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Deep representation learning enables
cross-basinwaterqualitypredictionunder
data-scarce conditions
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Artificial intelligence has been extensively used to predict surface water quality to assess the health of
aquatic ecosystems proactively. However, water quality prediction in data-scarce conditions is a
challenge, especially with heterogeneous data from monitoring sites that lack similarity in water
quality, hindering the information transfer. A deep learning model is proposed that utilizes
representation learning to capture knowledge from source river basins during the pre-training stage,
and incorporates meteorological data to accurately predict water quality. This model is successfully
implemented and validated using data from 149 monitoring sites across inland China. The results
show that the model has outstanding prediction accuracy across all sites, with a mean Nash-Sutcliffe
efficiency of 0.80, and has a significant advantage in multi-indicator prediction. The model maintains
its excellent performance even when trained with only half of the data. This can be attributed to the
representation learning used in the pre-training stage, which enables extensive and accurate
prediction under data-scarce conditions. The developed model holds significant potential for cross-
basin water quality prediction, which could substantially advance the development of water
environment system management.

Surface water, as a vital natural resource, plays a pivotal role inmaintaining
ecological balance and protecting human health through its intrinsic link to
water quality1,2. Therefore, it is essential to accurately and promptlymonitor
and predict fluctuations in river water quality to safeguard aquatic health3,4,
maintain ecosystem stability5,6, and improve human development7,8. How-
ever, the understanding of water quality variations and their underlying
causes is limited9, which prevents accurate prediction of water quality
indicators and effective management of water ecosystems10. In recent years,
with the rapid development of AI and the increase in available data11, deep
learning methods have shown broad application prospects in the field of
water quality prediction12,13. Unlike traditional mechanism models that are
based on processes14,15, the data-driven deep learning models can directly
find the internal relationship between input and output data, resulting in
improved performance and efficiency in predictive capabilities.

Water quality prediction is indeed a quintessential task in time series
forecasting, relying on historical data to anticipate future patterns. To
improve the efficiency and accuracy of predictionmodels, researchers often
use several strategies. These include enhancing the architecture of founda-
tion models to better capture underlying patterns, streamlining the

complexity of input data to minimize noise and computational load, and
improving the quantity or quality of external variables to provide a more
comprehensive dataset for analysis. Specifically, attention mechanisms or
convolutional modules can capture and extract the spatio-temporal infor-
mation from water quality data16,17, which is essential for the model’s
understanding of the complex mapping relationships between inputs and
outputs. By meticulously designing the architecture, the improved model
can identify and emphasize key information within the data, thereby
enhancing prediction accuracy. Furthermore, data decompositionmethods
such as wavelet transform18, empirical mode decomposition19, and seasonal
trend decomposition13 are often used to separate signal from noise in water
quality data20. This approach can help overcome the limitations of deep
learning models in dealing with non-stationary dynamics and can greatly
improve the performance of the model21.

In addition, the selection of key exogenous variables as model inputs
can significantly enhance model performance22,23. However, including too
many variables can decrease efficiency without much improvement in
performance. Therefore, extensive exploration is necessary to identify
rational inputs for water quality prediction9,24. Meteorological factors are

1The Institute of Municipal Engineering, Zhejiang University, Hangzhou, China. 2Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
3Centre for Water Systems, Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK. e-mail: zhoutang@zju.edu.cn; ztq@zju.edu.cn

npj Clean Water |            (2025) 8:33 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41545-025-00466-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41545-025-00466-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41545-025-00466-2&domain=pdf
mailto:zhoutang@zju.edu.cn
mailto:ztq@zju.edu.cn
www.nature.com/npjcleanwater


significant exogenous factors influencing water quality variation. For
instance, temperature is the primary driver of dissolved oxygen, while
rainfall-induced non-point source pollution can lead to elevated levels of
ammonium nitrogen in rivers25,26.

