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Modeling tumor dynamics and predicting
response to therapies in a murine
pancreatic cancer model
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We seek to establish a parsimonious mathematical framework for understanding the interaction and
dynamics of the response of pancreatic cancer to the NGC triple chemotherapy regimen (mNab-
paclitaxel, gemcitabine, and cisplatin), stromal-targeting drugs (calcipotriol and losartan), and an
immune checkpoint inhibitor (anti-PD-L1). We developed a set of ordinary differential equations
describing changes in tumor size under the influence of cocktails of treatments. Parameter estimation
relies on three tumor volumemeasurements obtained over a 14-day period in a genetically engineered
pancreatic cancer model (KrasLSL�G12D ; Trp53LSL�R172H ; Pdx1� Cre). Our model reproduces tumor
growth in all scenarios with an average concordance correlation coefficient (CCC) of 0.99 ± 0.01. We
conduct leave-one-out predictions (average CCC = 0.74 ± 0.06), mouse-specific predictions (average
CCC = 0.75 ± 0.02), and hybrid, group-informed, mouse-specific predictions (average
CCC = 0.85 ± 0.04). The developed mathematical model demonstrates high accuracy in fitting the
experimental tumor data and a robust ability to predict tumor response to treatment. This approach
has important implications for optimizing combination NGC treatment strategies.

Pancreatic cancer, infamous for its aggressive growth, early metastasis,
and resistance to conventional therapies, necessitates innovative treat-
ment approaches1–3. Emerging treatment protocols are increasingly
focused on strategies that target not just the cancer cells, but also the
tumor microenvironment and immune system4–6. Pancreatic tumors,
known for their dense stromal tissue and immunosuppressive envir-
onments, present challenges for traditional chemotherapies like cis-
platin and gemcitabine7–12. To address this, stromal-targeting agents
such as calcipotriol and losartan are being investigated to enhance drug
delivery, while immunotherapies, such as anti-PD-L1 (anti-Pro-
grammed Cell Death Ligand 1), are being tested to activate the immune
system against the tumor5,13–15. However, determining the optimal
combination of these therapies and predicting tumor response remains
an active area of research.

The literatureonmathematicalmodeling inpancreatic cancer is sparse,
especially when compared to other cancers16,17. However, there are seminal
efforts tomodel the efficacy of chemotherapy18,19 and immunotherapy20,21 in
pancreatic cancer. In ref. 18, Lee et al. examined the inconsistent responses
of pancreatic cancer to gemcitabine observed between the in vitro (high
efficacy) and in vivo settings (low efficacy). They used a system of partial
differential equations to model cell proliferation, apoptosis, and nutrient
diffusion gradients influenced by the microenvironment (e.g., inefficient
vascularization or abundant stroma). The model, using parameters esti-
mated with in vitro data on drug exposure and cell viability and validated
through in vivo mouse experiments, indicates that pancreatic tumors
essentially resist gemcitabine due to poor vascularization. The study shows
that the drug’s efficacy in controlled in vitro conditions, which mimic a
single cell layer near the vasculature with optimal access to oxygen and
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nutrients, does not capture the complex dynamics of in vivo environments.
In another work, Jenner et al.19 used a hybrid agent-basedmodel to evaluate
the ability of locally delivered gemcitabine to treat pancreatic cancer effec-
tively. The model was estimated using both in vitro (drug release kinetics
and cytotoxicity against human pancreatic cancer cells from gemcitabine-
loaded alginate fibers) and in vivo (including tumor growth rates and
responses from mouse experiments) data. In their approach, the authors
specifically investigated how the tumor microenvironment, including fac-
tors like drug diffusion and cell proliferation rates, impacts the effectiveness
of drug delivery. Their findings demonstrated that intratumoral placement
of drug-loaded alginate fibers, which accounts for these microenviron-
mental factors, significantly improved treatment efficacy compared to
peritumoral placement. They found that the drug release rate and pattern—
such as constant, exponential, and sigmoidal releases—significantly influ-
enced the drug’s ability to maintain therapeutic concentrations within the
tumor microenvironment over time, with the exponential profile proving
more effective in reducing tumor growth than others. This indicates that
fine-tuning the release profile could be critical for optimizing treatment
responses in pancreatic cancer.

Building on the investigation of drug delivery strategies within the
complex pancreatic tumor microenvironment, other researchers have
focused on understanding the interactions between pancreatic cancer cells
and the immune system, which are crucial for improving patient survival. A
system of five ordinary differential equations (ODEs) was developed by Hu
et al. to investigate the dynamics of pancreatic cancer cells, their interactions
with the immune system, and how this impacts patient survival21. This
systemmodels the interactions between pancreatic cancer cells, stellate cells,
effector cells, and both tumor-promoting and tumor-suppressing cytokines.
Themodel, which integrates 23 parameters sourced from the literature, was
validated using survival data from two clinical trials. Findings based on
optimal control theory indicated that mono-immunotherapy alone cannot
effectively control pancreatic cancer, suggesting the necessity for combined
therapies, including anti-TGF-β treatments and adoptive transfers of
immune cells (a process where immune cells are harvested, sometimes
genetically modified, and then infused back into the patient to boost the
immune response), to enhance patient survival. Bratus et al. also employed
an ODE framework to simulate the dynamics of cancer cell mutations and
their interactions with CD8 T cells and nutrients20. Themodel describes the
temporal dynamics of various pancreatic cancer cell populations differ-
entiated by specific genetic mutations and includes mutation and fitness
landscape matrices that characterize the cells’ survival capabilities. The
modelwas able to effectively predict the growth dynamics of pancreatic cells
with different mutations and their response to immune cells, notably
demonstrating the effectiveness of immune cells in reducing tumor size. The
authors did note, however, that incorporating experimental data into their
study would improve the model’s validity.

In this contribution, our goal is to develop a hierarchical framework
capable of simulating and predicting the response of pancreatic tumors to
various combination treatment regimens. While previous studies have
provided valuable insights into the interactions between pancreatic cancer
cells, the immune system, and drug delivery within the tumor micro-
environment, they often focus on specific aspects, such as modeling the
mutation dynamics within pancreatic cancer cells. Building on these
foundational efforts, our work seeks to provide a comprehensivemodel that
integrates the dynamics of chemotherapy, stromal-targeting drugs, and
immunotherapy. To our knowledge, this represents the first effort to
mathematically model the dynamics of NGC chemotherapy effects on
pancreatic cancer. Specifically, we aim to model the dynamics of tumor
growth and regression in response to combinations of chemotherapy,
stromal-targeting drugs, and immunotherapy. By integrating experimental
data from longitudinal tumor volume measurements obtained in murine
models of pancreatic cancer, we develop a mathematical model that
reproduces bulk tumor growth and regression under multiple treatment
regimens. We further demonstrate the ability of this model to predict
mouse-specific responses to treatments. This study contributes to a biology-

based, mathematical model that simulates complex treatment interactions
and predicts responders and non-responders, which is crucial for opti-
mizing personalized treatment strategies in pancreatic cancer.

To unite these modeling efforts into a single, coherent workflow, we
propose ahierarchical, treatment-agnostic framework that (i) defines simple
ODEs for tumor growth and treatment effects, (ii) performs global sensi-
tivity analyses to prioritize key parameters, (iii) uses Bayesian parameter
estimation to fit control and treatment data, and (iv) generates individua-
lized and population-informed predictions of treatment response (Fig. 1).

