
Nature Biomedical Engineering

nature biomedical engineering

https://doi.org/10.1038/s41551-025-01516-3Article

Benchmarking foundation models as 
feature extractors for weakly supervised 
computational pathology
 

Peter Neidlinger    1,16, Omar S. M. El Nahhas    1,2,16, Hannah Sophie Muti1,3,4, 
Tim Lenz1, Michael Hoffmeister    5, Hermann Brenner    5,6,7, Marko van Treeck1, 
Rupert Langer8, Bastian Dislich9, Hans Michael Behrens10, Christoph Röcken10, 
Sebastian Foersch    11, Daniel Truhn    2,12, Antonio Marra    13, 
Oliver Lester Saldanha    1 & Jakob Nikolas Kather    1,14,15 

Numerous pathology foundation models have been developed to extract 
clinically relevant information. There is currently limited literature 
independently evaluating these foundation models on external cohorts and 
clinically relevant tasks to uncover adjustments for future improvements. 
Here we benchmark 19 histopathology foundation models on 13 patient 
cohorts with 6,818 patients and 9,528 slides from lung, colorectal, gastric 
and breast cancers. The models were evaluated on weakly supervised tasks 
related to biomarkers, morphological properties and prognostic outcomes. 
We show that a vision-language foundation model, CONCH, yielded the 
highest overall performance when compared with vision-only foundation 
models, with Virchow2 as close second, although its superior performance 
was less pronounced in low-data scenarios and low-prevalence tasks. The 
experiments reveal that foundation models trained on distinct cohorts 
learn complementary features to predict the same label, and can be fused 
to outperform the current state of the art. An ensemble combining CONCH 
and Virchow2 predictions outperformed individual models in 55% of tasks, 
leveraging their complementary strengths in classification scenarios. 
Moreover, our findings suggest that data diversity outweighs data volume 
for foundation models.

Artificial intelligence has revolutionized digital pathology by ena-
bling biomarker prediction from cancer tissues using high-resolution 
whole-slide images (WSIs)1–6. Moreover, these algorithms can sub-
stantially enhance diagnostic accuracy, efficiency and consistency, 
reducing the subjectivity associated with human interpretation7,8. In 
particular, deep learning can perform tasks such as disease grading, 
cancer subclassification or prognostic prediction9–11.

Recently, foundation models, which are trained on large-scale 
datasets, have been introduced to digital pathology12,13. These models 

use self-supervised learning (SSL) techniques to learn meaningful rep-
resentations of histology tissue, which are crucial for clinical pathol-
ogy tasks. SSL techniques such as contrastive learning14,15 and masked 
image modelling16 have shown improved performance, robustness 
and higher transferability compared with fully supervised learning. 
Another advantage lies in its ability to learn from vast amounts of 
unlabelled data, thereby considerably reducing the need for manual 
annotation17. The practical application of foundation models involves 
WSI tessellation into small, non-overlapping patches, after which 
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foundation model. While the success of foundation models is typically 
measured by downstream model performance, their evaluation has 
largely been limited to narrow benchmarks without proper external 
validation. This restricted testing approach risks data leakage and 
selective reporting of only the best-performing models. As a result, 
most foundation models lack systematic evaluation across a broad 
spectrum of clinically relevant tasks, leaving their true capabilities 
and limitations incompletely understood.

In this study, we put forth a comprehensive benchmarking effort 
for histopathology foundation models. By including multiple propri-
etary cohorts from multiple countries, which were never part of any 
foundation model training, we effectively mitigate the risk of data 
leakage from pretraining datasets. Our benchmarking includes 19 foun-
dation models and 31 clinically relevant evaluation tasks, 19 of which 
are the prediction of cancer biomarkers, using a total of 6,818 patients 
and 9,528 slides. This comprehensive evaluation bridges a notable gap 
in digital pathology literature and will serve as an important reference 

image feature extraction is performed. These extracted features serve 
as inputs for training classification or regression models, such as 
ViTs18, tailored for specific tasks, such as mutation prediction, survival 
analysis, disease grading or cancer classification19. The limited avail-
ability and variable quality of public pathology data can hinder the 
performance of these models when applied to real-world clinical sce-
narios20. Recent efforts have demonstrated the potential of large-scale 
foundation models in computational pathology. Unlike earlier mod-
els that relied heavily on datasets such as The Cancer Genome Atlas 
(TCGA), contemporary foundation models are now trained on much 
larger proprietary cohorts such as Mass-100K (100,000 WSIs)21, Provi-
dence (171,000 WSIs)22 and Memorial Sloan Kettering Cancer Center 
(1,488,000 WSIs)23.

Foundation models have enabled the rapid development of spe-
cialized, task-specific downstream models by providing a stable base 
architecture. These downstream models require substantially less data 
and computational resources since they build upon the pre-existing 
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Fig. 1 | Experimental design of the study. Benchmarking of 19 histopathology 
foundation models using 13 cohorts and 31 tasks. a, Number of slides used from 
each of the 13 cohorts including 4 cancer types. b, About 9,528 haematoxylin 
and eosin (H&E) stained WSIs were preprocessed using the standardized 
STAMP19 pipeline. Feature extraction from the processed tiles was performed 
using 19 foundation models analysed in this study. The TCGA features were 
utilized for fivefold cross-validation with downstream transformer models 
on 31 classification tasks using STAMP. All models were subsequently applied 
to external features from CPTAC, Bern, Kiel, DACHS and IEO. The transformer 

architecture schematic shows layer normalization (Norm) and multi-headed 
self-attention (MSHA), followed by a MLP. c, All experiments were analysed using 
AUROCs, supplemented by AUPRC, Pearson’s correlation coefficient, DeLong’s 
test, balanced accuracy and F1 score. CONCH achieves the highest average 
AUROC across all tasks, followed by Virchow2, Prov-GigaPath and DinoSSLPath. 
The star indicates that Panakeia was tested on all tasks despite being specifically 
designed for BRCA and CRC. Attention heatmaps were generated for some slides 
to interpret differences between foundation models.
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point for the digital pathology community helping to select the right 
foundation model for a specific digital pathology task.

