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Using static magnetic field to recover
ammonia efficiently by DNRA process
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Dissimilatory nitrate reduction to ammonium (DNRA) has garnered attention due to its ability to recover
ammonia and reduce greenhouse gas emissions simultaneously. In this study, the potential of using
static magnetic field (SMF) to improve DNRA process was explored from the sight of molecular
biology. Functional genes, microbial community structure, and metabolism pathways were
discussed. SMF of 40 mT shortened the start-up time of DNRA from 75 days to 41 days, while 80 mT
SMF delayed it to 103 days. On day 80, DNRA potential rate under 40 mT SMF, reached 174 + 11 pmol
kg h™", significantly surpassing 0 mT (88 + 6 umol kg~ h™") and 80 mT SMF (52 + 4 pmol kg ' h™").
SMF of 40 mT also accelerated community succession and the enrichment of functional bacteria like
Geobacter (from 15.71% to 32.11%). gPCR results suggested that 40 mT SMF promoted the rapid
enrichment of DNRA functional gene nrfA and 80 mT SMF promoted the enrichment of nirS gene on
day 40. Dynamic responses of Thauera sp. RT1901, Stutzerimonas stutzeri, Shewanella oneidensis
MR-1, and Shewanella loihica PV-4 to SMF at transcriptional levels confirmed SMF could improve the
nitrogen removal and electron transfer of DNRA and denitrification bacteria. Consequently, this work
validated the possibility of using SMF to improve DNRA process for ammonia recovery and
investigated the underlying mechanisms, which could promote the application of DNRA in full-scale.

Ammonia (NH;) plays a vital role as a key component in both food and
fertilizer production, serving as a fundamental raw material for various
industries and agricultural practices'. NH; also has garnered attention as a
promising energy carrier in recent years’. Hence, the annual demand for
ammonia has been on the rise. However, the current industrial process for
synthesizing ammonia is known for its complexity, high energy require-
ments, and strong reliance on hydrocarbon feedstocks’. Currently,
approximately 90% of commercially produced ammonia is obtained
through the Haber-Bosch process, N, as its primary source, which is
becoming increasingly restricted due to its non-flexible nature and risk of
operation interruption”. In light of this, there is a critical and immediate
demand for an ammonia generation process that is both clean and highly
efficient, while consuming minimal energy. Nonetheless, the restricted
solubility of N, in water and the high dissociation energy of the N = N triple
bond (941kJ mol™") pose significant challenges, severely constraining
innovative development and practical industrial applications’. On the
contrary, the process of nitrate reduction to ammonia appears to hold
greater promise as an approach for ammonia synthesis, considering its
potential for enhanced NH; production efficiency and environmental
protection’. Nitrate reduction to ammonia offers advantages in reaction
thermodynamics and kinetics due to the lower N = O bond dissociation

energy (204 kJ mol ') and faster nitrate (NO;~) mass transfer in water,
which can facilitate large-scale ammonia production’. Converting wide-
spread NO; ™ in groundwater or wastewater into NH; not only mitigates
human health risks but also helps restore the global nitrogen cycle
imbalance®.

In wastewater treatment, biological processes have proven to be the
most prevalent and successful methods for treating NO; . High nitrate-
concentration wastewater has been perceived as a promising source for
ammonia recovery'’. In this respect, dissimilatory nitrate reduction to
ammonium (DNRA), which could convert NO; ™~ to NH," in two steps, may
offer a possible solution"’. Recent reports on the occurrence and contribu-
tion of DNRA in marine, inland water, soil systems, and wastewater treat-
ment plants have greatly improved our understanding of the global nitrogen
cycle'"””. Yuan et al.”” found DNRA process predominated the nitrogen
retention processes in the lake sediment at higher temperature and water
depth®. Zhao et al.”’ utilized three carbon sources to successfully start up
DNRA process and realize efficient nitrogen recovery'’. Wan et al.”
demonstrated the ammonia recovery efficiency of 44% via DNRA was
achieved in microbial fuel cell". Most wastewater treatment systems were
originally designed for nitrate removal rather than recovery, leading to the
dominance of conventional denitrification technologies. Although
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denitrification process is the common pathway of N cycles, the importance
of DNRA activity has been increasingly recognized due to the conservation
efforts of available N form"’. Furthermore, DNRA bacteria can reduce nitrite
to ammonium, which is another substrate for anammox bacteria. Recent
study reported that DNRA activities were used to reduce excess nitrite to
ammonium to minimize nitrite toxicity to anammox bacteria'’. However,
the complicated carbon source competition and low growth rate of DNRA
bacteria restrict the further investigation of DNRA to recover ammonia
from wastewater’. Indeed, it is imperative to identify effective promotion
strategies within bioreactors to drive DNRA outcompeting other processes.

