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Numerous pathology foundation models have been developed to extract
clinically relevantinformation. There is currently limited literature
independently evaluating these foundation models on external cohorts and
clinically relevant tasks to uncover adjustments for future improvements.
Here we benchmark 19 histopathology foundation models on 13 patient
cohorts with 6,818 patients and 9,528 slides from lung, colorectal, gastric
and breast cancers. The models were evaluated on weakly supervised tasks
related to biomarkers, morphological properties and prognostic outcomes.
We show that a vision-language foundation model, CONCH, yielded the
highest overall performance when compared with vision-only foundation
models, with Virchow2 as close second, although its superior performance
was less pronounced in low-data scenarios and low-prevalence tasks. The
experiments reveal that foundation models trained on distinct cohorts
learn complementary features to predict the same label, and can be fused
to outperform the current state of the art. An ensemble combining CONCH
and Virchow2 predictions outperformed individual models in 55% of tasks,
leveraging their complementary strengths in classification scenarios.
Moreover, our findings suggest that data diversity outweighs data volume
for foundation models.

Artificial intelligence has revolutionized digital pathology by ena-
bling biomarker prediction from cancer tissues using high-resolution
whole-slide images (WSIs)' . Moreover, these algorithms can sub-
stantially enhance diagnostic accuracy, efficiency and consistency,
reducing the subjectivity associated with human interpretation”®. In
particular, deep learning can perform tasks such as disease grading,
cancer subclassification or prognostic prediction’™.

Recently, foundation models, which are trained on large-scale
datasets, have beenintroduced to digital pathology'>*. These models

use self-supervised learning (SSL) techniques to learn meaningful rep-
resentations of histology tissue, which are crucial for clinical pathol-
ogy tasks. SSL techniques such as contrastive learning'" and masked
image modelling' have shown improved performance, robustness
and higher transferability compared with fully supervised learning.
Another advantage lies in its ability to learn from vast amounts of
unlabelled data, thereby considerably reducing the need for manual
annotation”. The practical application of foundation models involves
WSl tessellation into small, non-overlapping patches, after which
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Fig.1| Experimental design of the study. Benchmarking of 19 histopathology
foundation models using 13 cohorts and 31 tasks. a, Number of slides used from
eachofthe13 cohortsincluding 4 cancer types. b, About 9,528 haematoxylin
and eosin (H&E) stained WSIs were preprocessed using the standardized
STAMPY pipeline. Feature extraction from the processed tiles was performed
using 19 foundation models analysed in this study. The TCGA features were
utilized for fivefold cross-validation with downstream transformer models

on 31 classification tasks using STAMP. All models were subsequently applied
to external features from CPTAC, Bern, Kiel, DACHS and IEO. The transformer
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architecture schematic shows layer normalization (Norm) and multi-headed
self-attention (MSHA), followed by a MLP. ¢, All experiments were analysed using
AUROCs, supplemented by AUPRC, Pearson’s correlation coefficient, DeLong’s
test, balanced accuracy and F1score. CONCH achieves the highest average
AUROC across all tasks, followed by Virchow2, Prov-GigaPath and DinoSSLPath.
The star indicates that Panakeia was tested on all tasks despite being specifically
designed for BRCA and CRC. Attention heatmaps were generated for some slides
tointerpret differences between foundation models.

image feature extractionis performed. These extracted features serve
as inputs for training classification or regression models, such as
ViTs'®, tailored for specific tasks, such as mutation prediction, survival
analysis, disease grading or cancer classification®. The limited avail-
ability and variable quality of public pathology data can hinder the
performance of these models when applied to real-world clinical sce-
narios”. Recent efforts have demonstrated the potential of large-scale
foundation models in computational pathology. Unlike earlier mod-
els that relied heavily on datasets such as The Cancer Genome Atlas
(TCGA), contemporary foundation models are now trained on much
larger proprietary cohorts such as Mass-100K (100,000 WSIs)*, Provi-
dence (171,000 WSIs)** and Memorial Sloan Kettering Cancer Center
(1,488,000 WSIs)*.

Foundation models have enabled the rapid development of spe-
cialized, task-specific downstream models by providing a stable base
architecture. These downstream models require substantially less data
and computational resources since they build upon the pre-existing

foundation model. While the success of foundation modelsis typically
measured by downstream model performance, their evaluation has
largely been limited to narrow benchmarks without proper external
validation. This restricted testing approach risks data leakage and
selective reporting of only the best-performing models. As a result,
most foundation models lack systematic evaluation across a broad
spectrum of clinically relevant tasks, leaving their true capabilities
and limitations incompletely understood.

Inthis study, we put fortha comprehensive benchmarking effort
for histopathology foundation models. By including multiple propri-
etary cohorts from multiple countries, which were never part of any
foundation model training, we effectively mitigate the risk of data
leakage from pretraining datasets. Our benchmarkingincludes19 foun-
dation models and 31 clinically relevant evaluation tasks, 19 of which
arethe prediction of cancer biomarkers, using a total of 6,818 patients
and 9,528 slides. This comprehensive evaluation bridges anotable gap
indigital pathology literature and will serve asanimportant reference
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Fig. 2| Performance of19 pathology foundation models on 31 weakly
supervised prediction tasks. a, AUROC scores of the four best foundation models,
task-wise normalization. b, AUROC scores of the two best foundation models
compared with the average prediction of the four best models (Avg-Pred) and the
concatenated vectors of CONCH and Prov-GigaPath (Concat). c-e, Average AUROC
scores of the five folds of each foundation model on morphology (c), biomarker

(d) and prognosis (e) tasks. Task-wise normalization for better comparison of

= L

L)oo
the foundation models. Tasks are sorted by their mean AUROC across all models,
while models are sorted by their mean AUROC across all tasks. f, Stacked pie charts
showing the number of tasks where each model achieved an average AUROC of
>0.7,0.6-0.7 or <0.6, grouped by task type. g, Average AUROC scores of the five
folds using encoded tile embeddings from slide encoders versus the original tile
embeddings. The starindicates that Panakeia was tested on all tasks despite being
specifically designed for BRCA and CRC.

point for the digital pathology community helping to select the right
foundation model for a specific digital pathology task.

