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Adult neurogenesis is defined as the process by which new neurons are produced from neural stem
cells in the adult brain. A comprehensive understanding of the mechanisms that regulate this process
is essential for the development of effective interventions aimed at decelerating the decline of adult
neurogenesis associated with ageing. Mathematical models provide a valuable tool for studying the
dynamics of neural stem cells and their lineage, and have revealed alterations in these processes
during the ageing process. The present study draws upon experimental data to explore how these
processes are modulated by investigating regulatory feedback mechanisms among neural
populations through the lens of nonlinear differential equations models. Our observations indicate that
the time evolution of the neural lineage is predominantly regulated by neural stem cells, with more
differentiated neural populations exerting a comparatively weaker influence. Furthermore, we shed
light on the manner in which different subpopulations govern these regulations and gain insights into

the impact of specific perturbations on the system.

Adult neurogenesis is the process by which mature neurons are generated
from neural stem cells (NSCs) throughout adulthood. In mammals, adult
neurogenesis takes place in two main regions of the brain: the dentate gyrus
of the subgranular zone in the hippocampus and the ventricular-
subventricular zone located along the walls of the lateral ventricles'”. In
this process, NSCs transition from a quiescent to an active state, enabling
self-renewal and differentiation. This results in the generation of transient
amplifying progenitors (TAPs), neuroblasts (NBs), and ultimately neurons.
A schematic of these transitions among the neural populations is shown in
Fig. 1A. With ageing, the number of mature neurons decreases, which may
lead to impaired cognitive function*”. This phenomenon has been reviewed
in refs. *”. Furthermore, it has been found that the number of neural stem
cells declines with age in both the ventricular-subventricular zone'*"'* and
the dentate gyrus of the adult hippocampus''* (for reviews, see™’). As neural
stem cells represent the pinnacle of the neural hierarchy and give rise to the
entire neural lineage, interventions aimed at counteracting the effects of
ageing could potentially have the greatest impact if they targeted stem cells.
Consequently, the study of the dynamics of neural stem cell populations and
their lineage is of fundamental importance for advancing our understanding
of cognitive function in the context of ageing.

As experimental studies have their limitations, mathematical methods
can be employed to shed light onto processes that lead to the NSC dynamics

described by the available data (Fig. 1C). Mechanistic mathematical models
of the neural populations, involving non-autonomous linear ordinary dif-
ferential equations (ODEs) with time-dependent system parameters, have
facilitated uncovering trends in the time evolution of these parameters.
Applied to the dentate gyrus of the adult hippocampus'*'” and to the
ventricular-subventricular zone', they found that NSCs spend increasingly
more time in quiescence as they progress with age. However, such models do
not allow us to infer the regulatory mechanisms driving this behaviour, nor
how different types of perturbations alter the time course of system para-
meters and, consequently, of cell populations. One of the key questions is
how to realistically model system parameters in a way that enables a better
understanding of the underlying regulatory processes.

These regulatory feedbacks are governed by cell-cell interactions
through an elaborated network of signalling pathways. Different cells
produce or interact with signalling molecules and can regulate activation,
self-renewal, differentiation or proliferation. For example, it has been
reported that, in zebrafish, non-glial neural progenitors similar to active
NSCs and TAPs in mammals laterally inhibit the activation of quiescent
NSCs by upregulating Notch ligands at the cell surface'®”. Additionally, in
mice it has been proposed that NSC quiescence is regulated by their
immediate progeny through similar Notch paracrine signals'®, as well as
diffusible ones such as the neurotransmitter GABA". Notch has also been
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Fig. 1 | Mathematical model and data of cell population dynamics. A Schematic of
the transitions among neural cell types, represented in the mathematical model. The
arrows and rates depicted represent the inflow from the previous compartment.

B Mathematical model. System of ODEs describing the time dynamics of the neural
populations depicted in A. The number of amplification steps n = 3, corresponding
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to 4 TAP compartments T;. C Existing data from refs. 12,38: total number of NSCs;
fraction of active cells among label retaining cells, confirmed to be a good approx-
imation of the fraction of active neural stem cells among all neural stem cells; total
number of TAPs and total number of NBs in the ventricular-subventricular zone.
Each data point corresponds to one mouse.

Table 1 | Overview of reported regulatory mechanisms

Function Promoting Inhibiting

Key signals References

Activation of gNSCs ()  aNSCs, TAPs, Ependymal,

Astrocytes, Microglia

gNSCs, aNSCs, TAPs, NBs, Astrocytes,
Endothelial, Microglia

Wnt, EGF, FGF2, BMPs, Notch,
Shh, TGF-8, GABA

16,20,23,25,45-48

Self-renewal of
aNSCs (b)

gNSCs, aNSCs, Astrocytes,
Ependymal, Endothelial

TAPs, NBs, Astrocytes, Microglia

Notch, Wnt, EGF, FGF2, Shh,
VEGF, BMPs

20,23,25,45-47

suggested to promote NSC proliferation while maintaining them in an
undifferentiated state, in other words promoting self-renewal™. In contrast,
the Ascll gene was found to be expressed at varying levels by proliferating
lineage cells (aNSCs and TAPs) and to play a critical role in the activation of
quiescent NSCs. Additionally, its inhibitor HES is expressed by quiescent
cells and promotes the maintenance of quiescence. These are both tightly
regulated by Notch expression, which plays an essential role in maintaining
quiescent NSCs”'. Further signals (among others) expressed in the neural
lineage and involved in its regulation include bone morphogenetic protein
(BMP), interferon (IFN) and Wnt. In particular, an interplay between
canonical and non-canonical Wnt has been reported, with both playing a
role in regulating system parameters.

A very large array of signals from the neural lineage is involved in
coordinating the dynamics of NSCs and their neural lineage, with intricate
interactions, whose study is extremely complex and outside the scope of this
paper. These signals are further influenced by and interact with inputs from
non-neural niche cells”. Ependymal, endothelial cells and astrocytes are some
of the non-neural cell types from the neurogenic niche that contribute to
regulating neurogenesis. Additionally, inflammatory signals such as Inter-
ferons (IFN) are not only involved from within the niche, but also from
outside, for example through microglia or T-cells from the cerebrospinal

fluid®. Overall, adult neurogenesis dynamics are regulated by a complex web
of interactions among many different signalling pathways and cell types
(Table 1), whose balance changes with ageing, and can be disrupted in
neurological diseases™ . Nevertheless, as a first step, before setting out to
untangle this web, it seems advantageous to gain insights into where the
driving combined signal originates and how it guides adult neurogenesis. This
concept justifies the scope of our work on developing and employing non-
linear ODE models, with the aim of reducing the complexity and focusing on
the basic driving actors in adult neurogenesis, their source and target.

The present paper investigates regulatory feedbacks among cells of the
neural lineage that lead to the observed dynamics. Using experimental data
from wild-type (WT) mice, as well as complementary data from two per-
turbation settings, the mathematical model yields insights into the
mechanisms governing the neural lineage. Our strategy is as follows: Based
on previous models that identify temporal variability in key model para-
meters, we first determine the general form of the feedback function. We
then identify this function using model-based data analysis, combining
deterministic parameter estimation with a Bayesian approach to uncertainty
quantification. Finally, guided by the shape of the feedback function, we
propose a specific molecular implementation that reproduces both wild-
type data and data from perturbation experiments.
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Fig. 2 | Identifying the time-dependence of system parameters. A Results of the
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increasing self-renewal. Plots adapted from ref. **. B System parameters, i.e., activation
rate r and fraction of self-renewal b from the linear model plotted against values of
various neural lineage populations (scaled up to 1000 cells). C 3D plot of the activation
rate r with respect to various combinations of neural cell subpopulations.

Results

Neural lineage model and the motivation for feedback regulation
The model presented in this study builds upon previously established fra-
meworks describing the population dynamics of different cell types'*'*. The
main ingredients of the mechanistic model correspond to the transitions
among the neural lineage compartments and, in particular, among the NSC
subpopulations (depicted in Fig. 1A and defined by the ODE system (1) in
Fig. 1B). NSCs can exist in two exclusive states: active, which are actively
cycling, and quiescent, which are not in the cell cycle. Quiescent NSCs
(gNSCs) can become active at a rate r to enter the cell cycle and transition
into the active compartment. An active NSC (aNSC) can divide at a rate p,
into either two qQNSCs (symmetric self-renewal) or into two TAPs (sym-
metric differentiation) to advance further along the differentiation path. The
balance between self-renewal and differentiation is modelled via the so-
called fraction of self-renewal b. This represents how many progeny of NSCs
are NSCs themselves, and at the single-cell level can be thought of as a
probability that the NSC self-renews. Asymmetric divisions can also be
encompassed in the self-renewal parameter without any change in the
model equations (an explanation can be found in refs.**”’). TAPs are
considered to perform multiple amplification steps™ at a rate py before
finally dividing into NBs, which can exit the compartment at a rate J, for
example by death or by migrating to another brain region. According to
biological evidence, a number of n =3 amplification steps is assumed™™",
corresponding to four TAP compartments T;, i € {0, . .., 3}. The equations
(1) describing these assumptions are defined in Fig. 1B'**.

