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Minimal gene signatures enable high-
accuracy prediction of antibiotic
resistance in Pseudomonas aeruginosa
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Antimicrobial resistance (AMR) in Pseudomonas aeruginosa poses a critical global health challenge,
with current diagnostics relying on slow, culture-based methods. Here, we present a ML framework
leveraging transcriptomic data to predict antibiotic resistance with high accuracy. We applied a
genetic algorithm to414clinical isolates to identifyminimal, highly predictive gene sets (~35–40genes)
distinguishing resistant from susceptible strains for meropenem, ciprofloxacin, tobramycin, and
ceftazidime. Automated ML classifiers trained on these sets achieved accuracies of 96–99% on test
data (F1 scores: 0.93–0.99), surpassing clinical deployment thresholds. Multiple distinct, non-
overlapping gene subsets exhibited comparable performance, suggesting that resistance acquisition
is associated with changes in the expression of diverse regulatory and metabolic genes. Comparison
with known resistance markers from CARD and operon annotations revealed a substantial number of
previously unannotated clusters, highlighting significant knowledge gaps in current AMR
understanding. Mapping these genes onto independently modulated gene sets (iModulons) revealed
transcriptional adaptations across diverse genetic regions. Overall, this study presents a streamlined
machine-learningworkflow for transcriptomic data and offers a pathway toward rapid diagnostics and
personalized treatment strategies against AMR.

Antimicrobial resistance has emerged as one of the most urgent threats to
global public health, undermining the effectiveness of existing treatments
and increasing the risk of untreatable infections. The World Health Orga-
nization (WHO) has identified AMR as one of the top ten global health
threats, projecting that, without intervention, it could lead to 10 million
deaths annually by 20501. Among the most concerning pathogens is P.
aeruginosa, a gram-negative opportunistic bacterium responsible for severe
infections such as pneumonia, urinary tract infections, and bacteremia,
particularly in immunocompromised patients2–4. The threat posed by this
bacterium is exacerbated by its intrinsic resistance mechanisms, including
effluxpumpsand reducedoutermembranepermeability, aswell as its ability
to rapidly acquire new resistance determinants, leading to the emergence of
multidrug-resistant (MDR) and even pan-resistant strains5,6.

Despite the escalating threat, clinical practice still relies primarily on
culture-based antibiotic susceptibility testing, which, while reliable, can
require 48–72 hours to yield results7. This delay necessitates empirical
treatment with broad-spectrum antibiotics, which may be ineffective and
can furtherdrive resistance8.Moreover, culture-basedassaysprovide limited

insight into the genetic or molecular drivers of resistance, offering little
guidance for targeted interventions9.

In recent years, high-throughput sequencing, particularly tran-
scriptomic profiling, has enabled a more fine-grained view of resistance by
capturing the gene expression that underpins survival under antibiotic
pressure10–13. Transcriptomic data provides a snapshot of the cellular state
under antibiotic pressure, revealing pathways and regulatory networks that
contribute to survival. This approach holds promise for identifying bio-
markers of resistance, enabling earlier and more precise diagnostics12,14,15.
However, leveraging transcriptomic data for AMR surveillance and pre-
diction remains challenging because of the high dimensionality of the data,
which complicates the identification of relevant features for accurate and
interpretable predictions16.

One promising avenue for overcoming these challenges is machine
learning, which can handle large omics datasets and uncover complex
patterns relevant to resistance phenotypes17. Prior studies have demon-
strated the feasibility of ML-driven AMR prediction via genomic and
transcriptomic data, highlighting the potential for faster and more precise
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diagnostics18. However, a major challenge remains in identifying minimal
yet robust gene subsets that preserve predictive accuracy while improving
interpretability and reducing computational costs. In a notable study,
Khaledi et al., 2020 demonstrated that integrating single nucleotide poly-
morphisms (SNPs), gene presence/absence (GPA), and transcriptomic
expression data enabled predictive modeling of antibiotic resistance, with
sensitivity and predictive values between 0.81 and 0.95 across four anti-
biotics. However, their reliance on a high-dimensional feature space (up to
93 markers per antibiotic) and mixed-data approaches limit clinical scal-
ability owing to cost, interpretability, and generalizability constraints.
Additionally, their pipeline required manual feature selection and hyper-
parameter tuning, lacking a fully optimized and automated feature selection
mechanism.