Results
Benchmark of pathology foundation models
We benchmarked the performance of 19 foundation models and 14 
ensembles derived from these models, trained as vision-language or 
vision-only, on 31 weakly supervised downstream prediction tasks 
related to morphology (n = 5), biomarkers (n = 19) and prognostica-
tion (n = 7) (Fig. 1).

For the 5 morphology-related tasks, CONCH yielded the highest 
mean area under the receiver operating characteristic curve (AUROC) 
of 0.77, followed by Virchow2 and DinoSSLPath with mean AUROCs 
of 0.76 (Fig. 2c). Across the 19 biomarker-related tasks, Virchow2 and 
CONCH achieved the highest mean AUROCs of 0.73, followed closely 
by Prov-GigaPath with a mean AUROC of 0.72 (Fig. 2d). Finally, in the 
7 prognostic-related tasks, CONCH yielded the highest mean AUROC 
of 0.63, followed by Virchow2 and BiomedCLIP with mean AUROCs of 
0.61 (Fig. 2e). Averaged across all 31 tasks, CONCH and Virchow2 had the 
highest AUROCs of 0.71, followed by Prov-GigaPath and DinoSSLPath 
with AUROCs of 0.69. Subsequent rankings included H-optimus-0, UNI 
and Panakeia (0.68), Virchow, Hibou-L and CTransPath (0.67), Biomed-
CLIP and Kaiko (0.66), Phikon (0.65) and PLIP (0.64). Moreover, CONCH 

achieved the highest average area under the precision-recall curve 
(AUPRC), balanced accuracy and F1 scores (Extended Data Fig. 1), with 
the highest average AUROC in each cancer type obtained by CONCH 
(stomach adenocarcinoma (STAD), non-small-cell lung cancer 
(NSCLC)), Virchow2 (colorectal cancer (CRC)) and BiomedCLIP (breast 
cancer (BRCA)) (Extended Data Fig. 2a). To further validate our find-
ings, we compared the performance of transformer-based aggrega-
tion with the widely used attention-based multiple instance learning 
(ABMIL) approach24. Across all 31 tasks, ABMIL performed slightly 
worse than the transformer-based model, with an average AUROC dif-
ference of 0.01, leaving the overall model rankings largely unchanged 
(Extended Data Fig. 3).

For histopathology slide encoders, we retrieved the encoded 
tile-level embeddings to make them applicable to our MIL approach. 
The original tile embeddings consistently outperformed their 
slide-level counterparts and the performance of the encoded tile 
embeddings is driven by the quality of the original tile embeddings 
and not by the slide encoder (Fig. 2g).

In statistical AUROC comparisons across 29 binary classi-
fication tasks, CONCH yielded higher AUROCs, which were sig-
nificantly different from other models in a substantial number of 
tasks: PLIP (16), Phikon and BiomedCLIP (13), Kaiko (11) and 7 tasks 
each for Hibou-L, H-optimus-0, CTransPath, Virchow, Panakeia, 
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Fig. 2 | Performance of 19 pathology foundation models on 31 weakly 
supervised prediction tasks. a, AUROC scores of the four best foundation models, 
task-wise normalization. b, AUROC scores of the two best foundation models 
compared with the average prediction of the four best models (Avg-Pred) and the 
concatenated vectors of CONCH and Prov-GigaPath (Concat). c–e, Average AUROC 
scores of the five folds of each foundation model on morphology (c), biomarker 
(d) and prognosis (e) tasks. Task-wise normalization for better comparison of 

the foundation models. Tasks are sorted by their mean AUROC across all models, 
while models are sorted by their mean AUROC across all tasks. f, Stacked pie charts 
showing the number of tasks where each model achieved an average AUROC of 
>0.7, 0.6–0.7 or <0.6, grouped by task type. g, Average AUROC scores of the five 
folds using encoded tile embeddings from slide encoders versus the original tile 
embeddings. The star indicates that Panakeia was tested on all tasks despite being 
specifically designed for BRCA and CRC.
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UNI and DinoSSLPath, with 5 tasks each for Prov-GigaPath and 
Virchow2. Conversely, few models yielded higher AUROCs than 
CONCH: Virchow2 (6), Prov-GigaPath (3), Panakeia and Kaiko (2) 
and DinoSSLPath, UNI, Virchow and Hibou-L (1). Notably, PLIP, 
Phikon, BiomedCLIP, H-optimus-0 and CTransPath were not 
significantly better than CONCH in any of the tasks (P < 0.05; 
Extended Data Fig. 4b). Among the vision-only models, Virchow2 
was significantly better than all other models in between 6 and 12 
tasks (P < 0.05; Extended Data Fig. 4c).

Together, these data show that CONCH, a vision-language model 
trained on 1.17 million image-caption pairs (ICPs), performs on par 
with Virchow2, a vision-only model trained on 3.1 million WSIs, 
and together outperform all other pathology foundation models 

in the three highlighted domains of morphology, biomarkers and 
prognostication-based prediction tasks and that slide encoders are 
ineffective in an MIL set-up.