The question is how to model the system’s parameters, and in parti-
cular, how to link them to signalling pathways that regulate cellular pro-
cesses in order to understand systemic control. Our approach to this
problem builds on insights gained from previous models demonstrating that

models with constant parameters fail to reproduce the wild-type dynamics'”.
Instead, the activation rate of quiescent stem cells must vary over time to
match experimental observations. Perturbation experiments further
revealed a compensatory role of the time-varying self-renewal fraction
during cell division, suggesting it helps buffer age-related changes in acti-
vation (Fig. 2A). These time-dependent parameters were inferred by fitting
data under specific assumptions about the functional form of activation and
self-renewal rates. Figure 2A compares the dynamics of total stem cell
numbers and the fraction of active cells, along with parameter trajectories,
for scenarios in which either both parameters are constant ("no ageing”),
one is time-dependent ("decreasing activation” or “increasing self-
renewal”), or both vary over time ('regulating both”). In a related study,
Dabelow et al.” applied optimal control theory to explore alternative tra-
jectories of these parameters and concluded that a decreasing activation rate
is the most influential driver of the observed ageing dynamics. However,
these time-dependent models lack mechanistic insight into how such reg-
ulatory changes are implemented in the system. As a result, they fail to
reproduce recovery dynamics following injury, which depend critically on
the internal state of the system at the time of perturbation”. Furthermore,
Harris et al.”” showed that increasing the heterogeneity of the quiescent stem
cell population —by modelling it as a mixture of shallow and deep quies-
cence states with distinct activation rates— cannot replace the need for time-
dependent activation. This finding underscores that cellular heterogeneity
alone is insufficient to explain the observed dynamics and highlights the
necessity for system-level regulation mediated by signalling molecules.

Identifying the shape of feedbacks
To uncover the regulatory feedbacks underlying the behaviour observed in
experimental data, we employ nonlinear ODE models. The model structure
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is defined by the system of equations (1), as shown in Fig. 1B. In contrast to
previous approaches, the system parameters namely the activation rate rand
the self-renewal fraction b—are now modelled as functions of neural lineage
subpopulation sizes. It is important to note that what is often termed “self-
renewal” in biological literature corresponds, in our framework, to the
combined effect of r and b, two processes that are challenging to disentangle
experimentally. For clarity, we refer to the parameter b as “self-renewal”
throughout this study, while the combined effect of r and b is termed
“effective self-renewal,” following the terminology introduced in ref. .

How exactly do activation and self-renewal depend on the cellular
context? By plotting parameter estimates from the linear models against the
corresponding NSC counts over time, we observe that the activation rate r
increases with the number of NSCs, whereas the self-renewal fraction b
decreases. Notably, experimental data show that all neural lineage sub-
populations decline over time (Fig. 1C), suggesting that both rand b respond
similarly to different subpopulation sizes. This is further illustrated in Fig.
2B, which shows comparable parameter dynamics relative to various neural
cell populations.

It is convenient to assume an activating Hill-like dependence of the
activation rate r, and an inhibitory Hill-like dependence of the self-renewal
fraction b, on cell population size. In other words, the system parameters can
be described by Eq. (1),

O]

ro= r(e(t), 1) K600
b ey
b o= be(D) = 525

where ¢; represent some cell subpopulation of the neural lineage, the
parameters r, and b, govern the amplitude, and K and f tune the shape of
the Hill functions. The same Hill-like behaviour of r is observed whether ¢,
and ¢, correspond to the same neural subpopulation that promotes
activation, or to different neural subpopulations that regulate activation in
opposing manners. This similarity can be observed in Fig. 2B, C,
respectively.

In the following, we present model identification based on a range of
experimental settings, including wild-type neurogenesis and perturbation
experiments. These insights guided the search for a specific signalling
pathway consistent with the identified regulatory structure.

Model selection for wild-type adult neurogenesis uncovers
quiescent NSCs as the dominant promoter of activation
We consider various scenarios corresponding to different subpopulations
inserted in the ¢; of our formulas (1). After performing weighted-least-
squares parameter estimation (described in Methods) to find how each
scenario compares with the experimental data from WT mice, we examine
the results of scenarios grouped by the regulator of self-renewal. Each panel
in Fig. 3 depicts the comparison among data and different hypotheses for
feebacks in the activation rate of QNSCs, for self-renewal regulated by
individual subpopulations (GQNSCs, aNSCs, total TAPs, NBs or total NSCs).

To compare models, we compute the Akaike Information Criterion
corrected for small sample sizes (AICc). This approach assigns each model a
score that reflects its ability to explain the data while penalising complexity
to avoid overfitting. Differences in these scores allow for the identification of
a “best-scoring” model, while the corresponding Akaike weights indicate the
relative likelihood that a given model is truly the best among those con-
sidered (see Methods for details). However, due to the very limited number
of experimental data points, the AICc scores are subject to considerable
uncertainty and may shift substantially with additional data. Therefore,
rather than selecting a single model, we focus on the top-scoring candidates,
testing their predictions through perturbation experiments and using their
structure to explore biologically plausible mechanisms involving signalling
molecules.

A first observation from Fig. 3 is that the subpopulation that inhibits
activation is located further along the differentiation path than the one
promoting the activation. Interestingly, the scenarios in which gNSCs

promote activation capture the dynamics of the experimental data the best.
Some hypotheses that align with the summary in Table 1 also provide an
acceptable fit, but not as good as the former. Furthermore, the mathematical
models clearly show that the quiescent NSCs do not have an inhibitory effect
on both the activation rate and the fraction of self-renewal (Supplementary
Fig. 1A). These modelling results suggest that, even though evidence of
gNSCs maintaining quiescence and proliferating cells promoting activation
exists (Table 1), this is not the primary mechanism involved. Instead, the
balance between the combined effect of neural subpopulations and thus
signalling pathways tips towards a dominant effect from qNSCs in driving
activation.

There exist a large number of possible combinations of the cell types ¢;
from Eq. (1), some more plausible than others. Previous experimental
studies have proposed that activation of QqNSCs is promoted by aNSCs and
TAPs with the aim of sustaining neurogenesis, and inhibited by NBs. In
contrast, it is also reasonable to consider that the activation rate r may be
inhibited by proliferating cells, such that the quiescent population is con-
served when enough cells are already cycling, as was reported in zebrafish'’.
Intuitively, an activation rate that increases with the number of gNSCs is
also a reasonable assumption: an abundance of qNSCs allows them to
activate, as the main goal of the system is to produce neurons, not only
conserve its stem cell pool. An alternative may be that all NSCs, quiescent or
active, express the same driving signals for activation or self-renewal, so that
the system does not distinguish the source of the feedback. As far as the
regulation of self-renewal is concerned, other biological systems such as
hematopoiesis™** suggest that it is inhibited by cells at the end of the dif-
ferentiation spectrum (mature cells, analogous to our NBs). Such strategy
seems logical if the purpose is to replenish a small NB population, since it is
more efficient to first produce more stem cells that then proliferate at the
same rate as before, than to proliferate faster and differentiate more®*, Self-
renewal may also be inhibited by NSCs (active or quiescent), since a large
number of stem cells may promote differentiation.

