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Analysis of virus-like particles (VLPs) is an essential task in optimizing their implementation as vaccine
antigens for virus-initiated diseases. Interrogating VLP collections for elasticity by probing with a rigid
atomic forcemicroscopy (AFM) tip is a potential method for determining VLPmorphological changes.
During VLP morphological change, it is not expected that all VLPs would be in the same state. This
leads to the open question of whether VLPs may change in a continuous or stepwise fashion. For
continuous change, the statistical distribution of observed VLP properties would be expected as a
single distribution, while stepwise change would lead to a multimodal distribution of properties. This
study presents the application of a Gaussian mixture model (GMM), fit by the Expectation-
Maximization (EM) algorithm, to identify different states of VLP morphological change observed by
AFM imaging.

Virus-likeparticles (VLPs) are self-assembled capsids formedof theproteins
within the structure of a respective virus. VLPs are subunit conglomerations
linked in a regular and repetitive fashion to form highly related, if not
identical, overall structure to their parent virus1,2. Furthermore, VLPs are
self-assembled in their host cell, and that samemechanismcanbeutilized ex
vivo1,3. Therefore, VLPs produce an immune response in the human body
capable of providing future protection from related viruses. Importantly,
VLPs contain no DNA and therefore cannot reproduce or cause true
infection, making them an excellent analog for the production of high
immune response vaccines, as well as a significantly safer alternative for
vaccine production compared to other methods2,4. VLPs can be key com-
ponents of a drug substance, but are typically only an intermediate in the
overall drug product. Further, many VLPs useful for vaccine production
have been identified2,5–8, or are under investigation, and VLP-based vaccine
production appears to present a fruitful option for the future of preventative
vaccination science9,10.

Thephysical andmorphological properties of anyVLP is of paramount
importance because their structure may directly control and facilitate their
biological response. If the structure changes, the VLP may no longer
faithfully induce antibodies to the parent virus and therefore the vaccine
may potentially lose effectiveness4. Studying the physical characteristics of
VLPs is required for better understanding the full effectiveness and

production of VLP-based vaccinations. Of current interest is the human
papillomavirus (HPV) vaccine based on the usage ofHPVVLPsas antigens.
HPV vaccines rely on the coverage from various genotypes, including types
6, 11, 16, 18, 31, 33, 45, 52, and58,which in turnare assembled and stabilized
by disulfide linkages of L1 proteins11–13. Specifically, temperature and pH
play a large role in the stability of L1 disulfide linkages and how theVLPwill
self-assemble11,14,15. Further understanding of the VLP morphological
changing processes can provide needed insight for the advancement and
improvement of VLP manufacturing and VLP-based vaccine production.

Common spectroscopic techniques are spatially limited to the dif-
fraction limit of the excitation wavelength16, making individual study of the
~50 nanometer-sized HPV VLPs impractical by confocal microscopy.
Several imaging methods exist that can be used for analysis of VLPs,
including scanning electron microscopy (SEM)17, transmission electron
microscopy (TEM)18,19, and cryo-electronmicroscopy (cryo-EM)20,21.While
electron microscopy methods have some unique advantages, atomic force
microscopy (AFM) allows for high spatial resolution, direct observation of
individual particles, rapid analysis with no sample preparation, low analysis
cost, and potential combination with other molecular-probing tools (i.e.,
AFM with spectroscopic techniques). AFM can be used to not only probe
the size and morphology of the VLPs22,23, but also their elasticity15,24. Since
the properties of the viral capsid are tied to the structure, monitoring
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morphology or elasticity changes can give insight into molecular interac-
tions. Easily identifiable structural changes in the VLPs may potentially
indicate deterioration25,26. AFM can be used for nano-indentations of the
capsid surface, which may help elucidate further information of capsid
stability, formation mechanism, and viral uncoating24,27. Nano-scale mod-
ulations of the viral capsid may also be used as a predictor for VLP appli-
cation success before a point of failure24. However, it is important to note a
relatively stiff AFM tip can be used to compress the target VLPs to the point
of structural failure in efforts to probe internal changes of the particle27.

Understanding the physical and chemical properties of VLPs is
important formaintaining the effectiveness of vaccinations,whereVLPs can
function as a key intermediate in the drug substance. Marchetti et al. shows
that AFM can be used to probe VLP structural integrity via a nano-
indentation process to understand the force required to destabilize a single
virion24. Using this information, small mutations of the VLP proteins were
shown to cause up to a threefold increase of capsid strength24. Similarly, a
relatively stiff AFM tip can be used to compress the target VLPs to the point
of structural failure in efforts to probe internal changes of the particle27.
Sharma et al. shows that Spytag-S SARS-CoV-2 VLPs exhibit structural
instabilitywith short exposures tomildly elevated temperatures15.Gonzalez-
Dominquez et al. uses multi-frequency AFM to characterize HIC-1 Gag
VLPs28. We propose simple AFM imaging can detect and exemplify con-
formational changes in VLP structure, and therefore VLP effectiveness,
before full particle deterioration. With the aid of Bayesian statistical inter-
pretation, further information can be elucidated from AFM imaging with-
out the use of expensive electron microscopy instrumentation.