Performance of foundation models in scarce data settings
One of the predominant selling points of foundation models in com-
putational pathology is the mitigation of the traditional requirement 
for extensive labelled datasets when analysing rare (molecular) events. 
Consequently, we analysed the performance of pathology foundation 
models across two dimensions: WSI count for foundation model train-
ing, and patient and positive case counts for downstream model train-
ing, with emphasis on low-prevalence scenarios that reflect real-world 
clinical applications.
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Fig. 3 | The impact of data diversity and volume on downstream weakly 
supervised classification performance. a–c, The impact of foundation model 
data diversity on downstream classification. Pearson’s correlation (two-sided) 
was used to assess associations between pretraining dataset characteristics and 
downstream performance. No adjustments were made for multiple comparisons. 
Correlation between the number of WSIs, patients and anatomic tissue sites 
in the pretraining dataset and the average AUROC for each downstream task 
type for all vision-only foundation models for which this data is available. Here, 
k denotes thousands. (a). Correlation between the number of ICPs (in millions, M) 
in the pretraining dataset and the average AUROC for each downstream task type 
for all vision-language foundation models (b). Performance of the respective 

cancer types correlated with the proportion of the cancer type in the pretraining 
dataset (c). All information that was available is shown (Supplementary Tables 
6–8). d,e, Experiments with reduced downstream training sizes. Average AUROC 
scores across 29 tasks, trained with 75, 150 or 300 patients (d). Distribution of 
AUROC scores across all tasks for each model separately. Violin plots show kernel 
density estimates of AUROC scores, truncated at the observed range. The inner 
box marks the median and interquartile range (25th–75th percentiles), with 
whiskers extending to the most extreme values within 1.5× interquartile range (e). 
The star indicates that Panakeia was tested on all tasks despite being specifically 
designed for BRCA and CRC.
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From the foundation model perspective, positive correlations 
(r = 0.29–0.74) were observed between downstream performance and 
pretraining dataset size (WSIs, patients) or diversity (tissue sites) across 
morphology, biomarker and prognosis tasks, although most were 
not statistically significant. Significant correlations were found only 
for morphology with patient count (r = 0.73, P < 0.05) and tissue site 
diversity (r = 0.74, P < 0.05) (Fig. 3a). These findings suggest that these 
factors are important but not sole determinants, with the distribution of 
anatomic tissue sites (Supplementary Table 1 and Supplementary Fig. 1), 
architecture and dataset quality also playing critical roles. This is espe-
cially evident in vision-language models, where CONCH outperformed 
BiomedCLIP despite seeing far fewer ICPs (1.1 million versus 15 mil-
lion) (Fig. 3b). Similarly, tissue representation in pretraining datasets 
showed a moderate, but not significant, correlation with performance 
by cancer type (Fig. 3c). Interestingly, Panakeia models showed decent 
performance on unrelated cancer types, with the BRCA model achiev-
ing average results in NSCLC and the CRC model performing similarly 
in STAD, despite no previous exposure to these tissues during training.

Downstream models were trained on randomly sampled cohorts 
of 300, 150 and 75 patients while keeping a similar ratio of positive 
samples, and consequently validated on full-size external cohorts. In 
the largest sampled cohort (n = 300), Virchow2 demonstrated superior 
performance in 8 tasks, followed closely by PRISM with 7 tasks. With the 
medium-sized sampled cohort (n = 150), PRISM dominated by leading 
in 9 tasks, while Virchow2 followed with 6 tasks. The smallest sampled 
cohort size (n = 75) showed more balanced results, with CONCH leading 
in 5 tasks, while PRISM and Virchow2 each led in 4 tasks. Performance 
metrics remained relatively stable between n = 75 and n = 150 cohorts 
(Fig. 3d,e and Extended Data Fig. 5).

To evaluate foundation models in real-world clinical scenarios, we 
focused on clinically relevant tasks with rare positive cases (>15%) in the 
TCGA training cohort. Key low-prevalence biomarkers included BRAF 
mutation (10%), CpG island methylator phenotype (CIMP) status (13%) 
and microsatellite instability (MSI) status (14%) in CRC; Epstein–Barr 
virus (EBV) positivity (8%) and M-status (7%) in STAD; and EGFR muta-
tion (11%) and STK11 mutation (15%) in lung adenocarcinoma (LUAD). 
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Fig. 4 | Divergence in tissue focus and predictive similarity among 
foundation models. a, Attention heatmap analysis for MSI-H classification in 
four different DACHS samples selected for correct predictions across selected 
foundation models. Thumbnails of the original WSIs and heatmaps of selected 
foundation models. b, Objective measure of similarity of prediction scores 

using Cohen’s kappa and majority vote across the five folds to binarize the 
predictions. Kappa scores of all combinations of foundation models tested in 
this study. c, Cohen’s kappa between the five folds of each foundation model. 
The star indicates that Panakeia was tested on all tasks despite being specifically 
designed for BRCA and CRC.
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To avoid cancer type imbalance, these targets were only evaluated in 
DACHS, Kiel and CPTAC-LUAD. The results show that Prov-GigaPath 
(mean AUROC of 0.74) yields the highest performance in the high-
lighted low-prevalence tasks, followed by Virchow (0.73) and CONCH 
(0.72) (Extended Data Fig. 2b).

Finally, tasks were stratified into high- and low-performance tasks 
by the AUROC (Extended Data Fig. 6). In high-performance tasks (>0.75), 
Virchow2 demonstrated superior performance in high-performance 
tasks, followed by Prov-GigaPath and CONCH. Conversely, in 
low-performance tasks (≤0.75), CONCH yielded better results.

Together, these results indicate that the patient count, tissue site 
diversity and their distribution are important for downstream perfor-
mance, although other factors such as architecture and dataset quality 
also have critical roles. Moreover, the performance in downstream tasks 
with low-prevalence cases indicates the limitations of current foundation 
models for nonetheless clinically relevant biomarkers. Lastly, we show 
differential model efficacy based on task complexity, with Virchow2 
excelling in standard classification tasks while CONCH dominates in 
more challenging predictive scenarios. All models show similar perfor-
mance declines with reduced training sizes, underlining the weakness of 
current pathology foundation models in scarce data scenarios.