In the following, we focus on a few scenarios, based on the biologically-
motivated reasoning and having confirmed their good fit (Fig. 3). These are
described by Egs. (2-6) and their fits are shown in Fig. 4A, with the
respective dynamics of their system parameters (Fig. 4B). One important
aspect to be noted is related to a bifurcation that appears at the point where
the parameter b, = 1/2 (see mathematical analysis in Methods). In parti-
cular, if by < 1/2 the system only has the trivial steady state, whereas if b > 1/2
there exists a stable positive steady state. Depending on the regulatory
feedbacks considered, upon parameter estimation, we obtain cases of good
fits in which the system slowly converges to zero, and cases in which the
system converges to the positive steady state (Fig. 4A). Interestingly, we
observe that the estimations for scenarios in which QNSCs are also involved
in regulating self-renewal (Fig. 4A, Eq. (3,5)) lead to dynamics with positive
steady state.
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Fig. 3 | Comparison among various scenarios for the regulation of activation rate,
grouped by the inhibitor of the self-renewal. A Self-renewal inhibited by gNSC,
b(Q). B Self-renewal inhibited by aNSC, b(A). C Self-renewal inhibited by TAPs,
b(>_T;). D Self-renewal inhibited by NBs, b(N). E Self-renewal inhibited by total
number of NSCs, b(Q + A). As a notation rule, r(cy, ¢;) corresponds to activating Hill
functions (1) in which ¢; promotes (is in the numerator) and ¢, inhibits (denomi-
nator) r. Here, NSC counts represent Q(f) + A(t), fraction of active corresponds to

A(1)/(Q(t) + A(t)), TAP counts is considered the sum Z?:o T,(t) and NB counts is
given by N(t). Solid lines represent scenarios in which the estimated parameter b, <
0.5 and the system only admits the trivial equilibrium. Dotted lines correspond to
scenarios in which by > 0.5 and thus a stable positive steady state exists. X-axis
represents Time, i.e., the age of mice in days. Y-axis is on log-scale in all except the
plot depicting the fraction of active cells. For readability, in the plot legends, we write
the multivariate functions r(c;) := r(cy, ¢1).
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Fig. 4 | Model results and comparison among the five scenarios considered,
applied to data from WT mice. A Results showing the dynamics of lineage cell
subpopulations in time, from the parameter estimation for five different scenarios in
which the system parameters are regulated by lineage cell populations. Here NSC
counts represent Q(¢) + A(t), fraction of active corresponds to A(#)/(Q(t) + A(t)),
TAP counts is considered the sum >, T;(f) and NB counts is given by N(t). The
scenarios considered in these plots are described by equations (2)-(6). Solid lines
represent scenarios in which the estimated parameter b, < 0.5 and the system only
admits the trivial equilibrium. Dotted lines correspond to scenarios in which by > 0.5
and thus a stable positive steady state exists. X-axis represents Time, i.e., the age of
mice in days. Y-axis is in logarithmic scale in all plots except for the one depicting the
fraction of active cells. For readability, in the plot legends we write the multivariate
functions r(Q + A) == r(Q + A, Q + A). B Dynamics in time of the system
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parameters, activation rate r and fraction of self-renewal b, from the five scenarios
considered in panel A, described by Egs. (2-6). C Model comparison based on AICc
values and their respective Akaike weights. The best-scoring model according to
Akaike metrics is Scenario 2, Eq. (3) with 7(Q, A), b(Q). D Activation rate r plotted
against the fraction of active NSCs A/(Q + A) for the five scenarios, showing an
almost linear correlation. X-axis is A/(Q + A), y-axis is r. E Trajectories of the
solutions to Scenario 2, r(Q, A), b(Q) (Eq. (3)) corresponding to initial conditions
sampled from a Gaussian distribution with mean and variance extrapolated from
the available data, and parameter estimates from 250000 MCMC chain samples. The
Y-axis is linear scale. F Posterior distributions of model parameters and their cor-
relation plots from the 250000 MCMC chain samples. Right-hand side insets show
the time-course of system feedback functions r and b computed for the selected
parameter values from the MCMC chain.

To confirm the validity of our parameter estimation methods and
results, we quantify the sensitivity of the model to initial conditions and
parameters by employing Bayesian methods. First, by assuming a Gaussian
distribution of initial conditions with mean and variance derived from the
available data points (please see Methods), we observe that all solution
trajectories converge to the originally obtained time dynamics (Supple-
mentary Fig. 2A), indicating robustness. This supports our choice to fix
initial conditions to reduce the dimensionality of the parameter space (see
Methods). Furthermore, employing the Adaptive Metropolis algorithm™ to

generate Markov Chain Monte Carlo (MCMC) chain samples for our dif-
ferent model choices, we obtain posterior distributions for the model
parameters that yield highly consistent trajectories (Fig. 4E). We observe a
wide distribution of parameter K, which means a little influence on this
parameter on the system feedback function. Therefore, this parameter
cannot be confidently estimated from the available population dynamics
data. Because of the high variability of K, we manually limited its range
during MCMC sampling. The plots show also that the key parameters of the
activation and self-renewal, ry and b, respectively, are weakly correlated,
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while by and f3 are strongly correlated, what can be well explained by the
form of the feedback functions. Moreover, the feedback functions r and b
that govern the dynamics of the solution exhibit no significant variation
across samples. These results suggest a certain robustness of the neural stem
cell system. Importantly, our Bayesian analysis shows that parameters from
posterior distributions give comparable goodness of fit levels to the para-
meter estimates obtained before by the deterministic approach.

With the aim of gaining insight into which cell populations are
involved in regulating the dynamics of the neural lineage, we compared
the model scenarios under consideration. The most prominent differ-
ence among these scenarios emerges between the two groups of trajec-
tories (with by<1/2 and b, > 1/2) converging to different steady states
(Fig. 4A). However, due to the limited time span of the available data and
the fact that the divergence between these groups occurs later in the time
course, beyond the typical lifespan of mice, we cannot determine a priori
which case should be excluded from a biological standpoint. This
underscores the need for targeted experiments that could address this
aspect and inform model selection. A comparison of the AICc scores
across the five scenarios (Fig. 4C) suggests that the hypothesis in which
qNSCs promote and aNSCs inhibit activation, while self-renewal is
negatively regulated by gNSCs (Scenario 2, Eq. (3), “r(Q, A), b(Q)”) is the
best-scoring. However, its Akaike weight of 23.7% indicates only modest
evidence, with Scenario 4, Eq. (5), in which the total NSC population is
involved in both promoting activation and inhibiting self-renewal ("#(Q
+ A, Q+ A), b(Q + A)”) following closely at 22%. The other scenarios
cannot be easily discarded either, with their Akaike weights of 17.7-
18.7%. Mathematical analysis further confirms that all five scenarios
exhibit qualitatively similar solution behaviour (see Methods).

Given the similarity in the ability of the different scenarios to capture
the dynamics observed in the data (Fig. 4A, B), we resorted to using more
advanced optimisation methods and model discrimination techniques for
optimisation-based model validation. Specifically, we applied the Multiple
Shooting method in combination with the Gauss-Newton method™” to
improve parameter estimation and model selection. These methods were
used to assess whether a better fit could be obtained for some hypotheses,
with the goal of distinguishing among well-fitting scenarios. Since the two
parameter estimation approaches yielded nearly identical parameter values
and fits, we performed F-tests to identify false models and to determine
whether some models were still significantly different. When these tests
were inconclusive, we used an optimal experimental design to explore the
experimental conditions necessary to maximise the discrepancy among
alternative scenarios.

Since discriminating among these hypotheses solely based on WT data
was not possible, we supplemented our investigations with data from
experiments in which the biological system was perturbed. In this work, we
consider two biological perturbation settings, namely 1) killing actively
dividing lineage cells with the chemotherapeutic drug Temozolomide
(TMZ)" and 2) genetically knocking out the receptors of the inflammatory
signals interferon & — y (IFNAGR KO)*.

Model validation based on perturbation experiments

Model of TMZ treatment suggests regulation of the system by the
entire NSC population and describes feature selection upon injury.
Temozolomide (TMZ) is a chemotherapeutic drug that can be used
experimentally to kill actively proliferating cells, which in our system
comprise of aNSCs (A) and TAPs (T;). The authors of ref. '’ performed
experiments perturbing the system with TMZ in young (2-months old)
and old (22-months old) mice, and recorded the recovery trend at 1,9 and
35 days post-treatment. It was shown that in old mice the recovery is not
as efficient as in young mice, so that either the numbers of proliferating
cells do not recover back to the values pre-treatment, or it is much slower
such that it is not seen in the first 35 days post-treatment. To gain insights
into the mechanisms of recovery and the differences between young and
old mice, we applied the various scenarios of the nonlinear model to the
available data from the TMZ-perturbed system.

By performing the TMZ experiments in silico with the parameters
estimated in WT data, and plotting the results, we observe that the recovery
is too slow compared to the data from young mice and too quick compared
to that from old mice (Supplementary Fig. 1B, left). Even when trying to
perform parameter estimation to fit all WT data and young and old TMZ
data together with the same set of parameters (potentially allowing a slightly
worse fit of WT data than before), the results are not satisfactory (Supple-
mentary Fig. 1B, right). We can thus conclude that perturbing the biological
system by administering the TMZ drug changes not only the behaviour of
system parameters (r and b functions) but values of individual model
parameters as well.

