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Single-cell epigenomic landscape of peripheral
immune cells reveals establishment of trained
immunity in individuals convalescing from
COVID-19

Maojun You®'2?8, Liang Chen3457823 Dawei Zhang®®, Peng Zhao®%, Zhu Chen®, En-Qiang Qin®,
Yanan Gao'?, Mark M. Davis ®34>™ and Pengyuan Yang ©® 224

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection often causes severe complications and even death.
However, asymptomatic infection has also been reported, highlighting the difference in immune responses among individuals.
Here we performed single-cell chromatin accessibility and T cell-receptor analyses of peripheral blood mononuclear cells col-
lected from individuals convalescing from COVID-19 and healthy donors. Chromatin remodelling was observed in both innate
and adaptive immune cells in the individuals convalescing from COVID-19. Compared with healthy donors, recovered individu-
als contained abundant TBET-enriched CD16* and IRF1-enriched CD14+ monocytes with sequential trained and activated epig-
enomic states. The B-cell lineage in recovered individuals exhibited an accelerated developmental programme from immature B
cells to antibody-producing plasma cells. Finally, an integrated analysis of single-cell T cell-receptor clonality with the chroma-
tin accessibility landscape revealed the expansion of putative SARS-CoV-2-specific CD8 T cells with epigenomic profiles that
promote the differentiation of effector or memory cells. Overall, our data suggest that immune cells of individuals convalescing
from COVID-19 exhibit global remodelling of the chromatin accessibility landscape, indicative of the establishment of immuno-

logical memory.

caused by the severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) has resulted in over 70 million recorded
cases with a mortality rate of approximately 2.3%'. To date, the main
strategy for ending the pandemic involves the development of effec-
tive vaccines, many of which are being evaluated>’. Although most
leading vaccine candidates can elicit virus-neutralizing antibodies,
there is considerable uncertainty on how protective or durable these
responses might be. Thus, a greater understanding of the innate
and adaptive immune responses of individuals convalescing from
COVID-19 is needed, particularly knowledge on whether immuno-
logical memory is established.

To date, studies on the immune responses to SARS-CoV-2
have mainly focused on the aspects of pathological inflamma-
tion’. According to single-cell transcriptome analyses, monocytes
from the peripheral blood or the bronchoalveolar lavage fluid
of COVID-19 patients are characterized by high levels of
pro-inflammatory cytokines’® such as IL-6, IL-1p and TNFa. In
addition, most of the patients with COVID-19 develop lymphocy-
topenia—especially reduced numbers of CD4* and CD8* T cells—
within two weeks of disease onset, contributing to increased serum
IL-6 levels. Lymphocytopenia is also predictive of the disease sever-
ity’""!, indicating that CD4* and CD8" T cells are critical for viral
control and disease recovery. Moreover, single-cell transcriptomic
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analyses showed an increased ratio of plasma cells in patients
infected with COVID-19 and early convalescent individuals”'?.

The epigenomic regulation of immune responses to primary
SARS-CoV-2 infection remains unknown at present. Here we
applied single-cell transposase-accessible chromatin with sequenc-
ing (scATAC-seq) to analyse chromatin remodelling in the periph-
eral immune cells of six matched and uninfected healthy donors
(five donors collected in this study and an additional dataset from
a public database'”) and ten individuals convalescing from moder-
ate or severe COVID-19 infection at 4-12 weeks following recovery.
The approach of 10x-based scATAC-seq enables the production
of high-quality single-cell accessible chromatin profiles at mas-
sive scale across all major immune-cell types in peripheral blood
mononuclear cells (PBMCs). For the T-cell analysis, we developed a
single-cell method that combines single-cell T cell-receptor (TCR)
sequencing (scTCR-seq), fluorescence-activated cell sorting (FACS)
with index sorting and ATAC-seq—termed TCR-FACS-index-
ATAC sequencing (Ti-ATAC-seq)—thereby allowing us to obtain
expression data for cell-surface markers, paired TCR sequences and
the chromatin accessibility landscape for each cell analysed. This
single-cell chromatin landscape approach facilitates a comprehen-
sive understanding of how effector or memory cells are established
in both the innate and adaptive immune responses of individuals
convalescing from COVID-19.

'Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of
Sciences, University of Chinese Academy of Sciences, Beijing, China. 2Chongging International Institute for Immunology, Chongging, China. 3Department
of Immunology and Microbiology, Stanford University, Stanford, CA, USA. 4Institute for Immunity, Transplantation and Infection, Stanford University,
Stanford, CA, USA. *Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. The Fifth Medical Center, Chinese PLA General Hospital,
Beijing, China. "Present address: School of Medicine, Shanghai University, Shanghai, China. 8These authors contributed equally: Maojun You, Liang Chen,
Dawei Zhang, Peng Zhao. ®Xe-mail: Ichen12@stanford.edu; mmdavis@stanford.edu; pyyang@ibp.ac.cn

620

NATURE CELL BIOLOGY | VOL 23 | JUNE 2021| 620-630 | www.nature.com/naturecellbiology


mailto:lchen12@stanford.edu
mailto:mmdavis@stanford.edu
mailto:pyyang@ibp.ac.cn
http://orcid.org/0000-0001-6665-9068
http://orcid.org/0000-0001-6868-657X
http://orcid.org/0000-0003-1040-5987
http://crossmark.crossref.org/dialog/?doi=10.1038/s41556-021-00690-1&domain=pdf
http://www.nature.com/naturecellbiology

NATURE CELL BIOLOGY

Results

Overview of the peripheral immune-cell profiling in individuals
convalescing from COVID-19. We mapped the transposase-
accessible chromatin at the single-cell level using 10x chromium
scATAC-seq (10x Genomics; Fig. 1a and Supplementary Table 1).
We collected data from 72,318 PBMCs from eight individuals conva-
lescing from COVID-19 as well as 24,997 PBMCs from five healthy
donors and one additional dataset from a public database'* as con-
trols (Fig. 1b and Extended Data Fig. 1a). Using uniform manifold
approximation and projection (UMAP), we analysed the distribu-
tion of the immune-cell populations based on the gene scores of
canonical lineage markers, which demonstrate the aggregate acces-
sibility of several enhancers linked to the indicated genes—includ-
ing CD14, CD16 (FCGR3A) and CEBPB for monocytes; PAX5 and
MS4A1 for B cells; CD8A and CD3G for CD8* T cells; CD4 and
CD3G for CD4* T cells; and KLRBI for natural killer (NK) cells
(Fig. 1c-e). The frequencies of monocyte-lineage and effector
and memory CD8* T cells increased in individuals convalescing
from COVID-19, whereas those of the B-cell lineages decreased
(Fig. 1f,g). We further analysed and clustered the cells of each
lineage separately.

In addition, we explored Ti-ATAC-seq to further investigate
special clonally expanded T-cell clones (Fig. 1a and Extended Data
Fig. 2). We collected 2,880 aff T cells from ten individuals convalesc-
ing from COVID-19, among which 1,574 quality-control-positive
T cells had both paired TCRaf sequences and ATAC-seq
(Fig. 1h). Ti-ATAC-seq had similar performance to previously
published microfluidic platform-based T-ATAC-seq'* and other
joint ATAC-RNA approaches'>'® (Extended Data Fig. 2c).

Sequential trained and activated monocytes in COVID-19. We
identified and annotated 13 subclusters of monocytes (Fig. 2a).
Clusters of CD14* monocytes (clusters 11, 12 and 13) showed a high
CD14 gene score. Clusters of CD16" monocytes (clusters 3 and 4)
were characterized by a high CD16 gene score. CD1c* conventional
dendritic cells (clusters 1 and 8) were defined by their high CDIc
gene score. CLEC4C* plasmacytoid dendritic cells showed high
gene accessibility in the CLEC4C locus. Clusters 9 and 10, with their
predominantly high KLF4 and CD68 gene scores, probably repre-
sented monocyte-derived dendritic cells (Fig. 2b and Extended
Data Fig. 3a,b).