Results
Estimation of logistic model parameters using the control group
Following theworkflowoutlined in Fig. 1, wefirst employ the priors defined
in Table 1 to estimate the proliferation rate (r), carrying capacity (K), and
initial condition (N0) from the control data.These priorswere selected based
on prior predictive checks, which confirmed (via a coveragemetric of 100%,
see Supplemental Figures) that the sampled parameter combinations gen-
erate tumor growth dynamics consistent with the observed control data,
thus supporting their biological plausibility and suitability for inference.

We model tumor volume dynamics using the general treatment-
agnostic formulation:

dN
dt

¼ rN 1� N
K

� �
� N

Xn
i¼1

αie
�βðt�τiÞHðt � τiÞ; ð1Þ

whereN(t) is the tumor volume at time t, αi represents the death rate due to
the ith treatment dose, τi is the time of administration, β is the decay rate of
treatment effect, andH(t− τi) is theHeaviside step function. For the control
group, we assume αi = 0 and β = 0, which simplifies Eq. (1) to the standard
logistic growth model.

In this scenario, we estimate a population-specific K, along with a
mouse-specific r and N0 (i.e., each mouse having its own distribution of r
and N0). As depicted in Fig. 2, the logistic model (i.e., Logistic Growth
Model, Eq. (1) with αi = 0 and β = 0) can accurately describe the experi-
mental data from the control group, with a concordance correlation coef-
ficient (CCC) and Pearson correlation coefficient (PCC) of 0.99 when
comparing the experimental and estimated tumor volumes, with a mean
absolute percent error (MAPE) below 8%.

Moving forward, we use these parameters when estimating parameters
of the Linear Treatment Model and the Exponential Decay Treatment
Model, which are special cases of Eq. (1). The Linear Treatment Model
corresponds to setting β = 0 and assuming α1 = α2 = α, while the Expo-
nential Decay Treatment Model involves estimating β (i.e., allowing
decaying treatment effects), again with α1 = α2 = α. In both models, n = 2
since treatment is administered at two time points. A summary of the
assumptions for each model is provided in Table 2. Specifically, the prior
distribution for theBayesianparameter estimationof r for eachmouse in the
treatment groups is established using the upper and lower bounds deter-
mined from the posterior distribution of the control group’s proliferation
rate. Additionally, the carrying capacity calculated from the control group,
K, is set to themedianvalue fromthis posteriordistributionwhenestimating
the treated groups’ parameters. This allows us to reduce the number of
parameters requiring estimation in the other models andmitigate potential
issues with parameter identifiability.

Parameter estimation of treatment-based models
Following the model fitting of the Logistic Growth Model (i.e., Eq. (1) with
αi = 0 and β = 0) to the control data, we proceed to estimate the parameters
in the Linear Treatment Model (i.e., Eq. (1) with β = 0 and α1 = α2 = α) and
the Exponential Decay Treatment Model (i.e., Eq. (1) with estimated β and
α1 = α2 = α) using thedata fromeach treatmentprotocol. Inbothmodels,we
estimate the parameters r, α, and N0 for each mouse, while fixing the car-
rying capacity to the value obtained from fitting the control data to the
Logistic Growth Model. This pragmatic decision to fix K, while necessary
given the limited data during the exponential phase, alsomeans thatmodels
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which might otherwise benefit from estimating K are potentially penalized
under the Bayesian InformationCriterion (BIC) due to reducedflexibility in
capturing the full logistic curve. This trade-off between parameter iden-
tifiability and model flexibility should be considered when interpreting the
BIC differences between the models. Additionally, the Exponential Decay
TreatmentModel requires the parameter estimation of β (i.e., the treatment
decay effect) as a population-based parameter, with each treatment protocol

having its own distribution of β. Notably, the models in consideration are
treatment agnostic and do not depend on the specific nature of any indi-
vidual treatment combination.

In Fig. 3, we present the experimental data and themodel solutions for
all five treatment scenarios. The model differentiates between responders
andnon-responderswith 100%accuracy in all treatments exceptT1—NGC,
where the model achieved a 94.44% accuracy. The MAPE for the tumor

Fig. 1 | Illustration of the model building, parameter estimation, and prediction
framework. AOurmodels are built from a logistic growth function. To develop our
Linear Treatment Model, we add a linear treatment effect for each treatment week.
For our Cumulative Linear and Exponential Decay treatment models, we also
include in the effects of treatment resistance (i.e., variable treatment intensity across
administrations) and drug decay, respectively. B The process begins with the defi-
nition of mathematical models designed to parsimoniously describe the treatment
scenarios. Sensitivity analyses are then performed to determine the relative impact of
each model parameter. After estimating parameters of the control and treatment

data to eachmodel, the Bayesian Information Criterion (BIC) guides the selection of
a single “best”model for predictions. ti and αi refer to the ith time of tumor volume
measurement and ith tumor death rate due to treatment, respectively. Using the
chosen model, three prediction scenarios are investigated: 1) leave-one-out pre-
dictions for days 7 and 14 tumor volumes, 2) mouse-specific parameter estimations
using the days 0 and 7 data to predict the day 14 tumor volumes, and 3) mouse-
specific, predictions made by incorporating the population’s average resistance to
the treatment (α1α2) when estimating parameters using the day 0 to day 7 data to
predict day 14 tumor volumes.
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volume is below 10%, and the CCC/PCC is above 0.98 for all treatment
protocols. Similarly, we display the results for the Exponential Decay
TreatmentModel in Fig. 4. Thismodel candifferentiate between responders
and non-responders with an accuracy of 100% in all scenarios except
treatment protocols 1 and 5, where the model achieved an accuracy of
94.44% and 87.50%, respectively. Notably, the only discernible difference in
terms of accuracy between the two treatment-agnostic models occurs in
T5—NGC+ calcipotriol+ anti-PD-L1, where the Exponential Decay
Treatment Model incorrectly classifies one non-responder as a responder.
The CCC/PCC for the second model is above 0.95 for all treatment pro-
tocols, and the MAPE for tumor volume is below 10% for all treatment
scenarios.

Model selection
In Table 3, we present the BIC for each model (linear and exponentially
decaying) for each treatment protocol. Note that a lower BIC indicates a
better fit of the model to the data22. Our results show that the Linear
TreatmentModel (i.e., Eq. (1) with β = 0 and α1 = α2 = α) has a lower BIC in
all treatment protocols than the Exponential Decay TreatmentModel (with
estimated β). Therefore, thismodel is selected for the subsequent analyses in
this study.

Parameter distributions of parameter estimation
After selecting Linear Treatment Model as the best model to represent the
data (according to the BIC), we proceed to examine the posterior parameter
distributions for each of the control and treatment protocols. Figure 5
presents significant differences across all scenarios for the tumor pro-
liferation rates, r, and tumor death rate due to treatment, α. In Panel A), the
median proliferation rate for non-responders is significantly higher than

that for responders across T1—NGC,T2—NGC+ losartan, andT3—NGC
+calcipotriol (23.44 ± 14.50% higher than responders, p-adjusted < 0.001).
T4—calcipotriol has the highest proliferation rate, while T2—NGC +
losartan and T3—NGC+calcipotriol have the lowest. Except for the
responders in T2—NGC + losartan and T3—NGC+calcipotriol, all treat-
ment groupshave amedianproliferation rate that significantly surpasses the
control group. Panel B) displays the distribution of the parameter for the
death rate due to treatment. In scenarios with both responders and non-
responders (i.e., T1—NGC, T2—NGC + losartan, and T3—NGC+calci-
potriol), the median death rate of non-responders is 54.8 ± 5.54% lower (p-
adjusted < 0.001) than that of responders. Statistical analysis using a
Bonferroni-adjusted Mann-Whitney U test indicates that differences
between all pair-wise groups (i.e., responders and non-responders) in terms
of tumor proliferation rates and tumor death rates due to treatment are
significant (p-adjusted < 0.001). The lowest death rate due to treatment is
associated with T4—calcipotriol, while the highest is observed in the
responders in T1—NGC.