Microorganisms possess intrinsic magnetism and can exhibit magnetic
bioeffects induced by external magnetic fields, affecting enzyme activity and
cell membrane permeability, and ultimately altering microbial
metabolism'®"”. The static magnetic field (SMF) has recently gained con-
siderable attention due to its biological effects on wastewater treatment. SMF
has been successfully applied in multiple biological wastewater treatment
processes as an energy-free and no-secondary-pollution method. Filipic
et al."” reported that SMF of 17 mT positively affected NH, ™ oxidation and
the growth of Nitrosomonas europaea in the laboratory pure culture'. Fan
et al.” observed that SMF of 40 mT improved the nitrogen removal per-
formance of anammox, especially under high nitrogen loading conditions".
Li et al.”’ developed a constructed wetland coupled with SMF for treating
simulated wastewater and the results showed that 100 mT SMF significantly
affected organics and nitrogen removal™. Considering the previous findings,
it is reasonable to assume that SMF with suitable intensity could promote
DNRA process.

This study investigated the possibility of utilizing SMF to enhance the
DNRA process. The primary goal was to evaluate the long-term impact of
SMF on DNRA. Quantitative real-time PCR (qPCR) technology was
employed for estimating DNRA functional gene levels and Illumina MiSeq
assays were utilized to investigate microbial community composition and
function. In summary, this work aimed to present a cost-efficient, potent,
and eco-friendly biotechnology for recovering ammonia from wastewater
with elevated nitrate levels.

Results and discussion

Nitrogen conversion performance under different SMF

The ammonia nitrogen conversion efficiency of R1, which affected by 40 mT
SMEF, reached 50% within 41 days, indicating the successful start-up of
DNRA process (Fig. 1b)". Subsequently, Rk successfully initiated DNRA
over 75 days, while R2, which affected by 80 mT SMEF, exhibited the longest
initiation time of 103 days (Fig. la, c). Regarding initiation time, R1 was
shortened by 45% compared to Rcg, whereas R2 was delayed by 27%.
During the stable operational phase following successful initiation, the
average ammonia conversion efficiency for Rk, R1, and R2 were 58 + 7%,
63+ 6%, and 52+ 8%, respectively (Fig. 1d). This indicated that after
initiation, ammonia nitrogen conversion capabilities of Rcx and R1 were
similar, with only a slight improvement by 40 mT SMF, but SMF intensity
exerted inhibitory effects on DNRA. Regardless of SMF intensity, NO;~ was
almost consumed, whether through DNRA generating NH,* or deni-
trification producing N,, which could be due to the high COD/N ratio.
Additionally, DNRA potential rates were determined on day 80, with Rk,
R1, and R2 being 88+ 6, 174 + 11 and 52 +4 pmol kg' h™", respectively
(Fig. 1e). Although both Rk and R1 successfully initiated DNRA process on
day 80, higher DNRA potential rate was obtained in R1, which could be
attributed to the higher abundance of DNRA bacteria in R1.

Effect of SMF on the bacterial diversity

Alpha-diversity indices were employed to disclose the microbial richness
and diversity. As compared with Ry, the fewer observed species, lower
Chaol, and lower Shannon indexes observed in R1 and R2 indicated the
lower richness and diversity of the community exposed to SMF (Fig. 2a). As
the nitrogen conversion discussed above, the application of SMF selectively
filtered the microbial communities: 40 mT SMF favored the proliferation of
DNRA bacteria, whereas 80 mT SMF was more conducive to the growth of

denitrifying bacteria. As a result, the diversity of communities subjected to
SMEF was lower than that of Rck. A previous study demonstrated that the
application of SMF to the A/O SBR process can decrease species diversity
while promoting a more even and abundant distribution of species™.
Hierarchical clustering analysis showed the similarity between the com-
munity composition of R1 on day 40 and R2&Rck on day 80 (Fig. 2b),
indicating that the SMF facilitated microbial community succession in R1.

Effect of SMF on the microbial community structure at

phylum level

The main phylum was Proteobacteria (40.80-83.48%), followed by Bac-
teroidetes (4.29-13.41%) and Chloroflexi (3.11-8.19%) (Fig. 3a). Proteo-
bacteria, Chloroflexi, and Bacteroidetes comprises bacteria that perform
both denitrification and DNRA functions™”’. Proteobacteria was the pre-
dominant phylum in all samples, which was generally involved in the
nitrogen cycle and contributed to COD removal in the wastewater treatment
system™. On day 40, SMF of 40 mT significantly increased the relative
abundance of Proteobacteria (66.83%) compared to the seed sample
(45.50%), which exceeded Rk and R2 by 64% and 39%, respectively. In the
subsequent cultivation, the relative abundance of Proteobacteria in R1 was
also higher than these in Rckx and R2. Considering the elevated DNRA
activity of R1, it could be hypothesized that Proteobacteria was the primary
phylum responsible for DNRA function within the reactor.