Another major challenge that affects the accuracy of water quality
prediction is the lack of data (data scarcity). Not only is there a limited
amount of data available, but it is also unevenly distributed geographically
(data quantity heterogeneity)27. This leads topoorperformance andmakes it
difficult to directly apply deep learning models. In such cases, it is common
to use data from areaswith a lot of data (source domains) tomake up for the
lack of data in other areas (target domains)28. This is known as transfer
learning, where the pre-trained weights of a deep learning model from
the source sites are transferred to the target sites29. Then, the model’s
weights are selectively re-trained using the limited data from the target
domain to optimize and adapt to the local conditions. However, this
approach may not be effective for water quality monitoring sites that
have high data quantity heterogeneity, meaning there is a significant
difference in water quality variations over space and time. These sites are
often geographically distant and lack known hydrological connectivity or
spatial correlation within he watershed. Therefore, it is crucial to achieve
knowledge transfer across these sites to ensure accurate predictions and
avoid the need for extensive and repetitive model training, particularly in
the context of data scarcity. This requires training a cohesive model that
can combine useful information from various water quality monitoring
sites and effectively handle spatio-temporal prediction scenarios30.
However, in the context of scarce water quality data, achieving accurate
model prediction in high data quantity heterogeneity river basins
through knowledge transfer remains a significant challenge, and no
method has been proposed to solve this problem so far.

In this article, a deep learning model was developed from the per-
spective of model architecture design to extract complex information from
differentmonitoring sites (source domain) by using representation learning
to address these challenges. Representation learning enables the model to

extract high-level features from raw data by capturing its underlying
structure31. This approach is especially useful for time series tasks, where the
learned representations can improve performance across prediction, clas-
sification, andother applications32. Additionally, this study evaluated several
categories of potential exogenous inputs, including hydrological variables
(e.g., streamflow, water level), land use characteristics, and anthropogenic
activity indicators. However, many of these alternatives were either una-
vailable across all monitoring sites or lacked sufficient temporal resolution.
In contrast, meteorological factors are consistently available, spatially
aligned, and well-documented. These features are also theoretically
grounded in their influence on water quality. Thus, meteorological factors
were incorporated as guiding features to improve the prediction of surface
water quality indicators. The model was trained and evaluated using data
from 149 monitoring sites across China, focusing on four water quality
indicators: chemical oxygen demand (COD), dissolved oxygen (DO),
ammonia nitrogen (NH3-N), and pH. The study first evaluated the model’s
performance in predicting water quality across different basins and fore-
casting multiple indicators. It then tested the model’s robustness to data
scarcity by reducing the amount of data and using diverse source domains,
addressing the challenges of applying deep learning in cross-basin and data-
scarce conditions.

Results
Model architecture overview
The proposedmodel is a deep learning-basedmethod for cross-basin water
quality prediction across different river basins using the information from
sourcedomains.As shown inFig. 1, themodel consists of two stages: (1) pre-
training representation learning based on basin-scale water quality data,
which extracts complex information from the source domain; and (2)
meteorology-guided fine-tuning learning for site-scale water quality pre-
diction, which uses historical meteorology and water quality data from the
target domain (corresponding monitoring site) to forecast future water
quality variations.

Fig. 1 | The structure of the designed two-stage deep learning model. The first stage is basin-scale spatio-temporal pre-training based on representation learning, and the
second stage is site-scale meteorology-guided fine-tuning prediction learning.
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The proposed model employs a two-stage training framework: basin-
scale spatio-temporal pre-training for representation learning and site-scale
meteorology-guided fine-tuning for prediction. In the pre-training stage, a
masking-reconstruction strategy is used to capture complex spatio-
temporal dynamics in source river basin water quality data. The model
includes an embedding layer, amasking layer, parallel Transformer encoder
blocks, and a fusion layer. Four masking strategies- random, temporal,
spatial, and indicator—are applied to enhance the model’s capacity to
understand multifaceted data relationships. Transformer blocks capture
site-specific variations, while the fusion layer integrates temporal and
parameter information acrossmonitoring sites, enabling the reconstruction
of themasked data. In the fine-tuning stage, themodel leverages pre-trained
representations to predict futurewater quality at specific sites, incorporating
a feature attention layer to align water quality with meteorological factors.
Transfer learning is applied to adapt the pre-trained model, enhancing
generalization and reducing overfitting. This architecture demonstrates
strong robustness to heterogeneous or low-quality data, as the masking-
reconstruction and representation fusion strategies bolster the model’s
resilience and reliability in practical applications.