To address these limitations, we implemented a hybrid methodology
combining genetic algorithm (GA)-based feature selection with automated
ML (AutoML), leveraging transcriptomic data from 414 P. aeruginosa
clinical isolates (Fig. 1, Supplementary Fig. 1). By iteratively evolving gene
subsets, the GA identifiedminimal, highly informative features, which were
then used to train MLmodels with accuracies of 0.96–0.99 on held-out test
data. Here, we define ‘gene subsets’ as the sets of genes selected based on
their expression profiles across isolates. Despite minimal overlap among
gene subsets, each yielded similarly high predictive power, suggesting a
pervasive, multifactorial transcriptomic signature of resistance. To resolve
whether these subsets shared underlying biological processes beyond direct
gene overlap, we employed three complementary analyses. First, we com-
pared GA-selected genes to known resistance determinants in the CARD,
examining the extent to which recognized resistance markers drove the
predictions19. Second, we explored operon-level organization to evaluate
whether co-transcribed gene clusters were consistently selected, revealing
potential regulatory “hotspots”20,21. Finally, we mapped the subsets to
iModulons, which are coregulated genemodules derived from independent
component analysis (ICA), to elucidate higher-order transcriptional control
mechanisms associated with resistance22–24. Our results show that gene
expression patterns predictive of AMR in P. aeruginosa extend beyond
canonical resistance genes, suggesting that diverse transcriptional responses
may characterize the resistant phenotype. While some GA-selected loci
mapped to well-characterized efflux pumps or β-lactamase operons, many
fell outside conventional AMR annotations, pointing to underexplored
determinants. Operon-level analysis revealed recurrent co-transcribed
clusters involved in osmotic stress, iron acquisition, and various metabolic
pathways, whereas iModulon mapping revealed a convergence of tran-
scriptional programs governing oxidative stress responses, DNA repair,
efflux regulation, and ribosomal function. Collectively, these data highlight
that AMR phenotypes correlate with transcriptomic patterns spanning
diverse genetic loci, including both isolated resistance genes and genes
implicated in broader cellular processes.

Overall, in this study,wepresent amultiscale framework that integrates
transcriptomic profiling, evolutionary feature selection, and in-depth bio-
logical network analysis to enhance AMR diagnostics. By pinpointing
compact yet functionally enriched gene sets linked to specific operons and
regulatory modules, our approach offers a balance of predictive accuracy,
interpretability, and clinical feasibility. These findings underscore the value
of system-level perspectives onAMR and support the development of next-
generation diagnostics and personalized therapeutic strategies.

Results
Automated ML and the genetic algorithm uncover minimal yet
high-performing gene sets
Predicting antibiotic resistance from gene expression in P. aeruginosa
requires a balance between accuracy and interpretability, as high-
dimensional transcriptomic data present computational and clinical chal-
lenges. To address these constraints, we developed a hybrid GA-AutoML
pipeline designed to systematically identify minimal, highly predictive gene
subsets while optimizing classification performance. Initially, AutoML
alone, which uses all available 6,026 genes, yielded strong baseline models

with accuracies of up to 0.9 and F1 scores of up to 0.88 on a holdout set for
each antibiotic: meropenem (MNM), ciprofloxacin (CIP), tobramycin
(TOB), and ceftazidime (CAZ). Although these results demonstrate high
predictive accuracy, reliance on the entire transcriptome poses substantial
computational and sequencing challenges, limiting routine clinical
adoption.

To address the challenge of highdimensionality in transcriptomic data,
we employed GA25 to systematically identify compact gene subsets capable
of accurately predicting antibiotic resistancephenotypes. Theprocess begins
with a randomly initialized population of 40-gene subsets and iteratively
refines them over 300 generations per run. In each generation, candidate
subsets were evaluated via support vector machines (SVMs) and logistic
regression (LR), with classification performance assessed through ROC-
AUC and F1-score metrics (see Methods). High-performing subsets were
preferentially retained and recombined via selection, crossover, and muta-
tion operations, ensuring continued exploration of diverse gene combina-
tions. This processwas repeated independently for 1,000 runs per antibiotic,
resulting in a broad array of high-performing but largely nonoverlapping
feature sets.

Rather than converging on a single fixed subset, the GA produces
thousands of distinct gene combinations, each achieving strong predictive
performance. We observed that certain genes were consistently selected
across many independent runs, suggesting their robust association with
resistance phenotypes. To construct clinically practical and interpretable
models,wegenerated consensus gene sets by rankingall geneson thebasis of
their frequency of selection across GA iterations. These top-ranked genes,
representing the featuresmost repeatedly selectedby theGA,were thenused
to train final classifiers for each antibiotic.

The average performance of these consensus-based models was com-
parable to or exceeded that of full-transcriptome classifiers, with test set
accuracies of ~99% for MNM and CIP and ~96% for TOB and CAZ (Fig.
2A, Supplementary Data 1). These compact classifiers, typically comprising
35–40 genes per antibiotic, offer an interpretable and computationally
efficient alternative to transcriptome-wide approaches.

To evaluatemodel robustness, we examined the accuracy distributions
across 1,000GA iterations. TheMNMandTOBclassifiers showednarrower
variability and higher median performance, whereas the CIP and CAZ
classifiers demonstrated broader, yet still high-performing, distributions
(see Fig. 2B).We also ranked genes by their selection frequency and plotted
the top 10 genes that were most consistently selected across antibiotics
(Fig. 2C).

We further assessed how model performance varied with the number
of top-ranked genes used for classification. For each antibiotic, performance
plateaued after the inclusion of ~35–40 genes, justifying the selection of the
number of features (Fig. 2D–G). This plateau was observed for both accu-
racy and themacro average F1 score, underscoring that a limited number of
frequently selected genes are sufficient to capture the transcriptomic sig-
nature of resistance.