Effect of SMF on the microbial community structure at
genus level
Geobacter, Thauera, and SBR1031 were the main dominant genera in all
samples except the seed sludge (Fig. 3b). Geobacter and Thauera belong
to the phylum Proteobacteria. Geobacter, the dominant bacterium in
three reactors, has been effectively enriched in the DNRA bioreactor,
utilizing acetate as the carbon source”. During the cultivation process,
the abundance of Geobacter in R1 consistently remained higher than in
R2 and Rcy, and its growth rate was faster. On day 40, Geobacter had
already become the dominant genus in R1 (15.71%), surpassing Rcx and
R2 by 214% and 59%, respectively. On days 80 and 120, the relative
abundance of Geobacter in R1 reached 22.57% and 32.11% respectively,
significantly higher than Rcx and R2 during the same period. Geobacter
appeared to be a key genus responsible for DNRA function within the
reactor. As reported, Geobacter held a pivotal position in the environ-
ment due to its capability to incorporate organic and inorganic pollutants
into oxidation and reduction pathways via metabolic reactions,
respiratory chains, and sensory networks. It also regulated checkpoints to
optimize growth efficiency to the fullest extent. Previous study sug-
gested Geobacteraceae was a crucial potential keystone member both in
the DNRA and the entire bacterial community”. Specifically, Geobacter
spp. were also notably recognized as electron transfer stations, facilitating
the transport of electrons from organic matter to microbial acceptors™.
Thauera was first enriched in R2 on day 40 (10.70%), followed by Rcx
(6.23%) and R1 (4.69%). However, Thauera in R1 (18.93%) surpassed the
levels in Rex (14.44%) and R2 (16.44%) on day 120. Thauera has been
reported as a type of DNRA bacteria, which contains all necessary genes
encoding complete DNRA and canonical denitrification pathways™.
Thauera was also an electroactive bacteria®, which could perform
extracellular electron transfer (EET). The genera SBR1031 belongs to
Chloroflexi, which has been documented for its capability to degrade
aromatic compounds’ and may play a vital role in the removal of
extracellular peptides and cellular materials”. During the cultivation
process, the relative abundance of SBRI1031 initially increased and then
decreased. However, its relative abundance consistently followed the
order: R1 < R2 < Rk

Moreover, it’s worth noting that among the top 12 genera, the abun-
dance of only three genera increased through cultivation, namely Geobacter,
Thauera, and Subgroup_7 (Fig. 3c). The abundance of seven genera
increased initially and then decreased, which might result from the com-
petitive interactions among different functional groups during community
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Fig. 2 | Effect of SMF on the bacterial diversity. a Bacterial diversity indexes and b

hierarchical clustering analysis on the phylum and genus level.

succession. In the context of this study, the reactor environment was
characterized as a low-nutrient environment. Consequently, over time,
certain bacteria less adapted to the environment might gradually lose their
nutritional competitiveness due to prolonged competition. Additionally,
within these seven genera, most genera exhibited the lowest abundance in
R1, indicating that the appropriate SMF enhanced the activity of certain
bacteria, enabling them to gain dominance more rapidly and outcompete
other bacteria.

Molecular ecological network analysis

Molecular ecological network analysis was conducted to investigate the
co-occurrence patterns at three reactors (Fig. 3d). In Rck and R1, all
genera were divided into two modules. In contrast, they were divided
into three modules in R2. Geobacter played a significant role in all three
reactors. As previous study, Geobacter is proficient not only in oxidizing
small molecular organic compounds like acetate, malate, and succinate
but is also recognized for its capacity to facilitate interspecies electron
transfer (IET)™. Geobacter spp. possess a substantial quantity of
cytochrome c (cyt c) on the outer membrane, along with nanowires
exhibiting metal-like conductivity, which have been reported to
enhance EET™. Guo et al.”® reported that the symbiotic interactions
between Geobacter and denitrifying bacteria via IET contributed to the
excellent performance of the biofilms™. Zhou et al.” reported SMF
could promote the EET of Geobacter”. Similarly, in this work, the EET
or IET capacity of Geobacter could be strengthened by SMF, driving
Geobater to transfer electrons to other bacteria, which promoted overall
microbial activity. Notably, Geobacter exhibited a consistent positive
correlation with Thauera, although it showed predominantly negative
correlations with most other genera in Rcg and R1. This suggested a
potential symbiotic relationship between Geobacter and Thauera, with
competition existing between Geobacter and other DNRA bacteria. In
Rexs R1, and R2, the proportions of the module containing Geobacter

were 50%, 58%, and 25%, respectively. This trend aligned with the
observed DNRA performance within the three reactors.

Effect of SMF on functional genes encoding key enzymes related
to nitrogen cycle

To uncover the nitrogen metabolism in different stages, PICRUSt2 pre-
diction was employed to identify functional genes associated with nitrogen
transformation, utilizing the KEGG and COG databases (Fig. 4). Across all
samples, a total of 22 functional genes associated with four nitrogen
transformation processes were identified, including DNRA, denitrification,
and anammox, respectively. NrfAH and nirBD, encoding nitrite reductase,
key enzyme of DNRA process, presented the increasing trend in R1. On days
40 and 80, the relative abundances of nrfAH and nirBD in R1 exceeded those
in Rex and R2. Genes associated with denitrification (nirK, nirS, nosZ,
norBC, narGHI, napAB) in R1 were all lower than Rck and R2. By 120 days,
the relative abundance of nrfAH in R1 remained higher than Rk and R2,
while a downregulation was observed in #nirBD. NrfAH and nirBD enzymes
are two main components of the nitrite regulation system of the cell, and it is
known that nirBD is more active at high low nitrite levels, while nrfAH is
more so at low nitrite levels®™. In this work, nitrite was kept at low con-
centration (below detection line), thus nrfAH enzymes could be more active.
Furthermore, on day 120, compared to Rcy, all denitrification genes in R1,
except for nirK, were upregulated. Interestingly, the genes associated with
anammox (hzsABC) were upregulated during the cultivation process. To be
more specific, relative to the seed sludge, the hzs gene abundances in Ry,
R1, and R2 were upregulated by 180%, 313%, and 204% respectively. These
genes exhibited a gradual and slight increase in expression throughout the
subsequent cultivation. Reports have suggested that DNRA and anammox
can coexist and even be coupled for nitrogen removal™. While anammox is
fundamentally an inorganic autotrophic process, anammox bacteria can
tolerate and utilize certain concentrations of organic carbon, even enhan-
cing anammox activity’. Anammox bacteria also can use NO;~ as an
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The colors of the nodes differentiate the different modules. The sizes of the nodes
reflect the node degrees. The different lines indicate the positive and negative con-
nections, respectively.