Results

Benchmark of pathology foundation models

We benchmarked the performance of 19 foundation models and 14
ensembles derived from these models, trained as vision-language or
vision-only, on 31 weakly supervised downstream prediction tasks
related to morphology (n=>5), biomarkers (n=19) and prognostica-
tion (n=7) (Fig.1).

For the 5 morphology-related tasks, CONCH yielded the highest
meanareaunder the receiver operating characteristic curve (AUROC)
of 0.77, followed by Virchow2 and DinoSSLPath with mean AUROCs
of 0.76 (Fig. 2c). Across the 19 biomarker-related tasks, Virchow2 and
CONCH achieved the highest mean AUROCs of 0.73, followed closely
by Prov-GigaPath with a mean AUROC of 0.72 (Fig. 2d). Finally, in the
7 prognostic-related tasks, CONCH yielded the highest mean AUROC
of 0.63, followed by Virchow2 and BiomedCLIP with mean AUROCSs of
0.61(Fig.2e). Averaged across all 31tasks, CONCH and Virchow2 had the
highest AUROCs of 0.71, followed by Prov-GigaPath and DinoSSLPath
with AUROCs of 0.69. Subsequent rankings included H-optimus-0, UNI
and Panakeia (0.68), Virchow, Hibou-L and CTransPath (0.67), Biomed-
CLIP and Kaiko (0.66), Phikon (0.65) and PLIP (0.64). Moreover, CONCH

achieved the highest average area under the precision-recall curve
(AUPRC), balanced accuracy and F1scores (Extended DataFig.1), with
the highest average AUROC in each cancer type obtained by CONCH
(stomach adenocarcinoma (STAD), non-small-cell lung cancer
(NSCLQ)), Virchow2 (colorectal cancer (CRC)) and BiomedCLIP (breast
cancer (BRCA)) (Extended Data Fig. 2a). To further validate our find-
ings, we compared the performance of transformer-based aggrega-
tion with the widely used attention-based multiple instance learning
(ABMIL) approach®. Across all 31 tasks, ABMIL performed slightly
worse than the transformer-based model, with an average AUROC dif-
ference of 0.01, leaving the overall model rankings largely unchanged
(Extended DataFig. 3).

For histopathology slide encoders, we retrieved the encoded
tile-level embeddings to make them applicable to our MIL approach.
The original tile embeddings consistently outperformed their
slide-level counterparts and the performance of the encoded tile
embeddings is driven by the quality of the original tile embeddings
and not by the slide encoder (Fig. 2g).

In statistical AUROC comparisons across 29 binary classi-
fication tasks, CONCH yielded higher AUROCSs, which were sig-
nificantly different from other models in a substantial number of
tasks: PLIP (16), Phikon and BiomedCLIP (13), Kaiko (11) and 7 tasks
each for Hibou-L, H-optimus-0, CTransPath, Virchow, Panakeia,
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Fig.3|Theimpact of data diversity and volume on downstream weakly
supervised classification performance. a-c, The impact of foundation model
datadiversity on downstream classification. Pearson’s correlation (two-sided)
was used to assess associations between pretraining dataset characteristics and
downstream performance. No adjustments were made for multiple comparisons.
Correlation between the number of WSIs, patients and anatomic tissue sites
inthe pretraining dataset and the average AUROC for each downstream task

type for all vision-only foundation models for which this datais available. Here,

k denotes thousands. (a). Correlation between the number of ICPs (in millions, M)
inthe pretraining dataset and the average AUROC for each downstream task type
for all vision-language foundation models (b). Performance of the respective

cancer types correlated with the proportion of the cancer type in the pretraining
dataset (c). Allinformation that was available is shown (Supplementary Tables
6-8).d,e, Experiments with reduced downstream training sizes. Average AUROC
scores across 29 tasks, trained with 75,150 or 300 patients (d). Distribution of
AUROC scores across all tasks for each model separately. Violin plots show kernel
density estimates of AUROC scores, truncated at the observed range. The inner
box marks the median and interquartile range (25th-75th percentiles), with
whiskers extending to the most extreme values within 1.5x interquartile range (e).
The star indicates that Panakeia was tested on all tasks despite being specifically
designed for BRCA and CRC.

UNI and DinoSSLPath, with 5 tasks each for Prov-GigaPath and
Virchow2. Conversely, few models yielded higher AUROCs than
CONCH: Virchow2 (6), Prov-GigaPath (3), Panakeia and Kaiko (2)
and DinoSSLPath, UNI, Virchow and Hibou-L (1). Notably, PLIP,
Phikon, BiomedCLIP, H-optimus-0 and CTransPath were not
significantly better than CONCH in any of the tasks (P < 0.05;
Extended Data Fig. 4b). Among the vision-only models, Virchow2
was significantly better than all other models in between 6 and 12
tasks (P < 0.05; Extended Data Fig. 4c).

Together, these data show that CONCH, a vision-language model
trained on 1.17 million image-caption pairs (ICPs), performs on par
with Virchow2, a vision-only model trained on 3.1 million WSls,
and together outperform all other pathology foundation models

in the three highlighted domains of morphology, biomarkers and
prognostication-based prediction tasks and that slide encoders are
ineffective in an MIL set-up.

Performance of foundation models in scarce datasettings

One of the predominant selling points of foundation models in com-
putational pathology is the mitigation of the traditional requirement
forextensive labelled datasets when analysing rare (molecular) events.
Consequently, we analysed the performance of pathology foundation
models across two dimensions: WSI count for foundation model train-
ing, and patientand positive case counts for downstream model train-
ing, with emphasis on low-prevalence scenarios that reflect real-world
clinical applications.