Next, in the attempt to maintain the view as general as possible, we
checked whether we can fit the data from TMZ-perturbed young and old
mice with the same parameter set, but different from that estimated for WT.
Intuitively, even if we keep the same model parameters in both cases, the
recovery could be different due to the regulatory feedbacks among cell
populations of different sizes. This is, however, also not the case, suggesting
that not only does TMZ change the properties (parameters) of the cells but it
does it differently when administered at different ages. Thus, the parameter
estimation should be performed separately for young and old mice.

Proceeding step by step, we first assumed that the proliferation rates p
and pr were the same as in WT and not influenced by TMZ treatment, and
only allowed model parameters in r and b to change. Even though the data
itself could be well fitted, the solution converged to a different steady state
that was high above the one from the healthy non-perturbed WT data
(Supplementary Fig. 1B, middle). This seems unreasonable as it would mean
that applying a chemotherapeutic drug that kills cells makes the biological
system performing much better long-term. Even though this could be the
case short-term, one would not expect that such a strong aggressive per-
turbation would prevent ageing in the long run. This result suggests that
either TMZ treatment changes the parameters for a short period of time and
later the system switches or transitions back to the WT parameters, or there
is a different process at play, one that allows the recovery after death as well
as a return to the WT behaviour after some time, whilst keeping the para-
meters that were estimated based on the recovery trend data. The latter was
further investigated by also allowing p4 and pr to change upon TMZ
treatment.

Once again, by trying to keep the model as simple as possible and the
changes due to TMZ treatment as few as possible, in order to find the
essential aspect that changes upon treatment, we took a stepwise approach
by allowing as few parameters as possible to differ from those from WT. We
found that in young mice all parameters can remain identical as in WT apart
from the proliferation rate of TAPs, pr, the estimated value of which is
reduced by approximately 60% compared to untreated WT mice. This
means that TMZ treatment affects TAPs such that they proliferate much
slower than before (lengthening of cell cycle duration). Considering a het-
erogeneous population of proliferating cells with respect to their cell cycle
length, our model parameter pr represents a mean value of the hetero-
geneous proliferation rates. In this context, our results suggest that TMZ
kills fast proliferating TAPs and thus selects for slow dividing ones, which
corresponds to the decreased value of pr after treatment in the model.
Nevertheless, properties of aNSCs seem to be unaffected by the perturba-
tion. As far as old mice are concerned, TMZ treatment also reduces pr (by
approximately 80%), and in addition the r, parameter is decreased by one
order of magnitude, which means that NSCs become arrested into a deeper
state of quiescence, leading to a smaller mean r, of QNSCs. This is also in
agreement with previous results'” that stated that quiescent NSCs in old
mice are more resistant to injury-induced activation. Additionally, we find
that proliferating cells of young mice are more resistant to TMZ treatment
than old mice, with a death rate of approximately 1.5-fold difference upon
drug administration. With these assumptions, the model is able to recover
the dynamics observed in the data (Fig. 5A-A’). We observe that some
neural populations are increased post-treatment and their dynamics remain
above those of the unperturbed system, while the opposite is true for others
(Fig. 5B-C’). In young mice, the population of TAPs after recovery is bigger
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than that in WT and this is due to the slower proliferation rate pr, which
eventually leads to a slower differentiation into NB and thus less exit from
the neural system (Fig. 5B bottom). In old mice, the dominant parameter
post-treatment is r,, the decrease of which preserves a more quiescent
population and, together with the lower value of pr, leads to a lower recovery
of proliferating and differentiated cells (Fig. 5B’, bottom).

Aiming at selecting a model scenario with the help of the additional
TMZ perturbation insights, we computed the Akaike scores and weights as
before. In this case, the best-scoring scenario was that in which the system
parameters are both regulated by the total population of NSC, Eq. (5), with
Akaike weights of 37.6% for young mice and 31.1% for old mice (Fig. 5D).
Surprisingly, the best-scoring scenario found for the WT data scored the
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Fig. 5 | Model results and comparison among the five scenarios considered,
applied to data from TMZ treatment. Panels are split into young (letter X) and old
(letter X'). A-A'. Results showing the recovery of proliferating cells (BrdU positive,
consisting of aNSCs and TAPs) after TMZ treatment, in young (2MO) and old (22MO)
mice. Throughout Fig. 4, black (solid and dotted) lines correspond to 2 scenarios of the
WT unperturbed dynamics. More specifically, the two W'T scenarios depicted are: 7(Q,
A), b(A) (solid line) and r(Q, A), b(Q) (dotted line). Solid lines (both WT and perturbed)
correspond to models where b, < 1/2 (with trivial steady state), and dotted lines to
scenarios in which by > 1/2 (having a stable positive steady state). B-B' Dynamics of
aNSCs (top) and TAPs (bottom), which together form the BrdU cells from panel A, in

young (B) and old (B') mice. C-C' Dynamics of the populations of qNSCs (top) and NBs
(bottom) in time, as a result of TMZ intervention on BrdU cells, in young (C) and old
(C') mice. D Table comparing the five scenarios based on AICc values, and their Akaike
weights quantifying the individual probabilities for selection. The model in which the
entire population of NSCs (Q + A) regulates both r and b scores the highest (Scenario 4,
Eq. (5), “r(Q + A, Q + A), b(Q + A)"). E-E' Activation rates r in the case of TMZ
treatment compared to the WT setting, in young (E) and old (E') mice. F-F' Fraction of
self-renewal b upon TMZ treatment in comparison to the case of the unperturbed WT
setting, in young (F) and old (F') mice. For readability, in the plot legends, we write the
multivariate functions /(Q + A) :=(Q + A, Q + A).

lowest in the case of the TMZ perturbation. Furthermore, in an attempt
to better discriminate among models, we applied optimal experimental
design methods to determine the age of mice to receive TMZ treatment
in order to have as much discrepancy between scenarios as possible. We
found that the optimal treatment age was in the interval [60,500] days
old and again suggested that having available measurements of the
qNSC subpopulation after treatment would increase our confidence of
the model selection results, as this compartment showed the greatest
differences across scenarios.

Overall, the modelling of TMZ experiments has provided interesting
insights into the behaviour of the neural lineage system and the changes that
appear due to treatment, and suggested that upon injury the system para-
meters are regulated by the entire NSC population.

Model of IFNAGR Knock-Out stays in agreement with insights from
wild-type and describes involvement of non-neural cells in mod-
ulating activation. Proceeding further with our plan to uncover the
most likely regulatory feedbacks, we decided to re-tackle the IFNAGR
KO perturbation from ref. **. A closer look at the data on the fractions
of active NSC among all NSC (Fig. 6A, top right), suggests that in the
KO mice the values grow with ageing. Additionally, we observe that
generally the values of these fractions are very well, almost linearly,
correlated to the activation rate (Fig. 4E), which implies that the
activation rate in KO data also increases in time. Due to the way in
which the time-dependent r and b functions were defined in*, the
linear non-autonomous models were not able to capture the slight
increase in the fraction of active NSC.

Using the nonlinear models with population-dependent r and b, we
infer that, in order for r to increase in time, we need a slight decrease with
respect to cell counts. This hints towards an inhibitory-type Hill function for
r in the case of IFNAGR KO mice, similar to that for the self-renewal
parameter b. Therefore, in order to allow capturing the time evolution of
neural subpopulations from both WT and KO mice with the same
hypothesis, we assume the following function for r whilst keeping the b
function as before.

11+ roc(?)

r = T(Cl(t)u CZ(t)) K +c (t)
b, (7)
b o= bley(t) = 1+ po0)

As a result, our five scenarios from Eq. (2-6) are extended for the
IFNAGR KO setting to Eq. (8-12).