electron acceptor”'. In this experiment, the low-carbon environment within
the reactor may not inhibit anammox activity. Moreover, with both NH,*
and NO;~ available as electron donors and acceptors, anammox bacteria
were enriched initially in the R1 which contained more ammonium. Sub-
sequently, the abundance of anammox bacteria also increased in Rcyx
and R2.

Network analysis and g-PCR results for functional genes
Network analysis was utilized to further investigate the relationship
between microbes and nitrogen cycle functional genes (Fig. 5a). It is
evident that Geobacter, Thauera, and Bacteroidetes_vadinHA17 played
critical roles in the reactor. Firstly, the close connection between
Thauera and denitrification genes (nirS, norBC, narGHI) suggested that
Thauera predominantly engaged in denitrification, aligning with pre-
vious reports*”. Furthermore, Geobacter strongly correlated with nrfA,
nrfH, and nirB genes, confirming its significant role in the primary
DNRA function across the entire system. SBRI031 and Bacter-
oidetes_vadinHA17 strongly correlated with nirBD genes but not with
nrfAH genes. Module_1 which contained Bacteroidetes_vadinHA17
and SBR1031 accounted for 44% and showed intricate connections, but
module_3 which included Geobacter only accounted for 16%.

To further investigate the changes of DNRA and denitrifying bacteria
throughout the cultivation stages under SMF, qPCR was conducted for
validation. NrfA, the genetic marker for DNRA bacteria, was effectively
enriched (Fig. 5b). On day 40, the abundance of the nrfA gene in Rl
exceeded that in Rcg and R2, reaching 3.68 x 10° copies/ng DNA. It was 47%
and 95% higher than these in Rcx and R2. Moreover, the abundance of nrfA
continued to increase throughout the enrichment process, maintaining a
dominant position in R1 among the three reactors. Studies indicated that the
abundance of nrfA is directly proportional to DNRA activity*. In this study,
R1, possessing the highest nrfA gene abundance, also exhibited the highest
potential DNRA rate. As genetic markers for denitrifying bacteria, nirK and
nirS exhibited distinct abundances in this study, with nirK being three
orders of magnitude lower than nirS, which suggested that most denitrifying
bacteria within the reactor were likely of the nirS-type (Fig. 5b). On day 40,
denitrification genes in R2 had the highest abundance among the three
reactors, exceeding the gene abundance in Rck and R1 by 101% and 372%,
respectively. However, on day 80, the abundance abruptly decreased to
4.85x10” copies/ng DNA. In R1, the abundance of the nirS gene continued
to rise throughout the cultivation process, reaching 8.98 x 107 copies/ng
DNA on day 120. Redundancy analysis (RDA) revealed that only Geobacter
showed a significant correlation with the nrfA gene on day 40
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(Supplementary Fig. 1). Most genera were positively associated with #irS
and nirK genes. However, as time progressed, an increasing number of
genera correlated with the nrfA gene, indicating a shift towards DNRA
becoming the predominant function within the system. On days 40 and 80,
Thauera exhibited a negative correlation with the nrfA gene, potentially due
to its primary involvement in denitrification. It’s worth noting that both
denitrification and DNRA-related genes are inducible genes, meaning that
they can not respond immediately to environmental changes*. Instead, they
require a certain period of cycling to induce their expression. Moreover,
many bacteria possess genes related to both denitrification and DNRA, such
as Shewanella loihica PV-4”. Different environmental conditions induce
these bacteria to execute various functions. Under conditions of high carbon
ratios, DNRA demands a greater electron influx than the denitrification
process. DNRA has an advantage over denitrification in nutrient-limited
conditions, thus being more likely to dominate. The consistently strong
correlation between R1 and the nrfA gene implied that the 40 mT SMF
effectively promoted DNRA process. On the other hand, the negative cor-
relation between nrfA gene and R2 during the initial 80 days, coupled with
the positive correlation between R2 and nirK/nirS genes, suggested that the
high SMF might influence bacterial gene expression, favoring denitrification
and giving it a competitive edge over DNRA. This, in turn, could delay the
initiation of the DNRA process.