Nature Biomedical Engineering


http://www.nature.com/natbiomedeng

Article

https://doi.org/10.1038/s41551-025-01516-3

a
ek
5mm
Non-MSI high CONCH: 0.03 UNI: 0.03 Prov-GigaPath: 0.14 H-optimus-0: 0.12
'.:'x‘—‘\u
. Kie
Non-MSI high CONCH: 0.17 UNI: 0.07 Prov-GigaPath: 0.26 H-optimus-0: 0.22
: < ¢
—
5 mm
MSI high CONCH: 0.74 UNI: 0.76 Prov-GigaPath: 0.85 H-optimus-0: 0.89
5mm MS| high CONCH: 0.97 UNI: 0.64 Prov-GigaPath: 0.88 H-optimus-0: 0.91
CONCH - 0.55
Virchow2
ProvGigaPath
0.50
DinoSSLPath
[ERIER M 0:39) 0.47 0.47 0.47
VXM 0.4 0.46 0.45 0.47 0.43 0.45
(@]
[ZUCTCEM 0.42 0.42 0.45 0.55 0.44 0.46 S
ISR 0.44 0.46 0.46 0.5 0.48 0.47 0.49 g
[QPLGR 0.4 0.4 0.41 0.550.42 0.46 0.5 0.46 0.40 %
[S1JIVERE 0.37 0.39 0.36 0.38 0.36 0.36 g
[
[J[5STa: 1R 0.36 0.39 0.38 0.41 0.39 0.39 0.41 0.37 0.4
0.35
CISECION[ I 0.43 0.36 0.37 0.49 0.4 0.37 0.45 0.4 0.44 [OINEIE]
Kaiko -0 o.3e-0.as 033 0.28 032 0.28
Phikon L 0.30

0.39
[X:71 0.29 ﬁ

PLIP {8/¢ie) 0.32 .
SRV NIRRT MR R O SR
Oeo ‘\04‘ rg'o‘ sﬂo‘ &Qe > ’s{g,\’b 5}‘0 éz@‘ .~°°° .°°° bo\/ i @(.0 ¥
Ie; 4\‘0 O\Q JEMN & & @(\ X & &z <
& O R < & )
RS &

Fig. 4 |Divergence in tissue focus and predictive similarity among
foundation models. a, Attention heatmap analysis for MSI-H classificationin
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predictions. Kappa scores of all combinations of foundation models tested in
this study. ¢, Cohen’s kappa between the five folds of each foundation model.
The star indicates that Panakeia was tested on all tasks despite being specifically
designed for BRCA and CRC.

From the foundation model perspective, positive correlations
(r=0.29-0.74) were observed between downstream performance and
pretraining dataset size (WSIs, patients) or diversity (tissue sites) across
morphology, biomarker and prognosis tasks, although most were
not statistically significant. Significant correlations were found only
for morphology with patient count (r=0.73, P< 0.05) and tissue site
diversity (r=0.74, P< 0.05) (Fig. 3a). These findings suggest that these
factorsareimportant but not sole determinants, with the distribution of
anatomictissuesites (Supplementary Table1and Supplementary Fig.1),
architecture and dataset quality also playing critical roles. This is espe-
cially evidentinvision-language models, where CONCH outperformed
BiomedCLIP despite seeing far fewer ICPs (1.1 million versus 15 mil-
lion) (Fig. 3b). Similarly, tissue representation in pretraining datasets
showed amoderate, but not significant, correlation with performance
by cancer type (Fig. 3c). Interestingly, Panakeia models showed decent
performance on unrelated cancer types, with the BRCA model achiev-
ing average results in NSCLC and the CRC model performing similarly
inSTAD, despite no previous exposure to these tissues during training.

Downstream models were trained on randomly sampled cohorts
of 300, 150 and 75 patients while keeping a similar ratio of positive
samples, and consequently validated on full-size external cohorts. In
thelargest sampled cohort (n=300), Virchow2 demonstrated superior
performancein 8 tasks, followed closely by PRISM with 7 tasks. With the
medium-sized sampled cohort (n =150), PRISM dominated by leading
in9 tasks, while Virchow2 followed with 6 tasks. The smallest sampled
cohortsize (n =75) showed more balanced results, with CONCH leading
in 5 tasks, while PRISM and Virchow2 each led in 4 tasks. Performance
metrics remained relatively stable between n =75 and n =150 cohorts
(Fig.3d,e and Extended Data Fig. 5).

To evaluate foundation modelsin real-world clinical scenarios, we
focused onclinically relevant tasks with rare positive cases (>15%) inthe
TCGA training cohort. Key low-prevalence biomarkers included BRAF
mutation (10%), CpG island methylator phenotype (CIMP) status (13%)
and microsatellite instability (MSI) status (14%) in CRC; Epstein—-Barr
virus (EBV) positivity (8%) and M-status (7%) in STAD; and EGFR muta-
tion (11%) and STK11 mutation (15%) in lung adenocarcinoma (LUAD).
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To avoid cancer type imbalance, these targets were only evaluated in
DACHS, Kiel and CPTAC-LUAD. The results show that Prov-GigaPath
(mean AUROC of 0.74) yields the highest performance in the high-
lighted low-prevalence tasks, followed by Virchow (0.73) and CONCH
(0.72) (Extended DataFig. 2b).

Finally, tasks were stratified into high- and low-performance tasks
by the AUROC (Extended DataFig. 6). In high-performance tasks (>0.75),
Virchow2 demonstrated superior performance in high-performance
tasks, followed by Prov-GigaPath and CONCH. Conversely, in
low-performance tasks (<0.75), CONCH yielded better results.

Together, these results indicate that the patient count, tissue site
diversity and their distribution are important for downstream perfor-
mance, although other factors such asarchitecture and dataset quality
also have criticalroles. Moreover, the performance indownstream tasks
withlow-prevalence casesindicates thelimitations of current foundation
models for nonetheless clinically relevant biomarkers. Lastly, we show
differential model efficacy based on task complexity, with Virchow2
excelling in standard classification tasks while CONCH dominates in
more challenging predictive scenarios. Allmodels show similar perfor-
mance declines with reduced training sizes, underlining the weakness of
current pathology foundation models in scarce data scenarios.