Subsequent to collection of AFM images, a variety of analysis strategies
can be employed for extraction of useful information embedded within the
images. Typically, analysis of AFM images centers on determination of
particle size information – that is, individual particles are identified and
analyzed for their size. Various plots, such as histograms or box-and-
whisker visualizations, are generated to indicate size distributions from the
image29. The limit of traditional statistical analysis applied toAFM images is
frequently encountered when analyzing heterogeneous mixtures, as com-
pared to that of homogenous samples. Moreover, when observed samples
belong to a homogeneous population, the distribution of sample properties
can be adequately modeled by one set of parameters that define the dis-
tribution. In many cases, a Gaussian distribution fits the population to be
studied and hence, the ensemble of collected data can be accurately sum-
marized by the mean and standard deviation of the data. However, in some
cases, an observed sample or systemmay consist of multiple groups—each
group with a different set of descriptive parameters. Even if each group in
heterogeneous mixtures is Gaussian in character, these groups may not be
well describedby a simple populationmeanand standarddeviationanalysis.
Moreover, there is a greater level of nuance in the data (e.g. the mean,
standard deviation, and proportion of each group) thatmust be extracted to
fully characterize and understand the observed collection of data. A Gaus-
sian Mixture Model (GMM) may more accurately describe this type of
data30. However, accurately determining the descriptive parameters of a
GMM is not straightforward.

The parameters of a multi-factor GMM cannot be linearized, and
therefore these parameters cannot be directly estimated by a linear least
squares approach; instead, non-linear least squares algorithms, such as
Levenberg-Marquardt31,32 or Trust Region33,34, are often enlisted. However,
the large number of parameters to be fit, coupled with the flexibility of non-
linear least squares algorithms, leads to both of these procedures readily
becoming trapped in non-optimal local minima. Consequently, a non-
linear least squares approach works best when GMMmeans and standard
deviations are well known and only the mixing parameters are uncertain;
this is the case with applications that include X-ray photoelectron spec-
troscopy (XPS)35,36. Some software packages avoid acknowledging the
problem of local-minima traps by implementing an iterative curve-fitting
procedure based on user assessment of model quality; such procedures lack
statistical rigor and reproducibility. A robust alternative to non-linear least
squares methods for fitting a GMM is estimating the latent parameters

through aMaximumLikelihood (ML) approach.MLmethods optimize the
likelihood of a set of parameters being correct, given a collection of
observed data.

To the best of our knowledge,GMMhas not yet been reported to study
the bulkmorphology of nanoparticles imaged byAFM in general,much less
the morphological changes of VLPs. The most similar application of GMM
has been the employment of GMM to better understand cell surface
architecture using single molecule force spectroscopy data37,38. GMM have
also been combined with computational chemistry simulations to estimate
the most-probable conformations of large proteins39,40. In a related effort, a
3D GMMwas developed to create atomic-level density maps of functional
groups from cryo-electron microscopy images41. As such, this is the first
report of GMM being applied for understanding and investigating AFM
images.

Consequently, this work presents two advances to analytical metho-
dology. First, the collected data explores the potential of nano-indentation
AFM to better understand VLPs by indirectly probing internal structural
integrity as opposed to topography24,42. Second, to fully analyze the AFM
data, GMM is applied for the first time to categorize morphology of VLPs.
Taken together, the results can help elucidate key phenomena surrounding
VLP properties.

Results and discussion
Analyses of VLP images by area
Classical statistics presents an inconclusive trend formeanVLP area for the
compressed VLPs as the particles age over the first 4 h in solution at 20 °C.
ThemeanVLP area increases from1509 nm2 to 1668 nm2 over hours 2 to 3.
However, the mean observed VLP area decreases to 1397 nm2 after 4 h of
thermal aging. Across the same period, the standard deviation of the
observed VLP distribution increases from 183 nm2 to 248 nm2 to 307 nm2.

Histograms of three agedVLP collections show that their distributions
are non- normal (Fig. 1) and consequently, the sample mean and standard
deviation do not present a complete or nuanced view ofVLPmorphological
changes. Cursory study of the histograms shows that the distributions
become skewed towards larger VLP areas. All three samples have a sig-
nificant number of VLPs around 1600 nm2, but later aging times include a
selection of VLPs of approximately 2000 nm2.