Effect of SMF on microbial function
The trend of changes in microbial function was highly valuable for exploring
the impact of SMF on the DNRA process. Throughout the operation,

significant enrichment of bacterial chemotaxis, flagellar assembly, and two-
component system was observed, predominantly under the influence of the
40 mT SMF (Fig. 6a). However, functions such as biosynthesis of ansa-
mycins, biosynthesis of vancomycin group antibiotics, and protein export
were downregulated. The co-occurrence network depicted intricate con-
nections among the functions within the reactors (Fig. 6b). The selected
functions were categorized into three modules. Examining the functions
within each module, module_1 and module_3 predominantly encompassed
nitrogen-sulfur-carbon metabolism and small molecule metabolism.
Meanwhile, Module_2 primarily revolved around microbial energy acqui-
sition, including flagellar assembly and bacterial chemotaxis. Module_2
mainly encompassed functions that were upregulated, including two-
component system, bacterial chemotaxis, flagellar assembly, bacterial
secretion system, riboflavin metabolism, and phosphotransferase system.
To further investigate the mechanisms underlying the promotion
of the DNRA process under 40 mT SMF, a more in-depth analysis was
conducted on the primary functions such as two-component system,
membrane transport, cell motility, and EET on day 80 (Fig. 6¢). Two-
component system, widespread in microorganisms, perceives and
transduces environmental information to trigger appropriate cellular
responses, notably cell division, metabolism, cell motility, and electron
transfer*. Compared to Rcg, R1 exhibited an upregulation of 18.83% in
the two-component system. It also has been reported that the function
activity of two-component system was enhanced under the SMF ¥, In
this study, the 40 mT SMF enhanced the activity of the two-component
system, which could be one of the reasons for the accelerated startup of
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DNRA. Moreover, compared to Rck, R1 demonstrated an upregulation
of 18.60% in the phosphotransferase system and 7.62% in the bacterial
secretion system, both associated with membrane transport”. Cell
mobility is a critical attribute for bacteria, enabling them to locate
suitable niches even within challenging environments®. Under 40 mT
SMEF, flagellar assembly and bacterial chemotaxis, both related to cell
motility, were upregulated by 27.27% and 43.41% compared to Rck.
Bacterial chemotaxis, in conjunction with flagellar assembly, empowers
bacteria to navigate towards attractive substances or away from harmful
chemicals. Consequently, these mechanisms are pivotal in orchestrat-
ing dynamic bacterial responses to diverse environmental conditions®.
Sun et al.” reported that bacteria recruited to the rhizosphere via che-
motaxis promoted NO; ™~ acquisition in maize™. In this work, SMF was a
likely regulator of bacterial chemotaxis. Under SMF, the rate of electron
transduction through the flagella might be accelerated, increasing cell
motility and prompting bacteria to capture nitrate ions more effectively,

thereby enhancing DNRA efficiency. Notably, in this experiment, the
dominant bacterial genera within the reactor, Geobacter and Thauera,
were both electroactive bacteria’', indicating the possible occurrence of
EET. Studies have shown that riboflavin can stimulate anaerobic
metabolism®’, bacterial biofilm formation®’, and EET"*. There were
reports indicating that the introduction of riboflavin into Geobacter-
based co-cultures promoted IET by serving as an electron shuttle. In
this work, riboflavin metabolism was enhanced by 10.67% by 40 mT
SMEF, compared to no SMF irradiation.

Besides, certain functions in R2 were also upregulated compared to
Reg including  flagellar assembly, bacterial chemotaxis, and two-
component system (Fig. 6¢). In this experiment, compared to the control
group, both high and low SMF demonstrated promotion of certain func-
tions. This enhancement likely bolstered the microbial capacity to acquire
nutrients and enhanced signal transmission, contributing to the enhance-
ment of DNRA in R1 and denitrification in R2.
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Possible mechanisms

As discussed above, SMF primarily enhanced the microbial functions
related to membrane transport, signal transduction, cell motility, and
electron transfer. Concerning these functions, a search for the associated
genes was conducted, aiming to uncover the connections among them

(Fig. 6d, e). The two-component system is the most prevalent signal
transduction mechanism, renowned for its ability to detect various stimuli
and orchestrate rapid and appropriate responses, which encompass a wide
array of functions such as bacterial communication, the synthesis of pili and
flagella, as well as tolerance or reactions to external stress™. The two-
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Quorum sensing was influenced by SMF, regulating the flagellar motor. SMF pos-
sibly enhanced the interspecies electron transfer of Geobacter, enabling the transfer
of electrons to other bacteria and further improving DNRA process.

component system consists of two essential proteins: a sensor protein
housing the histidine kinase domain and a corresponding regulatory protein
that contains the response regulator domain, as shown in Fig. 7”. Perception
occurs in the periplasm or the extracellular space, within the membrane, or
in the cytoplasm™. Genes related to electron transfer and cell motility within
the two-component systems associated with signal transduction have been
identified (Fig. 6d). However, due to the limitations of sequencing methods,
no significant changes were detected in membrane transport-related genes.
Most genes were upregulated under SMF influence, with a more pro-
nounced effect in R1. The relevant genes in R2 appeared to be relatively
stable, which indicated two-component system could be more likely acti-
vated under 40 mT SMF. The network analysis illustrated a close connection
among genes of different functions (Fig. 6e). The dominant DNRA genus
Geobacter was closely associated with type IV pilus assembly, twitching
motility, and flagella assembly (chemotaxis).