To further enhance interpretability, we filtered iteration-specific sub-
sets to retain ≥80% of the annotated genes. This ensured that the selected
signatures remained both biologically informative and clinically actionable.
The GA framework thus provided two complementary outputs: (1)
iteration-specific subsets for assessing variability and classification perfor-
mance and (2) consensus-ranked gene lists for biological interpretation and
downstream regulatory analysis (see Methods).

Overall, our integrated GA–AutoML approach identified minimal yet
highly predictive transcriptomic signatures across multiple antibiotics. The
repeated selection of previously unannotated genes highlights under-
explored regulatory or metabolic features of resistance, offering avenues for
future biological investigation.

GA-derived subsets reveal limited CARD overlap and highlight
uncharacterized genes
To determine whether our GA-AutoML-derived genes correspond to
known antibiotic resistance markers or represent previously unrecognized
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Fig. 1 | Overall pipeline for the GA–AutoML workflow and biological validation
in P. aeruginosa. A Incorporation of RNA-seq data from 414 clinical isolates
alongside antibiotic phenotypes and initial data processing. B Application of a
genetic algorithm that iteratively identifies minimal, high-accuracy gene subsets
through population initialization, selection, crossover, and mutation steps.
C Integration of these GA-selected features into data preprocessing, classification,

model selection, and final performance evaluation under an automated machine-
learning pipeline.D Post hoc validation of selected genes through multiple external
resources (CARD, PseudomonasGenomeDB, ShinyGO,NCBI, iModulonDB), with
a focus on their operon assignments, potential regulatory networks, and broader
functional context19,20,60,63,64. Created in BioRender. Saha, R. (2025) https://
BioRender.com/0e3kj5x.

https://doi.org/10.1038/s41540-025-00584-0 Article

npj Systems Biology and Applications |          (2025) 11:108 3

https://BioRender.com/0e3kj5x
https://BioRender.com/0e3kj5x
www.nature.com/npjsba


determinants, we compared the top-performing antibiotic-specific gene
subsets to genes annotated in the Comprehensive Antibiotic Resistance
Database (CARD)19. Across all antibiotics, this analysis revealed that only a
minor fraction (2–10%) of our predictive gene subsets overlapped with the
established AMR genes listed in the CARD (Supplementary Data 2), indi-
cating substantial novelty within our gene signatures (Fig. 3).

For MNM, the overlap with CARD-annotated genes was approxi-
mately 3–5%, involving the efflux pump-related locimexA andmexB, both
of which were selected in >50% of GA iterations. These genes are well
documented contributors to resistance via antibiotic efflux26,27. Interestingly,
the most consistently selected gene by the GA, gbuA, chosen in approxi-
mately 95% of the iterations, is absent from the CARD. GbuA encodes
guanidinobutyrase, an enzyme involved in arginine catabolism28. The
upregulation of gbuA in meropenem-resistant isolates may serve as a
compensatory biomarker for impaired arginine uptake linked to loss-of-
function mutations in OprD, a porin gene critical for carbapenem entry29.

While gbuA itself is not directly involved in resistance mechanisms, its
strong association with resistant phenotypes highlights its utility as a
diagnostic marker.

In predicting TOB resistance, only a limited overlap (2–5%)was found
betweenGA-derived genes andCARDannotations. The gene PA14_15435,
encoding a cyclic di-GMP-specific phosphodiesterase, was prominently
selected (~80% iterations) but was not annotated in the CARD. Its activity
may influence biofilm formation, motility, and antibiotic penetration,
indirectly affecting aminoglycoside susceptibility30. Other highly selected
genes (PA14_15430, PA14_15420, and PA14_15410) correspond to
transposon-associated elements linked to a genomic island carrying mer-
cury resistance genes31. Although these events do not directly confer resis-
tance, their repeated selection indicates that the genomic context or co-
selection events might mark isolates adapted to aminoglycoside stress.
Known aminoglycoside resistance genes, such as amrB (PA14_60860), were
less frequently selected (~30%), suggesting that despite their direct
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Fig. 2 | Classification performance and feature set optimization across four
antibiotics. A Radar chart displaying precision, recall, predictive value (PV), and
F1 score (0–1 range) for susceptible (S) and resistant (R) classes in the top-
performing feature sets for each antibiotic. B Violin plots illustrating the accuracy
distribution across 1000 genetic algorithm iterations, with median accuracy (dotted
line), interquartile range (shaded area), and density. MNM and CAZ exhibit slightly
broader variability, whereas TOB and CIP demonstrate narrower distributions
around high accuracies. C Representation of the top 10 genes that were most

enriched in GA across all antibiotics.D–G Classifier performance (accuracy and F1
macro average) as a function of the number of most frequently selected genes used
formodel training, shown separately forMNM (D), TOB (E), CIP (F), and CAZ (G).
Lines represent the mean performance across cross-validation runs; shaded areas
denote the standard deviation. The performance improvements plateau at ~35–40
genes, supporting the use of compact consensus feature sets for accurate and stable
prediction of resistance phenotypes.
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resistance roles, they present weaker transcriptomic signatures distin-
guishing resistant strains.