Quantile-Quantile (QQ) plots better illuminate the deviation from
normality of the threeVLP populations (Fig. 2). AQQplot is a graphical
technique for determining if a set of observed data belongs to a parti-
cular theoretical distribution. A quantile is the fraction of observations
below a given value. For an ordered (i.e., lowest value to highest value)
data set, the quantiles of the observed data are plotted against the
quantiles of the theoretical distribution. Here, the theoretical quantiles
are normalized to be standard deviations from the mean because the
data is assumed to be normally distributed. Were the observed data to
adhere to the theoretical distribution, all points would align along the
reference line (Fig. 2, red). All three collections of VLP particle sizes
show significant deviations from linearity, indicating that none are
normally distributed.

If the collections of VLPs exist as a mixture of distinct normal dis-
tributions, eachwith a differentmean area and standard deviation, this data
can bemodeled by aGMMand deconvolved by the EM algorithm. Each set
of VLPs extracted from collections of three AFM images was modeled with
2, 3, 4, and 5 latent Gaussian distributions. The EM algorithm extracts the
mean, standard deviation, and relative contribution of each component to
the mixture. The optimal complexity of a GMM for each collection was
determined based on thefit of eachmodel, as expressed by the log likelihood
value and the linearity of the QQ plots for each model. When the inclusion
of an additionalGaussianno longer significantly improves the log likelihood
and linearity of the QQ plot, the GMM is assumed to be optimal. The final
GMMcan be expressed in tabular form (Table 1) or graphical form (Fig. 1).

Application of the EM algorithm (Table 1 and Fig. 3A) indicates that
after two hours of thermal aging, the VLPs are best modeled by a multi-
normal distribution with mean areas of 1184 nm2 (15% of the VLPs) and
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1556 nm2 (85% of the VLPs). After 3 h, three intrinsic normal distributions
are extracted from the GMM (Table 1 and Fig. 3B): 1331 nm2 (12% of the
VLPs), 1585 nm2 (60%of theVLPs), and 1993 nm2 (28%of theVLPs). After
4 hours of aging, four components were observed (Table 1 and Fig. 3C):
1107 nm2 (41% of the VLPs), 1351 nm2 (20% of the VLPs), 1639 nm2 (30%
of the VLPs), and 2011 nm2 (8% of the VLPs). For the 4-h images, four
Gaussianswere chosenbasedon the visualfit of themodel to thedata (inFig.
3C). Cursory comparison of the QQ plots for the GMM (Fig. 3) indicates
significantly better fit of the model to the data than with a single normal
distribution (Fig. 2). Pearson’sChi-squared test for count data indicated that
the modeled distributions at three separate times are statistically differ-
ent (p < 0.01).

The 95% confidence interval for the mean value of each intrinsic dis-
tribution can be estimated by ± tσ=

ffiffiffi
n

p
; where t is the tabulated Student

t-value forn-1 degrees of freedom,σ is standarddeviationof thefittednormal
distribution, and n is the number of observed samples in the distribution
(Table 1, column 5). For each Gaussian in the GMM, determination of n is
not straight forward. Here n for each distribution is estimated as the number
of observations dividedby thenumberof distributions in theGMM.Hence,n
is 18, 11, and 6 for these three collections of VLPs analyzed by AFM.

Considering the three GMM analyses as a whole, three trends are
evident. All optimized GMMs extract a set of VLPs with an area of
approximately 1600 nm2 and are of comparable size based on the 95%
confidence limits. The two longer aging times exhibit VLPs with a com-
parable average area around 2000 nm2. These larger observed structures
would be expected because as the bonds within the VLPs may change, the
VLPsmay become structurally less rigid and consequently flatten to a larger
area15,43. The 2 h and 4 h VLPs present a smaller structure with an average
area around 1100 nm2, while the 3 h and 4 h VLPs have a larger structure
around 1300 nm2. Given the small number of AFM sampling sites and

numberofVLPs analyzed, these twodistributionsmight converge to a single
normal distribution in a larger collection of AFM images of VLPs.