Thus, as discussed above, two possible mechanisms based on two-
component system were proposed: First, SMF accelerated extracellular
electron transfer to enhance bacteria activity and bacterial motility; second,
SMF improved bacteria motility to capture more CODand NO; .R1had an
upregulation of genes related to type IV pilus assembly and cytochrome ¢
(Fig. 6e). Hu et al*' found that applying SMF can improve TN removal
efficiency of the A/O SBR process as the electron transport was enhanced’".
Type IV pilus and cytochrome c are both essential components of EET
systems. Considering that Geobacter possesses the ability of electroactivity™,
these findings suggested that 40 mT SMF likely enhanced the EET or IET
capability of Geobacter, enabling the transfer of electrons to other bacteria.
Network analysis revealed that the connections between Geobacter and
other microbes in R1 were stronger compared to Rox and R2. It consistently
exhibited a positive correlation with Thauera in all three reactors (Fig. 3d).
Based on the reported EET pathways®, the first one is the e-pili mode,
primarily through electron hopping and tunneling®. The second pathway is
the cytochrome-to-cytochrome mode, in which electron transfer occurs
only when the strains are in direct physical contact®’. Hence, bacteria may

accept electrons via some known cytochromes®. Third, electron shuttles like
riboflavin might assist the electron transfer between the two consortia®.
These pathways warrant further investigation into DNRA system.

The primary selective pressure driving the evolution of chemotaxis is
the need to access nutrients*. Bacterial flagella and pili can sense adverse
conditions, and chemotaxis can enhance bacteria’s ability to access favorable
environments*. Some species, like Geobacter, might exhibit comparatively
slower substrate uptake and growth rates in comparison to other microbial
populations. Geobacter spp. could be enriched under conditions of limited
substrate competition, allowing them ample time to acquire the substrate
with less competition from other microbial populations®. The ecological
importance of cellular motility in enhancing NO;™ use efficiency through
DNRA pathway was reported in the plant rhizosphere®. In this experiment,
the reactors were run in a low-carbon, and low-nitrogen environment,
which compelled bacteria to enhance their activity for nutrient uptake. The
SMF stimulation facilitated this process, driving bacteria to capture more
substrate via cell motility. Additionally, the QseB/QseC system, recognized
as an integral part of the regulatory apparatus of bacterial quorum sensing
(QS), is indispensable for various bacterial life processes. It serves as the
primary executor of swift responses that are crucial for bacterial survival in
intricate and dynamic environments”. The intracellular quorum sensing
signal molecules cyclic diguanylate (c-di-GMP) can help bacteria coordinate
multiple metabolic activities such as bacterial movement. Pde and dgc genes,
responsible for the decomposition and composition of c-di-GMP, were
detected in this work. In this work, the relative abundance of pde was 75.65%
higher than that of dgc (Fig. 6e), implying that c-di-GMP was broken down
more rapidly than synthesized. As shown in Fig. 7, PdeH inactivated YcgR
by keeping c-di-GMP levels low, thereby enabling flagella motor function®”.

The effect of SMF on nitrogen transformation of DNRA and
denitrifying bacteria

Based on the discussion above, four bacteria which could perform deni-
trification or DNRA were selected to further investigate the effect of SMF.
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Thauera sp. RTI901 and Stutzerimonas stutzeri could perform
denitrification®. Shewanella oneidensis MR-1 and Shewanella loihica PV-4
were typical EET bacteria. Shewanella oneidensis MR-1 could perform
DNRA. Shewanella loihica PV-4 possess the full genes for both DNRA and

denitrification”. During the batch experiments, SMF affected the nitrogen
transformation of DNRA bacteria and denitrifying bacteria (Fig. 8). Based
on the results, Thauera sp. RT1901 was the most susceptible to the effects of
SMEF due to the clear difference in nitrite removal at early 24 h, which might
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be attributed to its diversified metabolism®. Moreover, SMF of 5 or 20 mT
promoted the nitrogen transformation of all bacteria. SMF of 5 and 20 mT
improved the nitrite removal of Thauera sp. RT1901 by 72.3% and 82.5%,
and Stutzerimonas stutzeri by 27.1% and 14.4%, respectively. SMF of 5 and
20 mT also enhanced the ammonia transformation of Shewanella oneidensis
MR-1by 8.3% and 22.2%, and Shewanella loihica PV-4 by 46.1% and 22.6%,
respectively. However, 40 mT SMF had little enhancement for the nitrogen
transformation, even inhibition for Stutzerimonas stutzeri. Thus, SMF could
affect the nitrogen metabolism activity of bacteria, whether it is DNRA
process or denitrification process, and the effects depended on the intensity
of the SMF and the metabolic characteristics of the bacteria.

To further explore the dynamic responses of DNRA bacteria and
denitrifying bacteria to different SMF, the transcriptional levels of functional
genes related to nitrogen transformation and energy metabolism were
analyzed (Fig. 9). NirS, nirK, norB, and nosZ were related to denitrification”.
NrfA was the marked gene for DNRA’'. CcmFC, ccmFN, and ccmB were
related to electron transfer””. Dgc-c and pde-c were related to quorum
sensing”’. Based on the RT-qPCR results, an evident increase in the tran-
script level of DNRA and denitrification genes was observed under 5 and 20
mT SMF, consistent with the results of nitrogen transformation. CcmFC,
ccmFN, and ccmB were also enhanced by 5 and 20 mT SMF, which sug-
gested SMF could promote electron transfer and further enhanced nitrogen
transformation. Previous researches have shown the positive role of the SMF
in anaerobic digestion via promoting electron transfer process”*. However,
the expressions of dgc-c and pde-c were downregulated under 5 and 20 mT
SMEF. Dgc and pde were the major regulatory genes of c-di-GMP, which
regulated cell movement, EPS secretion, and cell cycle progression. The
lower expression of dgc and pde might lead to greater energy conservation in
EPS secretion, bacterial proliferation, or other process. Consequently,
nitrogen metabolism could access additional energy resources to advance
further.