Cross-basin water quality prediction performance
Water quality characteristics can vary significantly between monitoring
sites, including mean concentration, change trend, and mutation. For
example, the mean concentration of four water quality indicators in 149
monitoring sites shows great differences (Fig. S1). The results demonstrate
the strong heterogeneity of water quality data, which can hinder accurate
predictions based on similar knowledge transfer. To address this issue, the
representation learning-based model was trained to extract heterogeneous
knowledge and forecast water quality. Additionally, compared to the
unfrozen fine-tuning method, the frozen model undergoes more rigorous
training conditions, and all parameters of themodel will be re-trained from
an ideal initialization state of parameters. Theoretically, if the frozen model
performs well, the unfrozen model will perform even better29. Thus, the
frozen model (more rigorous method) was selected and trained with all
available data to demonstrate the performance potential of the proposed
model in this study. Figure 2a shows the Nash-Sutcliffe efficiency (NSE) of
the four water quality indicators prediction results under different source
domains. The results for all indicators show good performance, achieving a
mean NSE value of 0.80. This indicates the robust prediction ability of the
proposed model. However, there were clear differences in the performance
of the four indicators, with similar results observed under different source
river basins. DO had the highest NSE values, followed by the pH, NH3-N,
and COD, with mean NSE values of 0.84, 0.80, 0.78, and 0.76, respectively.
This discrepancy could be attributed to the better trend and periodicity of
DO’s original data compared to other indicators, making it more pre-
dictable. A possible explanation for this is that the primary driver affecting
the DO variation is temperature33, which has a strong regularity.

The spatial distribution of model performance is shown in Fig. 2b–e,
with NSEmaps for four water quality indicators across the 149 monitoring
sites. A set of monitoring site performance evaluation criteria based on the
NSE value is introduced in this study10. Specifically, amodel is considered to
exhibit good performancewhen theNSE ≥ 0.7, fair performance falls within
the range of 0.4 <NSE < 0.7, and low performance is indicated by an
NSE ≤ 0.4, respectively. Visually, most sites show good performance, a few
sites show fair performance, and almost no sites demonstrate low perfor-
mance from the NSE maps. Quantitatively, over 70% of the 149 sites
demonstrated good performance, and over 99% of the 149 sites achieved
either good or fair performance (Table S1). The results demonstrate that the
model performance is stable and excellent in spatial distribution. Sig-
nificantly, spatial patterns of water quality concentrations display notable
variations, particularly among monitoring sites separated by large spatial
distances25. These variations are caused by different geographical locations,
basin attributes, climate conditions, and human activities according to
hydrology. Such variability poses challenges for conventional models to
rapidly adapt for water quality prediction at different monitoring sites. In

contrast, our fine-tuning method, based on representation fusion and
meteorology guidance, has overcome this issue and successfully achieved
high-performance cross-basin water quality prediction by leveraging the
information captured in the pre-training stage. Specifically, in the pre-
training stage, themodel extracts latent representations from diverse source
domain sites, encoding shared temporal patterns, water quality fluctuation
trends, and spatially relevant features. These representations capture
essential hydrological characteristics that are transferable across locations,
despite local variability. By integrating these learned features during fine-
tuning, the model can generalize to new basins with limited target domain
data, whilemeteorological factors further guide the adaptation process. This
strategy enhances themodel’s spatial generalization ability and facilitates its
practical deployment across regionswithdifferent data distributions, paving
the way for broader application and promotion.

Model’s high performance under data scarcity
Theoretically, the performance of a deep learning model increases with an
increase in data quantity. However, compared to hydrological and
meteorological data, water quality data are oftenmore sparse and limited in
spatio-temporal coverage25. Accurate prediction of water quality with lim-
ited data is still challenging. To evaluate the robustness of the proposed
model under conditionsofdata scarcity, a seriesof experiments is conducted
systematically. These involve training the proposed model on progressively
reduced subsets of the training dataset, specifically using 100%, 50%, and
20% of the data, while keeping the testing dataset consistent across all trials.
Additionally, two distinct fine-tuning methods are applied to each of these
training scenarios, enabling a comprehensive assessment of how the pre-
dictive performance of the model is influenced by the amount of available
training data.

Visually, there is no significant difference in theNSE values among the
four indicators when comparingmodels trained on 100% versus 50% of the
training data, with a marginal decrease averaging 0.025 (Fig. 3a, b). This
observation indicates that using a reduced training dataset of 50% is suffi-
cient to achieve commendable predictive performance. It is noteworthy that
the application of the frozen fine-tuningmethod does not have a substantial
influence on the model results. This finding is significant as it underscores
the robust capture of spatio-temporal dynamics inwater quality data during
the pre-training stage. Despite a pronounced decline inmodel performance
when the training data is reduced to 20%, themodel’s ability to sustain high
performance with only half of the already limited training data underscores
the effectiveness of the representation learning strategy implemented in this
study.Moreover, the results of the significance difference test reveal that the
models trained on 50% and 100% of the training data are significantly
different at a 0.01 significance level (except for the NH3-N of the Frozen
model). This significance arises not from the mean difference in NSE but
from the consistency of these differences. Although these differences are
small, their uniformity across the sample suggests that they are not merely
the product of randomvariation but rather a consequence of the disparity in
the training data quantity.