Foundation models learn different tissue morphologies
To quantitatively measure prediction similarity across models, we 
calculated Cohen’s kappa25. For each task, labels were assigned using 
a majority vote across the cross-validation folds. Cohen’s kappa scores 
were generally moderate and varied across models. Notably, some pairs 
such as Panakeia and DinoSSLPath (0.55), PLIP and BiomedCLIP (0.52) 
and top performers such as Prov-GigaPath, CONCH, Virchow2 and 
DinoSSLPath showed higher agreement, whereas lower-performing 
models such as Hibou and Kaiko exhibited the least consensus (0.28) 
(Fig. 4b). Within individual model folds, BiomedCLIP and CONCH 
achieved the highest average kappa (0.41), followed by Virchow2, 
Panakeia and Prov-GigaPath (0.37), with Hibou (0.26) and Kaiko (0.24) 
ranking lowest, consistent with their AUROC performance (Fig. 4c).

To identify the reasons behind the observed performance differ-
ences among the downstream models trained on top of the different 
foundation models, we investigated whether the models focus on 
different morphological properties for their predictions. We utilized 
attention heatmaps to compare model behaviour when the models (1) 
consistently predicted the label correctly and (2) were in disagreement 
regarding the predicted label. In cases where all models were in agree-
ment on the correct prediction, the validity of the classification would 
be supported by their focus on relevant tissue regions for diagnosis. 
For example, in the prediction of MSI status, models predominantly 
highlighted tumour regions, as expected. However, models such as UNI, 
Hibou, Virchow and Kaiko occasionally highlighted pen marks, which is 
an undesired behaviour that suggests that predictions are being made 
through some form of pattern association rather than understanding 
the underlying biology (Fig. 4a and Extended Data Fig. 7b). To assess 
the impact of pen marks, we quantified their occurrence in 50 randomly 
sampled slides per test cohort and found them present in 90% of slides 
from DACHS and 22% from Bern, but absent elsewhere. Despite their 
presence, pen marks did not skew classification, as they were equally 
distributed across different classes. Models such as CONCH and Vir-
chow focused on multiple small tissue areas, whereas Prov-GigaPath 
appears less selective in its attention (Fig. 4a). In NSCLC subtyping, 
models generally performed well, focusing mainly on tumour regions 
and ignoring healthy lung parenchyma (Extended Data Fig. 8b). In ESR1 
overexpression prediction, Prov-GigaPath and Kaiko highlighted the 
majority of the WSI area, whereas CONCH and Virchow focused on a 
few small tissue areas (Extended Data Fig. 8c). By contrast, when ana-
lysing slides where models made inconsistent predictions, we found 
instances of model disagreement that led to errors. For instance, in 
the task of DACHS CRC sidedness, Virchow erroneously focused on 

pen marks (Extended Data Fig. 7b). However, no consistent pattern of 
errors emerged across the models to fully explain these discrepancies.

Together, these data indicate that foundation models vary in 
their focus on tissue regions and the morphological features that they 
prioritize, which impacts their predictive performance. The differ-
ences in attention across models suggest that combining models with 
complementary strengths could enhance overall predictive accuracy 
in ensemble approaches.

Ensemble of pathology foundation models improve 
performance
Lastly, we tested the hypothesis that creating an ensemble of pathology 
foundation models improves prediction performance. We utilized two 
approaches for ensembling models, taking the average of the various 
downstream models’ prediction scores trained on different foundation 
model backbones and concatenating feature vectors from different 
foundation model backbones to create a single downstream model.

Experiments show that ensembling by taking the average of 
the models’ prediction scores yielded a superior AUROC compared 
with either model used in isolation. The combination of the four 
top-performing models led to the highest improvement, achieving 
a mean AUROC 1.2% higher than CONCH (Extended Data Fig. 9), the 
leading individual model (Fig. 1b). Across all 31 tasks, the ensemble 
reduced misclassifications compared with CONCH by an average of 
6.2% across the five folds (cut-off 0.5) (Supplementary Table 2). There-
fore, these data show that ensembling the prediction scores of multi-
ple high-performing models enhances performance on certain tasks 
beyond the capabilities of the best individual model.

Combining the best-performing models, CONCH and Virchow2, 
yielded a 1,792-dimensional vector with the highest AUROC of 71.9. 
Similarly, combining Virchow2 and Prov-GigaPath, the top-performing 
vision-only models, resulted in a 2,816-dimensional vector with an 
AUROC of 71.6. Individually, the models achieved AUROCs of 71.1 
for CONCH, 70.9 for Virchow2 and 69.2 for Prov-GigaPath (Fig. 1b 
and Extended Data Fig. 9). Interestingly, Cohen’s kappa between the 
individual models did not strongly correlate with ensemble quality, 
indicating that low agreement does not necessarily translate to ben-
eficial diversity in predictions. Similarly, no clear pattern was observed 
between the similarity of ensembles with their single model coun-
terparts and factors such as model performance or embedding size 
(Extended Data Fig. 10). To quantify improvements, we conducted 
two-sided DeLong’s tests comparing AUROC scores of CONCH with 
ensembles and other single-model baselines. For each model, we 
averaged prediction scores across five folds, and across up to ten 
folds for ensembles. Bagging the five folds of the same foundation 
model increased AUROC scores, while integrating different models via 
stacking or concatenation yielded more pronounced improvements 
(Extended Data Fig. 4a). The CONCH and Virchow2 ensemble showed 
statistically significant differences in performance with higher AUROCs 
than CONCH in 9 of 29 tasks (P < 0.05), whereas the Virchow2 and 
Prov-GigaPath ensemble showed significant improvements in 7 tasks 
(Extended Data Fig. 4b).

These results demonstrate that ensemble approaches for pathol-
ogy foundation models, as well as their downstream models, lead to 
enhanced prediction performance. This suggests that merging multi-
ple foundation models through ensemble techniques can be beneficial.