Analyses of all 92 determined VLP areas from the three aging times as a
singledistribution resolves fourdistinct groupsofVLP(Fig. 4D).While a three
factor GMM model appears to be a reasonable description of the VLP his-
togram (Fig. 4C), theQQ-plot of themodel shows significant deviations at the
large area end of the particle distribution and minor deviations at the small
area end of theVLPdistribution (Fig. 4A). Adding a fourth term to theGMM
providesamuchbetterfit of themodel to thedata, reducingdeviationsonboth
extremes (Fig. 4B). The parameters of the 3 and 4 factor GMM are similar—
the~1615 nm2 centereddistributiononly differs by ameanof 4 nm2, standard
deviation of 2 nm2, and a 2% contribution between the models. However,
inclusionof a fourthcomponent in themodel addsa factor explicitlymodeling
the distribution of the smallest particles (µ = 1054 nm2; σ = 48 nm2) and
slightly shifts the estimated means and standard deviations of the other two
distributions (Table 1). Consequently, the net observed distribution of VLP
sizes are better described by a 4-factor GMM model than with a 3-factor
GMM model. Pearson’s Chi-squared test for count data indicated that the
3-factor and 4-factor models are statistically different at p= 0.051.

Applying the GMM to analyses of all 92 VLPs provides similar results
to that of analyzing the three aging processes separately. The ensemble set of
VLPs returns distributions centered at 1054 nm2, 1479 nm2, 1617 nm2, and
2045 nm2. Every distribution of VLPs resolved by applying a GMM to
individual aging times aligns with the four distributions observed with
analyses of the ensemble data. The 3-h thermal aging 1993 ± 120 nm2 and
4-h thermal aging 2011 ± 66 nm2 centered distributions are statistically
indistinguishable from the ensemble 2045 ± 62 nm2 centered distribution.
Similarly, the ensemble 1617 ± 22 nm2 are matched with the 2-h
1566 ± 60 nm2, 3-h 1585 ± 46 nm2, and 4-h 1639 ± 80 nm2 centered dis-
tributions. However, there is more deviance in the resolved GMM

Fig. 2 | Quantile–quantile plots of VLP area extracted from the AFM images
verses a theoretical Gaussian distribution show that the thermally aged particles
are not normally distributed.Plots are shown for samples following 2 h (A), 3 h (B)

and 4 h (C) of thermal aging. That the Q–Q plots are not linear indicates significant
deviation from a single Gaussian accurately describing the VLP distribution. The
included red line represents the perfect, noiseless, data, and model.

Fig. 1 | The gaussian mixture model shows an increasing spread in particle size
distributions as the VLPs thermally age. Optimized Gaussian Mixture Model
profiles for the single pass AFM images based on VLP area following 2-hours (A), 3-

hours (B) and 4-hours (C) of thermal aging. The VLP suspensions were left at room
temperature for 2–4 hours prior to placement on a mica surface.
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parameters between the ensemble and individual aging times at the low area
end of the sample set.With the individual aging times, themean value of the
resolved distributions with the smaller areas all lay between the 1054 nm2

and 1479 nm2 centered distributions. This issue could be explained by the
low number of VLPs that inherently belong to the smallest distribution. For
example, for 2-h, the 1184 nm2 centered distribution contains only 15% of
the parent distribution (i.e., 5 or 6 VLPs total). It is unsurprising that the
GMMwould fail to resolve 2 sub-populations and estimate the mean to be
between the 1054 nm2 and 1479 nm2 centered distributions.

Analyses of VLP images by VLP width (single AFM tap)
Manually determining the width of the VLP in each image enabled obser-
vation of more VLPs in comparison to employing the area-based method
discussed previously. With the width-based method, 54, 33, and 42 indi-
vidual particleswere extracted from the three thermal aging times compared
to 36, 33, and 23VLPs by the area-basedmethod. It is appropriate to note in

the following section where each VLP was scanned twice by AFM prior to
determining the VLP area and width, less than 10 VLP areas could be
reliably determined across three times, yet 98 individual VLP widths were
calculated.

Analyses of the width-based collection of VLP data presents a slightly
less complex view of the VLP populations at each time as compared to the
area-based analyses of theVLP (Table 2 vs Table 1). Perusal of theQQ-plots
shows good linearity for each model (Fig. 5A, C, E). For the 2-hour time,
both methods present the majority of the VLPs being larger, with a smaller
population (15%vs 10%) being of lesser dimension (Fig. 1A vs. Fig. 5B). The
width-based measurements model the larger VLPs with 2 factors; however,
the mean values of both distributions are statistically indistinguishable. For
the 3-h time, the model fit for the width-based measurements did not
improve when usingmore than one normal distribution. This is in contrast
to the area-based analyses that was optimally modeled with 3 normal dis-
tributions—each with a statistically different average area (Fig. 1B vs. Fig.
5D). Similarly, the area-based analyses for the 4-hour time identifies 4
uniqueVLP distributions, each with a statistically differentmean area while
the width-based analyses only identified 3 unique populations (Fig. 1C vs.
Fig. 5F). Pearson’s Chi-squared test for count data indicated that the
modeled distributions at three separate times are statistically differ-
ent (p < 0.01).