1+ QM) . b
QA =" AR M= ®)
o+ roQ(t) . b,
QA= M=)
o+ 1,Q(t) . b,

ry +7o(Q(t) + A(1))

QAT = Qw + AD) ¢ an
._ ho
HQ+A) = T B + A0)
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HQ To) = ;"O(t) : bIN) =17 ﬂON(t) (12)

The simulation results for these scenarios are depicted in Fig. 6A and
show that all model scenarios are very well able to capture the trend of the
data. As expected based on the construction as in Eq. (7), both the activation
rate rand the fraction of self-renewal b increase in time (Fig. 6B). Depending
on the different estimated values of r parameters (i.e., ry, r; and K), this
definition of the r function (Eq. (7)) allows to capture both the decreasing
fraction of active cells in WT and the increasing one in KO mice. The
previous activation mechanisms modelled in the WT setting by the acti-
vating Hill-type function (Eq. (1)) is a particular case of the model with
system parameters given by Eq. (7), with r; = 0. The posterior distributions
obtained from the MCMC chains simulated with the Adaptive Metropolis
algorithm, further emphasize the importance of the r; # 0 parameter in the
IFNAGR KO experiment (Supplementary Fig. 2B-C). An additional insight
that we can draw from the comparison between WT and IFNAGR KO
results (Fig. 6C, D), is that in KO mice the activation is disregulated and
consequently the self-renewal compensates (Fig. 6C, D), acting as a sec-
ondary layer of regulation, as also previously suggested”. Because a higher
activation rate that does not decrease with ageing can lead to a fast depletion
of the NSC pool, the self-renewal has a more drastic increase to counteract it.
Additionally, parameter estimation suggests that the proliferation rate of
TAPs is slightly higher than that in WT mice, corresponding to a cell cycle
length of approximately 16h (parameter values in Supplementary Table 1).

Once again, Scenario 2 (Eq. (9)) is found as best-scoring by the Akaike
model comparison framework, closely followed by Scenarios 1 (Eq. (8)) and
4 (Eq. (11)), similar to the WT setting. Mathematical modelling thus allows
us to gain new insights into the dynamics of neural lineage cells and into the
dialogue between neuroinflammation and adult neurogenesis, despite not
clearly uncovering how the regulation is performed.

Interpretation in the context of signalling molecules

The dynamics of the system parameters r and b arise from a complex
network of signalling pathways acting both within and beyond the neural
niche. By analysing how these parameters depend on various system
components, we can begin to identify which cells produce or respond to
signalling molecules that regulate activation and influence the balance
between self-renewal and differentiation. To explore this mechanistically,
we extend the feedback model (Eq. (7)) to explicitly represent the dynamics
of the signalling molecules mediating feedback. This approach essentially a
reverse quasi-steady-state reduction is inherently challenging, as the
observed regulatory effects may result from the combined action of multiple
signals.

We may capture this complexity in a tractable form by introducing
two effective signals, S, and S, which serve as representative examples
of the underlying regulatory mechanisms. These abstract variables
substitute for the parameters r and b, and their dynamics are governed
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by additional differential equations (Eq. (13)) that account for signal
production, degradation, and internalisation. Terms associated with
cell types c; describe their contribution to the signal pool either as
producers or consumers—depending on the sign of the corresponding
term. Basal production from non-lineage supporting cells is captured

by positive constants, while degradation is modelled through negative
linear terms.

Assuming fast signal kinetics, we the extended model can be reduced
back to the nonlinear feedback formulation with Hill-type regulation. In this
way, the effective signals S, and S, illustrate how abstracted feedback terms
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Fig. 6 | Model results and comparison among the five scenarios considered,
applied to data from IFNAGR KO mice. A Simulation results showing the dynamics
oflineage cell subpopulations in time, from fitting to the IFNAGR KO data, for the five
different scenarios. The scenarios considered in these plots are given by Egs. (8-12).
Parameter estimation finds by > 0.5 in all five scenarios and thus the system has a stable
positive steady state to which it converges. X-axis represents Time, i.e., the age of mice in
days. Y-axis is in logarithmic scale in all plots except the one depicting the fraction of
active cells. B Dynamics in time of the system parameters, activation rate r and fraction
of self-renewal b, from the five scenarios considered in panel A. C Comparison between

WT and IFNAGR KO fits to their respective data for two scenarios: 7(Q, A), b(A) (solid
lines, for WT by < 0.5) and r(Q, A), b(Q) (dotted lines, for WT by > 0.5). D Dynamics of
the activation rate and fraction of self-renewal for comparing IFNAGR KO with WT,
for the scenarios considered in C. E Table with AICc values for model selection and
their respective Akaike weights, for the model of IFNAGR KO dynamics. F Overview
table with AICc scores and Akaike weights for each scenario, computed separately for
WT, TMZ and IFNAGR KO, as well as combined for all settings and data together
("Overall"). For readability, in the plot legends, we write the multivariate functions r(Q
+A)=rQ+ A Q+A).

may reflect more complex, mechanistically grounded regulatory interac-

tions. (see®*"):

ds,
a Ry + Rye; = S, = B,6,5, =0 reduction
dSb expgsion
—=1=8—5,68 =0
dt
- 7R, + 7R, r+ o0 (13)
ri=rS = =
' 1+ B¢ K+e
- b b
b:=bS, = 0

:1+/5b53 1+ By

with ry = 7Ry /B,, 1, = 7R, /B,» K=1/B,, by = band B, =, to recover the
form and notation from before.

Consequently, this model extension provides a mechanistic inter-
pretation of the previously inferred Hill-type feedback functions in terms of
specific signalling processes. Based on this generic formulation, we deduce
that, in wild-type (WT) mice, the signal promoting NSC activation is both
produced and internalised by neural lineage subpopulations—potentially
distinct—corresponding to the ¢; and ¢, cell types in Eq. (1), respectively. In
this context, we set r; = 0, assuming no contribution from non-neural
sources to activation. In contrast, the signal controlling the balance between
self-renewal and differentiation of aNSCs appears to be produced by non-
neural supporting cells and consumed by neural lineage cells (type c;). These
findings align with existing experimental evidence for autocrine and para-
crine signalling. For instance, canonical Wnt signalling secreted by astro-
cytes and vascular endothelial cells and taken up by neural cells—is believed
to play a central role in promoting aNSC self-renewal.

When applying the nonlinear model to experimental data from Ifnarl/
Ifngrl double knockout (IFNAGR KO) mice, we observe that signal pro-
duction by neural populations is impaired, rendering their contribution to
activation negligible (rp = 0). As a result, non-neural supporting cells assume
a significantly greater regulatory role in driving system dynamics.

More complex alternative mechanistic scenarios may also give rise to
Hill-type regulatory functions, providing complementary interpretations
that converge on similar forms of system-level regulation. While several
signalling pathways have been identified as inhibitors of activation, com-
paratively little is known about signals that actively promote it. For instance,
Notch and Wnt signalling are well-established regulators of adult neuro-
genesis and specifically influence key system parameters such as activation
rate r and self-renewal fraction b. It has been shown that aNSCs express
Delta ligands, which bind to Notch receptors on neighbouring qNSCs,
thereby suppressing their activation. Assuming an inverse relationship
between the activation rate r and the Delta signal and applying a quasi-
steady-state approximation to a dynamical model (ODE) describing Delta
dynamics naturally yields a Hill-type function for , see Eq.(14). This formal
derivation provides a plausible mechanistic underpinning for the empiri-
cally inferred feedback structure and illustrates how inhibitory autocrine or
juxtacrine signalling can manifest as effective population-level regulation.

d!
% = ROA - Sr - ﬁrsrov

- =g 2 = (Q,Q+4A)

with ()~ i

(14)

Furthermore, Wnt signalling—another key regulator of adult neurogenesis
—is predominantly secreted by non-neural niche components, such as
astrocytes and endothelial cells, and exerts its effects primarily on quiescent
NSCs. This functional specificity is consistent with the inferred shape of the
self-renewal parameter b(Q) in Scenario 2, Eq. (9). Taking into account these
regulatory processes leads to a new scenario, “r(Q, Q + A), b(Q)” (Eq. (15)),
which is in fact a combination of our two best-scoring hypotheses (Fig. 6F),
offering a biologically grounded and mechanistically coherent explanation
for the observed dynamics.