Figure 3c–f reveals the decrease rate between the 100% and 20%
training data models in root mean square error (RMSE) values. It can be
seen that the performance decrease exhibits a certain degree of consistency
across spatial monitoring sites, meaning that the performance of the four
indicators at each site has a similar pattern. In addition, the Unfrozen
method is less affected by the training data quantity compared to the Frozen
method. This is reasonable because the number of adjustable parameters is
different. Different water quality indicators had different responses to
changes in training data quantity, with NH3-N being the most sensitive
indicator. Quantitatively, the decline in performance (100%vs 20% training
data) among the four indicators can be ranked as NH3-N > pH >DO>
COD,withmeanRMSEdecreasing by 59.02%, 36.36%, 31.41%, and 28.37%
in mean RMSE values, respectively (Fig. S2).

The sensitivity of water quality indicators to the quantity of training
data varies significantly, possibly due to several reasons. Firstly, in the
context of acquiring water quality knowledge from the source river basins
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through representation learning, the characteristics of NH3-N are notably
challenging to capture due to its susceptibility to a multitude of extrinsic
factors34–37 and its inherently complex cycling mechanisms38–41. This com-
plexity surpasses that of other water quality indicators, necessitating a larger
quantity of data during the fine-tuning stage to compensate for the
knowledge deficit. Secondly, the interplay of correlations among various

water quality indicators is crucial for enhancingmodel prediction accuracy.
Specifically, the intercorrelations amongCOD,DO,andpHaremore robust
and pronounced, whereas the correlation with NH3-N is comparatively
indirect42–44. Thirdly, meteorological factors are also important input fea-
tures, and their correlation with water quality has a great influence on the
prediction results26,45,46, while the correlation of the selected meteorological

Fig. 2 | Performance of the proposed model with different indicators and sites. aNSE of four indicators in different source river basins. b–eModel performance (mean
NSE value of six source river basins) in 149 monitoring sites for predicting COD (b), DO (c), NH3-N (d), and pH (e).
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factors with other water quality indicators may be slightly greater than that
of NH3-N.

Stable performance across source basins
Acquiring knowledge from data-rich source domains can effectively
enhance the modeling of target domains, and the model performance is
significantly related to the regionalization approaches and input data
quantity of the selected source domains47–49, Consequently, our research
focuses on determining whether the proposed model can extract sufficient
knowledge from the six selected source river basins, which exhibit varying
quantities of data, to facilitate precise predictions for each site. It is essential
to recognize that the fine-tuning method can substantially influence the
predictive results ofmodels, and a thorough analysis of the twodistinctfine-
tuning strategies employed in this study is warranted to understand their
impact on the results.

Figure 4a–f shows the NSE values for six source river basins and two
fine-tuning methods. Visually, the change of source domain did not have a
significant influence on the model results, demonstrating that the designed
pre-training approach successfully captured the spatio-temporal and indi-
cator characteristics of each river basin. This finding indicates that, when
employing an identical fine-tuning approach, there is no substantial

correlationbetween thenumberof siteswithin the source riverbasin and the
model performance. Figure 4g illustrates the NSE difference of four indi-
cators across 149monitoring sites. The NSE difference values for most sites
are concentrated between −0.2 and 0.1, with a mean 4NSE of −0.015.
Interestingly, the performance disparities between theUnfrozenandFrozen
models in these source domains exhibit distinct patterns. Specifically, the
absolute mean NSE differences are ranked as follows: Pearl River (0.027 ±
0.117) >Huaihe River (0.020 ± 0.116) > Yellow River (0.014 ± 0.104) >
Songhua River (0.012 ± 0.095) > Yangtze River (0.011 ± 0.099) >
Heilongjiang River (0.003 ± 0.108). The difference may be due to the dif-
ferent quantities of effective information learned from the source river
basins.