The differential inmodel complexity between analyses of AFM images
by area-based andwidth-based approaches for theVLPsholdswhen all nine
collected images, across three aging times, are combined into a single
population (Fig. 4D vs. Fig. 6A). The area-based analysis resolved 4 dis-
tributions of VLPs—two minor components that were either smaller (7%)
or larger (9%) than the twomain factors that constituted 84%of theparticles
(Table 1). However, the width-based analysis only resolved two main
components, seemingly unable to extract the smaller and larger minor
components. Of course, without further analyses of a larger data set, it is
impossible to conclude with certainty whether the 2-component or
4-component model more is the more faithful description of the true VLP
distribution.

Analyses of VLP images by VLP width (double AFM tap)
Because the protocol for estimating VLP area mostly fails when individual
particles form clusters or are touching, an alternate procedure to collect
AFM images was investigated. Here a rapid, low spatial resolution AFM
image of a large area was collected to identify regions of interest with the
greatest number of non-contiguous VLPs. Those regions of interest were
then resampled at higher spatial resolution. As such, the VLPs were double
sampled during analysis. Unfortunately, with the stiff AFM probes, this
resulted in wider (80–140 nm vs. 50–100 nm) and flatter VLPs observed
during analyses.Ultimately, the resampledVLPswere tooflat at the edges to

Fig. 3 | Quantile–quantile plots of VLP area extracted from the AFM images
verses the optimized Gaussian Mixture Model distribution show that the ther-
mally aged particle distribution conforms to the GMM. Plots are shown for
samples following 2 h (A), 3 h (B) and 4 h (C) of thermal aging. That the Q–Q plots

are linear indicates confidence that the GMM accurately describe the VLP dis-
tribution. The simplest GMM that yielded a linear Q–Q plot was retained. The
included red line represents the perfect, noiseless, data and model.

Table 1 | Fitted Gaussian Mixture Models parameters for
thermally aged VLPs imaged by a single pass of an AFM tip

Description Number of
VLPs, total

Fraction Mean Sigma 95% C.I.
of mean

2 hours 36 0.15 1184 103 51

0.85 1566 120 60

3 hours 33 0.12 1331 27 18

0.60 1585 69 46

0.28 1993 185 120

4 hours 23 0.41 1107 85 95

0.20 1351 35 39

0.30 1639 71 80

0.09 2011 59 66

All VLPs – 3
factors

92 0.66 1450 241 87

0.27 1613 56 20

0.07 2093 128 46

All VLPs – 4
factors

92 0.07 1054 48 20

0.59 1479 194 81

0.25 1617 54 22

0.09 2045 150 62

Individual VLP area is the extracted descriptor from each image. Data for each aging time is
determined from the ensemble of three AFM images.
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determine the VLP boundary for the area-based procedure. Consequently,
only width-based models could be constructed.

For the 0-, 1-, and 2-h times, EM analyses indicated a bi-normal
distribution (Fig. 7). With 0-h and 1-h, the mean of the two distribu-
tions (the first at ~98 nm and the second at ~113 nm) are statistically

indistinguishable at the 95% confidence interval (Table 3). However,
after 2-h, both distributions have a statistically greater mean. The
smaller of the two distributionmeans increases from ~98 nm to 110 nm
and the larger of the two distribution means increases from ~113 nm to
125 nm. This may be potentially indicative of the VLP losing rigidity
during aging and spreading out over a larger area following AFM
compression15,43. By comparison, the 3-h data was optimally modeled
with a single Gaussian distribution. This distribution lacked features
with a width greater than the 130 nm present in the 2-h data. One
possible explanation may be that further aged VLPs were tapped suf-
ficiently flat to not rise above the baseline noise of the image and image
processing.

Analyzing the ensemble data from all 12 AFM images, spanning 4
aging times, indicates four normal sub-populations of VLP diameters
(Table 3). However, the symmetric spacing and widths of the three
leftmost Gaussians (Fig. 7B) are consistent with describing a platykurtic
distribution by normal curves. Without a more extensive investigation,
it is not feasible to determine whether the double tapping of the AFM
analyses leads to a wider, non-normal distribution of VLP widths, or if
this one set of data was anomalously wider. However, given that the EM
algorithm did not model the data by fitting two Gaussians centered at
the 100 nm and 110 nm spikes in the histogram lends credence that this
is a single platykurtic, not bi-modal Gaussian distribution of VLPs.
Consequently, the ensemble data is better viewed as two distributions of
VLP widths across all observed aging times.