For CIP, the genes most frequently selected by the GA were pre-
dominantly absent from CARD annotations as well. PA14_61650 (pagL,
>70% iterations), encoding lipid A 3-O-deacylase, modifies the LPS struc-
ture, potentially influencing antibiotic permeability32. PA14_31640 (glyox-
alase I homolog, ~40% iterations) maymitigate the oxidative stress induced
by ciprofloxacin treatment. PA14_36990 encodes another cyclic di-GMP
phosphodiesterase that influences biofilm dynamics and possibly efflux
mechanisms, indirectly affecting fluoroquinolone susceptibility30. More-
over, genes known for quinolone resistance (e.g., mexA, mexB, and gyrA),
identified in the CARD, were infrequently selected (10–20%), likely due to
subtler transcriptomic differences.

In CAZ resistance prediction, significant overlap with CARD was
observed due to the frequent selection (>90%) of ampC (PA14_10790), a
known β-lactamase33. However, PA14_33680 (fpvA, >40% iterations),
encoding the ferripyoverdine receptor, was repeatedly selected despite not
being in the CARD. Elevated fpvA expression has been correlated with
ceftazidime resistance, possibly linking iron acquisition responses with
antibiotic resistance phenotypes34.

Overall, our analysis revealed that GA-selected genes frequently fall
outside conventional AMR annotations, likely because they present pro-
nounced transcriptomic differences between resistant and susceptible iso-
lates rather than directly conferring resistance. Many of these genes play
indirect roles, such as metabolic compensation, membrane modification,
stress response, or biofilm regulation. These results suggest that many
resistance-associated transcriptomic signatures fall outside current AMR
annotations, suggesting that conventional databasesmaynot capture the full
landscape of expression-based adaptations observed in resistant strains.
While not direct resistance determinants, such genes may serve as robust
biomarkers or proxies for resistant phenotypes, meriting further experi-
mental characterization.

Operon-level analysis reveals limited functional overlap in pre-
dictive gene sets
In addition to genes lacking prior associations with resistancemechanisms,
our GA-AutoML pipeline generated multiple gene subsets per antibiotic,
each containing approximately 35-40 genes, as predictive models. These

subsets achieved high predictive accuracy (~96–99%) despite minimal gene
overlap (~5–8%) within each antibiotic category (Fig. 4 A-D). This unex-
pected observation prompted us to examine whether these subsets share
common biological functions at the operon level. An operon is a group of
genes in prokaryotes (bacteria) that are transcribed together as a single
mRNAmolecule35. By analyzingwhich operons the selected genes belonged
to, we asked whether different subsets might still capture similar biological
responses, even if the specific genes varied.

Several antibiotic-specific operons were indeed consistently repre-
sented across multiple predictive gene subsets (Supplementary Data 3). For
MNM, two operons consistently stand out: the well-characterized mexAB-
oprMoperon, encoding amultidrug effluxpumpsystemdirectly involved in
antibiotic efflux27, and the gbuA operon, encoding guanidinobutyrase and
related enzymes (Fig. 5A). The frequent identification of mexAB-oprM
aligns with its established role in direct antibiotic resistance, particularly
through reducing intracellular meropenem concentrations36. The recurrent
selection of the gbuAoperon suggests an associationwith broadermetabolic
adaptations, potentially compensating for nutrient uptake disruptions such
as those resulting from impaired porin function (e.g., OprD deficiency),
which is a known determinant of carbapenem resistance37,38.

For TOB, operon-level recurrence was more limited, highlighting
diverse, isolate-specific strategies potentially reflecting antibiotic exposure
history or genomic context. The aminoglycoside efflux operon amrAB was
identified in two subsets, which is consistent with its direct role in antibiotic
expulsion. Interestingly, the mercury resistance operon (mer) and alginate
biosynthesis (alg) operon each appeared in single subsets (Fig. 5B).
Although mercury resistance (mer operon, e.g., gene PA14_15435) is not
directly linked to antibiotic resistance, its selection could indicate a broader
cellular stress response or biofilm adaptation influencing aminoglycoside
penetration or susceptibility. Similarly, the selection of the alg operon may
reflect the known association between biofilm formation and reduced
antibiotic susceptibility39.

In the prediction of CIP resistance, the efflux operon mexAB-oprM
appeared frequently, underscoring its well-documented role in fluor-
oquinolone efflux40 (Fig. 5C). Additionally, the pel operon (biofilm poly-
saccharide production), cupA operon (fimbrial adhesion), and ribosomal
operons emerged recurrently, pointing to additional transcriptomic corre-
lates of antibiotic response, such as biofilm formation and stress-induced
translational adaptation, potentiallymitigating ciprofloxacin-inducedDNA
damage41. The diverse representation of operons involved in biofilm for-
mation (pel) and adhesion (cupA) highlights broader physiological adap-
tations affecting antibiotic permeability and tolerance42,43.

