoted and
inhibited by qNSC and (a)NSC, respectively (Scenario 2, Eq. (3,9) or the
Delta-Notch scenario, Eq. (15)). In the case of a severe injury such as the
treatmentwithTMZ, the entireNSCpopulation is involved in regulating the
system parameters to ensure a smooth recovery (Scenario 4, Eq. (5)). If we
inquire how these scenarios influence the recovery, we gather that having
aNSCs contributing to regulating self-renewal (Scenario 4, (5)) leads to a
faster increase in self-renewal upon their death by TMZ, than when only
qNSCs are involved (Scenarios given by Eq. (3) or (15)), leading to a more
efficient repopulation of the NSC pool. It is reasonable to assume that
generally the two NSC subpopulations contribute with different weights in
governing the system parameters, however investigating this aspect by
inserting additional parameters into the models is not feasible with the
available data. Additionally, our model selection results suggest that mul-
tiple neural lineage subpopulations might be involved in the regulations,
with various impact, pertaining to an existing redundancy in the neural
system that might ensure better adaptability. Altogether, we find that the
main regulator of the dynamics of the neural lineage is the population of
NSCs, whereas downstream subpopulations, if involved, have a much
weaker influence.

Methods
The current work is based on the methodology of nonlinear ordinary dif-
ferential equations and combines mathematical analysis, computational
simulations, parameter estimation, model selection and identifiability.

Mathematical analysis
The crucial parameter describing the dynamics of the system (1) (Fig. 1B) is
b0. It is clear that for b0≤1/2 it holds:

dðQþ AÞ
dt

¼ 2
b0

1þ βcðtÞ � 1

� �
pAAðtÞ≤ 0;
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where c(t) can be equal toA(t),Q(t),N(t) orQ(t)+A(t). Itmeans that for all
scenarios (2-6) the only steady state is a trivial one.Moreover, the solutions
are asymptotically converging to it.

In the casewhen b0 > 1/2, there exist two steady states for eachmodel: a
trivial one and a positive one. For all scenarios (2-6) the trivial steady state
(when b0 > 1/2) is unstable. The positive steady state is thus our focus in the
rest of this section. We divide the models into two groups. The first com-
prises scenarios (2, 3) and (5), where parameters r( ⋅ ) and b( ⋅ ) depend only
on Q and A. In these models, it is enough to consider the existence of the
solution and its stability for the reduced system composed of the first two
equations (1)(1)–(1)(2), the results for the full model being a natural
extension.

Theorem 1. There exists a unique global solution to (1) with system
parameters (2, 3) or (5). Moreover, for b0 > 1/2 the positive steady state
solution is stable.

Proof. The functions on the right-hand side of (1) are Lipschitz-continuous
for nonnegative values of the solution. Starting with nonnegative initial
conditions, we obtain the local existence of unique solutions to (1),
according to the Picard–Lindelöf theorem. Using the property of the right-
hand sides of (1), we obtain the positivity of the solutions.

To prove the global existence of the solution, we focus on the system
(1)(1)–(1)(2). We will present here the results for the first scenario, i.e., (2).
The reasoning in the other cases is similar. Then

dQ
dt ¼ � r0QðtÞ

KþAðtÞQðtÞ þ 2 b0
1þβAðtÞ pAAðtÞ

dA
dt ¼

r0QðtÞ
KþAðtÞQðtÞ � pAAðtÞ

8<
:

Equating the right-hand sides of the aforementioned equations to 0, we
obtain two isoclines, which after transformation are equal to

Q2 ¼ 2 b0
1þβA

pA
r0
AðK þ AÞ

Q2 ¼ pA
r0
AðK þ AÞ

8<
:

It is clear that for nonnegative values ofQ andA these lines have atmost two
intersection points: one at (Q,A) = (0, 0), and a second one that occurs only
when b0 > 1/2. The value of the second intersection point is equal to

ð�Q; �AÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pA
r0

2b0�1
β ðK þ 2b0�1

β Þ
q

; 2b0�1
β

� �
. Note that if we decrease b0 to 1/2

from a greater value, then the second positive point goes to (0, 0).
We define a domain M ¼ fðQ;AÞ 2 R2 : Q;A≥ 0 andQ≤Q�;

A≤A�g, where A� > �A and Q* is chosen such that
2 b0
1þβA�

pA
r0
A�ðK þ A�Þ < ðQ�Þ2 < pA

r0
A�ðK þ A�Þ. Then the solution with

initial conditions inM does not escape fromM. Thus, the solution is global
in time.