BQ) = — 0

Q. Q4 4) = o 11 00 RETeD

K+ QM)+ AW)’ (9

A graphical comparison between the additional scenario and the two
previously best-scoring models is shown in Fig. 7A, B. MCMC simulations
of the new scenario revealed that, for data from WT mice, the parameter r,,
originally introduced to model the IFNAGR KO condition (Eq. (7); Sce-
narios in Egs. (8-12)) and also used in the Delta-Notch hypothesis (Eq. (15)),
plays no substantial role, thereby supporting our original model choice
(Eq. (1)). In contrast, for the IFNAGR KO data, the parameter r; # 0 emerges
as the most influential parameter, overtaking r,. While models for WT data
(with r; = 0, Egs. (2-6)) exhibited a strong correlation between r, and K
(Fig. 4F), this correlation shifts to r; and K in the extended models for the
IFNAGR KO condition (Egs. (8-12)) and the Delta-Notch-Wnt hypothesis
(Eq. (15)). Notably, including the additional parameter r; in WT models
increases uncertainty and reduces identifiability, with no critical impact on
the fit to the data. These observations are consistent across all scenarios.
Figure 7D illustrates how the Delta-Notch-Wnt hypothesis captures the
recovery following TMZ treatment in both young and aged mice (for
simplicity, r; was set to zero). When comparing AICc values and Akaike
weights for the additional scenario against the two previously best-scoring
ones, we find all three to be equally plausible in terms of explaining both WT
and IFNAGR KO data. Consistent with previous observations (Figs. 5D,
6F), analysis of the TMZ-perturbed data favours the scenario in which the
total NSC population regulates both activation r and self-renewal b, with
high confidence (Fig. 7C).

Taken together, these considerations culminate in a biologically
plausible feedback scenario grounded in Delta-Notch and Wnt signalling,
which we propose as a mechanistic explanation for the observed regulation
of activation and self-renewal. However, while this scenario captures key
aspects of the data and aligns with known biology, we acknowledge that
additional, possibly synergistic, signalling molecules may contribute to the
robustness and adaptability of the system. Indeed, the effective signalling
model (Eq. (13)) could be extended to encompass a broader network of
interacting signals. For instance, the activation rate could be modulated by
two distinct signalling components: a promoting signal S,,, and an inhibitory
signal S,;. In this extended framework, S,,, would be produced by neural
lineage cells (analogous to ¢;) and degraded either spontaneously or by non-
lineage cells, whereas S,; would be secreted by non-neural supporting cells
and received by neural lineage cells (as c,). Alternatively, similar regulatory
effects could arise through a double-inhibition mechanism, in which an
inhibitory signal is itself suppressed by lineage cells—mirroring the Delta-
Notch regulation of activation. These more complex signal interactions
illustrate that the feedback architecture inferred here may reflect an aggre-
gate effect of multiple pathways. Elucidating the precise molecular
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Fig. 7 | Model results and comparison among the two best-scoring scenarios and
the Delta-Notch-Wnt scenario “r(Q, Q + A), b(Q)”, applied to data from WT and
IFNAGR KO mice. A Simulation results showing the dynamics of lineage cell
subpopulations in time, from fitting to the WT data, for the three different scenarios.
The scenarios considered in these plots are given by equations (9, 11), and (15).
Parameter estimation finds b, > 0.5 in all three scenarios and thus the system has a
stable positive steady state to which it converges. X-axis represents Time, i.e., the age
of mice in days. Y-axis is in logarithmic scale in all plots except the one depicting the
fraction of active cells. For readability, in the plot legends, we write the multivariate
functions r(Q + A) := r(Q + A, Q + A). B Simulation results showing the dynamics
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of lineage cell subpopulations in time, from fitting to the IFINAGR KO data, for the
three different scenarios. C Table with AICc values for model selection and their
respective Akaike weights, for the three model scenarios depicted in A-B.

D Simulation results of the three scenarios showing the recovery of the population of
BrdU cells after treatment with TMZ, in young (left) and old (right) mice. E-E'. Plots
of posterior distributions of model parameters and their correlation plots from the
samples of the MCMC chain, in WT (E) and IFNAGR KO (E') mice. The insets show
the dynamics of the solutions corresponding to initial conditions sampled from a
Gaussian distribution with mean and variance extrapolated from the available data
points, and parameters sampled from their posteriors.
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components and their interactions will require targeted experimental vali-
dation and lies beyond the scope of the present study.

Discussion

In this paper, we aimed at deciphering regulatory feedbacks acting
within the neural lineage, which would be leading to the observed age-
related changes in adult neurogenesis in the ventricular-subventricular
zone of adult mice brains. Even though data of healthy neurogenesis
from humans are not available, recent work studying the architecture
and progression of the glioblastoma brain cancer showed on one hand,
that patient tumour samples comprise the entire neural lineage as in
healthy mice, and on the other hand that tumour samples transplanted
into mouse brains show the same properties in the host as in the
donor”. These considerations hint to a good agreement between
human and mouse neurogenic systems. We suggested feedback
mechanisms that replicate the observed dynamics and which are also
plausible from a biological perspective. We additionally derived a
minimal scenario based on biological evidence of signalling among
NSCs via Delta-Notch and Wnt pathways. Although model selection
did not prove entirely conclusive, we found a number of insights that
can guide further experiments and investigations. First of all, we
showed that the decision of a neural stem cell to self-renew or differ-
entiate is negatively regulated by the neural lineage. From the per-
spective of signalling, self-renewal signalling molecules are produced
by supporting cells and bound by lineage cells. Additionally, we found
that the balance between activation and quiescence is mainly regulated
by the neural populations, not unlikely with the involvement of two
different subpopulations acting in opposing directions. The mathe-
matical models presented a few ways through which quiescent stem
cells promote their activation in terms of signalling mechanisms.
Considering the intricacy of the network of signalling interactions
involved in regulating the system parameters in adult neurogenesis, it
is not easy to single out specific genes, but modelling can shed light
onto how and where the regulation acts.

In addition, we highlighted the risks of inference from preliminary
models applied to inconclusive or insufficiently informative data without
conducting a thorough and unbiased investigation, as multiple hypotheses
may lead to similar results despite differing interpretations. Further, to
increase the power of model selection, we used supporting data from two
different perturbation experiments: the treatment with the chemother-
apeutic drug TMZ, and the knock-out of the IFNAG receptors. The
mathematical models applied to these complementary data uncovered
compelling insights. We showed that upon TMZ treatment, the mean
proliferation rate of TAPs is drastically reduced and we argue that it is likely
a consequence of feature selection in a heterogeneous population: fast-
proliferating TAPs are killed by TMZ and the ones that escape are those with
longer cell cycle, hence lower proliferation rate. A similar reasoning applies
to old mice, where, in addition, the maximum activation rate is greatly
reduced, leading to a surviving population of more deeply quiescent stem
cells. We observed that due to slower proliferation of TAPs but a steady
influx from the active NSC compartment, the total population of TAPs
decays more slowly after TMZ treatment in young mice, and that this leads
to a trend that lies higher than in the unperturbed system during the lifespan
of mice (Fig. 5B, bottom). However, the populations of stem cells remain
smaller than before treatment (Fig. 5B-B’, top). Interestingly, the sub-
population with the most dissimilar behaviour across scenarios is that of
quiescent NSCs (Fig. 5C-C’, top). Although the dynamics is similar, the
values of cell counts differ. Would it be possible to better select the most
plausible model hypothesis if data on numbers of quiescent NSCs after
treatment were available? Such data quantifying gQNSCs might improve
model selection assuming the heterogeneity among mice is not too high.
Ideally, an additional experiment could focus on only perturbing either
active NSCs or TAPs, which might help uncover whether feedback origi-
nates solely from the NSC compartments or also from more differentiated
neural subpopulations. Furthermore, perturbation of the Delta-Notch

pathway would provide new data which together with our models could
restrict our set of hypotheses and offer new insights into the regulatory
mechanisms.

With respect to the perturbation by knocking out IFNAG receptors,
considering that data show an ascending trend of the fraction of active NSCs
among all NSCs, we showed that the activation rate of quiescent NSCs
increases with ageing. From the perspective of signalling, we suggested that
in the IFNAGR KO mice the activation signal is no longer produced by
neural cells, but by supporting cells. Additionally, as the activation of
quiescent NSCs is disregulated in IFNAGR KO mice, self-renewal com-
pensates via an earlier and faster increase. As activation is a major player in
the recovery after TMZ treatment in WT mice, it will be interesting to
perform the TMZ experiment on IFNAGR KO mice and inspect how the
neural cells behave.