Moreover, CAZ exhibited a distinct operon signature heavily domi-
nated by the β-lactamase-encoding ampC-ampR operon44, which was
selected across all subsets (Fig. 5D). This was consistent with its direct
enzymatic role in β-lactam hydrolysis. Secondary selection included iron
scavenging (pvd operon) and anaerobic respiration (nar operon)
operations45, reflecting metabolic and nutritional adaptations potentially
associated with resistance phenotypes, particularly under nutrient-limited
infection conditions where antibiotic tolerance may increase.

Critically, however, despite the consistent selection of certain operons,
most predictive genes (approximately 70–85% across antibiotics) did not
map to these recurrent operons. Instead, these geneswere broadly dispersed
throughout the genome, spanning various unrelated functional groups and
metabolic pathways. This extensive dispersion suggests that antibiotic
resistance-associated transcriptomic signatures capture generalized tran-
scriptional responses rather than being strictly limited to specific operon-
based regulatory adaptations.

The broad genomic distribution of predictive genes further emphasizes
that antibiotic resistance involves not only direct antibiotic neutralization
(e.g., efflux pumps, antibiotic-modifying enzymes) but also indirect
responses, including metabolic shifts, stress responses, biofilm dynamics,
and cell-envelope modifications. These diverse transcriptomic adaptations
reflect the multilayered complexity underlying antibiotic resistance in P.
aeruginosa.

Fig. 3 | GA-derived subsets reveal minimal overlap and predominantly novel
AMR genes. Relative to the CARD. Stacked bar plot comparing the number of GA-
selected genes overlapping with the CARD database versus those absent from the
CARD database across the four antibiotics: MNM, TOB, CIP, and CAZ. For each
antibiotic, the total number of unique genes identified from high-performing GA-
derived subsets is partitioned into CARD-listed and novel categories. The small size
of the known segment inmost cases underscores the substantial novelty captured by
our approach.
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iModulon mapping reveals regulatory convergence and strain-
specific adaptations
To further explore the regulatory basis of these resistance signatures, we
examined whether these diverse operons may be orchestrated by shared
regulatory modules, as identified through iModulon mapping. First, we
mapped the feature sets to published iModulons of P. aeruginosa PAO1,
which represent coregulated gene groups identified through ICA24.
Approximately 40–60% of the feature set genes consistently mapped to
known iModulons, forming a clear regulatory framework. Conversely,
30–50% remained unmatched, with 12% of these corresponding to PA14-
specific genes absent in PAO1. These results underscore the regulatory
complexity and strain-specific adaptations underlying AMR mechanisms.

Mapping the feature sets to PAO1 iModulons revealed that distinct
gene subsets converged on shared regulatory modules associated with cri-
tical cellular processes (Supplementary Fig 2, Supplementary Data 4). Sev-
eral feature sets mapped to iModulons involved in oxidative stress
adaptation, a common bacterial response to antibiotic-induced damage.
These iModulons include genes encoding catalases, superoxide dismutases,
andotherantioxidants,whichhelpmitigate the effects of the reactive oxygen
species generated by antibiotics46. Similarly,multiple feature sets, such as the
MexAB-OprM and MexCD-OprJ operons, were enriched in iModulons
associated with efflux pump systems. These systems are known to confer
resistance by expelling antibiotics from the cell, reducing intracellular drug
concentrations to sublethal levels (Lorusso et al., 2022).

The feature sets for TOB and other antibiotics frequently map to
iModulons regulating ribosomal proteins and the translation

machinery, reflecting the role of protein synthesis inhibition in anti-
biotic action47. For CIP, the feature sets consistently mapped to iMo-
dulons involved in DNA repair and recombination, aligning with the
mechanism of action of fluoroquinolones, which target DNA gyrase and
topoisomerase IV. These iModulons include genes encoding RecA and
other DNA repair proteins, which are critical for surviving CIP-induced
DNA damage.

To investigate strain-specific regulation, we performed a com-
plementary ICA using 414 transcriptomes of clinical PA14 isolates, yielding
a PA14-specific iModulon set (Supplementary Data 5). Mapping the GA-
selected gene subsets onto this PA14 compendium resulted in high coverage
for each antibiotic. ForMNM, the four predictive subsets exhibited 83–88%
alignment with PA14 iModulons (Fig. 6A), predominantly mapping to
modules related to metabolism and nutrient adaptation, the general stress
response, efflux mechanisms, and cell envelope integrity. The CIP-
associated subsets demonstrated 81–83% mapping (Fig. 6B), with promi-
nent allocation to metabolic adaptation, DNA repair, and general stress
response iModulons. In the CAZ subset, 80–82% of the genes mapped
primarily to modules associated with metabolic pathways, cell envelope
remodeling, and stress responses (Fig. 6C). Finally, the TOB subsets
exhibited 79–81% mapping (Fig. 6D) and were most strongly associated
with metabolic regulation, ribosomal functions, and stress adaptation.
Across all antibiotics, the “Metabolism and Nutrient Adaptation” category
consistently accounted for the largest fraction ofmappedgenes (Fig. 6A–D),
reflecting the broad impact of antibiotic exposure on global metabolic
rewiring beyond direct drug‒target interactions.