Foundation models learn different tissue morphologies
To quantitatively measure prediction similarity across models, we
calculated Cohen’s kappa®. For each task, labels were assigned using
amajority vote across the cross-validation folds. Cohen’s kappascores
were generally moderate and varied across models. Notably, some pairs
such asPanakeia and DinoSSLPath (0.55), PLIP and BiomedCLIP (0.52)
and top performers such as Prov-GigaPath, CONCH, Virchow2 and
DinoSSLPath showed higher agreement, whereas lower-performing
models such as Hibou and Kaiko exhibited the least consensus (0.28)
(Fig. 4b). Within individual model folds, BiomedCLIP and CONCH
achieved the highest average kappa (0.41), followed by Virchow2,
Panakeia and Prov-GigaPath (0.37), with Hibou (0.26) and Kaiko (0.24)
ranking lowest, consistent with their AUROC performance (Fig. 4¢).
To identify the reasons behind the observed performance differ-
ences among the downstream models trained on top of the different
foundation models, we investigated whether the models focus on
different morphological properties for their predictions. We utilized
attention heatmaps to compare model behaviour when the models (1)
consistently predicted the label correctly and (2) were in disagreement
regarding the predicted label. In cases where all models were in agree-
mentonthe correct prediction, the validity of the classification would
be supported by their focus on relevant tissue regions for diagnosis.
For example, in the prediction of MSI status, models predominantly
highlighted tumour regions, as expected. However, models such as UNI,
Hibou, Virchow and Kaiko occasionally highlighted pen marks, whichis
anundesired behaviour that suggests that predictions are being made
through some form of patternassociation rather than understanding
the underlying biology (Fig. 4a and Extended Data Fig. 7b). To assess
theimpact of pen marks, we quantified their occurrencein 50 randomly
sampledslides per test cohortand found them presentin 90% of slides
from DACHS and 22% from Bern, but absent elsewhere. Despite their
presence, pen marks did not skew classification, as they were equally
distributed across different classes. Models such as CONCH and Vir-
chow focused on multiple small tissue areas, whereas Prov-GigaPath
appears less selective in its attention (Fig. 4a). In NSCLC subtyping,
models generally performed well, focusing mainly on tumour regions
andignoring healthy lung parenchyma (Extended DataFig. 8b).In ESR1
overexpression prediction, Prov-GigaPath and Kaiko highlighted the
majority of the WSl area, whereas CONCH and Virchow focused on a
few small tissue areas (Extended Data Fig. 8c). By contrast, when ana-
lysing slides where models made inconsistent predictions, we found
instances of model disagreement that led to errors. For instance, in
the task of DACHS CRC sidedness, Virchow erroneously focused on

pen marks (Extended Data Fig. 7b). However, no consistent pattern of
errors emerged across the models to fully explain these discrepancies.

Together, these data indicate that foundation models vary in
their focus ontissue regions and the morphological features that they
prioritize, which impacts their predictive performance. The differ-
encesin attention across models suggest that combining models with
complementary strengths could enhance overall predictive accuracy
inensemble approaches.

Ensemble of pathology foundation models improve
performance

Lastly, we tested the hypothesis that creating an ensemble of pathology
foundation modelsimproves prediction performance. We utilized two
approaches for ensembling models, taking the average of the various
downstream models’ prediction scores trained on different foundation
model backbones and concatenating feature vectors from different
foundation model backbones to create a single downstream model.

Experiments show that ensembling by taking the average of
the models’ prediction scores yielded a superior AUROC compared
with either model used in isolation. The combination of the four
top-performing models led to the highest improvement, achieving
amean AUROC 1.2% higher than CONCH (Extended Data Fig. 9), the
leading individual model (Fig. 1b). Across all 31 tasks, the ensemble
reduced misclassifications compared with CONCH by an average of
6.2% across the five folds (cut-off 0.5) (Supplementary Table 2). There-
fore, these data show that ensembling the prediction scores of multi-
ple high-performing models enhances performance on certain tasks
beyond the capabilities of the best individual model.

Combining the best-performing models, CONCH and Virchow2,
yielded a 1,792-dimensional vector with the highest AUROC of 71.9.
Similarly, combining Virchow2 and Prov-GigaPath, the top-performing
vision-only models, resulted in a 2,816-dimensional vector with an
AUROC of 71.6. Individually, the models achieved AUROCs of 71.1
for CONCH, 70.9 for Virchow2 and 69.2 for Prov-GigaPath (Fig. 1b
and Extended Data Fig. 9). Interestingly, Cohen’s kappa between the
individual models did not strongly correlate with ensemble quality,
indicating that low agreement does not necessarily translate to ben-
eficial diversity in predictions. Similarly, no clear patternwas observed
between the similarity of ensembles with their single model coun-
terparts and factors such as model performance or embedding size
(Extended Data Fig. 10). To quantify improvements, we conducted
two-sided DeLong’s tests comparing AUROC scores of CONCH with
ensembles and other single-model baselines. For each model, we
averaged prediction scores across five folds, and across up to ten
folds for ensembles. Bagging the five folds of the same foundation
modelincreased AUROC scores, while integrating different models via
stacking or concatenation yielded more pronounced improvements
(Extended DataFig.4a). The CONCH and Virchow2 ensemble showed
statistically significant differencesin performance with higher AUROCs
than CONCH in 9 of 29 tasks (P < 0.05), whereas the Virchow2 and
Prov-GigaPath ensemble showed significant improvements in 7 tasks
(Extended DataFig. 4b).

Theseresults demonstrate that ensemble approaches for pathol-
ogy foundation models, as well as their downstream models, lead to
enhanced prediction performance. This suggests that merging multi-
ple foundation models through ensemble techniques can be beneficial.