Parameter estimation of model with cumulative drug effect
In this parameter estimation, our goal is to quantify the compounding effect
of the treatment regime by estimating a different α at each of the two
intervals of treatment administration, effectively separating the death rate
due to treatment into α1 and α2 (corresponding to the death rates caused by
the first and second administration intervals of treatment, respectively).We
estimate parameters r, α1, α2, and N0 from the experimental data, and the
results are presented in Fig. 6. The Cumulative (Two-Dose) Linear Treat-
ment Model is a modified version of the Linear Treatment Model, corre-
sponding to Eq. (1) with β = 0 and α1≠ α2. Thismodel successfully captures
the experimental data, with a CCC/PCC greater than 0.96 for all treatment
scenarios. Further, the model differentiates between responders and non-
responders with a 100% accuracy in all scenarios except T1—NGC, where
the accuracy is 83.33%.

Fig. 2 | Parameter estimation for control data to the logistic model described by
Logistic Growth Model, Eq. (2). A Presents the fitting of the model to individual
mouse tumor volumes (solid points) at three time points (days 0, 7, and 14) over the
two-week experimental period, along with their corresponding estimated curve
(dashed lines). B Compares the experimentally measured tumor volume and the
model’s median posterior value. The dashed black line in Panel B is the line of unity.

The fitted logistic model demonstrates exceptional alignment with the control data,
achieving a concordance correlation coefficient (CCC) and a Pearson correlation
coefficient (PCC) of 0.99 each, along with amean absolute percent error (MAPE) of
7.92%. As the control group received no treatment, by day 14 all mice exhibit a
significantly higher final tumor volume compared to their initial tumor volume on
day 0 (two-tailed paired t-test, p = 0.0013).

Table 1 | Parameter definitions and uniform priors for
inference of treatment arm parameters

Parameter Meaning Prior

N0 initial tumor volume Uð0; 600Þmm3

r tumor proliferation rate Uð0:03; 0:3Þ d−1

α tumor death rate by
treatment

Uð0; 0:3Þ d−1

β treatment effect decay Uð0; 2Þ
Uða;bÞ denotes a uniform distribution with bounds a and b for the prior values of the parameter.
Theseboundsare determinedusingprior predictive checkswith the control data. For thecontrol, we
assume that the proliferation rate r is uniformly distributed over (0, 0.5) d−1, the carrying capacity K
over (1, 3000) mm3, and the initial volumeN0 over (0, 600) mm3.We also note that the bounds for the
proliferation rate for the treatment arms are based on the posterior distribution of the control for that
parameter.

Table 2 | Summary of tumor growth models used in this study

Model (Eq.) β α1 α2 Notes

Logistic Growth Model (Eq. (2)) 0 0 0 Control data only

Linear Treatment Model (Eq. (3)) 0 α α Constant treatment effect

Exponential Decay Treatment
Model (Eq. (4))

β α α Decaying treatment
effect

Cumulative Linear Treatment
Model (Eq. (10))

0 α1 α2 Dose-specific treatment
effect

Each model corresponds to a special case of Eq. (1) with specific parameter settings, as
listed below.
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Due to the presence of only two treatment administration intervals in
each protocol, we assume the compounding effect occurs in a linear fashion;
that is, we model each treatment as directly proportional to the previous
treatment administration interval by a constant, defined as treatment resis-
tivity (α1α2). According to this definition, a higher treatment resistivity indicates
adecrease in impact for the seconddoseof treatment relative to thefirst (e.g., a
ratio of 2means thefirst dose is twice as effective as the second). Our findings
reveal that across all treatmentprotocols, themedian resistivity to treatment is

between 0.72 and 4.50, indicating that the first delivery of treatment is
between 0.72 and 4.5 times more effective than the second delivery of
treatment. Figure 7 presents the posterior distribution of (α1α2) for each group.
Of all treatment protocols, the responders and non-responders in treatment
protocol 1 have significantly lower resistance to treatment (median 0.72 and
1.26, respectively; p-adjusted < 0.001), while responders in T3—NGC +
calcipotriol and non-responders in T4—calcipotriol exhibit the highest
resistance to treatment (4.50 and 3.2, respectively; p-adjusted < 0.001).

Fig. 3 | Comparison between the experimentally measured tumor volume and
inference of logistic growth with a linear treatment term (Linear Treatment
Model, Eq. (3)) for each treatment protocol. Panels A–E correspond to the fol-
lowing treatment protocols: A) NGC, B) NGC+ Losartan, C) NGC + Calcipotriol,
D) Calcipotriol, and E) NGC+ Calcipotriol+ Anti-PD-L1 mAb. The dashed black
lines are the line of unity. All parameter estimations to treatment scenarios exhibit

high levels of correlation between the data and model, with all CCCs and PCCs
greater than 0.98. The average accuracy, calculated as the number of correctly
identified responders and non-responders divided by the total number of mice for
each treatment, was 98.89 ± 1.11% across all treatment scenarios. Further, theMAPE
for allscenarios is less than 10%. This suggests that the Bayesian estimation of model
parameters (r, α, and N0) effectively reproduces the experimental data.

Fig. 4 | Comparison between the experimentally measured tumor volume and
posterior predictive inference of logistic growth with a drug decay treatment
term (Exponential Decay TreatmentModel, Eq. (4)) for each treatment protocol.
Panels A–E correspond to the following treatment protocols: A) NGC, B) NGC +
Losartan, C) NGC + Calcipotriol, D) Calcipotriol, and E) NGC + Calcipotriol +
Anti-PD-L1 mAb. The dashed black lines are the line of unity. All parameter

estimations to treatment scenarios exhibit high levels of correlation between the data
and model, with all CCCs and PCCs greater than 0.95. The average accuracy was
100% across all treatment scenarios. Further, the MAPE for all scenarios is less than
10%.This suggests that the Bayesian parameter estimation ofmodel parameters (r,α,
β, and N0) effectively reproduces the experimental data.
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Model predictions
Following the framework presented in Fig. 1, the next step is to predict
tumor volumes using our selected model. We apply three prediction sce-
narios: leave-one-out predictions, mouse-specific predictions, and group-
informed, mouse-specific predictions (see Supplemental Figs. 1–3 for
detailed visualization of model predictions). The first prediction scheme
involves mouse-specific predictions, where the parameters r, α, and N0 are
estimated to each mouse using the data from days 0 and 7. Following this
parameter estimation, we predict the tumor volume at day 14. In Table 4’s
Mouse Specific Row, we compare the model predictions to the true
experimental data on day 14. The model successfully differentiates
responders and non-responders 70.50 ± 10.53% across all treatments, with
both the CCC and PCC surpassing 0.68 for every treatment condition. The
MAPE remained under 18.55% for each scenario, showing the best

Table 3 | Calculated Bayesian Information Criterion (BIC) on
parameter estimation for parameters in the Linear Treatment
Model and the Exponential Decay Treatment Model

Treatment protocol Treatment term assumption

Linear, Eq. (3) Exponential decay, Eq. (4)

T1—(NGC) 1198 1244

T2—(NGC+losartan) 640 662

T3—(NGC+calcipotriol) 540 601

T4—(calcipotriol) 246 261

T5—(NGC+calcipotriol+anti-
PD-L1)

469 555

See Fig. 1 for the list of the drugs included within each treatment protocol.