Fig. 4 |Minimal overlap amongmultiple high-accuracyGA-selected gene subsets.
UpSet plots illustrating the pairwise and higher-order intersections among the top
GA-selected gene subsets for MNM (A), TOB (B), CIP (C), and CAZ (D). Each

UpSet plot underscores the limited overlap across these equally high-accuracy
subsets, highlighting distinct routes to resistance.
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These PA14-based findings mirror the regulatory themes observed
with PAO1 analysis, reinforcing the recurrent involvement of SOS-
mediated repair, efflux systems, oxidative stress responses, ribosomal reg-
ulation, and envelope remodeling in antibiotic resistance across strains.
Notably, several PA14-specific iModulons lacked direct counterparts in
PAO1, includingmodules linked to heavy-metal detoxification and type VI
secretion systems, highlighting strain-specific regulatory architectures
potentially associated with multifactorial resistance strategies.

Discussion
In this study, we demonstrated a successful automated approach for anti-
biotic susceptibility profiling in P. aeruginosa using only transcriptomic
data. By applying a genetic algorithm to select informative features and an
AutoML framework to train classifiers, we identified minimal gene

expression signatures that achieved accuracies approaching 99% on a
holdout set. Notably, this level of performance is comparable to that of
existing genome-based approaches but relies on a markedly smaller set of
transcriptomic features12,13,48,49. It is worth noting that genotype-basedAMR
predictors often achieve high accuracy with very few genomic markers. For
instance, Drouin et al. (2019)50 developed interpretable classifiers achieving
≥90%accuracy using amedian of only twoor three k-mer presence rulesper
dataset. Conversely, our transcriptomic models required 35–40 genes per
antibiotic to achieve comparable or higher accuracy. This difference reflects
the broader biological information captured by gene expression data,
encompassing condition-dependent regulatory and metabolic responses to
antibiotic exposure beyond static gene presence or absence. Indeed, Khaledi
et al. (2020)48 reported significantly lower predictive performance for GPA-
only models trained on the same dataset (sensitivities 0.53–0.88; PPVs

Fig. 5 | Recurrent and dispersed operon involvement across GA-predictive
gene sets. Bar plots showing how often genes from specific operons were selected
acrossmultiple high-performing subsets for each antibiotic: MNM (A) TOB (B) CIP
(C) and CAZ D While known resistance operons such as mexAB-oprM and ampC

were repeatedly selected, most predictive genes were derived from diverse operons,
highlighting that resistance-associated transcriptomic signatures involve diverse
genetic loci beyond classical resistance operons.
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0.56–0.92), while our transcript-based models improved these metrics by
7–17 percentage. Moreover, a major limitation of sparse genotype-based
rules is their reliance on known resistance loci, potentially missing newly
emerging strains withmutations in novel genes. Transcriptomic signatures,
however, capture the functional state of cells and thus remain informative
even as resistance evolves via new or unexpected genetic changes. Conse-
quently, transcriptomic models provide greater discriminatory power and
robustness over time.

To better understand the biological underpinnings of our tran-
scriptomic classifiers, we examined the specific genes selected by the genetic
algorithm across different antibiotics. Many of the top-ranked genes have
previously been implicated in resistance, lending biological credibility to our
approach. For example, gyrA, the primary target of fluoroquinolones51, was
recurrently selected in ciprofloxacin resistance signatures. Likewise, ampC

and oprD, both of which are well-established β-lactam resistance
determinants52, are frequently selected among the ceftazidime and mer-
openem classifiers. Multidrug efflux pump components such as mexA,
mexB, and oprM are also commonly identified across multiple antibiotics.
The recurrence of these canonical resistance markers serves as internal
validation and confirms that our feature selection strategy recovers biolo-
gically meaningful predictors.

Importantly, several highly ranked genes have not been previously
annotated as resistance determinants. These include loci associated with
stress adaptation, cell envelope remodeling, alginate biosynthesis, and
metabolic regulation. Similar to earlier findings53,54, our results suggest that
resistant strains adopt broader physiological and regulatory adaptations
beyond direct drug-target modifications. These genes may not confer
resistance but may act as transcriptional proxies or participate in

Fig. 6 | Functional allocation of GA-selected genes within PA14 iModulons.
Heatmaps display the percentage of genes in each high-accuracy feature set (rows)
that fall into specific PA14 iModulon functional classes (columns). for MNM (A)
TOB (B) CIP (C) and CAZ (D). The color scale indicates the percentage of genes

assigned to individual functional categories, showing that seemingly distinct gene
sets converge on shared regulatory modules such as efflux, general stress, and
metabolic adaptation.
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compensatory mechanisms associated with enhanced bacterial fitness
under antibiotic stress. The repeated selection of these genes across inde-
pendentGAruns highlights their potential utility as biomarkers, even if they
are not mechanistically causative.