Finally, in terms of selecting a model hypothesis, even though no
definitive conclusion can be drawn, observations can be made from simu-
lation results. First of all, parameter estimation for the various scenarios
suggests that if QNSCs are involved in regulating the self-renewal, the system
asymptotically converges to a positive steady state. The nonlinear models
suggest that the driving effect for exit from quiescence most likely originates
primarily from qQNSCs. To our knowledge, experimental studies have gained
insights into signalling mechanisms that inhibit activation, but not much
has been reported about promoters of activation. Does there exist a
mechanism through which QNSCs actively drive their exit from quiescence,
or is the process solely regulated through a double-inhibitory feedback, as
derived for our Delta-Notch hypothesis? A new angle of experimental
research could be aimed at uncovering potential mechanisms through
which quiescent NSCs directly promote their activation. The table of model
selection scores for the three individual settings (WT, TMZ and IFNAGR
KO) together with their overall score (Fig. 6F, Fig. 7C) suggests that in an
uninjured setting (WT or IFNAGR KO) the main regulator of self-renewal is
the qQNSC subpopulation, whereas activation is primarily promoted and
inhibited by gNSC and (a)NSC, respectively (Scenario 2, Eq. (3,9) or the
Delta-Notch scenario, Eq. (15)). In the case of a severe injury such as the
treatment with TMZ, the entire NSC population is involved in regulating the
system parameters to ensure a smooth recovery (Scenario 4, Eq. (5)). If we
inquire how these scenarios influence the recovery, we gather that having
aNSCs contributing to regulating self-renewal (Scenario 4, (5)) leads to a
faster increase in self-renewal upon their death by TMZ, than when only
qNSCs are involved (Scenarios given by Eq. (3) or (15)), leading to a more
efficient repopulation of the NSC pool. It is reasonable to assume that
generally the two NSC subpopulations contribute with different weights in
governing the system parameters, however investigating this aspect by
inserting additional parameters into the models is not feasible with the
available data. Additionally, our model selection results suggest that mul-
tiple neural lineage subpopulations might be involved in the regulations,
with various impact, pertaining to an existing redundancy in the neural
system that might ensure better adaptability. Altogether, we find that the
main regulator of the dynamics of the neural lineage is the population of
NSCs, whereas downstream subpopulations, if involved, have a much
weaker influence.

Methods

The current work is based on the methodology of nonlinear ordinary dif-
ferential equations and combines mathematical analysis, computational
simulations, parameter estimation, model selection and identifiability.

Mathematical analysis
The crucial parameter describing the dynamics of the system (1) (Fig. 1B) is
by. It is clear that for by<1/2 it holds:

dQ-+4) _ (2 by

dt 1+ Bet) 1>pAA(t) =9,
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where c(t) can be equal to A(f), Q(f), N(t) or Q(f) + A(t). It means that for all
scenarios (2-6) the only steady state is a trivial one. Moreover, the solutions
are asymptotically converging to it.

In the case when by > 1/2, there exist two steady states for each model: a
trivial one and a positive one. For all scenarios (2-6) the trivial steady state
(when by, > 1/2) is unstable. The positive steady state is thus our focus in the
rest of this section. We divide the models into two groups. The first com-
prises scenarios (2, 3) and (5), where parameters r( - ) and b( - ) depend only
on Q and A. In these models, it is enough to consider the existence of the
solution and its stability for the reduced system composed of the first two
equations (1)()~(1)¢2), the results for the full model being a natural
extension.

Theorem 1. There exists a unique global solution to (1) with system
parameters (2, 3) or (5). Moreover, for b, > 1/2 the positive steady state
solution is stable.

Proof. The functions on the right-hand side of (1) are Lipschitz-continuous
for nonnegative values of the solution. Starting with nonnegative initial
conditions, we obtain the local existence of unique solutions to (1),
according to the Picard-Lindelof theorem. Using the property of the right-
hand sides of (1), we obtain the positivity of the solutions.

To prove the global existence of the solution, we focus on the system
(1)1)=(1)(2). We will present here the results for the first scenario, i.e., (2).
The reasoning in the other cases is similar. Then

d Q(t) b
2=- IgrA(t) Q1) + 2 a0 PaA(D)

@ = 10 Q1) — pAA(Y)

Equating the right-hand sides of the aforementioned equations to 0, we
obtain two isoclines, which after transformation are equal to

Q@ =275 AK + A)
Q@ =BAK+A)

It is clear that for nonnegative values of Q and A these lines have at most two
intersection points: one at (Q, A) = (0, 0), and a second one that occurs only
when by > 1/2. The value of the second intersection point is equal to

(Q,A) = ( %%(K + Zb‘]ﬂ*l 72%71) . Note that if we decrease by to 1/2

from a greater value, then the second positive point goes to (0, 0).

We define a domain M = {(Q,A) € R?: Q,A>0andQ<Q*,
A<A*}, where A*>A and Q is chosen such that
2 1+blgA* ‘j—gA*(K + A% <(Q")*< ‘i—;‘A*(K + A*). Then the solution with
initial conditions in M does not escape from M. Thus, the solution is global
in time.

The existence of a global unique solution for the reduced system
(1)(1-(1)2) implies the existence of a global unique solution for the full (1)
system, since Q(f) and A(t) are bounded everywhere.

The stability of the positive steady state is a consequence of the line-
arization of the model in the neighbourhood of the steady state. O

We next focus on the second group of scenarios, where downstream
populations are also involved in the regulation, i.e., (4) and (6).

Theorem 2. There exists a unique global solution to (1) with (4) or (6).
Moreover, for by > 1/2 the positive steady state solution is stable.

We will focus on the model with (4). Similar results can be obtained for
the model with (6), but due to the higher dimensionality, we will omit the
computations here.

Proof. Similarly to the proof of Theorem 1, we obtain the local existence of a
unique positive solution as a consequence of Picard-Lindelof theorem and
properties of the right-hand side functions. It remains to define a domain M

from which the solutions cannot escape. We work with a reduced system
containing only (Q, A, N), i.e,, first two ODEs together with the last one in
(1), further denoted (1+). Results obtained for this model can be naturally
extended to the full model (1). Moreover, for simplicity, we assume that b,
< 3/4.

The invariant domain M for this model is a 3D polyhedral with 7 faces.
The base in the (A, Q)-plane is quadrilateral. Two of their edges coincide
with axes and the other two are defined by functions Q + A = constant and Q
— A = constant. The upper base is larger than the bottom one (N = 0). The
two faces that coincide with the planes Q = 0 and Q — A = const are
pentagons. The other faces of the polyhedral are quadrilateral lying on the
planes: A =0, Q + A — N = constant and Q + A = constant.

We denote N = 2.—!, We take an arbitrary A greater than A = pﬁ N.
Moreover, Q and N are chosen in the following way: h

Q=A+\/<b0+%> rEA(K-i'A) and N*=2§(Q+A+N).
0

The coordinates of the vertices of the domain M are as follows:
{(0,0,0), (A +Q,0,0),(4,Q,0),(0,Q — 4,0),(0,0,N*), (A+ Q + N,
0,N),(A+%5,Q+5,N,(0,Q - A,N),(A+Q+N,0,N),(A+75,
Q+ Y, N)}. We need to prove that solutions starting from each of the seven
faces of the polyhedral domain M go inside the domain. We previously
showed that our solutions are positive if the initial data are positive so the
edges of faces that coincide with axes can be disregarded. For the rest of the
faces, upon lengthy but basic calculations, we also show that the solution
goes inside the domain. The results are also true for by>3/4. In this case, the
angle of the trapezoidal face of the domain is modified such that it is
contained in the plane Q + A — aN, with constant a < 1. For by > 1/2, the
positive steady state is stable: all three eigenvalues of the linearised system are
real and negative. We find that the characteristic polynomial corresponding
to the linearisation matrix of the reduced system (1+) has all coefficients
negative. Thus, by the Routh-Hurwitz stability criterion, we obtain that all
real parts of the matrix eigenvalues are negative, and thus the steady state is
stable. O

Parameter estimation
In order to see how our models are able to describe the dynamics observed in
data, we performed parameter estimation. The proliferation rates p4 = 0.95
and py=0.81 were kept constant, assuming a cell cycle length of 17h for aNSCs
and 20h for TAPs". In a first step, the parameters to be estimated comprised of
10, K, bo, B, 6, NSCy, where NSC, represents the total number of stem cells (Q +
A) at time ¢ = 0. Having performed a large number of estimations the values for
the last two parameters were similar most of the times, also among different
scenarios. Therefore, for simplicity, we fixed § = 0.19 and NSC, = 1900. As a
result, the parameters estimated comprise of 1y, K, by and f for WT data. In the
case of the IFNAGR KO experiments, the parameters r; and py were addi-
tionally estimated. For the young mice treated with TMZ, pr was fitted,
together with the death rate d and scaling factor p (see section “Model of TMZ
treatment” of Methods), while keeping the rest fixed. For old mice, both
parameters ry and pr; as well as d and p were fitted (see Table 2).