Fig. 5 | Box and whisker plots of posterior para-
meter distributions for each treatment protocol.
Specifically, parameter distributions for prolifera-
tion rate (r) and death rate due to treatment (α) are
displayed in (A) and (B), respectively. Bayesian
distributions are displayed for control (blue) and
each treatment, split into responders (green) and
non-responders (red). Responders exhibit statisti-
cally lower proliferation rates and greater death rates
due to treatments (p-adjusted < 0.001). In particular,
T2—NGC+ losartan and T3—NGC+ calcipotriol
induce the greatest death rate due to the regimes.
T4—calcipotriol performed the worst, with both the
highest tumor proliferation rate and lowest death
rate due to treatment. Note that neither T4—calci-
potriol nor T5—NGC + calcipotriol + anti-PD-L1
had any responders.

Fig. 6 | Comparison between experimentally measured tumor volume and
parameter estimation of logistic growth with two linear treatment terms (Eq.
(3)). PanelsA–E correspond to the following treatment protocols:A) NGC,B) NGC
+ Losartan, C) NGC+ Calcipotriol,D) Calcipotriol, and E) NGC+ Calcipotriol+
Anti-PD-L1mAb. Themodel now includes the effects from two separate treatments
death rates (α1 and α2) to account for the individual effects of both treatment days.

The dashed black lines are the line of unity. All treatment scenarios exhibit high
levels of correlation between the data and themodel, with all CCCs and PCCs greater
than 0.96. The average accuracy was 96.67 ± 3.33% across all treatment scenarios.
Further, the MAPE for all scenarios is less than 14%. This suggests that the Bayesian
parameter estimation of model parameters (r, α1, α2, and N0) effectively reproduces
the experimental data.
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precision for T5—NGC + calcipotriol + anti-PD-L1 with a MAPE of
11.96%, while T2—NGC + losartan had the highest error at 18.55%.
Overall, themodel underpredicts thefinalmice volume andhadhigher rates
of successfully predicting responders (12/12) rather than non-responders
(20/37). This observationmay be attributed to themodel’s parameters being
estimated only for the first 7 days, potentially indicating differences in
treatment efficacy during the second period of the treatment regimen (from
day 7 to day 14). Inspection of the raw trajectories (Supplemental Fig. 4)
shows that 39% (18/47) of tumors exhibit a reversal in the direction of
growth or shrinkage from day 0 to 7 and from day 7 to 14.

The second prediction scheme, leave-one-out predictions, work by
utilizing only the first time point and the group-informed parameter sam-
ples. Through this scheme, the model can differentiate between responders
and non-responders with an average accuracy 72.83 ± 16.10% across all
treatment protocols. Additionally, for all cases except for T2—NGC+
losartan (NGCBackbone with Losartan), both the CCC and PCC are above
0.7. The MAPE remains below 33% across all scenarios, with the smallest
percent error observed in T5—NGC+ calcipotriol+ anti-PD-L1
(MAPE = 14.75%) and the highest in T2—NGC+ losartan
(MAPE = 32.22%).

Our final prediction scenario, the group-based, mouse-specific pre-
dictionmethod, builds upon themouse-specificpredictionby incorporating

into the model the diminishing effectiveness of repeated treatments, as
illustrated in Fig. 7. Similar to the first prediction scheme, we calculate
group-averaged resistance to treatment (α1α2) within each treatment protocol.
We use this value to adjust the posterior distribution of the individual
mouse’s α1 and estimate α2. This is then integrated as the new predicted
death rate of our second treatment dose to predict treatment effects during
the second day of treatment. Similar to our mouse-specific prediction
scheme, the parameters are estimated using the tumor volume data from
days 0 to 7, and the model then predicts the final tumor volume on day 14.
The outcomes of our group-based,mouse-specific predictions are presented
in thefinal rowofTable 4. This integratedmethod successfully distinguishes
between treatment responders and non-responders, achieving an average
accuracy of 82.17 ± 7.53% across all treatment scenarios. Moreover, the
prediction model attains a CCC/PCC of over 0.9 for T2—NGC+losartan,
T3—NGC+calcipotriol, and T4—calcipotriol, accurately reflecting the
actual experimental outcomes for these groups. For T1—NGC and T5—
NGC+calcipotriol+anti-PD-L1, the model achieves a CCC/PCC of over
0.72. Lastly, the MAPE remains below 15% for all scenarios, with the best
performance observed inT4—calcipotriol (7.29%) and the least favorable in
T1—NGC (14.32%).

Discussion
We developed two mathematical models, one with linear treatment effects
(i.e., assuming β = 0) and one with exponentially decaying treatment effects
(with β estimated), to characterize and predict the response of pancreatic
tumors to six combinations of chemotherapy, stromal-targeting drugs, and
immunotherapy. As both models are identical in the absence of treatment
(representing logistic tumor growth), we first estimated parameters of the
control group, achieving a CCC of 0.99 (Fig. 2), and used the carrying
capacity value obtainedherewhen estimating parameters of the twomodels.
Although a fully Bayesian approach using an informative prior for the
carrying capacity (K) would be more consistent with a comprehensive
uncertainty quantification framework, we opted to fix K at the value esti-
mated from the control group. This decision was motivated by the limited
number of datapoints per mouse, which made reliable parameter iden-
tifiability challenging when K was treated as a free parameter in each
treatment-specific scenario. We recognize that, in principle, a tightly con-
centrated prior—derived from the posterior distribution of the control
group—could be implemented in the treatment group analyses to propagate
uncertainty in K. In future work, and with richer datasets, adopting such a
Bayesian strategy might offer additional insights into the robustness of the
model predictions. The parameter estimation of the linearmodel provided a
CCC of 0.99 ± 0.01 across the five treatment groups (Fig. 3), while the
exponentially decayingmodel resulted in aCCCof 0.98 ± 0.02 (Fig. 4). After
parameter estimation, the BIC selected the linear treatment model as the

Fig. 7 | Box and whisker plots indicating the range of resistivity values encoun-
tered across distinct treatment scenarios. Each treatment scenario’s posterior
distribution for resistivity to treatment, split into responders (green) and non-
responders (red), is presented. Themagnitude of treatment resistivity represents the
ratio of the effect of thefirst dose (α1) to the effect of the seconddose (α2); i.e., (

α1
α2
). For

all groups, the interquartile range is between 1 and 10, indicating a significantly lower
efficacy of the second dose compared to the first. Statistical analysis using the
Bonferroni-adjusted Mann-Whitney U test shows that the differences in treatment
resistivity between groups are significant (p-adjusted < 0.001). Out of all scenarios,
T1—NGC has the lowest resistivity to treatment.

Table 4 | Evaluation of performance metrics for prediction methods

Approach / Metric T1 T2 T3 T4 T5 Average

Mouse-Specific Accuracy (%) 55.56 90.00 44.44 100.00 62.50 70.50

CCC 0.72 0.77 0.79 0.79 0.68 0.75

PCC 0.74 0.82 0.83 0.93 0.72 0.81

MAPE (%) 14.51 18.55 13.84 11.78 11.96 14.13

Leave-One-Out Accuracy (%) 77.78 10.00 88.89 100.00 87.50 72.83

CCC 0.70 0.54 0.79 0.92 0.73 0.74

PCC 0.73 0.56 0.87 0.92 0.73 0.76

MAPE (%) 27.75 32.72 19.41 17.24 14.46 22.32

Group-Informed Accuracy (%) 55.56 90.00 77.78 100.00 87.50 82.17

CCC 0.72 0.92 0.90 0.92 0.77 0.85

PCC 0.75 0.92 0.91 0.97 0.78 0.87

MAPE (%) 14.23 11.88 9.61 7.39 9.50 10.52

Full prediction results by scenario are depicted visually in Supplemental Figs. 1–3.
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most parsimonious (Table 3). This model demonstrated a high degree of
accuracy in fitting the in vivo data, effectively capturing the complex
interactions between tumor cells, stromal components, and immune cells,
allowing for robust predictions of tumor growth and regression.