Discussion

Weakly supervised computational pathology approaches, in which a
deep learning system predicts alabel directly from a WSI, have been
massively successfulin cancer research. They have been used to make
the diagnosis of tumours, to predict biomarker status and to predict
clinical outcomes directly from image data. Over 100 such tools are
now approved for clinical use in the United States and the European
Union**%, Since 2022, foundation models have become an integral
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part of weakly supervised computational pathology pipelines and have
improved performance and generalizability***. However, the current
internal evaluation strategy for foundation models in computational
pathology for clinically relevant tasks is limited. When groups that
publish pathology foundation models evaluate them on tasks of their
own choosing, there is a high potential for bias. Moreover, concerns
about dataleakage arise when foundation models are tested onimages
from the same institutions where they were trained.

In this study, we conducted acomprehensive evaluation of pathol-
ogy foundation models in weakly supervised computational pathol-
ogy on truly external datasets with no overlap between training and
validation data. Our results show that while many existing foundation
models achieve high performance on clinically relevant prediction
tasks, CLIP-based approaches are notinherently superior, as evidenced
by BiomedCLIP and PLIP’s performance. Instead, high-quality pre-
training data and effective data cleaning are crucial for achieving
top-tier performance. The best-performing model, CONCH, trained
with multimodal data, suggests that incorporating text during train-
ing enhances image-only embedding quality. Similarly, Virchow2’s
strong performance stems fromits unprecedented tissue type diversity
(approximately 200 versus 20-30 in other models) and more balanced
distribution, avoiding over-representation of specific cancer types.
In addition, the variability in the model’s performance can also be
attributed to varying degrees of difficulty for each task. For instance,
while differentiating between lung carcinoma subtypes is generally
straightforward, other tasks such as stomach cancer subtyping can
be more demanding. Here even pathologists can show a considerate
degree of interobserver disagreement?.

In terms of prediction interpretability, our approach highlights
that different foundation models focus on different areas in the tis-
sue while still having a high agreement on the predicted label. Our
technical analysis revealed that slide encoders showed no advantage
over tile encoders in MIL set-ups, except in low-data scenarios, and
the transformer-based STAMP architecture generally outperformed
ABMIL outside of data-limited settings. Interestingly, while CONCH
dominated in tasks when trained on the full dataset, its advantages
diminished inlow-dataand low-prevalence settings. This performance
dichotomy suggests that multimodal training of a foundation model,
despite its presumed benefits, does not confer special advantages in
the data-constrained scenarios often encountered in clinical settings
within the scope of our experiments. We demonstrate that ensem-
bling foundation models is beneficial, particularly when combining
top-performing models, although prediction diversity (measured by
Cohen’skappa) does notdirectly correlate with ensemble performance.
Even modest ensemble improvements may have clinical relevance by
combining several learned perspectives of tissue morphology, as exem-
plified by the higher biomarker classification performance. Future
work should incorporate more sophisticated methods than feature
vector concatenation, especially for larger models where combining
large vectors might lead to overfitting.

Akeyinsight of our study is that performance of foundation mod-
elsdoesnotscale well withincreasing numbers ofimagesin the training
setused for SSL. This means that bigger is not always better. Rather, the
diversity of the training set suggests to be a key factor, favouring vari-
ous sources of data, races and types of cancer. Our results will inform
the future development of new foundation models. Specifically, using
multimodal data to train models, even if the intention is just to apply
them on unimodal data (that is, on images alone), should be encour-
aged. For healthcare institutions, this means that datathatis available
at scale, even without clinical association with clinical endpoints, is a
valuable resource to train such models. Moreover, our findings sug-
gest that the selected computational pathology tasks may be solvable
primarily through local morphological patterns rather thanrequiring
global spatial context. The performance achieved by randomly sam-
pling 512 tiles per patient at each epoch suggests that for many tasks,

the discriminative features exist at the local level. This observation
is consistent with our comparison showing that tile-level encoders
outperformed slide-level encoders despite the latter’s theoretical
advantage in capturing global spatial relationships. Future research
should explore in further depth whether the selected tasks and per-
formance metrics adequately represent the spectrum of diagnostic
challenges, particularly those requiring integration of long-range
spatial dependencies across the entire slide.

Our study has limitations in that our evaluation tasks only contain
certain tumour types. We focused on four cancer types, prioritizing
truly external validation datasets over broader cancer type coverage.
This differentiates our work from studies that train and test on the
same cohort or WSIs from the same hospital used for pretraining.
Moreover, we were limited to pathology foundation models licences,
which are accessible in a research setting. For example, this excludes
RudolphVand PLUTO fromour analysis. While our datasets contained
artefacts such as penmarks (presentin 90% of DACHS and 22% of Bern
samples), these had minimalimpact on predictions owing to their even
distribution across classes. Although weincorporated abroad range of
foundation models applicable to histology data, exploring the poten-
tial of fine-tuning general-purpose models such as GPT-40 was outside
our current scope. Our evaluation strategy is focused on a diverse set
of biomarkersin cancer histopathology. Future work will expand upon
the range of tumour types, biomarkers and patient cohorts to further
evaluate the robustness of foundation models in pathology.

Methods

Ethics statement

This study was carried out in accordance with the Declaration of Hel-
sinki. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and
TCGA did not require formal ethics approval for aretrospective study
of anonymized samples. The analysis of the testing cohort DACHS
(an epidemiological study that is led by the German Cancer Research
Center, DKFZ) was approved by the ethics committee of the Medical
Faculty, University of Heidelberg, under 310/2001°°*,

Datasets

The study used datasets from TCGA, CPTAC and proprietary cohorts.
Specifically, cohorts from LUAD, lung squamous cell carcinoma (LUSC),
CRC, STAD and BRCA were included. TCGA datasets were used for
training of the models, and CPTAC, DACHS, Kiel, Bern and IEO were
used for evaluation. This ensured that all testing was done on data
that had neither been seen during training of the foundation models
nor the aggregator models. For our analyses, we only use the CPTAC-2
and CPTAC-3 prospective collections (from 2018/20), which exclu-
sively contain patients with CPTAC-IDs and have no overlap with TCGA
patients.