The optimization was based on weighted least squares. A cost function
was defined as the sum of squared differences between the values Q + A, A/
(Q+ A), >2.T; and N given by the ODE system at the j € {1, .. ., n,} time
points at which data is available and the corresponding data values for each
mouse (n; total data points at time point j), divided by the variance among
mice at the same time point:

E= : <% EJ: (y;iatu _ ylmodel)2> )
j= J

i=1

The cost function was then minimized by using the fmincon routine
in MathWorks MATLAB software, with the sequential quadratic
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Table 2| Summary of fixed and estimated parameters for each
type of data

Experiment Fixed Estimated
WT Ppa, pr, 6, NSCo ro, K, bo, B
T™Z young ro, K, bo, B, pa, 6, NSCo pr.d,p
old K, bo, B, Pa, 6, NSCq ro, P, d, P
IFNAGR KO Pa, 8, NSCo ro, 1, K, bo, B, pr

programming (‘sqp’) algorithm. The algorithm was run multiple times
starting from 500 initial guesses for each model hypothesis, and the para-
meter set with the smallest cost function value out of the 500 multi-start
points was selected.

Furthermore, after performing parameter estimation using the con-
strained Gauss-Newton method, a sensitivity analysis was conducted to
evaluate the uncertainty of the estimated parameters. Employing the gen-
eralized inverse of the Jacobian matrix of the underlying parameter esti-
mation problem allows for the construction of a Taylor expansion to
describe how the parameter estimates respond to perturbations in the
measurement errors. This expansion enables the derivation of linearized
(ellipsoidal) or quadratic confidence regions and a linear or quadratic
estimate of the covariance matrix of the parameters®. The square roots of
the diagonal elements of the covariance matrix represent the standard
deviations of the estimated parameters, and the off-diagonal elements
indicate the correlations between the parameters. These confidence regions
are local approximations of the nonlinear confidence regions defined by the
maximum likelihood ratio"’ and may underestimate uncertainty in regions
where the model exhibits strong nonlinearity. Nevertheless, they provide
valuable insight into parameter uncertainty, which can be refined using the
Bayesian approach, and can be computed efficiently.

Bayesian approach to sensitivity and uncertainty quantification
To quantify the sensitivity of our model’s dynamics to variations in initial
conditions and parameter values, we employed Bayesian methods. Specifi-
cally, this approach was applied to three model scenarios discussed in the
paper: Scenario “r(Q, A), bA(Q)” (Eq. (9)); Scenario “r(Q+ A, Q+ A), b(Q+
A)” (Eq. (11)); and the Delta-Notch Scenario “r(Q, Q + A), b(Q)” (Eq. (15)).

Due to the limited experimental data, which prohibited extracting
reliable information about the statistics of the measurements y; we assumed
that each measurement y; at a given time point follows a Gaussian distribu-
tion. Moreover, because these measurements were obtained from different
mice, we considered measurements at different time points to be statistically
independent. Model simulations revealed a rapid temporal decrease in the
variance of trajectories generated from varying initial conditions. Accord-
ingly, we assumed an exponential decay in variance of the form

o(t) =dy +dye "

This approximation allowed us to interpolate the variance for most sparsely
sampled measurements y; and provided a rough estimation of the dis-
tributions for the four measured quantities in the initial conditions at t=0: Q
+ A, Q“ﬁ, >-.T; and N. We used these assumptions to quantify the variability
of model solutions with respect to initial conditions. In our numerical
simulations, these four quantities were sampled from their respective
Gaussian distributions, and the components of the initial state were adjusted
to satisfy the sampled proportions.

Under the assumption of normally distributed data, we expressed the
discrepancy between model and experimental data y; as a negative log-
likelihood function:

1 -3 OO}’ /(o))
I0) = ———ec Z ;

£(8) = —log(1(6)). —
(27.[)7 H O.I_data

data data

where 0 denotes the vector of model control parameters, and ¢** and o}

are the mean values and variances estimated from the experimental data
using the method described above. The values y*%! (6) are generated from
model trajectories corresponding to realisations of randomised initial
conditions. Although the random sampling of initial conditions makes f{6)
inherently stochastic, numerical evaluations across different parameter
values revealed that the variability for a fixed parameter vector 0 is minimal
(in general, less than 1%), as shown in Fig. 7E-E’. Therefore, we evaluated
f(0) by simulating the model multiple times with different realizations of
initial conditions and next averaging the results.

Subsequently, we minimised f{6) using the previously obtained point
estimates as initial guesses (values given in Supplementary Table 1). In all
cases, the optimized parameter values closely aligned with those derived
from the LSQ cost function.

For uncertainty quantification, we employed the Adaptive Metropolis
algorithm™. Here, the Markov Chain Monte Carlo (MCMC) sampler was
initialised with the optimised parameter estimates. The resulting posterior
distributions revealed that the parameters r,, r;, and K exhibit very large
variability, indicating significant uncertainty in their estimates, whereas the
posterior distributions for by and 8 were comparatively more concentrated,
reflecting higher identifiability under the experimental conditions.

Model selection

Model selection is performed by assigning each model a score that combines
its goodness of fit with a penalty on the number of parameters to avoid
overfitting. The Akaike Information Criterion, with its formulation for
weighted least squares, and its correction for small samples, is one of the
common scores used, defined as below™, respectively.

AIC = nln(E) + 2k,

n

AICc = AIC + 210,

Here, k is the number of fitted parameters, # is the size of the data, and E
represents the value of the minimized objective function. A smaller AICc
value represents a better model, in the sense of both how well it fits the data
and how parsimonious it is. In model selection, the actual AICc value of a
model carries no real significance unless compared to those of other models.
In other words, the important values to inspect are

A;AICe = AICc; — AlC,

iel,...M

representing the difference between each of the M models and the best-
valued one. Despite only one model having A;AICc = 0, other models with
very small values should also not be discarded. As there is no accurate way of
deciding where the boundary between (equally-) acceptable models and bad
ones should be drawn, one can resort to computing an additional metric,
namely the Akaike weights. These weights can quantify how likely a model is
to be the correct one, and are defined as

exp(— 1 A,AIC)
Z?il exp(—3 AAICc) .

=

All scenarios considered in this paper have the same number of parameters
and therefore, we might simply compare the E-values of the minimized cost
functions. However, for consistency and possible future generalization, we
compare the A;AICc and Akaike weights w;. The values of these scores for
each hypothesis considered can be found in the Supplement.

Model of TMZ treatment

Taking into account that the data from TMZ-perturbed mice consider the
numbers of proliferating cells from sections of the ventricular-
subventricular zone, as opposed to cell counts from the whole region, the
TMZ data need to be scaled up to compare to the WT data. This is done by
fitting an additional parameter p that represents the scaling factor of the
section-data with respect to the whole region, based on the so-called saline
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data recorded few days before the TMZ experiments (56 and 656 days of age
in young and old mice, respectively). The scaling factor p thus brings the
values of saline data up to the order of magnitude of WT data.

Additionally, since the death of proliferating cells is not instant upon
TMZ treatment, we model an exponential decay of cell counts that considers
a constant death rate d of aNSCs (A) and TAPs (T, n = 3) due to che-
motherapy during the short time-span of administering the drug. The
resulting ODE system is shown in Eq. (16).

99 — 1 Q(t) + 2bp,Alt)

@ — rQ(t) — p,A(t) — dA(t)

Mo — 21 — b)p, A — prTo() — dTy(1)
% =2p; T,y (8) — pr T(t) — dT(¥)

B = 2p T, () — pr T, (1) — dT, (1)
4 = 2p, T, (1) — SN(2).

(16)

The death parameter d is also estimated, when fitting the model to the
experimental data. Specifically, for the period before treatment the healthy
system (1) in Fig. 1B is simulated, during the treatment the model (16) is
used, and after the treatment window the WT model is again used. The
combined solution from these three regimes is then compared to our data
points and the parameters are fitted.

Data availability

All original code has been deposited at Zenodo under the DOI 10.5281/
zen0do.14944969 and is publicly available as of the date of publication
(https://doi.org/10.5281/zenodo.14944969). Any additional information
required is available from the corresponding authors upon request. The data
sets analyzed during the current study are either publicly available or can be
obtained from the corresponding author of the original study that generated
the data set'**.

Code availability

All original code has been deposited at Zenodo under the DOI 10.5281/
zen0do.14944969 and is publicly available as of the date of publication. Any
additional information required is available from the corresponding authors
upon request. The data sets analyzed during the current study are either
publicly available or can be obtained from the corresponding author of the
original study that generated the data set'**.
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