To leverage published biological knowledge while remaining trans-
parent to regulators and clinicians, we estimate all model parameters via
Bayesian MCMC using informative priors—thereby avoiding biologically
implausible fits and fully propagating uncertainty—and then assess model-
fit and hypothesis tests with standard frequentist diagnostics (e.g., p-values,
BIC). This “best-of-both-worlds” strategy is well established in oncology
and aligns with current FDA/EMA guidance on preclinical-to-clinical
translation, ensuring both rigorous uncertainty quantification and familiar
error-control for our translational audience23–28.Moreover, our ICCandCV
analyses confirm that initial burden, proliferation rate, and treatment-effect
parameters exhibit high inter-subject variability, whereas the noise term
does not—further justifying individualized parameter estimation to capture
true tumor heterogeneity (Supplemental Table 1).

According to the results from the sensitivity analysis (Supplemental
Fig. 5), in themodel with exponentially decaying treatment effects, both the
death rate due to treatment, α, and the decay rate of the treatment effect, β,
have a negligible effect on the tumor volume compared to other parameters,
such as the carrying capacity and proliferation rate. The parameter ranges
used in the sensitivity analysis were selected to capture the full range of
possible outcomes, from scenarios where the treatment has no effect on the
tumor to those where the tumor is eliminated. Even within these wide
parameter ranges, α and β remained less influential on the final tumor
volume. However, in the linear treatment model, where the effect of treat-
mentdoesnotdiminishover time,αbecomes themost influential parameter
in determining thefinal tumor volume. This outcome is expected, given that
the range of α used in bothmodels is the same, and the inclusion of decay in
the exponential model reduces the impact of α on tumor volume.However,
we note that with the addition of an α-adjusted prior for the exponential
model, the impact of the α term becomes significantly more influential in
this model.

Our approach builds on the familiar logistic growth assumption of
common tumor growth inhibition models (such as Claret et al.29) but
introduces several key innovations. Unlike traditional tumor growth inhi-
bition models, our formulation is treatment-agnostic, capturing overall
tumor response without explicit PK/PD modeling of individual agents.
Additionally, it explicitly accounts for multiple treatment doses—allowing
for constant or decaying effects and differentiating successive doses with
separate parameters—while also incorporating a treatment resistivitymetric
(α1α2) to assess cumulative treatment efficacy. These enhancements offer a
more flexible framework for simulating tumor trajectories and under-
standing combination therapy dynamics in preclinical settings.

We utilized Monte Carlo Markov Chains to estimate parameter pos-
terior distributions for each individual mouse across all groups in a mixed-
effects approach. Treatment protocols of T1—NGC, T4—calcipotriol, and
T5—NGC+ calcipotriol+ anti-PD-L1 all expressed a higher proliferation
rate than the control. In our model, the effective proliferation rate (r) not
only captures intrinsic cell division, but also the net effect of various bio-
logical processes, including those influenced by treatment. The higher
proliferation rates observed in T1—NGC (chemo cocktail), T4—calcipo-
triol (stromal-targeting drug), and T5—NGC+calcipotriol+anti-PD-L1
(chemo+stromal+immune) are not necessarily contradictory to the
intended cytostatic or cytotoxic effects of these treatments. For example, it is
apparent from the tumor progression data itself that mice in T4—calcipo-
triol experience more aggressive tumor growth than those in the control
group, with the tumor volume increasing on average by 458% over 14 days
compared to a 232% increase in the control group (Supplemental Fig. 4).
This difference naturally leads to a higher proliferation rate in the model.
Although no chemotherapy is administered in this protocol, the stromal-
targeting drug can disrupt the tumor microenvironment. This disruption
may eliminate subpopulations of cancer-associated fibroblasts that (under
certain conditions) actually act to restrain tumor growth. That is, by

removing these inhibitory stromal components, the drugmay actually result
in a more proliferative tumor phenotype30,31.

Next, we employed the linear model to predict tumor volume at the
third time point using three different prediction scenarios: leave-one-out
prediction, mouse-specific prediction, and a hybrid group-informed,
mouse-specific prediction. Of these methods, the best-performing method
was the hybrid method, with an average CCC of 0.85 ± 0.09. This method
was able to successfully differentiate between treatment responders and
non-responders by propagating the model forward with an average accu-
racy of 81.26 ± 19.03% across all treatment scenarios. In more detail, the
leave-one-out method correctly predicted only 1 out of 12 responders and
33 out of 37 non-responders, while the mouse-specific method performed
better inpredicting responders (12/12) but only correctly identified20outof
37 non-responders. The hybrid group-informed, mouse-specific prediction
method was able to identify 11 out of 12 responders and 26 out of 37 non-
responders, highlighting that the effect of the treatment indeed differs with
subsequent administrations. In thehybridmethod, by splittingup the effects
of the treatment based on individual time points (i.e., splitting α into α1 and
α2),we isolate and evaluate the effect of combining treatments. Toobtain the
median resistivity (i.e., α1α2) we first estimate parameters of the model using
the entire dataset (Fig. 6), and then apply this median value when making
mouse-specific predictions to determine the individual α2 for each mouse.
Physiologically, this enables the development of a preliminary representa-
tion of the effectiveness of an individual dosing event (i.e., a specific
administration interval of treatment) within the context of a larger treat-
ment regimen. Resistance to treatment, as developed in our method,
describes a progressive change in the treatment effect over multiple doses,
which can manifest as either a relative reduction or an increase. Combi-
nation therapies involving stromal-targeting drugs display a higher level of
resistivity to treatment than T1—NGC (Fig. 7). Since our model does not
distinguish tumor volume between cancer cells and stroma, we hypothesize
that the observed increase in resistivitymay (in part) be attributed to stroma
depletion caused by these drugs in the first treatment interval rather than a
decrease in cancer cell count. Notably, our analysis indicates that the first
delivery of treatment is between 0.72 and 4.5 times more effective than the
second delivery of treatment. This indicates that there is a diverse level of
resistance to treatment, dependent on the specific cocktail of therapies.
Moreover, reverse resistance (i.e., when resistivity is less than 1.0) may be
driven by several biological mechanisms such as stress priming32, delayed
drug activation33, immune modulation34, tumor microenvironment
remodeling35, epigenetic reprogramming36, or timing-dependent biological
favorability37. Each of these mechanisms could contribute to the variability
in treatment efficacy.

Our study contributes to the growing field of mathematical modeling
in pancreatic cancer by developing a treatment-agnostic model that inte-
grates multiple chemotherapy and stromal-targeting protocols and per-
forms detailed sensitivity analyses to predict tumor response. This approach
builds on theworkofHuet al.21,whoemployed a logistic growthassumption
in their model of pancreatic cancer dynamics to explore the impact of
immunotherapy on tumor progression. While Hu et al. focused on the
interactions between tumor cells and the immune system, our model
extends these ideas by evaluating the combined effects of various treatment
protocols on tumor dynamics, including chemotherapy and stromal-
targeting therapies. Additionally, our work complements that of Bratus
et al.20, who explored the evolutionary dynamics of pancreatic cancer cells
with a focus on genetic mutations and immune interactions. Whereas their
model provides insights into tumor progression through genetic evolution,
our model can predict treatment outcomes and generate hypotheses for
guiding therapeutic strategies and exploring new combination therapies
within the boundaries of the available data, butmaybe limited in its ability to
extrapolate to scenarios involving significant changes in drug doses or
schedules. Furthermore, in response to the gapshighlightedbyDogra et al.17,
who pointed out the scarcity of mathematical models in pancreatic cancer,
our study addresses the need for flexible models that can be adapted to
different clinical scenarios. Lastly, while Chen et al.38 developed a PK/PD
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model focusing on themechanistic behavior of gemcitabine, our treatment-
agnostic approach allows for broader application across various therapeutic
combinations, offering a framework for understanding how different
treatment strategies can influence pancreatic cancer outcomes.