Fig. 4 | The four-component Gaussian Mixture Model fits the VLP size dis-
tribution better than the three-component Gaussian Mixture Model. The
improvement of fit in increasing from a three-component Gaussian Mixture Model

(A, C) to a four-component Gaussian Mixture Model (B, D) is evident in the
increased linearity of the respective quantile–quantile plots (A, B).

Table 2 | Fitted Gaussian Mixture Model parameters for ther-
mally aged VLPs imaged by a single pass of an AFM tip

Description Number of
VLPs, total

Fraction Mean Sigma 95% C.I.
of mean

2 h 54 0.10 73.6 0.83 0.4

0.46 80.3 6.22 3.2

0.44 81.4 3.28 1.7

3 h 33 1.00 74.1 8.47 2.9

4 h 42 0.50 60.8 3.24 1.9

0.43 71.2 3.92 2.3

0.07 81.0 0.70 0.4

All VLPs – 2
factors

129 0.23 61.8 3.60 0.6

0.77 78.0 6.25 1.1

Individual VLP width is the extracted descriptor from each image. Data for each aging time is
determined from the ensemble of three AFM images.
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The totality of our novel methodology – using AFM in conjugation
with GMM fit by the EM algorithm – provides the unique opportunity to
investigate the bulk morphology of VLPs and the potential to identify VLP
morphological changes. Herein, we report VLP morphological changes are
occurring due to observances in the shape and diameter of the VLPs. The
cause of these changes in VLP shape and size may be due to a multitude of
factors, including room temperature aging, local temperature and pH
alterations, stabilization buffer contents, and number of freeze-thaw
cycles15,43,44. Moreover, the purified HPV VLP intermediates studied

herein were specifically selected for straightforward analytical method
development, in which case these VLP intermediates allows for a sample of
only particles to be investigated (i.e., no drug product formulation com-
ponents). The definitive causation of any VLP shape or size changes would
indeed require further studies. Notably, the methodology showcased here
illustrates, for the first time, the potential of nano-indentation AFM in
combination with GMM and EM to probe the internal VLP structural
integrity, as opposed to topography of VLPs, to reveal information about
changes in VLPs.

Fig. 5 | The optimized Gaussian Mixture Model shows a good fit to the dis-
tribution of VLPwidths.Quantile–quantile plots and optimized GaussianMixture
Model fit to theVLPwidths extracted from theAFM images following 2 h (A,B), 3 h
(C,D) and 4 h (E,F) of aging following a single nanoindentationAFMpass. That the

Q–Q plots are linear indicates confidence that the GMM accurately describe the
VLP distribution. The most simple GMM that yielded a linear Q–Q plot was
retained. The included red line represents the perfect, noiseless, data and model.

https://doi.org/10.1038/s41541-024-00871-7 Article

npj Vaccines |           (2024) 9:112 6



Methods
Preparation of virus-like particles (VLPs)
Human papillomavirus (HPV) type 11 virus-like particles (VLPs) were
obtained from Merck & Co., Inc., West Point, PA, USA. The VLPs were
prepared following a similar manner to standard protocols14,45,46. Briefly,

HPV type 11 L1 protein are expressed and self-assembled into a VLP
structure via a recombinant Saccharomyces cerevisiae (yeast) expression
system containing the genome coding for the HPV type 11 L1 protein. The
self-assembled VLPs were subsequently purified. In order to study a
representative sample of only particles for straightforward methodology

Fig. 6 | Comparison of optimizedGaussianMixtureModels for single and double
pass AFM imaging indicate that the VLP widths are significantly wider after the

second pass with nanoindentation.Distributions presented are from the ensemble
all AFM images collected with a single AFM pass (A) and a double AFM pass (B).

Fig. 7 |OptimizedGaussianMixtureModelfits to theVLPwidths extracted from
the double pass AFM imaging show a one or two component model.

Distributions presented are AFM images following 0 h (A), 1 h (B), 2 h (C), and 3 h
(D) aging following a second nanoindentation AFM pass.
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development, purified HPV VLP intermediates were analyzed herein, in
which these drug substance intermediate particles did not undergo any
vaccine drug product formulation processes. HPV type 11 VLPs were also
purchased from Creative Diagnostics (Shirley, NY, USA) for additional
analysis.

Collection of atomic force microscopy (AFM) images
VLP samples were thawed and diluted 20X in buffer (0.5M NaCl, 0.012%
Tween 80, 20mM Histidine, pH 6.2). 10 µL were deposited on freshly
cleaved mica disks (V1 grade, Ted Pella, Inc.) and allowed to incubate for
10 s before being rinsedwithDIwater 10 times in 10 µL aliquots. VLPswere
aged at room temperature in buffer and sampled immediately after thawing
as well as at 30min time intervals for AFM imaging. An AIST-NT Ome-
gascopeTM 1000 AFM (Horiba) in tapping mode was used to collect
1 µm× 1 µm images. All AFM imaging was carried out under ambient
conditions in air. Topography imaging was performed using RTESPA-300
cantilevers (Bruker) with a mean spring constant of k = 40N/m and tip
radius of 8 nm. A setpoint amplitude of 20 nm and scan rate of 1 Hz
was used.