Discussion
Weakly supervised computational pathology approaches, in which a 
deep learning system predicts a label directly from a WSI, have been 
massively successful in cancer research. They have been used to make 
the diagnosis of tumours, to predict biomarker status and to predict 
clinical outcomes directly from image data. Over 100 such tools are 
now approved for clinical use in the United States and the European 
Union26,27. Since 2022, foundation models have become an integral 
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part of weakly supervised computational pathology pipelines and have 
improved performance and generalizability4,28. However, the current 
internal evaluation strategy for foundation models in computational 
pathology for clinically relevant tasks is limited. When groups that 
publish pathology foundation models evaluate them on tasks of their 
own choosing, there is a high potential for bias. Moreover, concerns 
about data leakage arise when foundation models are tested on images 
from the same institutions where they were trained.

In this study, we conducted a comprehensive evaluation of pathol-
ogy foundation models in weakly supervised computational pathol-
ogy on truly external datasets with no overlap between training and 
validation data. Our results show that while many existing foundation 
models achieve high performance on clinically relevant prediction 
tasks, CLIP-based approaches are not inherently superior, as evidenced 
by BiomedCLIP and PLIP’s performance. Instead, high-quality pre-
training data and effective data cleaning are crucial for achieving 
top-tier performance. The best-performing model, CONCH, trained 
with multimodal data, suggests that incorporating text during train-
ing enhances image-only embedding quality. Similarly, Virchow2’s 
strong performance stems from its unprecedented tissue type diversity 
(approximately 200 versus 20–30 in other models) and more balanced 
distribution, avoiding over-representation of specific cancer types. 
In addition, the variability in the model’s performance can also be 
attributed to varying degrees of difficulty for each task. For instance, 
while differentiating between lung carcinoma subtypes is generally 
straightforward, other tasks such as stomach cancer subtyping can 
be more demanding. Here even pathologists can show a considerate 
degree of interobserver disagreement29.

In terms of prediction interpretability, our approach highlights 
that different foundation models focus on different areas in the tis-
sue while still having a high agreement on the predicted label. Our 
technical analysis revealed that slide encoders showed no advantage 
over tile encoders in MIL set-ups, except in low-data scenarios, and 
the transformer-based STAMP architecture generally outperformed 
ABMIL outside of data-limited settings. Interestingly, while CONCH 
dominated in tasks when trained on the full dataset, its advantages 
diminished in low-data and low-prevalence settings. This performance 
dichotomy suggests that multimodal training of a foundation model, 
despite its presumed benefits, does not confer special advantages in 
the data-constrained scenarios often encountered in clinical settings 
within the scope of our experiments. We demonstrate that ensem-
bling foundation models is beneficial, particularly when combining 
top-performing models, although prediction diversity (measured by 
Cohen’s kappa) does not directly correlate with ensemble performance. 
Even modest ensemble improvements may have clinical relevance by 
combining several learned perspectives of tissue morphology, as exem-
plified by the higher biomarker classification performance. Future 
work should incorporate more sophisticated methods than feature 
vector concatenation, especially for larger models where combining 
large vectors might lead to overfitting.

A key insight of our study is that performance of foundation mod-
els does not scale well with increasing numbers of images in the training 
set used for SSL. This means that bigger is not always better. Rather, the 
diversity of the training set suggests to be a key factor, favouring vari-
ous sources of data, races and types of cancer. Our results will inform 
the future development of new foundation models. Specifically, using 
multimodal data to train models, even if the intention is just to apply 
them on unimodal data (that is, on images alone), should be encour-
aged. For healthcare institutions, this means that data that is available 
at scale, even without clinical association with clinical endpoints, is a 
valuable resource to train such models. Moreover, our findings sug-
gest that the selected computational pathology tasks may be solvable 
primarily through local morphological patterns rather than requiring 
global spatial context. The performance achieved by randomly sam-
pling 512 tiles per patient at each epoch suggests that for many tasks, 

the discriminative features exist at the local level. This observation 
is consistent with our comparison showing that tile-level encoders 
outperformed slide-level encoders despite the latter’s theoretical 
advantage in capturing global spatial relationships. Future research 
should explore in further depth whether the selected tasks and per-
formance metrics adequately represent the spectrum of diagnostic 
challenges, particularly those requiring integration of long-range 
spatial dependencies across the entire slide.

Our study has limitations in that our evaluation tasks only contain 
certain tumour types. We focused on four cancer types, prioritizing 
truly external validation datasets over broader cancer type coverage. 
This differentiates our work from studies that train and test on the 
same cohort or WSIs from the same hospital used for pretraining. 
Moreover, we were limited to pathology foundation models licences, 
which are accessible in a research setting. For example, this excludes 
RudolphV and PLUTO from our analysis. While our datasets contained 
artefacts such as pen marks (present in 90% of DACHS and 22% of Bern 
samples), these had minimal impact on predictions owing to their even 
distribution across classes. Although we incorporated a broad range of 
foundation models applicable to histology data, exploring the poten-
tial of fine-tuning general-purpose models such as GPT-4o was outside 
our current scope. Our evaluation strategy is focused on a diverse set 
of biomarkers in cancer histopathology. Future work will expand upon 
the range of tumour types, biomarkers and patient cohorts to further 
evaluate the robustness of foundation models in pathology.

Methods
Ethics statement
This study was carried out in accordance with the Declaration of Hel-
sinki. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and 
TCGA did not require formal ethics approval for a retrospective study 
of anonymized samples. The analysis of the testing cohort DACHS 
(an epidemiological study that is led by the German Cancer Research 
Center, DKFZ) was approved by the ethics committee of the Medical 
Faculty, University of Heidelberg, under 310/200130–32.

Datasets
The study used datasets from TCGA, CPTAC and proprietary cohorts. 
Specifically, cohorts from LUAD, lung squamous cell carcinoma (LUSC), 
CRC, STAD and BRCA were included. TCGA datasets were used for 
training of the models, and CPTAC, DACHS, Kiel, Bern and IEO were 
used for evaluation. This ensured that all testing was done on data 
that had neither been seen during training of the foundation models 
nor the aggregator models. For our analyses, we only use the CPTAC-2 
and CPTAC-3 prospective collections (from 2018/20), which exclu-
sively contain patients with CPTAC-IDs and have no overlap with TCGA 
patients.