Application

In recent years, substantial global endeavors and investments have been
aimed at advancing renewable energy sources. Industrial operations across
different parts of the world have resulted in numerous direct and indirect
adverse environmental outcomes. The widespread prevalence of nitrate
wastewater holds a dual significance, potentially contributing to ecological
harm while also presenting an opportunity for ammonia reclamation. In
contrast to traditional nitrate removal methods, the implementation of
DNRA provides the benefit of nitrogen recovery from nitrate wastewater
while concurrently curbing the emission of the greenhouse gas N,O from
denitrification"’. Ammonia can be easily separated from water based on its
volatility and/or electrical mobility. Various methods had been reported to
recover NH,* from wastewaters including stripping’’, ion exchange, and
forward osmosis™. Wu et al.”” reported that the high pH (>12) at the
catholyte further drove ammonium to ammonia gas, leading to a 96%
ammonia recovery from synthetic reject water””. Kuntke et al.”® used
microbial fuel cell with a gas diffusion cathode to recover ammonia’®. In the
cathode chamber, ionic ammonium was converted to volatile ammonia due
to the high pH. Ammonia was recovered from the liquid-gas boundary via
volatilization and subsequent absorption into an acid solution. Thus,
ammonia could be recovered as an energy carrier by ammonium. Moreover,
DNRA has been considered a viable nitrite- and ammonia-generating
mechanism from nitrate in an anammox bioprocess and has been used in
various bioreactor setups to enhance anammox nitrogen removal”.
Ammonium produced by the DNRA process could serve as substance for
anammox process directly.

This work realized a high ammonium conversion efficiency in DNRA
system improved by SMF. Compared with the other methods, the use of
SMF induced by permanent magnets in the wastewater treatment process
could provide several advantages such as no secondary pollution, no need
for additional energy®, cost savings®, and ease of management and
operation®’. However, regarding its suitability for industrial and municipal
wastewater treatment, the utilization of permanent magnets to establish a

stable, constant magnetic field poses challenges and safety concerns. Ahmad
et al. (2023) demonstrated an alternative approach by utilizing an iron core
within the coil, powered by direct current, to generate the SMF*. This
method opens avenues for employing magnetic beads and other
magnetically-based carriers as support materials for biofilm formation, with
the aim of enhancing bacterial activity through the generated magnetic
field™. Despite the potential costliness of constructing such magnetic sys-
tems, the resultant magnetic field has shown significant benefits, including
enhanced biological activity, improved bacterial resilience against substrate
shock, and enhanced nitrogen removal performance®’. Further investigation
is warranted into optimizing reactor volume, type, and material, as well as
magnetic field intensity, and the size and quantity of permanent magnets, to
effectively manage the costs associated with the magnetic system.

The effects of SMF on DNRA process were systematically investigated
in this study. 40 mT SMF could shorten the start-up time of DNRA process
by the rapid enrichment of functional genes and the swift dominance of
functional bacteria. Geobacter, as electroactive and DNRA bacteria, was
most abundant under 40 mT SMF. Moreover, the underlying mechanisms
were also discussed in this work: 40 mT SMF could improve DNRA process
by stimulating a range of microbial functions, including energy metabolism,
cell motility, electron transfer, and membrane transport. RT-qPCR results
indicated that SMF could affect the nitrogen metabolism activity of bacteria
and the effects depended on the intensity of the SMF and the metabolic
characteristics of the bacteria. This study proved the feasibility of improved
ammonia recovery efficiency via DNRA process by applying SMF and
provided an economic method for the application of DNRA process in real-
wastewater treatment plants.

Methods

Reactor set-up, synthetic medium, and inoculation

To enrich DNRA bacteria, three parallel sets of non-woven fabric mem-
brane bioreactors (nMBRs) were designed (Supplementary Fig. 2). The SMF
generation device was two rubidium magnets placed in parallel and one
below the reactor. This device could produce 0-80 mT SMF inside the
reactor, which has bio-affinity. In this experiment, Rcx was the control
reactor, R1 was irradiated by 40 mT SMF, and R2 was irradiated by 80 mT
SMEF. SMF intensity distribution inside the reactor was shown in Supple-
mentary Fig. 3. The composition of synthetic wastewater was determined as
the previous study”™, with slight modification (Supplementary Table 1 and
Supplementary Table 2). The carbon source was acetate and the ratio of
COD/NO;~ was 7.7. To maintain anaerobic environment, the synthetic
wastewater buckets were purged with high-purity nitrogen gas for
20 minutes daily. The concentrations of nitrogen compounds (NH,'-N,
NO,™-N, and NO;—-N) were determined using the Standard Methods"’.