Analyses of AFM images
All AFM images were saved as .jpeg images and processed in the
ImageJ47 wrapper FIJI Is Just ImageJ (FIJI)48. The .jpeg images (Fig. 8A,
D) were converted to 32 bit gray scale and smoothed with a Fast Fourier
Transform (FFT) bandpass filter using default settings (Fig. 8B, E).
Additional image conditioning tools in FIJI to enhance the contrast and
sharpen the images were investigated and did not substantially improve
the analyses. To determine the width of each VLP, the widest lateral
point (x axis) was calculated manually in pixels and converted to
nanometers using the scale bar provided by the AFM software. The
scale ranged from103 pixels per 200 nm to 125 pixels per 200 nm across
all images.

Further processing was required to determine the area of each
isolated VLP. First, the ImageJ ‘Find Edges’ routine was applied fol-
lowed by adjusting the threshold of the new image to define an edge. The
FIJI Analyze Particles add-onwas employed to automatically determine
the area in pixels of each identified congruous particle. Application of
‘Find Particles’ first required setting the image threshold to define a
particle edge in a binary image. One limitation of this procedure is that,
to define a particle, the particle edgemust be connected across the entire
circumference of the particle and cannot be contiguous with the edge of
another VLP. Consequently, the threshold was manually adjusted
between 10 and 45 units to balance competing effects of closing the

edges of as many individual VLPs as possible versus having the edges of
multiple VLPs connect. The ‘Find Particles’ application provides a
numbered contour map of particle outlines (Fig. 8C, F) with tabulated
sizes of each identified particle.

Gaussian mixture model (GMM) analysis
Gaussian mixture model analysis was performed in RStudio. The function
to construct multi-normal quantile-quantile plots was written in house in
RStudio. A single Gaussian distribution is defined by

p xð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e� x�μð Þ2=2σ2 ð1Þ

where determination of the two Gaussian parameters, µ and σ, are straight
forward from the mean and standard deviation of the observed data,
respectively. However, when the parent probability is a function of two or
more different Gaussian distributions, the ability to accurately estimate true
population parameters is much more difficult, even with the one-
dimensional GMM data encountered in this study. For a one-
dimensional GMM of K Gaussians,

p xð Þ ¼
XK
k¼1

wkG xjμk; σk

� � ð2Þ

where G(x | µk, σk) is a Gaussian distribution defined by Eq. (1) for a set of
parameters µk and σk. The values ωk is a collection of positive mixing
coefficients, or weights assigned to each latent Gaussian distribution, under
the constraint that

XK
k¼1

wk ¼ 1 ð3Þ

Thus, for an application with K intrinsic Gaussian distributions, 3K-1
parameters must be fit to the data. In context of measuring VLP area (or
diameter) byAFM, theobserveddata has only one variable,VLPdimension.
However, there are a presumed greater number of latent variables that
define the intrinsic data structure, the underlying KGaussian distributions.
A robust alternative to non-linear least squares methods for fitting a GMM
is estimating the latent parameters through a ML approach. ML methods
optimize the likelihood of a set of parameters being correct, given a col-
lection of observed data. For aGMM, the optimization criterion is expressed
as

L θjXð Þ ¼
YN
i¼1

XK
k�1

wkp xijθk
� � ¼YN

i¼1

XK
k�1

wkG xi; μk; σk

� � ð4aÞ

or alternatively as the log likelihood

l θð Þ ¼ log L θjXð Þ ¼
XN
i¼1

log
XK
k�1

wkG xi; μk; σk

� � !
ð4bÞ

where the N observations are being described by a K factor GMM. The
Expectation-Maximization (EM) algorithm is a robust and efficientmethod
of optimizing Eqs. (4a) and (4b)30,49. The EM algorithm introduces a latent
variable Zwhich is the collection of theK intrinsic Gaussian distributions in
the GMM. Thus, the complete likelihood of the model is

L θjX; Zð Þ ¼ p X; Zjθð Þ ¼ p ZjX; θð Þ p Xjθð Þ ð5Þ

where the likelihood of theϴparameters, given a set of observations (X) and
a presumed latent model (Z) is equal to the joint probability of observing X

Table 3 | Fitted Gaussian Mixture Models parameters for
thermally aged VLPs imaged by a single pass of an AFM tip