For external validation, CPTAC datasets for LUAD, LUSC, colo-
rectal adenocarcinoma and BRCA were used. No foundation models 
analysed in this study were trained on CPTAC, ensuring its suitability 
as an independent test cohort. In addition, for CRC, the DACHS cohort 
was utilized alongside CPTAC as another external test set. In STAD, 
proprietary datasets from Kiel and Bern served as external validation 
cohorts. For BRCA, the IEO dataset was used alongside CPTAC for 
external validation (Fig. 1a and Supplementary Fig. 2).

Experimental design
Digital pathology involves several task categories, including mor-
phological, biomarker and prognostic tasks, and foundation models 
should be capable of performing well across all of them. In this study, 
we assembled and benchmarked 19 foundation models—the 12 pure 
vision models CTransPath28, DinoSSLPath33, Phikon16, UNI21, Virchow23, 
Kaiko (ViT-L/14)34, Prov-GigaPath22, Hibou-B, Hibou-L35, H-optimus-036, 
Virchow237 and Panakeia, the 3 vision-language models PLIP38, Biomed-
CLIP39 and CONCH40, and the 4 slide encoders GigaPath, MADELEINE41, 
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PRISM42 and CHIEF43—across a comprehensive set of tasks from all three 
categories. Each category was assessed across all cancer types, apart 
from morphological features in BRCA and prognostic features in NSCLC 
owing to data unavailability. Biomarkers were selected based on clinical 
relevance, diversity and availability. Tasks were prioritized when they 
were associated with actionable therapeutic targets, as annotated by 
OncoKB44. To enable both training and independent testing, each task 
required ground truth data to be available in TCGA (for training) and 
at least one test cohort. For each cohort, only tasks with at least ten 
cases in each category were included (Supplementary Table 3). For 
visualization purposes, only 15 models (vision-only and vision-language 
models) are shown in most figures. The slide encoders were included 
selectively, such as in Fig. 2g for comparison with their tile embedding 
counterparts and in Fig. 3d,e and Extended Data Fig. 5 to highlight their 
potential benefits in scarce data settings. Extended Data Figs. 1 and 9 
include all models to comprehensively show all experiments.

First, we investigated morphological classification tasks related 
to cancer subgroups with distinct phenotypic characteristics. The 
aim was to assess foundation models by evaluating their ability to dis-
cern established phenotypic distinctions. In CRC, the morphological 
task involved predicting whether the slide originated from the left or 
right side of the colon, excluding colon transversum samples owing to 
ambiguous classification. In STAD, the Lauren classification45 was cho-
sen as the morphological task, classifying slides as ‘intestinal’, ‘diffuse’ 
or ‘mixed’, given the unavailability of ground truth for newer classifica-
tion systems46,47. In lung cancer, the models were tasked with classifying 
samples into either adenocarcinoma or squamous cell carcinoma1.

Biomarker prediction tasks focused mainly on clinically relevant 
targets with some type of morphological correlation as demonstrated 
by previous computational pathology models. For CRC, these included 
BRAF, KRAS, MSI status, PIK3CA and CIMP status11. For STAD, EBV presence 
and MSI status were selected48. For LUAD, the targets were EGFR, STK11, 
KRAS and TP531. For BRCA, the targets were the expression of HER2, ER 
and PR receptors and PIK3CA mutations49,50. MSI status and CIMP status 
were binarized into MSI-high versus not MSI-high and CIMP-high versus 
not CIMP-high, respectively. HER2, ESR1 and PGR expression were bina-
rized using the z-score of mRNA expression profiles, similar to a study 
by Wegscheider et al.51. This approach was preferred over immunohis-
tochemistry labels owing to its objectivity and reduced variance error.

Prognostic tasks, which aim to predict clinical outcomes directly 
from WSIs, were selected based on their prognostic relevance. The tasks 
included N-status for CRC, STAD and BRCA, where all stages except 
N0 were classified as N+ (excluding Nx cases). M-status was analysed 
in CRC and STAD, performing binary classification of M0 versus M+.

By focusing on tasks with clear therapeutic actionability or prog-
nostic relevance, we aimed to evaluate the practical utility of these 
models in a clinical setting. This comprehensive benchmarking study 
included 31 tasks across 8 external test cohorts, encompassing a wide 
range of clinically relevant classification tasks (Supplementary Table 4).

Image processing and deep learning techniques
The benchmarking was conducted using the STAMP pipeline version 
1.1.1 (ref. 19) (Supplementary Table 5). Each classification task followed 
a two-step procedure (Fig. 1b). In the first step, feature vectors were 
extracted from WSIs utilizing the foundational models evaluated in this 
study. In the second step, these vectors were used to train a slide-level 
aggregator on the downstream tasks described above.

WSIs were segmented into N tiles, with an edge length of 224 pix-
els corresponding to 256 µm, resulting in an effective resolution of 
~1.14 µm per pixel. All included foundation models in our benchmark, 
except for Prov-GigaPath22, tessellate the slide into tiles of 224 × 224 
pixels. However, the Prov-GigaPath implementation transforms tiles 
using centre cropping from 256 × 256 into 224 × 224 before inputting 
it into the tile encoder. The slide encoder then processes these feature 
embeddings generated by the tile encoder, implicitly maintaining the 