The existence of a global unique solution for the reduced system
(1)(1)–(1)(2) implies the existence of a global unique solution for the full (1)
system, since Q(t) and A(t) are bounded everywhere.

The stability of the positive steady state is a consequence of the line-
arization of the model in the neighbourhood of the steady state. □

We next focus on the second group of scenarios, where downstream
populations are also involved in the regulation, i.e., (4) and (6).

Theorem 2. There exists a unique global solution to (1) with (4) or (6).
Moreover, for b0 > 1/2 the positive steady state solution is stable.

Wewill focus on themodel with (4). Similar results can be obtained for
the model with (6), but due to the higher dimensionality, we will omit the
computations here.

Proof. Similarly to theproof ofTheorem1,weobtain the local existence of a
unique positive solution as a consequence of Picard–Lindelöf theorem and
propertiesof the right-hand side functions. It remains todefine adomainM

from which the solutions cannot escape. We work with a reduced system
containing only (Q, A, N), i.e., first two ODEs together with the last one in
(1), further denoted (1*). Results obtained for this model can be naturally
extended to the full model (1). Moreover, for simplicity, we assume that b0
< 3/4.

The invariant domainM for thismodel is a 3Dpolyhedralwith 7 faces.
The base in the (A, Q)-plane is quadrilateral. Two of their edges coincide
with axes and theother two aredefinedby functionsQ+A= constant andQ
− A = constant. The upper base is larger than the bottom one (N = 0). The
two faces that coincide with the planes Q = 0 and Q − A = const are
pentagons. The other faces of the polyhedral are quadrilateral lying on the
planes: A = 0, Q + A− N = constant and Q+ A = constant.

We denote �N ¼ 2b0�1
β . We take an arbitrary A greater than �A ¼ δ

pA
�N .

Moreover, Q and N* are chosen in the following way:

Q ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b0 þ

1
2

� �
p
r0
AðK þ AÞ

s
and N� ¼ 2p

δ
ðQþ Aþ �NÞ:

The coordinates of the vertices of the domain M are as follows:
fð0; 0; 0Þ; ðAþ Q; 0; 0Þ; ðA;Q; 0Þ; ð0;Q� A; 0Þ; ð0; 0;N�Þ; ðAþ Qþ �N;

0;N�Þ; ðAþ �N
2 ;Qþ �N

2 ;N
�Þ; ð0;Q� A;N�Þ; ðAþ Qþ �N; 0; �NÞ; ðAþ �N

2 ;

Qþ �N
2 ;

�NÞg.Weneed to prove that solutions starting fromeach of the seven
faces of the polyhedral domain M go inside the domain. We previously
showed that our solutions are positive if the initial data are positive so the
edges of faces that coincide with axes can be disregarded. For the rest of the
faces, upon lengthy but basic calculations, we also show that the solution
goes inside the domain. The results are also true for b0≥3/4. In this case, the
angle of the trapezoidal face of the domain is modified such that it is
contained in the plane Q + A− aN, with constant a < 1. For b0 > 1/2, the
positive steady state is stable: all threeeigenvalues of the linearisedsystemare
real and negative.We find that the characteristic polynomial corresponding
to the linearisation matrix of the reduced system (1*) has all coefficients
negative. Thus, by the Routh–Hurwitz stability criterion, we obtain that all
real parts of the matrix eigenvalues are negative, and thus the steady state is
stable. □

Parameter estimation
In order to see how ourmodels are able to describe the dynamics observed in
data, we performed parameter estimation. The proliferation rates pA = 0.95
andpT=0.81werekept constant, assumingacell cycle lengthof17h for aNSCs
and20h forTAPs12. In afirst step, theparameters tobeestimatedcomprisedof
r0,K,b0,β,δ,NSC0,whereNSC0 represents the total numberof stemcells (Q+
A) at time t=0.Havingperformeda largenumberof estimations thevalues for
the last two parameters were similar most of the times, also among different
scenarios. Therefore, for simplicity, we fixed δ = 0.19 andNSC0 = 1900. As a
result, theparameters estimated comprise of r0,K,b0 andβ forWTdata. In the
case of the IFNAGR KO experiments, the parameters r1 and pT were addi-
tionally estimated. For the young mice treated with TMZ, pT was fitted,
togetherwith the death rate d and scaling factor ρ (see section “Model of TMZ
treatment” of Methods), while keeping the rest fixed. For old mice, both
parameters r0 and pT, as well as d and ρ were fitted (see Table 2).