Furthermore, the differences between the two fine-tuningmethods are
not pronounced. TheUnfrozenmodel exhibited slightly better performance
in predicting water quality compared to the Frozen model. Quantitatively,
the Unfrozen model achieved an average NSE value of 0.76, compared to
0.74 for the Frozen model. This improvement in NSE can be attributed to
the re-training of the Transformer blocks within the model. The primary
distinctionbetween theUnfrozen andFrozenmethods iswhether themodel
parameters,withwater quality knowledge captured in thepre-training stage,
are re-trained. This means that during the fine-tuning stage, the Unfrozen

Fig. 3 | The model performance under different training data quantities. a, b The
comparison of four indicators in different training data quantities. Paired t test (two-
sided) was used to evaluate the significance among different training data quantities,
with one, two, and three asterisks indicating significance levels at 0.05, 0.01, and

0.001, respectively. c–f The increase rate of RMSE value (20% training data com-
pared with 100% training data) in 149monitoring sites wasmarked on themap, that
is, RMSE% ¼ RMSE20%�RMSE100%

RMSE20%
× 100%. COD (c), DO (d), NH3-N (e), and pH (f).
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model has a wider range of adjustments, making it more likely to deliver
superior performance. However, it should be noted that while theUnfrozen
method can slightly improve the performance ofwater quality prediction by
re-trainingmore parameters, this increase in learnable parameters also leads
to higher training complexity (in terms of hyperparameter adjustment) and
extended training durations (approximately three times longer). Given that
higher training difficulty and longer training time can pose significant
challenges, particularly for data scientists and hardware infrastructure, a
careful decisionmust bemade between training efficiency and performance
enhancement based on the specific circumstances and requirements.

Considering that the performance of the Unfrozen method represents
the upper limit of this model, and considering the valuable knowledge
obtained through pre-training, the closer the Frozen model’s performance
aligns with this upper limit. From the perspective of the number and geo-
graphical distribution of sites in the source river basins, simply increasing
the number of sites does not consistently improve the quality of pre-training

parameters. Instead, the scope and geographical diversity of themonitoring
site distribution are crucial for effective knowledge extraction. This finding
suggests that, when implementing transfer learning, prioritizing the quality
(diversity) of data in the source domain over quantity is more beneficial. It
can improve training efficiency, reduce modeling costs, and provide valu-
able guidance for future large-scale modeling.

In summary, the spatial configuration of water quality monitoring
stations should be strategically optimized to account for data heterogeneity,
and more data should be sampled for water quality indicators with more
complex impact factors, as identified in this study. Furthermore, the stra-
tegic selection of source domains is crucial for enhancing training efficiency
and reducing the costs associated with model development. It is essential to
recognize that improving source domain selection extends beyond simply
increasing the number of monitoring sites. Instead, the spatial distribution
and heterogeneity of data are paramount in enabling the model to extract a
richer corpus of actionable insights.

Fig. 4 | The model performance comparison of different source river basins and
fine-tuning methods. a–f The results of the unfrozen and frozen fine-tuning
method for different source domains, Heilongjiang River (12 sites), Songhua River
(11 sites), Yellow River (12 sites), Huaihe River (17 sites), Yangtze River (18 sites),
and Pearl River (6 sites). g The mean NSE differences (that is,

ΔNSE ¼ NSEFrozen � NSEUnfrozen) of four water quality indicators in 149monitoring
sites. Blue circles, green circles, orange circles, and pink circles are theΔNSE of COD,
DO, NH3-N, and pH. The black line is the mean ΔNSE of 149 rivers, with gray
shading indicating two standard deviations (that is, uncertainties). The red line is the
mean ΔNSE of all the indicators and sites.
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Model interpretability
The developed deep learning models are highly capable of identifying
complex patterns within nonlinear water quality data. However, their
“black-box” nature has been criticized for undermining their
trustworthiness50, which in turn limits their utility for end-users in envir-
onmentalmanagement. To address this,five target domain sites are selected,
located in the eastern, sourthern, western, northern, and central regions of
China, respectively (Fig. 5). By visualizing the parameter weight matrices of
these sites, model interpretability can be enhanced, and the influence of
different source domains on the model training process can be better
understood. The detailed methodology can be found in Supplementary
Material Text S3.

As illustrated in Fig. 5a–f, the contribution patterns from the source
domain sites to each target site exhibit significant variability. This variability
in contribution weights suggests that the model effectively captures the
distinct water quality characteristics of different target sites by integrating
latent representations from multiple source sites, each characterized by
unique hydrological and environmental conditions. The model’s ability to
assign differential attention to source sites highlights its capacity to adap-
tively weigh and extract relevant information based on the specific char-
acteristics of the prediction target. This adaptive aggregation supports the
hypothesis that leveraging spatial heterogeneity in water quality can
improve generalization and prediction accuracy, especially in cross-domain
scenarios.