224 × 224 tile dimensionality throughout the pipeline. Therefore, our 
choice of tile dimensionality for slide tessellation is consistent with 
the foundation models selected for our analyses. Background tiles 
were excluded using Canny edge detection52. Stain normalization was 
not applied during preprocessing. Feature extraction was performed 
on each tile individually using the different foundational models. 
The embedding dimensions M varied across models, ranging from 
M = 384 for DinoSSLPath and Panakeia to M = 1,536 for Prov-GigaPath 
and H-optimus-0. Subsequently, each slide was transformed into a 
two-dimensional matrix with dimension N × M. The extracted feature 
vectors were input into a transformer-based aggregator model4. It 
utilizes multi-head attention, Gaussian error linear unit activation 
functions53, layer normalization and a multilayer perceptron (MLP) 
head to produce an output corresponding to the k possible classes 
for each task. A 5-fold cross-validation approach was implemented, 
resulting in the creation of 2,945 models (19 foundation models, 31 tasks 
and 5 folds) trained exclusively on TCGA datasets. We implemented 
stratified k-fold cross-validation to ensure that each fold maintains 
representative proportions of all classes, preventing scenarios where 
rare categories have zero instances in training runs. This approach 
follows standard practices in computational pathology and provides 
robust performance estimates and better generalization assessment10. 
All experiments were run on individual 40 GB NVIDIA RTX A6000 
and L40 GPU (graphics processing unit) nodes. In addition to the 
transformer-based aggregator described, we evaluated ABMIL as an 
alternative aggregation method24. ABMIL introduces inductive bias 
by using attention mechanisms to assign weights to each tile in a slide, 
enabling the model to focus on the most informative regions.

To integrate slide encoders into the MIL pipeline, we extracted the 
encoded tile-level embeddings for Prov-GigaPath, MADELEINE, CHIEF 
and the 512 latents for PRISM. These encoded tile embeddings were 
subsequently treated as regular tile embeddings in all analyses. Unless 
explicitly stated otherwise, results presented throughout the study 
refer to the regular tile embeddings. Prov-GigaPath provides both a 
slide-level and a tile-level encoder, and we evaluated both approaches22. 
In the case of Virchow and Virchow2, Vorontsov et al. proposed concat-
enating the class token with the average pool of patch tokens for each 
tile embedding. To maintain consistency with other models that only 
use class tokens, two configurations were tested: one including and 
one excluding the averaged patch tokens. As the differences are very 
small, the version only using class tokens is shown in the main results 
for consistency with other models. For CONCH, we used the output of 
the attentional pooler that corresponds to image-text alignment, with 
an embedding dimension of 512. Although the Panakeia models are 
specifically designed for BRCA and CRC, respectively, we also evaluate 
the CRC model on STAD and the BRCA model on NSCLC. This is because 
their performance remains competitive in these contexts, and includ-
ing these results provides the basis for comparison in subsequent 
analyses. For experiments involving combined feature vectors, vectors 
were concatenated, maintaining a single vector per tile. For instance, 
combining CONCH and Virchow2 resulted in a combined embedding 
dimension M of M = 1,792 (M = 512 for CONCH + M = 1,280 for Virchow2).

Explainability
To better interpret the output of the models, we generated whole-slide 
prediction heatmaps for selected tasks. These heatmaps illustrate the 
models’ focus on specific tissue areas, by weighting the scores assigned 
to individual tiles using gradient-weighted class activation mapping 
(Grad-CAM)54. It is important to note that a high number of positively 
contributing tiles do not automatically result in a high final score 
owing to the nonlinear aggregation process in neural networks55. The 
benchmarking effort involved 2,945 models and 9,528 slides, leading 
to a vast number of model-slide combinations. Thus, it was necessary 
to select a few informative examples methodically. Slides were selected 
by including cases where models showed strong disagreements and 
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cases where all models performed well. The heatmaps were visually 
analysed and compared with the underlying WSI. To further analyse 
the similarity between different models, Cohen’s kappa25 was measured 
between each pair of foundation models.

Statistical analysis
The performance of the models was evaluated using the AUROC using 
fivefold cross-validation and deployment on external cohorts. Mean 
AUROC scores from the five cross-validation models deployed on 
external data were used for statistical and graphical evaluations. Pre-
dictions were made per patient, and all feature matrices belonging 
to one patient were concatenated for use in the model. In addition 
to AUROC, for completeness in the supplementary material, we also 
calculated the AUPRC, balanced accuracy and F1 scores. The two-sided 
DeLong’s test was used to test for statistically significant differences 
in AUROC scores. As the DeLong’s test is only applicable when a single 
prediction score is available for each model and sample, the average 
prediction score across all five folds was used. Owing to its multi-class 
nature, we excluded Lauren classification tasks from this analysis. This 
differs from the main metrics, where the AUROC/AUPRC/F1/balanced 
accuracy scores represent the mean across the five folds.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The slides for TCGA are available at https://portal.gdc.cancer.gov/. 
The slides for CPTAC are available at https://proteomics.cancer.gov/
data-portal. The molecular data for TCGA and CPTAC are available 
at https://www.cbioportal.org/. The slides and biomarker data for 
DACHS were generated for previous studies56–58 with restricted access.  
Biomarker data for DACHS are available by requesting Authorized 
Access to the phs001078 study (https://www.ncbi.nlm.nih.gov/pro-
jects/gap/cgi-bin/study.cgi?study_id=phs001113.v1.p1). Applications 
for access to DACHS biomarker data are reserved for senior investiga-
tors and NIH investigators as defined in https://dbgap.ncbi.nlm.nih.
gov/aa/wga.cgi, and upon successful application grants access to the 
data for 1 year with the option to renew access. The slides for DACHS can 
only be requested directly through the DACHS principal investigators. 
The contact details are listed at http://dachs.dkfz.org/dachs/kontakt.
html. The Kiel cohort is available from the Department of Pathology, 
Christian Albrechts University of Kiel, Kiel, Germany, upon reasonable 
request (https://www.medizin.uni-kiel.de/en/institutes-departments/
institutes-of-clinical-theory/department-of-pathology). The Bern 
cohort is proprietary and cannot be shared at the individual patient 
level. It is archived at the Institute of Pathology, University of Bern, 
and can be requested in reference to ref. 59. The IEO cohort is held by 
the European Institute of Oncology, Milan. Data requests will be evalu-
ated on a case-by-case basis in accordance with institutional policies 
and privacy regulations and can be directed via https://www.ieo.it/en/
contact_us/. Source data are provided with this paper.