The optimization was based onweighted least squares. A cost function
was defined as the sum of squared differences between the valuesQ+A,A/
(Q + A),∑iTi and N given by the ODE system at the j ∈ {1, . . . , nt} time
points at which data is available and the corresponding data values for each
mouse (nj total data points at time point j), divided by the variance among
mice at the same time point:

E ¼
Xnt
j¼1

1
σ2j

Xnj
i¼1

ðydatai � ymodel
i Þ2

 !
:

The cost function was then minimized by using the fmincon routine
in MathWorks MATLAB software, with the sequential quadratic
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programming (‘sqp’) algorithm. The algorithm was run multiple times
starting from 500 initial guesses for each model hypothesis, and the para-
meter set with the smallest cost function value out of the 500 multi-start
points was selected.

Furthermore, after performing parameter estimation using the con-
strained Gauss-Newton method, a sensitivity analysis was conducted to
evaluate the uncertainty of the estimated parameters. Employing the gen-
eralized inverse of the Jacobian matrix of the underlying parameter esti-
mation problem allows for the construction of a Taylor expansion to
describe how the parameter estimates respond to perturbations in the
measurement errors. This expansion enables the derivation of linearized
(ellipsoidal) or quadratic confidence regions and a linear or quadratic
estimate of the covariance matrix of the parameters42. The square roots of
the diagonal elements of the covariance matrix represent the standard
deviations of the estimated parameters, and the off-diagonal elements
indicate the correlations between the parameters. These confidence regions
are local approximations of the nonlinear confidence regions defined by the
maximum likelihood ratio43 and may underestimate uncertainty in regions
where the model exhibits strong nonlinearity. Nevertheless, they provide
valuable insight into parameter uncertainty, which can be refined using the
Bayesian approach, and can be computed efficiently.

Bayesian approach to sensitivity and uncertainty quantification
To quantify the sensitivity of our model’s dynamics to variations in initial
conditions and parameter values, we employed Bayesian methods. Specifi-
cally, this approach was applied to three model scenarios discussed in the
paper: Scenario “r(Q,A),bA(Q)” (Eq. (9)); Scenario “r(Q+A,Q+A),b(Q+
A)” (Eq. (11)); and theDelta-Notch Scenario “r(Q,Q+A), b(Q)” (Eq. (15)).

Due to the limited experimental data, which prohibited extracting
reliable information about the statistics of the measurements yi we assumed
that each measurement yi at a given time point follows a Gaussian distribu-
tion. Moreover, because these measurements were obtained from different
mice, we considered measurements at different time points to be statistically
independent. Model simulations revealed a rapid temporal decrease in the
variance of trajectories generated from varying initial conditions. Accord-
ingly, we assumed an exponential decay in variance of the form

σðtÞ ¼ d0 þ d1e
�d3t:

This approximation allowed us to interpolate the variance formost sparsely
sampled measurements yi and provided a rough estimation of the dis-
tributions for the fourmeasuredquantities in the initial conditions at t=0:Q
+A, A

QþA,∑iTi, andN.Weused these assumptions toquantify the variability
of model solutions with respect to initial conditions. In our numerical
simulations, these four quantities were sampled from their respective
Gaussian distributions, and the components of the initial statewere adjusted
to satisfy the sampled proportions.

Under the assumption of normally distributed data, we expressed the
discrepancy between model and experimental data yi as a negative log-
likelihood function:

f ðθÞ ¼ � logðlðθÞÞ; lðθÞ ¼ 1

ð2πÞn2 Qn
i¼1

σ data
i

e
�
Pn
i¼1

ðymodel
i ðθÞ�μdatai Þ2=ð2ðσdatai Þ2Þ

;

where θdenotes the vector ofmodel control parameters, andμ data
i and σ data

i
are the mean values and variances estimated from the experimental data
using themethod described above. The values ymodel

i ðθÞ are generated from
model trajectories corresponding to realisations of randomised initial
conditions. Although the random sampling of initial conditions makes f(θ)
inherently stochastic, numerical evaluations across different parameter
values revealed that the variability for a fixed parameter vector θ is minimal
(in general, less than 1%), as shown in Fig. 7E-E’. Therefore, we evaluated
f(θ) by simulating the model multiple times with different realizations of
initial conditions and next averaging the results.

Subsequently, we minimised f(θ) using the previously obtained point
estimates as initial guesses (values given in Supplementary Table 1). In all
cases, the optimized parameter values closely aligned with those derived
from the LSQ cost function.

For uncertainty quantification, we employed the Adaptive Metropolis
algorithm35. Here, the Markov Chain Monte Carlo (MCMC) sampler was
initialised with the optimised parameter estimates. The resulting posterior
distributions revealed that the parameters r0, r1, and K exhibit very large
variability, indicating significant uncertainty in their estimates, whereas the
posterior distributions for b0 and βwere comparatively more concentrated,
reflecting higher identifiability under the experimental conditions.