Moreover, a detailed examination of two specific target sites (No. 29
and No. 100) reveals particularly insightful patterns. When these sites are

included as part of the source domain (i.e., their corresponding basins are
incorporated into the training set), they consistently demonstrate the
highest contribution weights (indicated by the red box) to their own pre-
dictions. This result underscores a strong self-contribution effect, suggesting
that the data characteristics of sitesNo. 29 andNo. 100 are highly distinctive
and carry substantial predictive power for themselves when utilized as
source sites. Notably, this observation aligns with previous research
emphasizing the importance of site-specific information in water quality
modeling13. The consistency of these results with prior studies further
validates the effectiveness of the proposedmethod and its ability to capture
meaningful spatial dependencies.

Discussion
This study aims to enable accurate cross-basin water quality prediction
under data-scarce conditions. The selected monitoring sites are distributed
across multiple major river basins in China, each with distinct geological,
hydrological, and environmental characteristics. Such intrinsic hetero-
geneity poses substantial challenges for conventional models, which often
struggle to generalize across basins with dissimilar attributes51. To address
this, our model leverages representation learning during the pre-training
stage to extract transferable latent features from diverse source domains.
These learned representations capture essential water quality dynamics that
are less dependent on specific local features and more reflective of under-
lying pollutant behavior and temporal evolution. As a result, the model
significantly mitigates the negative impact of spatial heterogeneity and
enables robust performance across heterogeneous basins.Despite variations

Fig. 5 | Model interpretability of the five selected predicted sites across different
source domains. a–f Heatmap of six weight matrices, where the horizontal axis
represents the source domain sites, the vertical axis represents the target sites, and

the color intensity indicates the contribution of each source domain site to the
corresponding target sites.
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in environmental and anthropogenic conditions among the studied basins,
the model consistently achieved high predictive accuracy, as evidenced by
satisfactory NSE values across all evaluated target sites (Fig. 2). This
demonstrates the effectiveness of the proposed transfer learning framework
in generalizing tonewregionswith limited data availability.Nonetheless, we
acknowledge that extreme basin dissimilarity may still affect model trans-
ferability in some cases. Future research could explore adaptiveweighting or
domain adaptation strategies to further enhance robustness across highly
divergent basins.

Moreover, the scalability and practical applicability of the proposed
method are crucial for real-world deployment. To address these challenges,
our approach incorporates both architectural andprocedural optimizations.
Architecturally, we adopt a simplified Transformer framework that utilizes
only the encoder component, omitting the decoder typically found in
standard implementations. This design significantly reduces the number of
trainable parameters and overall computational complexity, while main-
taining robust predictive performance52–54. This simplification enhances the
model’s suitability for broader adoption, particularly in environments with
limited computational resources. In terms of training and deployment, the
proposed two-stage framework further improves feasibility. The initial pre-
training stage, which demands higher computational resources, can be
conducted centrally using high-performance computing infrastructure55,56.
This allows themodel to learn generalized knowledge across diverse basins.
The subsequent fine-tuning stage, however, is lightweight and can be per-
formed locally withminimal resources. This localized adaptationmakes the
model deployable on commonly available small-scale computing platforms,
thereby reducing operational costs and complexity. Furthermore, the
modular structure of the model facilitates seamless integration into existing
water quality monitoring systems. By separating pre-training and fine-
tuning processes, the model allows for easy interfacing with standard data
pipelines and environmentalmanagement workflows. These design choices
not only ensure high predictive performance but also address key concerns
regarding operational cost-effectiveness and system compatibility, thereby
enhancing the model’s practical utility in large-scale applications.

Future work will focus on effectively integrating the proposed model
into existing water quality monitoring frameworks, closely aligning with
user requirements and practical constraints. Specifically, enhancing inter-
pretability through visualization tools and simplified explanations of
attention mechanisms is a top priority, as this will facilitate user under-
standing and trust. Additionally, while the current study has demonstrated
robust performance using publicly available meteorological data with
moderate resolution, future work will explore the model’s sensitivity to
variations in meteorological data quality and availability, thereby further
reinforcing its reliability inoperational settings.Ultimately,we aim toensure
seamless compatibility with established workflows, data infrastructure, and
stakeholder expectations, promotingwider adoption and sustained usage in
diverse environmental management scenarios.