Code availability
The benchmarking experiments were built upon the open-source 
STAMP software. All public models tested in this study are available via 
Zenodo at https://doi.org/10.5281/zenodo.15749283 (ref. 60).
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D

C

Extended Data Fig. 1 | AUROCs, AUPRCs, balanced accuracy and F1-scores for all main experiments. A-D, Average AUROC (A), AUPRC (B), balanced accuracy 
(C) and F1 (D) scores of the five-folds of each foundation model on Morphology, Biomarker and Prognosis tasks.
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A

B

Extended Data Fig. 2 | Average AUROCs sorted by cancer type and on scarce 
data tasks. Average AUROC scores of the five folds of each foundation model. 
Taskwise normalization for better comparison of the foundation models. Tasks 
are sorted by their mean AUROC across all models, while models are sorted by 
their mean AUROC across all tasks. A, The 31 tasks were grouped by cancer type  

(5 tasks for NSCLC, 5 tasks for BRCA, 8 tasks for STAD, 13 tasks for CRC). Models 
are sorted by average performance. B, Only tasks with rare positive cases (>15%) 
in the TCGA training cohort are shown. To avoid cancer type imbalance, these 
tasks are only evaluated in DACHS, Kiel and CPTAC LUAD.
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Extended Data Fig. 3 | Comparison of STAMP and ABMIL. A, Difference in 
average AUROC scores between STAMP transformer-based aggregation and 
ABMIL across all tasks, calculated as the average over five cross-validation folds 
for each foundation model. Positive values indicate superior performance 

of STAMP. B, Difference in average macro-AUC scores between STAMP and 
ABMIL for selected foundation models under reduced downstream training 
dataset conditions, as shown in Extended Data Fig. 5. This compares the relative 
performance of both methods in low-data scenarios.
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A

CONCH 
significantly better

Other model/ensemble 
significantly better

No significant 
differences Ensembles

Virchow2 
significantly better

Other model/ensemble 
significantly better

No significant 
differences Ensembles

Extended Data Fig. 4 | Performance Comparison of Model Ensembles and 
Single-Model Baselines Using DeLong’s Test. A, AUROC scores for each 
model and ensemble approach are shown, averaging predictions across five 
folds for individual models and five or ten folds for ensembles. Two ensembling 
approaches were used: taking the average prediction scores of downstream 
models trained on different foundation model backbones (prefix Avg) and 

concatenating feature vectors from different backbones to create a single 
downstream model (prefix Concat). The “Lauren” task was excluded as it’s not 
a binary classification. B-C, P-values from two-sided DeLong’s tests comparing 
CONCH (B) or Virchow2 (C) with other models and ensembles. No correction for 
multiple testing was applied; alpha was set to 0.05.
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Extended Data Fig. 5 | Model performance with reduced downstream training 
dataset. Mean AUROC across all five folds on 29 tasks for all foundation models 
trained with a reduced downstream dataset of 75 (A), 150 (B), or 300 patients (C). 

Patients were randomly selected from the TCGA cohorts, ensuring the ground 
truth was defined for all analyzed tasks. The tasks Lauren in Kiel and Bern were 
excluded due to insufficient patient numbers.
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Extended Data Fig. 6 | High-performance vs. low-performance tasks. 
A, Average AUROC scores across 15 high-performance and 16 low-performance 
tasks. Tasks were selected by including only those where at least one foundation 
model achieved an average AUROC over 0.75 and all others in low-performance 

tasks. B-C, The performance of each foundation model is listed. The final row 
presents the overall average AUROC for each model. Tasks are sorted by their 
mean AUROC across all models, while models are sorted by their mean AUROC 
across all tasks.
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Extended Data Fig. 7 | Attention heatmaps of slides with large variations 
in prediction scores. A-C, Attention Heatmap Analysis for Kiel EBV status (A), 
DACHS CRC sidedness (B) and CPTAC-BRCA ESR1 expression (C). Classification 

in 12 different WSIs selected for diverse prediction scores across the foundation 
models. Thumbnails of the original whole slide images (WSIs) and heatmaps of all 
foundation models are shown.
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Extended Data Fig. 8 | Attention heatmaps of slides that all models predicted 
well. A-C, Attention Heatmap Analysis for Kiel N status (A), NSCLC subtyping (B) 
and CPTAC-BRCA ESR1 expression (C). Classification in four different samples 

per cohort selected for correct predictions across almost all foundation models. 
Thumbnails of the original whole slide images (WSIs) and heatmaps of all 
foundation models are shown.
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Extended Data Fig. 9 | AUROC scores across all foundation models and 
ensembles. AUROC scores for all foundation models, foundation model 
variations, and multiple ensemble approaches. Prov-GigaPath-T are the regular 
tile embeddings, Prov-GigaPath-S are the tile embeddings encoded by the 
GigaPath slide encoder. Virchow(-2)-CLS contained only class tokens, with 
Virchow(-2)-CLS + MPT representing the version with class and mean patch 

tokens combined. Multiple experiments were conducted using concatenated 
feature vectors combining features from CONCH, Virchow2, Prov-GigaPath, 
DinoSSLPath, H-optimus-0 and UNI. For the same combinations, average 
prediction scores were calculated. These scores were used to evaluate the 
performance of combined predictions.
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Extended Data Fig. 10 | Cohen’s kappa scores across all ensembles and their 
individual model components. Objective measure of similarity of prediction 
scores using Cohen’s Kappa and majority vote across the five folds to binarize the 

predictions. The concatenated versions of CONCH, Virchow2 (V2), Prov-GigaPath 
(GP), H-optimus-0 (HO0), UNI and DinoSSLPath (Dino) and their single model 
counterparts are shown.
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