While ourmodel shows accuracy and practical utility, there are several
opportunities for improvement. First, our study modeled all chemotherapy
drugs as a single entity, potentially overlooking specific interactions and
efficacies of individual drugs. Future work should extend the model to
account for the specific treatment protocols of each drug. For instance, in a
previous study, we modeled six treatment protocols with two drugs, care-
fully estimating parameters of each usingmultiplemeasurements to capture
individual and combined drug effects on breast cancer39. However, in this
study, we chose a treatment-agnostic approach due to limited data points
(three) and sought to assess whether the model could still capture overall
tumor development trends without detailed protocol-specific information.
Therapies for pancreatic cancer exhibit significant variation, particularly in
theirmechanisms of action andmodes of application40. Thus,modifications
to themathematical framework—suchas addingor removingparameters or
adjusting the prior Bayesian distributions of existing parameters based on
the specific mechanisms of each therapy—may improve model fit and
enhance predictive power.Other frameworks for parameter estimationmay
be considered in future studies. Our current approach estimates the pro-
liferation rate (r) on a mouse-by-mouse basis to capture inter-individual
heterogeneity; this necessarily limits the sharing of information across
treatment groups. Another area for improvement is the inclusion of phar-
macokinetics in the model to account for drug delivery and distribution,
which could provide deeper insights into treatment dynamics (as demon-
strated in our previous work in breast cancer41). Even though post-
processing of the parameter estimation results—by separating the para-
meter estimation of responders and non-responders and comparing the
distributions of the parameters—revealed that non-responders tend to have
higher proliferation rates and lower death rates due to treatment (Fig. 5),
these differences are not accounted for in our current model. Incorporating
a data assimilation approach, as demonstrated in ref. 42, could improve our
model’s ability to dynamically update predictions based on new data. With
the data assimilation approach, our model could be enhanced by differ-
entiating between responders and non-responders earlier in the treatment
process, thereby adapting the model parameters in real time to reflect these
differences in proliferation and treatment response rates. This would allow
for more personalized predictions and potentially more effective treatment
strategies, ultimately improving the model’s predictive accuracy. Improve-
ments in themodel would, of course, require an increase in the amount and
kind of data required to estimate parameters of the resulting model.
Increasing the number of mice per treatment group would provide more
responders and non-responders, aiding in better differentiation between
these populations. It is important to note that in T4—calcipotriol and T5—
NGC+calcipotriol+ anti-PD-L1, every mouse is a responder; however,
there are only four mice in T4—calcipotriol and eight mice in T5—
NGC+ calcipotriol+ anti-PD-L1. Increasing the sample size in these
groups would offer a more comprehensive understanding of the treatment
effects. Furthermore, increasing the number of longitudinal data points
beyond the three measurements currently available would improve the
model’s predictive power and reliability.

Our mathematical model reproduces the overall dynamics of tumor
progression and regression observed in a GEMmodel of pancreatic cancer
treated with chemotherapies (cisplatin, paclitaxel, and gemcitabine) admi-
nistered with or without stromal-targeting drugs (calcipotriol and losartan)
and an immune checkpoint inhibitor (anti-PD-L1). Additionally, themodel
successfully predicts tumor volumes through several prediction schemes:
mouse-specific predictions (CCC = 0.75 ± 0.05), leave-one-out predictions
(CCC= 0.74 ± 0.14), and mouse-specific group-informed predictions
(CCC= 0.85 ± 0.09). This work provides a rigorous mathematical frame-
work for characterizing combination therapies for pancreatic cancer, par-
ticularly highlighting the interactions between chemotherapies, stromal-
targeting drugs, and immunotherapy. To the best of our knowledge, this is

the first mathematical model applied to pancreatic cancer that simulta-
neously (a) handles a six-drug combination spanning cytotoxic, stromal-
targeting and immune-checkpoint agents, (b) supports principled model
selection (via BIC) between constant-and decaying-effect hypotheses, and
(c) demonstrates out-of-sample predictive accuracy (CCC ≈ 0.85) for
responder classification. By accurately predicting responders and non-
responders, the model can help tailor treatment strategies to individual
subjects, potentially improving therapeutic outcomes. Additionally, the
model’s ability to simulate various treatment regimens offers a valuable tool
for exploring new combination therapies and optimizing existing ones.

Methods
Experimental design
All animal procedures were approved by the institutional animal care and
use committee (IACUC) of the University of Pennsylvania. The experi-
mental procedures for acquiring the tumor data are detailed more thor-
oughly in43.

The mouse model employed for these studies was a genetically engi-
neered model (GEM) of pancreatic ductal carcinoma
(KrasLSL�G12D ; Trp53LSL�R172H ; Pdx1� Cre, usually referred to as KPC
mice44–46) bred at the Mouse Hospital of Abramson Cancer Center of the
University of Pennsylvania. Notably, this KPC mouse model is immune
competent, retaining an intact immune system that is essential formodeling
tumor-immune interactions47. Both the male and female KPC mice were
enrolled. Once their tumor reached 50–150mm3 estimated by MRI, mice
were randomized and assigned to one of the treatment groups
described below.

The treatment employed a chemotherapy backbone collectively
referred to as NGC, consisting of Nab-paclitaxel (33mg/kg), gemcitabine
(266mg/kg), and cisplatin (8mg/kg for males and 4mg/kg for females),
stroma-directed drugs including calcipotriol (60 μg/kg) and losartan
(30mg/kg) and anti-PD-L1 mAb (200 μg/mouse). For the Nab-paclitaxel,
murine albumin was used to develop murine albumin paclitaxel
nanoparticles48. Six treatment groups were studied: control (untreated,
n = 8),NGC(n = 18),NGC+ losartan (n = 10),NGC+ calcipotriol (n = 9),
calcipotriol (n = 4), and NGC+ calcipotriol+ immunotherapy (anti-PD-
L1 mAb; n = 8). All drugs were administered via intraperitoneal injection
under isoflurane anesthesia, and all mice were euthanized by cervical dis-
location under anesthesia on day 14 following MR imaging as described in
ref. 43. The dosing schedule for each drug is described in Fig. 8.

To estimate the tumor volume, the tumor boundary was manually
drawn on T2W images using the ImageJ software to generate tumor ROIs,
and the areas from all ROIs was summed and the result was multiplied by
the slice thickness. Tumor volumewas assessed on day 0 prior to treatment,
as well as on days 7 and 14 following treatment (Supplemental Fig. 4). Mice
were sacrificed if a tumor measurement exceeded 1000mm3.