Methods
Model structure description
Inspired by the work of Yuan et al.30, the model adopts a two-stage training
structure, basin-scale spatio-temporal pre-training for representation
learning and site-scale meteorology-guided fine-tuning for prediction
learning (Fig. 1). Pre-training stage: the primary goal of the pre-training
stage is to capture intricate spatio-temporal relationships and intertwined
dynamics in the water quality data from the source river basin through a
masking-reconstruction process. The implementation of this technique is
conceptually simple: a piece of the input sequence is intentionally removed
at random, and the model is trained to retrieve the missing data57. Based on
PatchTST52, the pre-training representation model utilizes the encoder
module of the improved parallel Transformer framework. Specifically, the
pre-trainingmodel comprises four components: embedding layer, masking
layer, Transformer blocks, and fusion layer. Thebasin-scale spatio-temporal
pre-training stage takes water quality time series data from the source
domain as input. The embedding approach converts the temporal and

parameter dimensions of the data through linear mapping. Then, four
distinct masking strategies-random masking, temporal masking, spatial
masking, and indicator masking-are introduced during the pre-training
stage to enhance the model’s ability to consider spatial, temporal, and
indicator relationships simultaneously. After that, the preprocessed data is
fed into parallel Transformer encoder blocks, leveraging multi-head atten-
tion to learn complex information in the water quality data. Each Trans-
former block captures the variation characteristics at a specific site of the
source river basin. The final linear fusion layer learns the temporal and
parameter connections among differentmonitoring sites in the source river
basin. The output of the pre-training model reconstructs the spatio-
temporal water quality data from the source river basin.

Fine-tuning Stage: The fine-tuning stage leverages the learned repre-
sentations from the pre-training stage to predict future water quality data
usinghistorical site data.The strategy aims to achieve accuratepredictions in
each river basin, even those with data heterogeneity, by fusing representa-
tions fromallmonitoring sites in the source river basin. The feasibility of this
strategy is grounded in the reasonable assumption that the water quality
characteristics of the prediction site can be inferred by capturing and inte-
grating the latent representations of sites with different water quality con-
ditions. The architecture of the fine-tuning model is similar to the pre-
training model, with the addition of a feature attention layer. The pre-
trained weights (excluding the feature attention layer and fusion layer) are
transferred to the fine-tuning model for water quality prediction. Transfer
learning technology is utilized to realize the transfer of pre-training infor-
mation, reducing overfitting and improving model training efficiency58.
Additionally, a meteorology-guided method is proposed to capture the
dependencies betweenwater quality and correspondingmeteorological data
through the feature attention layer.Detailed descriptions of eachmodule are
provided in the supplementarymaterialsText S1. Importantly, theproposed
model demonstrates anotable degreeof robustness todata quality variations
across monitoring sites. The masking-reconstruction strategy employed
during the pre-training stage trains the model to effectively recover missing
or corrupted data segments, thereby effectively enhancing its tolerance to
incomplete or noisy input data. Additionally, the representation fusion
mechanism aggregates latent features from multiple sites, which helps
reduce the impact of low-quality data from individual locations. These
design features improve the model’s generalization capabilities and relia-
bility in real-world applications.

Model inputs and training data
Theproposeddeep learningmodel requires two types of input data: the time
series of weekly water quality data and the corresponding meteorological
data. The weekly surface data of four water quality indicators (COD, DO,
NH3-N,andpH) from2007 to2018 in149monitoring sites acrossChina are
used in this study59. These monitoring sites are concentrated in East China
and cover sixmajor river basins (Heilongjiang River, Songhua River, Yellow
River, Huaihe River, Yangtze River, and Pearl River). The specific site
locations are shown in Fig. S3. The lengths of the water quality data vary
significantly from site to site, with the longest dataset spanning from 29th
October 2007 to 24th December 2018, comprising 583 data points in total.
Although a few sites have fewer than 200 records, 66.4% and 87.9% of the
sites have >500 and 300 data points, respectively.

Furthermore, the China Meteorological Forcing Dataset (CMFD)60

is used to obtain themeteorological data for the corresponding sites. This is
one of the most widely used climate datasets for China. This dataset
is created through the fusionof remote sensing products, reanalysis datasets,
and in situ station data. The CMFD provides seven near-surface meteor-
ological elements, including 2-meter air temperature (°C), surface pressure
(Pa), specific humidity (kg/kg), 10-meter wind speed (m/s), downward
shortwave radiation (W/m2), downward longwave radiation (W/m2), and
precipitation rate (mm/d).