Description Number of
VLPs, total

Fraction Mean Sigma 95% C.I.
of mean

0 h 19 0.62 98.1 5.11 3.7

0.38 112.7 2.81 2.0

1 h 25 0.62 98.5 7.05 4.3

0.38 113.3 8.27 5.0

2 h 23 0.33 109.9 10.8 6.9

0.67 123.0 8.98 5.7

3 h 31 1.00 106.2 7.08 2.5

All 4 h 98 0.23 96.8 5.6 2.3

0.46 106.3 6.9 2.8

0.22 114.8 5.5 2.3

0.09 129.6 5.6 2.3

Individual VLP width is the extracted descriptor from each image. Data for each aging time is
determined from the ensemble of three AFM images.
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andZgiven theGMMparametersϴ. TheEMmodel progresses in twomain
iterative steps. After an initial guess of ϴ, the Expectation Step estimates γ,
the distribution of each component in Z given X and ϴ,

γzi¼k ¼ p Zi ¼ k jXi

� � ¼ p Xi jZi ¼ k
� �

p Zi ¼ k
� �

p Xi

� � ¼ wkG xi; μk; σk
� �PK

k�1 wkG xi; μk; σk
� �

ð6Þ

where the numerator is the probability of Xi under component k and the
denominator is the sum of probabilities across all components. The Max-
imization Step calculates new values of ϴ that maximizes the joint dis-
tribution of X and Z,

μ̂k ¼
PN

i¼1 Xip Zi ¼ k jXi; θ
tð Þ� �PN

i¼1 p Zi ¼ k jXi; θ
tð Þ� � ¼

PN
i¼1 XiγZi¼kPN
i¼1 γZi¼k

ð7Þ

bσ2k ¼
PN

i¼1 γZi¼k Xi � μk
� �2PN

i¼1 γZi¼k

ð8Þ

ŵk ¼
PN

i¼1 γZi¼k

N
ð9Þ

whereϴ(t) is the previous estimate ofϴ. The algorithm iterates between the
E-Step andM-Step until a convergence criterion, such as the log-likelihood
(Eq. (4b) agreeing to 6 decimal places in subsequent iterations or a
maximum number of allowed iterations is reached.

Expectation-maximization (EM) algorithm
All analyses were performed using R50 in RStudio51; the package ‘mixtools’52

was employed to apply a GMM to the VLP areas or widths extracted from
the AFM images. Convergence of the EM algorithm was capped at 1000
iterations. A function to constructmulti-normal quantile-quantile plotswas
written in house. A regression function that relates the observed data and
theoretical quantiles to statistically validate the GMM goodness of fit was
written in house.

Conclusions
Gaussian Mixture Models (GMMs), optimized by the Expectation-
Maximization (EM) algorithm, is a beneficial and effective tool for ana-
lyzing AFM images of mixed-size nanoparticles, in this case virus-like
particles (VLPs). Univariate statistics that assume a single normal dis-
tribution of particle sizes (either area orwidth) donot convey the nuances of
multiple nanoparticle populations within a single image or a collection of
images. The GMM, driven by the EM algorithm, can rapidly and robustly
extract the parameters of heterogeneous nanoparticle sub-populations.
However, thesemethods are only effective if the sub-populations conformto
the assumed Gaussian distribution. Analyses of VLPs by compressing the
nanoparticleswith a rigidAFM tip during imaging is an intriguing option to
implicitly extract information about potential internal VLP changes. The
theory, espoused previously27, postulates that the compressibility of theVLP
may indicate internal changes prior to those observed externally. This work
builds on these observations and hints that VLP morphological changes
may potentially occur in more discrete stages and less as a homogeneous
continuum. This suggestion is supported by the existence of discrete sub-
populations of VLP sizes elucidated by the GMM. Were the VLP changes
continuous, as reflected in the VLP compression, a single distribution of
VLP sizes would be observed by the GMM.

Fig. 8 | Analysis of the AFM images enables extraction of estimated particle sizes.
Processing of AFM images to determine VLP area for the single passed (A–C) and
double passed (D–F). The rawAFM images (A andD) were converted to 32-bit grey
scale and the edges were enhanced by applying a 2D FFT filter in ImageJ (B and E).

After manually adjusting the threshold to maximize the number of fully resolved
VLP, the ‘Find Edges’ routine was applied to create a VLP edge map (C and F).
Individual VLP area was determined by ImageJ integrating within each numbered
contour.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets used and/or analyzed during the current study are available
from the corresponding authors on reasonable request.

Code availability
The code used and/or analyzed during the current study are available from
the corresponding authors on reasonable request.
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