Mathematical models
To characterize tumor dynamics in response to targeted treatment, we
propose the parameter estimation and prediction framework illustrated in
Fig. 1.We begin by defining a set of ODEs tomodel the temporal dynamics
of pancreatic tumor volume in response to various chemo- and targeted
therapies. In particular, the model accounts for tumor proliferation, drug
decay rate, tumor death rate, tumor carrying capacity, and initial tumor
volume. Then, we compute a sensitivity analysis to identify the most
important parameters (see visualization in Supplementary Figs. 5 and 6).
Following this, we estimate the models’ parameters using in vivo experi-
mental data using a Bayesian method to account for uncertainties in both
themodel and data. To compare the proposedmodels, we calculate the BIC
and select the best model to undergo prediction analysis. Predictions are
conducted in three separate scenarios: mouse-specific predictions, leave-
one-out predictions, and mouse-specific group-informed predictions. To
benchmark the effectiveness of thesemodels as predictors, we evaluate their
ability to successfully predict whether an individual mouse will become a
treatment responder or not. We define responders as mice whose tumor
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volume at the end of the experimental regime is lower than their tumor
volume at the start of treatment, and nonresponders aremice that do not fit
this criterion. In this subsection, we will derive the models, while the other
steps will be presented in subsequent subsections.

In our model, we assume the tumor volume at time t, N(t) increases
logistically at a proliferation rate, r, up to a carrying capacity ofK (seeTable 1
for a listing of all model parameters):

dN
dt

¼ rN 1� N
K

� �
ð2Þ

To characterize the effect of treatment in our model, we introduce a
compounding linear term, with an intensity of α to form our Linear
Treatment Model:

dN
dt

¼ rN 1� N
K

� �
� Nα

Xn
i¼1

Hðt � τiÞ ð3Þ

where τi is the timeof the start of the ith treatment interval,α is thedeath rate
due to treatment, t is the time post initial measurement (in days), and H is
theHeaviside function. In this treatment-agnosticmodel, we donot account
for each specific day the treatment was delivered. Instead, we focus on the
compounding effects of the treatment between key time points; specifically,
between the first and second measurements (t1 and t2, respectively) and
between the second and third measurements (t2 and t3, respectively). Thus,
we add the effect of the treatment at τ1 = t1 and τ2 = t2. Our Exponential
Decay TreatmentModel (Eq. (4)) extends the Linear TreatmentModel (Eq.
(3)), by incorporating a drugdecayparameter,β, which allows the treatment
term to exponentially decay mimicking the natural loss of drug
concentration within the mice:

dN
dt

¼ rN 1� N
K

� �
� Nα

Xn
i¼1

e�βðt�τiÞHðt � τiÞ ð4Þ

Bayesian method for parameter estimation
The in vivo longitudinal experimental data are utilized to estimate the
parameters in ourmodels (Eqs. (2) - (4)). To address the challenges posedby
modest sample sizes and to rigorously account for parameter uncertainty,
we have adopted a Bayesian method for parameter estimation. This prob-
abilistic approach integrates prior information from control experiments
and previous studies with our observed treatment data, thereby enhancing
the robustness and interpretability of our parameter estimates (a similar
approach has been taken in previous studies39,49,50). By explicitly quantifying
uncertainties inboth themodel and the experimentalmeasurements,we can
generate reliable predictions of tumor dynamics under different therapeutic
interventions. This method also strengthens our estimation process and
supports the translational potential of our model by providing a rigorous
basis for personalized treatment predictions. To implement thismethod, we

define a log-likelihood function as

ln πðDjθÞð Þ ¼ � 1
2

XNT

i¼1

ln 2πð Þ þ ln σ2
� � þ Di � YiðθÞ

� �2
σ2

" #
; ð5Þ

where i is time point,NT is the number of time points,D is the experimental
data, θ is the vector of estimatedmodel parameters, π(D∣θ) is the likelihood
that the data is observed for a set of parameters. To quantitatively differ-
entiate between the performances of the models given by Eqs. (2), (3), and
(4), we calculate the BIC22:

BIC ¼ Z lnðnÞ � 2 lnðbLÞ; ð6Þ

whereZ is the number of parameters estimated, n is the number of observed
values, and L̂ is themaximumvalue of the log likelihood.Themodelwith the
lowest BIC value represents themodel that provides themost parsimonious
description of the data, as it captures the highest likelihood of parameter
value presence with a small penalty for the number of parameters, thereby
prioritizing reductions in model complexity.

Our hierarchical framework allows for individualized variation for
some parameters, making it conceptually similar to a mixed effects model.
We note that certain parameters (e.g., proliferation rate, r, and initial tumor
volume,N0) are estimated at the individual (mouse-specific) level, some are
estimated at the treatment arm level (e.g., the decay of the drug, β), while
others (e.g., carrying capacity, K) are estimated at the population level.

Bayesian prior selection and prior predictive checks
In our Bayesian parameter estimation method, careful selection of prior dis-
tributions for the model parameters is essential to obtain reliable posterior
inferences. To assess the suitability of these priors,weperformprior predictive
checks, a simulation-based diagnostic that examines whether data simulated
solely from the prior distributions are plausible in the context of our observed
data. Let θ denote the vector ofmodel parameters with prior distribution p(θ)
and let ydenote theobserveddata.Thepriorpredictivedistribution is givenby

pðyÞ ¼
Z

pðyjθÞ pðθÞ dθ; ð7Þ

where p(y∣θ) is the likelihood defined by our tumor growth model. In
practice, we approximate this integral via Monte Carlo simulation by
drawingN samples fθðiÞgNi¼1 from the prior and, for each sample, simulating
the corresponding data as

yðiÞ ¼ f ðt; θðiÞÞ; ð8Þ

where f(t; θ) is the solution to the ordinary differential equation (either Eq.
(3)orEq. (4)). For each individualmouse,multiple simulated trajectories are
generated using parameters sampled from the specified uniform priors (for
example, r � Uðrmin; rmaxÞ, N0 � Uð0; 600Þ, and α � Uð0; amaxÞ). A

Fig. 8 | Depiction of the treatment regimes tested
in the murine model of pancreatic cancer.Mice
were treated for 14 days. Separate treatment com-
ponents, namely NGC chemotherapy (red), anti-
PD-L1 immunotherapy (yellow), and losartan
(beige)/calcipotriol (green) stromal-targeting
therapies, were included across five different treat-
ment protocols (excluding control). Days with bol-
ded time points represent tumor sizemeasurements.
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coverage metric is calculated by determining the percentage of observed
data points that lie within the central 95% predictive interval. This coverage
diagnostic allows us to demonstrate that we are not over-restricting our
prior domain. Inour implementation, priorpredictive checks areperformed
separately for the control group and for each of the five treatment arms. The
five treatment arms are computed for both the LinearTreatmentModel and
the Exponential Decay Treatment Model. This comprehensive approach
validates our choice of priors and ensures that our prior assumptions are
capable of generating biologically realistic tumor dynamics prior to
incorporating the data, thereby providing a solid foundation for subsequent
Bayesian parameter estimation and model fitting.

Sensitivity analysis
Weutilize the Sobol method for performing a sensitivity analysis51, which is
a variance-basedmeasure that determines the relative effect of independent
variableson thequantity of interest (e.g., tumorvolume,N(t)).Weapply this
method via a sampling method described by Saltelli52–54, chosen for its
efficiency in achieving convergence with a lower sample size. This appli-
cation to our models is now described in detail (see Supplemental Fig. 7 for
visual representation). LetM(θ) represent a model defined by Z parameters
θ, which reside in the parameter spaceΘ � RZ . We began by constructing
matrices A and B by randomly sampling from a uniform distribution
representing the uncertainty range of each parameter space.