Interestingly, the gene subsets identified for each antibiotic showed
minimal overlap, indicating thatmultiple, equally predictive transcriptomic
signatures can distinguish resistant strains from susceptible strains. Each
subset included a small number of genes associated with known regulatory
modules, such as the oxidative stress response, SOS-mediated DNA repair,
and efflux regulation modules, which represented only a fraction of each
predictive set. For example, among the ciprofloxacin classifiers, a subset of
genes belongs to the SOS regulon, which is consistent with the known
induction of DNA damage repair pathways under fluoroquinolone
treatment55. Similarly, components of the SoxR regulon, which regulates
redox-responsive genes such as mexGHI-opmD56, were observed in classi-
fiers formultiple antibiotics. Thesefindings alignwith reports that antibiotic
exposure triggers global stress response programs that facilitate bacterial
survival57–59.

However, the majority of selected genes did not map onto annotated
operons or iModulons, suggesting that resistance-associated expression
signatures extend beyond established regulons. This broad distribution
highlights the multifactorial nature of resistance and the potential invol-
vement of under characterized or strain-specific regulatory programs. Some
markers may reflect cellular states shaped by prior antibiotic exposure,
mutations in upstream regulators, or metabolic rewiring in response to
treatment.

Given the transcriptomic basis of our classifiers, distinguishing
between genes that directly confer resistance and those that serve as indirect
markers reflecting cellular adaptations or physiological responses is
important. While this distinction does not diminish their diagnostic utility,
it does emphasize the need for functional characterization through follow-
up experiments such as gene disruption or controlled overexpression.
Furthermore, while the high accuracy and minimal feature set provide an
attractive clinical diagnostic framework, broader validation across diverse
clinical populations and independent cohorts remains necessary to confirm
the robustness and generalizability of these transcriptomic signatures.

Overall, our approach highlights the power of integrating advanced
machine learningwith systems biologymethodologies to uncover predictive
biomarkers and elucidate the broader adaptive landscapes associated with
antibiotic resistance. By providing interpretable, minimal transcriptomic
signatures, this strategy offers promising avenues for rapid diagnostics,
personalized treatment regimens, and targeted antimicrobial stewardship.

Methods
Data retrieval and preprocessing
Gene expression and antibiotic resistance data for this study were obtained
from the publicly available dataset published by Khaledi et al.48. In this
dataset, RNA-seq reads were aligned to the Pseudomonas aeruginosa PA14
reference genome using Stampy (v1.0.23), and gene-level expression counts
were calculated following a previously described method12, in which
uniquely mapped reads were assigned to coding sequences and scaled by
both gene length and library size. To handle zero counts, a pseudocount of 1
was added prior to log transformation. The resulting expression matrix
included 6026 genes across 414 clinical isolates. We used this processed
matrix directly as input to ourmachine learning pipeline. Isolates labeled as
intermediately resistant were excluded from classification tasks, and sam-
ples missing resistance labels for a given antibiotic were removed for that
analysis. The expressiondatasetwasused to construct the featurematrix (X),
while the corresponding resistance classifications for the four antibiotics
formed the target vector (y). These datasets enabled the training ofmachine
learning models to predict antibiotic resistance based on transcriptomic
signatures.

Gene expression datawere preprocessed to alignwith resistance labels,
ensuring consistency in sample representation. The expression values were
normalized, and genes with excessive missing values were excluded.

Samples with incomplete resistance phenotype annotations were removed
from the analysis.

Threshold for resistance determination
Resistance and susceptibility classifications were assigned on the basis of the
minimal inhibitory concentrations determined in the original study48. MIC
values were binarized according to Clinical & Laboratory Standards Insti-
tute (CLSI) breakpoint criteria, with samples classified as resistant or sus-
ceptible to each antibiotic.

Genetic algorithm optimization for feature selection
To reduce the number of transcriptomic features systematically while
maintaining predictive accuracy, a genetic algorithm-based feature selection
approach was implemented. The GA iteratively refines feature subsets by
mimicking the principles of natural selection, favoring gene sets that max-
imize predictive performance.

TheGApipelinewas initializedwith 1,000 randomly generated feature
sets, each consisting of 40 genes. The selection of 40 genes was determined
through an empirical evaluation process, where feature set sizes ranging
from16-40 geneswere systematically testedviaLRandSVM,with theROC-
AUC and F1 score as primary evaluation metrics. The feature sets con-
taining 40 genes consistently provided the best trade-off between predictive
accuracy and feature set interpretability, making them the optimal config-
uration (Fig. 2D-G). Each GA iteration refines these feature sets over 300
generations, systematically converging on the most informative subsets.

Two types of outputs were generated from the GA selection process:
iteration-specific feature sets, representing the highest-performing gene
subset identified in each iteration, and a ranked gene list, which quantified
how frequently individual genes appeared in the top-performing subsets
across all GA iterations. These outputs provided complementary insights,
allowingboth the selectionof stable predictivemarkers and an assessmentof
the broader resistance-associated transcriptomic landscape.