For external validation, CPTAC datasets for LUAD, LUSC, colo-
rectal adenocarcinoma and BRCA were used. No foundation models
analysed in this study were trained on CPTAC, ensuring its suitability
asanindependenttest cohort. Inaddition, for CRC, the DACHS cohort
was utilized alongside CPTAC as another external test set. In STAD,
proprietary datasets from Kiel and Bern served as external validation
cohorts. For BRCA, the IEO dataset was used alongside CPTAC for
external validation (Fig. 1a and Supplementary Fig. 2).

Experimental design

Digital pathology involves several task categories, including mor-
phological, biomarker and prognostic tasks, and foundation models
should be capable of performing well across all of them. In this study,
we assembled and benchmarked 19 foundation models—the 12 pure
visionmodels CTransPath®, DinoSSLPath*, Phikon'®, UNI?, Virchow?,
Kaiko (ViT-L/14)**, Prov-GigaPath?, Hibou-B, Hibou-L*, H-optimus-0°,
Virchow2* and Panakeia, the 3 vision-language models PLIP*®, Biomed-
CLIP* and CONCH*’, and the 4 slide encoders GigaPath, MADELEINE*,
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PRISM**and CHIEF**—across acomprehensive set of tasks from all three
categories. Each category was assessed across all cancer types, apart
from morphological featuresin BRCA and prognostic featuresin NSCLC
owingto data unavailability. Biomarkers were selected based onclinical
relevance, diversity and availability. Tasks were prioritized when they
were associated with actionable therapeutic targets, as annotated by
OncoKB*. To enable both training and independent testing, each task
required ground truth data to be available in TCGA (for training) and
at least one test cohort. For each cohort, only tasks with at least ten
cases in each category were included (Supplementary Table 3). For
visualization purposes, only15models (vision-only and vision-language
models) are shown in most figures. The slide encoders were included
selectively, suchasinFig. 2g for comparison with theirtileembedding
counterparts andinFig.3d,e and Extended Data Fig. 5 to highlight their
potential benefits in scarce data settings. Extended Data Figs.1and 9
include all models to comprehensively show all experiments.

First, we investigated morphological classification tasks related
to cancer subgroups with distinct phenotypic characteristics. The
aimwas to assess foundation models by evaluating their ability to dis-
cern established phenotypic distinctions. In CRC, the morphological
task involved predicting whether the slide originated from the left or
right side of the colon, excluding colon transversum samples owing to
ambiguous classification. In STAD, the Lauren classification* was cho-
senas the morphological task, classifying slides as ‘intestinal’, ‘diffuse’
or ‘mixed’, given the unavailability of ground truth for newer classifica-
tion systems***. Inlung cancer, the models were tasked with classifying
samples into either adenocarcinoma or squamous cell carcinoma'.

Biomarker prediction tasks focused mainly on clinically relevant
targets with some type of morphological correlation as demonstrated
by previous computational pathology models. For CRC, theseincluded
BRAF,KRAS,MSl status, PIK3CA and CIMP status". For STAD, EBV presence
and MSl status were selected*®. For LUAD, the targets were EGFR, STKI1,
KRAS and TP53'. For BRCA, the targets were the expression of HER2, ER
and PRreceptors and PIK3CA mutations***°. MSI status and CIMP status
were binarized into MSI-high versus not MSI-high and CIMP-high versus
not CIMP-high, respectively. HER2, ESR1 and PGR expression were bina-
rized using the z-score of MRNA expression profiles, similar to a study
by Wegscheider et al.”. This approach was preferred over immunohis-
tochemistry labels owing toits objectivity and reduced variance error.

Prognostic tasks, whichaim to predict clinical outcomes directly
from WSIs, were selected based on their prognostic relevance. The tasks
included N-status for CRC, STAD and BRCA, where all stages except
NO were classified as N+ (excluding Nx cases). M-status was analysed
in CRC and STAD, performing binary classification of MO versus M+.

By focusing on tasks with clear therapeutic actionability or prog-
nostic relevance, we aimed to evaluate the practical utility of these
modelsinaclinical setting. This comprehensive benchmarking study
included 31 tasks across 8 external test cohorts, encompassing awide
range of clinically relevant classification tasks (Supplementary Table4).

Image processing and deep learning techniques

The benchmarking was conducted using the STAMP pipeline version
1.1.1(ref.19) (Supplementary Table 5). Each classification task followed
atwo-step procedure (Fig. 1b). In the first step, feature vectors were
extracted from WSIs utilizing the foundational models evaluated in this
study. Inthe second step, these vectors were used to train aslide-level
aggregator on the downstream tasks described above.

WSIs were segmented into N tiles, with an edge length of 224 pix-
els corresponding to 256 um, resulting in an effective resolution of
~1.14 um per pixel. Allincluded foundation models in our benchmark,
except for Prov-GigaPath?, tessellate the slide into tiles of 224 x 224
pixels. However, the Prov-GigaPath implementation transforms tiles
using centre cropping from 256 x 256 into 224 x 224 before inputting
itintothetile encoder. The slide encoder then processes these feature
embeddings generated by thetile encoder, implicitly maintaining the