N tracer incubations, DNA extraction, and real-time qPCR
analysis

The potential rate of the DNRA process was assessed by conducting slurry
incubation experiments using "N isotope tracing technology, which
allowed for precise measurement and tracking of nitrogen transformations
as previous work'’. The extraction of genomic DNA from the sludge sam-
ples was performed using the DNeasy Power Soil DNA Kit (Qiagen, Ger-
many) following the manufacturer’s instructions. The DNA quantification
was carried out using an ultraviolet microspectrophotometer (K5500, Kaiao,
China). DNA samples were stored at —20 °C for preservation and sub-
sequent experiments. Quantitative real-time PCR (qPCR) was employed to
assess the abundance of target genes in the three reactors. All functional
genes were quantified by a qPCR system (Roche Light Cycler 480, Swit-
zerland) using manufacturer software. The nrfA gene, responsible for
encoding nitrite reductase enzymes, was used as a molecular marker to
quantify DNRA bacteria. nirS and nirK, accountable for reducing NO, ™ to
NO, were used as biomarkers for denitrifying bacteria®’. The qPCR analysis
was performed according to Zhao et al."’. Specific primers (Supplementary
Table 3) and PCR programs (Supplementary Table 4) for target genes in
qPCR was provided.
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Fig. 9 | The RT-qPCR results of the functional genes. The genes related to nitrogen
transformation and energy metabolism of (a) Thauera sp. RT1901, (b) Stutzer-
imonas stutzeri, (c) Shewanella oneidensis MR-1, and (d) Shewanella loihica PV-4

under different SMF intensities were tested at transcription level. Fold change <1

means gene downregulation and Fold change >1 means gene upregulation. Data
indicate average, and error bars represent standard deviation of the results from
three independent sampling, each tested in triplicate.
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Ampilification PCR and high-throughput sequencing

The 16S-rRNA gene was amplified by PCR, using the barcode-primers set
515 F (5-TWNGGCATRTGRCARTC-3’) / 907 R (5'-CCGTCAATTCMT
TTRAGTTT-3')". The 2% agarose gel electrophoresis method was used to
detect the PCR amplification products using the gel purification kit
(AXYGEN, USA) for fragment excision and recovery. Then, Microplate
reader (FLx800, BioTek, USA) and Quant-iT PicoGreen dsDNA Assay Kit
were used to fluorescently quantify the amplified recovery products. The
PCR amplicons were subjected to 2 x 300 bp paired-end sequencing using
the llumina NovaSeq platform. PICRUSt2 was used to predict the potential
of a sample using 16 S rDNA amplicon sequencing. KEGG Orthology (KO)
was used to classify all homologous genes to a specific gene whose function is
known to be in the same category"’.

The effect of SMF on functional bacteria

Thauera sp. RT1901, Stutzerimonas stutzeri, Shewanella oneidensis MR-1,
and Shewanella loihica PV-4 were selected for nitrogen transformation
experiments. The nitrogen transformation accumulation medium con-
tained the following components: 0.5 g L™" sodium acetate, 0.2 ~0.5 gL ™"
sodium nitrite, 1.0 g L™" NaCl, 0.5gL ™" MgCl,, 0.3gL™" KCl, 0.015gL™"
CaCl,,and 1 mL L™ trace element solution®. The Luria broth (LB) medium
included 10.0gL™" peptone, 5.0 gL ™" yeast extract, and 10gL™" NaCl
Single colony of Thauera sp. RT1901, Stutzerimonas stutzeri, Shewanella
oneidensis MR-1, and Shewanella loihica PV-4 was inoculated into 300 mL
the LB medium and cultured at 30 °C for 24 h with agitation to encourage
growth. After activation, the cultures were centrifuged at 8000 rpm, washed
three times with sterile phosphate-buffered saline (PBS) and ultrapure
water, and resuspended in the nitrogen transformation medium. Then the
cultures were dispensed in serum bottles with an effective volume of 100 mL,
and control the concentration of the bacterial solution at ODgyy = 0.2 - 0.3.
By adjusting the distance between the serum vials and the permanent
magnet, the SMF intensity at the center of the serum vial was set to 0 mT, 5
mT, 20 mT, and 40 mT. If the batch experiments do not get obvious
experimental results at 24 h, PBS buffer will be utilized to wash the culture
and nitrogen transformation medium will be added again. At the end of the
batch experiments, the cultures were centrifuged at 8000 rpm and then RNA
was extracted and reverse transcribed using the PerfectStart Uni RT&qPCR
kit (TransGen Biotech Co., Ltd. China). Reverse transcription qPCR (RT-
qPCR) was performed to quantify the gene expression level of functional
genes by the Roche Light Cycler 480 Real-Time PCR system (Switzerland).
The primer sequences of functional genes used in the RT-qPCR were placed
in Supplementary Table 5.

Data availability

The data that support the findings of this study are available from the
corresponding author upon reasonable request. The 16S rRNA gene
sequences obtained in this study were submitted to the NCBI Sequence Read
Archive (SRA) under accession numbers SAMN41404876-SAMN41404895.

Code availability
The codes generated and/or used during the current study are available from
the corresponding author upon reasonable request.
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