To assess feature set stability, the top-ranked gene lists from two
independent GA runs were compared. The overlap between the highest-
scoring gene sets in early runs was limited (~30%), suggesting substantial
variability in feature selection. To address this, the number of GA iterations
was increased to 1000, and a ranked gene list was generated, quantifying the
frequencywithwhich specific genes appeared in the top-performing subsets
across all iterations. The ranked gene list was further segmented into subsets
of 20-50 genes and systematically evaluated to pinpoint the highest-
performing gene sets.

A major limitation of GA-derived ranked lists is the presence of
hypothetical genes, which reduces interpretability. To address this,
iteration-specific feature sets were filtered to retain at least 80% of the well-
characterized genes on the basis of functional annotation databases.
Although thisfilteringwas also applied to the rankedgene list, the evaluation
shifted toward iteration-specific gene sets because of their superior classi-
fication performance. The final GA-selected gene subsets were validated
externally and consistently maintained high precision and recall across all
antibiotics (Fig. 2 A-G).

Machine learning model training and evaluation
Automatedmachine learningwas employed to optimizemodel training and
hyperparameter selection. The AutoML pipeline was implemented via the
auto-sklearn Python library, which systematically explores a range of
models and hyperparameter configurations to identify the best-performing
classifier for each antibiotic-specific dataset.

Preprocessed gene expression data were split into training (80%) and
test (20%) sets while maintaining a stratified distribution of resistance
phenotypes. To prevent overfitting, a stratified k-fold cross-validation
approach (k = 3) was applied during training. The AutoML classifier was
configuredwith a runtime limit offive hours permodel to ensure exhaustive
searchwhile maintaining computational feasibility. The feature sets derived
from the GA were used as inputs, with model selection based on the opti-
mization of the ROC-AUC and F1 score.
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Model performance was assessed via multiple evaluation metrics to
ensure robustness. The ROC-AUC was used to measure the ability of the
model to distinguish between resistant and susceptible strains, whereas the
F1 score provided a balance betweenprecision and recall, ensuring that both
classes were correctly classified. Precision quantified the proportion of
correctly predicted resistant strains, whereas recall measured the fraction of
actual resistant isolates correctly identified. Confusion matrix analysis was
conducted to evaluate true positives, true negatives, false positives, and false
negatives, providing further insights into misclassification patterns.

The final models were selected based on test set performance, and the
best-performing classifiers were used for further downstream analysis.

Independent component analysis and iModulon mapping
To elucidate the regulatory architecture underlying antibiotic resistance in
Pseudomonas aeruginosa, we applied ICA via the iModulonMiner
framework60. ICA decomposes transcriptomic data into independent
components, termed iModulons, which represent coregulated gene groups
under shared regulatory control61,62. This approach enables the identifica-
tion of transcriptional regulatory networks that drive resistance phenotypes.

We analyzed the normalized transcriptomic profiles of 414 P. aerugi-
nosa PA14 clinical isolates via the FastICA algorithm implemented in the
iModulonMiner pipeline (https://github.com/SBRG/iModulonMiner). The
input data consisted of a centered and scaled gene expressionmatrix (genes
× samples). Stability analysis revealed that the optimal number of compo-
nents was 203. Each iModulon was characterized by two outputs: a gene
weight matrix, which quantifies gene contributions, and a sample activity
matrix, which represents iModulon activity across samples. Genes with
absolute weights > 2.5 were considered significant contributors. The func-
tional annotations of iModulons were assigned based on Gene Ontology
(GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, enabling insights into their biological roles.

The gene subsets identified via the GA were mapped onto the derived
iModulons to explore their regulatorybasis.Distinct feature sets fordifferent
antibiotics were analyzed for their convergence on iModulons, reflecting
potential regulatory mechanisms underlying resistance. Strain-specific
iModulons unique to PA14 were also identified, highlighting novel reg-
ulatory adaptations. These analyses facilitated a deeper understanding of
transcriptional regulation in the context of antibiotic resistance.

Data availability
The transcriptomic and phenotypic data used in this study were obtained
from Khaledi et al., 202048 and are available via the NCBI Gene Expression
Omnibus (GEO) under accession number GSE123544. Processed expres-
sion matrices and phenotype labels used in the GA-AutoML pipeline are
provided in the Supplementary Data. These materials are sufficient to
replicate the machine learning and validation steps described in this study.
Code and scripts for data analysis, machine learning, and visualization are
publicly available on GitHub at https://github.com/AAlsiyabi-Research-
Group/Predicting-P.-aeruginosa-Resistance-with-Minimal-Gene-
Signatures.

Code availability
Code and scripts for data analysis, machine learning, and visualization are
publicly available on GitHub at https://github.com/AAlsiyabi-Research-
Group/Predicting-P.-aeruginosa-Resistance-with-Minimal-Gene-
Signatures.
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