224 x 224 tile dimensionality throughout the pipeline. Therefore, our
choice of tile dimensionality for slide tessellation is consistent with
the foundation models selected for our analyses. Background tiles
were excluded using Canny edge detection®. Stain normalization was
not applied during preprocessing. Feature extraction was performed
on each tile individually using the different foundational models.
The embedding dimensions M varied across models, ranging from
M =384 for DinoSSLPath and Panakeia to M =1,536 for Prov-GigaPath
and H-optimus-0. Subsequently, each slide was transformed into a
two-dimensional matrix with dimension N x M. The extracted feature
vectors were input into a transformer-based aggregator model®. It
utilizes multi-head attention, Gaussian error linear unit activation
functions®?, layer normalization and a multilayer perceptron (MLP)
head to produce an output corresponding to the k possible classes
for each task. A 5-fold cross-validation approach was implemented,
resultingin the creation of 2,945 models (19 foundation models, 31 tasks
and 5 folds) trained exclusively on TCGA datasets. We implemented
stratified k-fold cross-validation to ensure that each fold maintains
representative proportions of all classes, preventing scenarios where
rare categories have zero instances in training runs. This approach
follows standard practices in computational pathology and provides
robust performance estimates and better generalization assessment’’.
All experiments were run on individual 40 GB NVIDIA RTX A6000
and L40 GPU (graphics processing unit) nodes. In addition to the
transformer-based aggregator described, we evaluated ABMIL as an
alternative aggregation method*. ABMIL introduces inductive bias
by using attention mechanismsto assign weights to eachtileinaslide,
enabling the model to focus on the most informative regions.
Tointegratesslide encodersinto the MIL pipeline, we extracted the
encoded tile-level embeddings for Prov-GigaPath, MADELEINE, CHIEF
and the 512 latents for PRISM. These encoded tile embeddings were
subsequently treated asregular tileembeddingsin all analyses. Unless
explicitly stated otherwise, results presented throughout the study
refer to the regular tile embeddings. Prov-GigaPath provides both a
slide-level and atile-level encoder, and we evaluated both approaches?.
Inthe case of Virchow and Virchow2, Vorontsov et al. proposed concat-
enating the class token with the average pool of patch tokens for each
tile embedding. To maintain consistency with other models that only
use class tokens, two configurations were tested: one including and
one excluding the averaged patch tokens. As the differences are very
small, the version only using class tokens is shown in the main results
for consistency with other models. For CONCH, we used the output of
the attentional pooler that corresponds to image-textalignment, with
an embedding dimension of 512. Although the Panakeia models are
specifically designed for BRCA and CRC, respectively, we also evaluate
the CRCmodel on STAD and the BRCA model on NSCLC. This is because
their performance remains competitive in these contexts, and includ-
ing these results provides the basis for comparison in subsequent
analyses. For experiments involving combined feature vectors, vectors
were concatenated, maintaining a single vector per tile. For instance,
combining CONCH and Virchow2 resulted in a combined embedding
dimensionMofM=1,792 (M =512 for CONCH + M=1,280 for Virchow2).

Explainability

Tobetterinterpret the output of the models, we generated whole-slide
prediction heatmaps for selected tasks. These heatmapsillustrate the
models’ focus on specifictissue areas, by weighting the scores assigned
to individual tiles using gradient-weighted class activation mapping
(Grad-CAM)*. Itisimportant to note that a high number of positively
contributing tiles do not automatically result in a high final score
owing to the nonlinear aggregation process in neural networks>. The
benchmarking effortinvolved 2,945 models and 9,528 slides, leading
toavastnumber of model-slide combinations. Thus, it was necessary
toselect afewinformative examples methodically. Slides were selected
by including cases where models showed strong disagreements and
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cases where all models performed well. The heatmaps were visually
analysed and compared with the underlying WSI. To further analyse
the similarity between different models, Cohen’s kappa® was measured
between each pair of foundation models.

Statistical analysis

The performance of the models was evaluated using the AUROC using
fivefold cross-validation and deployment on external cohorts. Mean
AUROC scores from the five cross-validation models deployed on
external data were used for statistical and graphical evaluations. Pre-
dictions were made per patient, and all feature matrices belonging
to one patient were concatenated for use in the model. In addition
to AUROC, for completeness in the supplementary material, we also
calculated the AUPRC, balanced accuracy and F1scores. The two-sided
DelLong’s test was used to test for statistically significant differences
inAUROC scores. Asthe DeLong’s testisonly applicable when asingle
prediction score is available for each model and sample, the average
predictionscore across all five folds was used. Owing to its multi-class
nature, we excluded Lauren classification tasks from this analysis. This
differs from the main metrics, where the AUROC/AUPRC/F1/balanced
accuracy scores represent the mean across the five folds.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The slides for TCGA are available at https://portal.gdc.cancer.gov/.
The slides for CPTAC are available at https://proteomics.cancer.gov/
data-portal. The molecular data for TCGA and CPTAC are available
at https://www.cbioportal.org/. The slides and biomarker data for
DACHS were generated for previous studies® ** with restricted access.
Biomarker data for DACHS are available by requesting Authorized
Access to the phs001078 study (https://www.ncbi.nlm.nih.gov/pro-
jects/gap/cgi-bin/study.cgi?study_id=phs001113.v1.p1). Applications
for accessto DACHS biomarker data are reserved for senior investiga-
tors and NIH investigators as defined in https://dbgap.ncbi.nlm.nih.
gov/aa/wga.cgi, and upon successful application grants access to the
datafor1yearwiththe optiontorenewaccess. Theslidesfor DACHS can
onlyberequested directly through the DACHS principal investigators.
The contact details arelisted at http://dachs.dkfz.org/dachs/kontakt.
html. The Kiel cohort is available from the Department of Pathology,
Christian Albrechts University of Kiel, Kiel, Germany, upon reasonable
request (https://www.medizin.uni-kiel.de/en/institutes-departments/
institutes-of-clinical-theory/department-of-pathology). The Bern
cohort is proprietary and cannot be shared at the individual patient
level. It is archived at the Institute of Pathology, University of Bern,
and can be requested in reference to ref. 59. The IEO cohort is held by
the European Institute of Oncology, Milan. Datarequests will be evalu-
ated on a case-by-case basis in accordance with institutional policies
and privacy regulations and can be directed via https://www.ieo.it/en/
contact_us/.Source data are provided with this paper.