MatricesA andB are of size L×Z, where L is the sample size length,
and each row represents a unique set of parameters from the uncertainty
space. Next, we developZmatrices,AðzÞ

B , z = 1, 2, 3,…,Z and all columns
are duplicated from A except the zth column, which is copied from the
zth column ofB. Themodel is then solved for each row ofmatricesA and
AðzÞ
B with the outputs stored in YA and Y ðzÞ

AB, respectively, resulting in
only L ⋅ (Z + 1) model evaluations. These outputs are used to evaluate
STz

, the total sensitivity index, for each parameter, z. We approximate
the total sensitivity index for each parameter using an estimator defined
by Saltelli54:

STz
� 1

2L

XN
j¼1

YA

� �
j � Y zð Þ

AB

� �
j

� �2

ð9Þ

For dynamic processes (e.g., tumor growth), this form of sensitivity
analysis allows us to evaluate the relative importance of individual model
parameters at each time step. Thus, we can observe how the importance of
each parameter changes over time to identify and eliminate unnecessary
model parameters, thereby reducing model complexity. The sensitivity
index is an approximation because it relies on afinite numberof samples (L)
to estimate the contribution of eachparameter to the output variance.While
this method provides a good estimate, the accuracy of the index improves
with increasing L.

To facilitate a direct comparison of sensitivity indices between the
linear and exponential treatment-response models, it is necessary to expose
both systems to the same total “treatment pressure” over each dosing
interval Δt. In other words, we develop an adjustment to the sensitivity
analysis method so that the parameter α represents similar physical quan-
tities across the sensitivity analyses. In the linear model, the instantaneous
death rate due to treatment is constant, α, so the cumulative effect over an
interval Δt is

Elinear ¼ αΔt:

In contrast, the exponential-decay model assumes that the instantaneous
death rate decays at rate β, giving a time-varying rate α e−βt. The cumulative
effect over Δt is then

Eexpo ¼
Z Δt

0
α e�βτ dτ ¼ α

β
1� e�βΔt
� �

:

To compare these models on equal footing, we choose a scaling factor

s ¼ βΔt
1� e�βΔt

such that

s Eexpo ¼ Elinear ) s
α

β
1� e�βΔt
� � ¼ αΔt:

We therefore define an adjusted treatment parameter

αadjusted ¼ s α ¼ βΔt
1� e�βΔt

α;

and throughout our sensitivity analysis we setΔt = 7 days. In this way, both
models receive the same total treatment effect each week, ensuring that
differences in sensitivity indices arise solely from the distinct functional
forms of treatment response rather than different physiological meanings
for the treatment intensity parameter.

Model predictions
We develop three separate prediction scenarios to test the translational
potential of our model in a clinical application. In the first scenario, we
estimate parameters for thefirst two timepoints of the available data for each
mouse in each treatment group and then propagate the model solution
forward topredict the tumorvolumeat the thirdandfinal timepoint for each
mouse on an individual basis. The accuracy of the prediction is then com-
pared to the experimental data via the concordance correlation coefficient
(CCC). This mimics a clinical scenario in which we predict future tumor
growth based on previous screenings without using heterogenous popula-
tion data55–57. In the second scenario, we utilize a leave-one-out method and
leverage population information to predict tumor volumes of individual
mice in each treatment group. We began by constructing M matrices, Cm

withm = 1, 2, 3…M, whereM is the number of mice in a treatment group.
Cm is defined by the observed tumor volume for the remainingM− 1 mice
(i.e., excluding mouse m) in the treatment group at each time point. Cm’s
rows are represented by differentmice in the group, whereas the columns of
this matrix represent time points of tumor volume measurement. All
matrices Cm are then used to run inference on the model using a Bayesian
method. Then, to predict the tumor volume of a specific mouse, m, we
randomly sample 1000 sets of parameters from the output space of the
Bayesian parameter estimation (i.e., the posterior distribution) ofCm to run
our forwardmodel. Thus, thismethoduses a set of 1000parameters from the
treatment group and the initial tumor volume to characterize a Bayesian
distribution for future tumor volumes; namely, the tumor volumes at t2 and
t3, where ti represents the time of the ith tumor volume measurement.

For scenario 3, we develop a hybrid of the mouse-specific and leave-
one-out predictions.We began by splitting the drug effect into two separate
linear summation terms, each representing the individual treatment doses
administered on different days. This approach allows us to introduce a new
correction factor for tumor-specific parameters and to account for the
possibility that the tumor’s response to treatment may change after the first
dose. For example, even if thedoses are the sameonboth treatment days, the
effect of the treatment might differ due to factors such as the tumor
developing some level of resistance or other changes in its response over
time. To account for this phenomenon, we modify the Linear Treatment
Model as follows:

dN
dt

¼ rN 1� N
K

� �
� Nα1Hðt � τ1Þ � Nα2Hðt � τ2Þ ð10Þ

where α1 is the death rate due to treatment received between times t1 and t2,
andα2 is thedeath rate due to the treatment receivedbetween times t2 and t3.
As described in Fig. 8, we have five treatment combinations, and this same
model is used for each treatment. Therefore, the parameters α1 and α2 can
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represent different treatments and combinations, with their values being
estimated to match each specific treatment protocol. This allows us to
develop relationships between treatment administration intervals. To
account for the effect of serial doses, we make the simplifying assumption
thatα2 is proportional toα1,meaningwe can describe α2 as a linear function
of α1. The proportionality betweenα2 and α1, whichwe refer to as treatment
resistance, is computed as the average ratio of α1 to α2 across the group of
mice. To implement this concept of treatment resistance and predict the
final tumor volume for mouse m, we begin by estimating parameters of the
model given by Cumulative (Two-Dose) Linear Treatment Model, Eq. (10)
to experimental data from every othermouse in the treatment group (i.e.,M
− 1), thereby determining the values of α1 and α2 for thosemice. Formouse
m, we then estimate only α1 and use the treatment resistance ratio from the
group to estimate α2 (which has not been directly estimated for mousem).
This group-derived proportionality is applied to adjustα2 before continuing
to forward propagate the model. Thus, for a single mouse, we combine our
mouse-specific parameter estimation with the group-derived proportion-
ality of compounding treatments to derive a prediction for the final tumor
volume. Through this method, we effectively combine known group
information regarding the effect of serial dosage while still maintaining
mouse-specific modeling of tumors to create predictions.

Numerical implementation
Eqs. (2) - (4) are implemented in Python 3.11.9, and the parameter
estimation framework is illustrated in Fig. 1. The computation of the
posterior density is performed through a parallel, adaptive, multilevel
Markov Chain Monte Carlo sampling technique, available through the
emcee 3.1.6 library58. We utilize 2n chains, where n is the parameter
count, and run the simulation until we have 20,000 accepted samples per
chain. The ODEs are solved using a fourth-order Runge-Kutta method.
Detailed information on the code, including instructions on how to run
it and the necessary dependencies, is available at https://github.com/
krithikvishwanath.

Statistics and reproducibility
Statistical analysis between Bayesian treatment groups is calculated using a
two-tailedMann-WhitneyU test on tumor volumes. To do so, we assert that
groups are independent of eachother per experimental protocol. To evaluate
the effects of growth between initial and final tumor volumes of a particular
group (i.e., to demonstrate that the tumor is indeed growing in the control),
we utilize a paired, two-tailed t-test. To assess statistical significance, a
Bonferroni-adjusted p-value was used to maintain a 5% probability of a
Type-I error. To quantify inter-individual variability in our calibrated
parameters, we computed intra-class correlation coefficients (ICC) and
coefficients of variation (CV) and report the results in Supplemental Table 1.

Data availability
The datasets generated and/or analyzed during the current study are
available upon request to the corresponding author. Our code is shared
publicly on GitHub upon publication of this work and can be found at
https://github.com/krithikvishwanath/NGC_Therapy_Modeling.

Code availability
Our code is shared publicly on GitHub upon publication of this work and
can be found at https://github.com/krithikvishwanath/NGC_Therapy_
Modeling.
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