In summary, the pre-training stage is dedicated to the task ofmasking-
reconstruction, where both the input and output data consist of multi-site
water quality data from the selected source river basin. This process enables

https://doi.org/10.1038/s41545-025-00466-2 Article

npj Clean Water |            (2025) 8:33 8

www.nature.com/npjcleanwater


the encapsulation of complex spatio-temporal water quality information
from the sourcedomainwithin themodel parameters. After transferring the
parameters from the pre-training model to the fine-tuning stage, the water
quality and meteorological data from the target monitoring site are used as
inputs for the prediction model training. All data preprocessing, dataset
division, and format conversion are accomplished using relevant Python
libraries.

Model training and evaluation
A total of six pre-training models are developed using data from different
source river basins (Heilongjiang River, Songhua River, Yellow River,
Huaihe River, Yangtze River, and Pearl River). Subsequently, 149 fine-
tuning models are trained for water quality prediction at each target site,
based on one of the pre-training models. This process is repeated six times
for each of the source river basins. The dataset is split into a training set,
comprising the initial 80% of the data, and a testing set, encompassing the
final 20%. All time series inputs are transformed and normalized using the
corresponding standard deviation and mean value to make the data dis-
tribution as close toGaussian as possible. Themean square error (MSE) loss
function is used to train themodel, and the four water quality indicators are
given equal weights during the multi-task training.

Inpre-training, continuous two-month sequences ofwaterquality data
(8 data points) are used as both input and output series. Hyperparameter
combinations aremanually tested, resulting in the use of a transformer layer
size of 3 and amask ratio of 0.5 (within the optimal range of 0.3 to 0.730). The
loss values of the pre-training model decrease to a very low level after 300
epochs of training, and the parameters successfully capture the latent
representation of the river basin data. The specific loss values of all six river
basins are shown in Table S2. During the fine-tuning stage, the input data
length for the prediction model remains two months (8 data points), while
the output length is one week (1 data point) to ensure the feasibility of
parameter transfer. However, only 50 epochs are used for training in the
fine-tuning stage, which can significantly reduce training time. Other
hyperparameters are kept consistent with those in the pre-training model.
Moreover, two fine-tuning methods are compared to highlight the advan-
tages of thepre-training strategy and tovalidate the assumptionmade in this
study. The first method does not freeze the Transformer blocks during fine-
tuning, ensuring that the prediction model is re-trained from a strong
initialization state. The second method, known as the “Frozen” strategy,
involved freezing all the parameter weights of the Transformer blocks
during the fine-tuning process. Additionally, the other layers are re-trained
using data from the target site, enabling the prediction model to capture
local water quality dynamicsmore accurately. Thus, two types ofmodels are
trained for comparison: the Unfrozen model (the proposed model with
unfrozen parameters) and the Frozen model (the proposed model with
frozen parameters). Furthermore, this study believes that representation
learning can effectively alleviate the dilemma of local data scarcity. To
evaluate the proposed model’s performance under data-scarce conditions,
the 100%, the first 50%, and the first 20% of the training data are used for
model training, respectively. All models are run on a personal computer
equipped with an AMD Ryzen 7 5700G and 64 GB of random access
memory, with an NVIDIA RTX 3060 Ti 8 GB graphics processing unit.

Two statistical metrics are selected to evaluate the performance of all
models: NSE and the RMSE. The NSE is highly sensitive to extreme values
due to the squared difference term61, so the RMSE is required to jointly
evaluate model performance. The calculation equations for the NSE and
RMSE are as follows:

NSE ¼ 1�
Pn

i¼1ðYi � bYiÞ
2

Pn
i¼1ðYi � YÞ2

ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

Ŷ i � Yi

� �2
s

ð2Þ

wheren is the total number of data series,Yi is the ith observed value, and Ŷ i
is the ith predicted value. A higher value of NSE and a lower value of RMSE
indicate a better model performance.

Data availability
Data are provided within the manuscript or supplementary information
files.Water quality data were downloaded from theNEMCat the website of
https://www.cnemc.cn/sssj/szzdjczb/index_1.shtml. The meteorological
dataset of CMFD is available from the website of https://doi.org/10.6084/
m9.figshare.11558439. The map and its element come from https://www.
ngcc.cn and https://zenodo.org/records/12779975.

Code availability
The deep learning model code and instructions, including the trained
model and weights, are available at https://github.com/yueyue118/
WaterQualityDL/tree/main. The scripts for data analysis and plotting
were developed in Python (v3.9) and ArcGIS software.
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