Model selection
Model selection is performedby assigning eachmodel a score that combines
its goodness of fit with a penalty on the number of parameters to avoid
overfitting. The Akaike Information Criterion, with its formulation for
weighted least squares, and its correction for small samples, is one of the
common scores used, defined as below44, respectively.

AIC ¼ n ln E
n

� �þ 2k;

AICc ¼ AIC þ 2kðkþ1Þ
n�k�1 :

Here, k is the number of fitted parameters, n is the size of the data, and E
represents the value of the minimized objective function. A smaller AICc
value represents a better model, in the sense of both howwell it fits the data
and how parsimonious it is. In model selection, the actual AICc value of a
model carries no real significanceunless compared to those of othermodels.
In other words, the important values to inspect are

ΔiAICc ¼ AICci � AICcmin; i 2 1; :::;M

representing the difference between each of the M models and the best-
valued one. Despite only one model having ΔiAICc = 0, other models with
very small values should alsonot be discarded.As there is no accuratewayof
decidingwhere the boundary between (equally-) acceptablemodels and bad
ones should be drawn, one can resort to computing an additional metric,
namely theAkaikeweights. Theseweights canquantifyhow likely amodel is
to be the correct one, and are defined as

wi ¼
expð� 1

2ΔiAICcÞPM
i¼1 expð� 1

2ΔiAICcÞ
:

All scenarios considered in this paper have the same number of parameters
and therefore, wemight simply compare the E-values of theminimized cost
functions. However, for consistency and possible future generalization, we
compare the ΔiAICc and Akaike weights wi. The values of these scores for
each hypothesis considered can be found in the Supplement.

Model of TMZ treatment
Taking into account that the data from TMZ-perturbed mice consider the
numbers of proliferating cells from sections of the ventricular-
subventricular zone, as opposed to cell counts from the whole region, the
TMZ data need to be scaled up to compare to theWT data. This is done by
fitting an additional parameter ρ that represents the scaling factor of the
section-data with respect to the whole region, based on the so-called saline

Table 2 | Summary of fixed and estimated parameters for each
type of data

Experiment Fixed Estimated

WT pA, pT, δ, NSC0 r0, K, b0, β

TMZ young r0, K, b0, β, pA, δ, NSC0 pT, d, ρ

old K, b0, β, pA, δ, NSC0 r0, pT, d, ρ

IFNAGR KO pA, δ, NSC0 r0, r1, K, b0, β, pT
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data recorded fewdays before theTMZexperiments (56 and 656days of age
in young and old mice, respectively). The scaling factor ρ thus brings the
values of saline data up to the order of magnitude of WT data.

Additionally, since the death of proliferating cells is not instant upon
TMZtreatment,wemodel an exponential decay of cell counts that considers
a constant death rate d of aNSCs (A) and TAPs (Ti, n = 3) due to che-
motherapy during the short time-span of administering the drug. The
resulting ODE system is shown in Eq. (16).

dQ
dt ¼ �rQðtÞ þ 2bpAAðtÞ
dA
dt ¼ rQðtÞ � pAAðtÞ � dAðtÞ
dT0
dt ¼ 2ð1� bÞpAAðtÞ � pTT0ðtÞ � dT0ðtÞ
dTi
dt ¼ 2pTTi�1ðtÞ � pTTiðtÞ � dTiðtÞ

dTn
dt ¼ 2pTTn�1ðtÞ � pTTnðtÞ � dTnðtÞ
dN
dt ¼ 2pTTnðtÞ � δNðtÞ:

ð16Þ

The death parameter d is also estimated, when fitting the model to the
experimental data. Specifically, for the period before treatment the healthy
system (1) in Fig. 1B is simulated, during the treatment the model (16) is
used, and after the treatment window the WT model is again used. The
combined solution from these three regimes is then compared to our data
points and the parameters are fitted.

Data availability
All original code has been deposited at Zenodo under the DOI 10.5281/
zenodo.14944969 and is publicly available as of the date of publication
(https://doi.org/10.5281/zenodo.14944969). Any additional information
required is available from the corresponding authors upon request. The data
sets analyzed during the current study are either publicly available or can be
obtained from the corresponding author of the original study that generated
the data set12,38.

Code availability
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zenodo.14944969 and is publicly available as of the date of publication. Any
additional information required is available from the corresponding authors
upon request. The data sets analyzed during the current study are either
publicly available or can be obtained from the corresponding author of the
original study that generated the data set12,38.
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