Code availability

The benchmarking experiments were built upon the open-source
STAMP software. All public models tested in this study are available via
Zenodo at https://doi.org/10.5281/zenod0.15749283 (ref. 60).
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Extended Data Fig.1| AUROCs, AUPRCs, balanced accuracy and F1-scores for all main experiments. A-D, Average AUROC (A), AUPRC (B), balanced accuracy
(C) and F1 (D) scores of the five-folds of each foundation model on Morphology, Biomarker and Prognosis tasks.
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Extended Data Fig. 3| Comparison of STAMP and ABMIL. A, Differencein
average AUROC scores between STAMP transformer-based aggregation and
ABMIL across all tasks, calculated as the average over five cross-validation folds
for each foundation model. Positive values indicate superior performance

of STAMP. B, Difference in average macro-AUC scores between STAMP and
ABMIL for selected foundation models under reduced downstream training
dataset conditions, as shown in Extended Data Fig. 5. This compares the relative
performance of both methods in low-data scenarios.
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Extended Data Fig. 4 | Performance Comparison of Model Ensembles and concatenating feature vectors from different backbones to create a single
Single-Model Baselines Using DeLong’s Test. A, AUROC scores for each downstream model (prefix Concat). The “Lauren” task was excluded asit’s not
model and ensemble approach are shown, averaging predictions across five abinary classification. B-C, P-values from two-sided DeLong’s tests comparing
folds for individual models and five or ten folds for ensembles. Two ensembling CONCH (B) or Virchow2 (C) with other models and ensembles. No correction for
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Extended Data Fig. 5| Model performance with reduced downstream training
dataset. Mean AUROC across all five folds on 29 tasks for all foundation models
trained with areduced downstream dataset of 75 (A), 150 (B), or 300 patients (C).
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Patients were randomly selected from the TCGA cohorts, ensuring the ground
truth was defined for all analyzed tasks. The tasks Lauren in Kiel and Bern were
excluded due to insufficient patient numbers.
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A, Average AUROC scores across 15 high-performance and 16 low-performance
tasks. Tasks were selected by including only those where at least one foundation
modelachieved an average AUROC over 0.75 and all others in low-performance

B Low-performance Tasks |

AUROC Scores (Average) - Low Performance Tasks

wae| ocs LAY

DACHS CRC M STATUS
CPTAC BRCA PIK3CA m
KIEL STAD N STATUS m 0.63

CPTAC BRCA ERBB:
CPTAC CRC KRAS
DACHS CRC N STATUS
BERN STAD N STATUS
CPTAC CRC PIK3C/
CPTAC CRC N STATUS
'CPTAC CRC Sidedness
IEO BRCA N STATUS
CPTAC LUAD KRA:
DACHS CRC KRAS

KIEL STAD M STATUS

tasks. B-C, The performance of each foundation model s listed. The final row
presents the overall average AUROC for each model. Tasks are sorted by their
mean AUROC across all models, while models are sorted by their mean AUROC
across all tasks.
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Extended Data Fig. 7 | Attention heatmaps of slides with large variations
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Extended Data Fig. 8 | Attention heatmaps of slides that all models predicted per cohortselected for correct predictions across almost all foundation models.
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Extended Data Fig. 9| AUROC scores across all foundation models and tokens combined. Multiple experiments were conducted using concatenated
ensembles. AUROC scores for all foundation models, foundation model feature vectors combining features from CONCH, Virchow2, Prov-GigaPath,
variations, and multiple ensemble approaches. Prov-GigaPath-T are the regular DinoSSLPath, H-optimus-0 and UNI. For the same combinations, average
tile embeddings, Prov-GigaPath-S are the tile embeddings encoded by the prediction scores were calculated. These scores were used to evaluate the
GigaPathsslide encoder. Virchow(-2)-CLS contained only class tokens, with performance of combined predictions.

Virchow(-2)-CLS + MPT representing the version with class and mean patch
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Extended Data Fig.10 | Cohen’s kappa scores across all ensembles and their predictions. The concatenated versions of CONCH, Virchow2 (V2), Prov-GigaPath
individual model components. Objective measure of similarity of prediction (GP), H-optimus-0 (HOO), UNI and DinoSSLPath (Dino) and their single model

scores using Cohen’s Kappa and majority vote across the five folds to binarize the counterparts are shown.
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basis in accordance with institutional policies and privacy regulations. The data generated in this study for the creation of the figures are provided in the Source
Data file. Source data are provided with this paper.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Results are irrespective of sex or gender.

Reporting on race, ethnicityl or The country of origin for cohort TCGA is the US, for cohort CPTAC is the US, for cohort DACHS and cohort Kiel is Germany, for

other socially relevant cohort Bern is Switzerland and for cohort IEQ is Italy. No information about race was available.

groupings

Population characteristics No data on population characteristics was collected and used in this study.

Recruitment All studies contain samples which were collected with the intent of performing translational research.

Ethics oversight This study was carried out in accordance with the Declaration of Helsinki. The Clinical Proteomic Tumor Analysis Consortium

(CPTAC) and TCGA did not require formal ethics approval for a retrospective study of anonymised samples. The analysis of
the testing cohort DACHS (an epidemiological study which is led by the German Cancer Research Center, DKFZ, Heidelberg,
Germany) was approved by the ethics committee of the Medical Faculty, University of Heidelberg under 310/2001.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No explicit sample-size calculation was performed. Recent studies in computational pathology by Foersch et al. (Nat Med, 2023) and Wagner
et al. (Cancer Cell, 2023) showed successful biomarker predictions with cohorts having several hundred patients, with larger cohorts yielding
better results. Consequently, we collected datasets which satisfied this volume range of patients, having several hundreds, or thousands of
patients available for retrospective analysis. Moreover, a recent Nature Protocols Paper by El Nahhas et al. provided rough guidelines for an
estimation of sample sizes for computational pathology (https://www.nature.com/articles/s41596-024-01047-2).
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Data exclusions | In all experiments, data samples were excluded when the microns-per-pixel information was not available in the metadata of the whole-slide
image, or if the biomarker to be predicted was not available for the sample.

Replication Random seeds set in the code, patient splits for training and testing models were saved, and the code version was managed through GitHub
for reproducibility.

Randomization  Samples were stochastically allocated into different groups, where the model was trained, validated and tested on samples from different
patients and different hospitals. More details in the methods and accompanying code.

Blinding This study was conducted retrospectively. Therefore, investigators were not blinded to allocation during experiments or outcome assessment.

The data was randomly split into training and validation sets for the training cohort (TCGA), while all other cohorts were used exclusively for
external validation. Given this design, blinding was not applicable.
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Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied-

Authentication Describe-any-atithentication-procedtres foreach seed stock tised-ornovel-genotype generated—Describe-any-experiments-tused-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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