We focused on CD14* and CD16* monocytes because the indi-
viduals convalescing from COVID-19 had a higher abundance
of two clusters of CD14* monocytes (clusters 11 and 12) and one
cluster of CD16% monocytes (cluster 4) than healthy individuals
(Fig. 2c). We found and annotated sequential differentiation states
from homeostasis to the mature immune inflammatory effector state
in the COVID-19 group through differential cis- and trans-element
analysis within the CD14* and CD16* clusters (Fig. 2a). For exam-
ple, cluster 4 (CD16-activation) was associated with leukocyte
activation and the regulation of cytokine production, and showed
high levels of activity of transcription factors (TFs) involved in
IFNYy-induced rapid signatures and myeloid differentiation, includ-
ing TBET, JUN and FOSB'*, whereas cluster 3 (CD16-maturation)
was associated with haemopoiesis and the regulation of the immune
response (Fig. 2d and Extended Data Fig. 3c). Interestingly, clus-
ter 4 had increased chromatin accessibility in the CCL5, PRFI and
GZMB loci (Extended Data Fig. 3a), demonstrating that IFNy drives
the differentiation and activation of CD16* monocytes in the hyper-
inflammatory microenvironment of patients with COVID-19. For
the CD14* monocytes, the clusters 12 and 13 (CD14-activation
and CD14-maturation, respectively) showed increased chromatin
accessibility at inflammatory cytokine genes—including IL1p, IL6,
IL8, CCL2, CCL3 and CCL7 (Extended Data Fig. 3a)—and enriched
TFs that represent a mature state—including FOS, JUN and
MAF (Fig. 2e-g)"”*'. Meanwhile, cluster 11 (CD14-trained) was
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characterized by the accessibility of genes involved in leuko-
cyte activation (Extended Data Fig. 3c) and showed high activity
of TFs involved in haematopoietic commitment and survival of
monocytes, including HOXA9 and NR4A1l (Fig. 2ef)*>”. In
addition, NR4A1 TF activity, which was enriched in cluster 11
(Fig. 2e,f), was also enriched in the activation stage of the CD16*
monocyte (Fig. 2d).

Innate immune cells have recently been shown to display immu-
nological memory after certain infections or vaccines, also termed
trained immunity*~. To understand the developmental dynamics
of these monocytes, we constructed a lineage trajectory of CD14*
based on sequential differentiation states, which progressed from
trained to activation and finally to maturation, and generated
ordered single cells (termed as ‘pseudotime’) based on their epi-
genetic similarity (Fig. 3a). The dynamic cis-element and TF motif
accessibility across the trajectory were consistent with the sequential
differentiation states (Fig. 3b). For instance, the trained, activated
and mature monocytes showed sequential chromatin accessibil-
ity in the IL1f and CCL5 loci (Fig. 3b,c). The trained stage of the
CD14* lineage trajectory was accompanied by increased accessibili-
ties of IRF1, IRF3 and IRF8 TF motifs (Fig. 3b,d,e), thus enhancing
susceptibility to regulate rapid IFN-f induction and host inflamma-
tory defences in human blood monocytes®”. The activation and
maturation stages of these trajectories shared accessibility at TFs
involved in monocyte activation and maturation for the activator
protein 1 (AP-1) factors FOS and JUN (Fig. 3b,d,e)""*%.

To validate this, we re-challenged PBMCs with spike-nCoV
pseudovirus or hepatitis B virus for 24h in vitro, as mono-
cytes predominantly showed high gene scores for IL1f and
IL6 (Fig. le). The PBMCs from individuals convalescing from
COVID-19 secreted higher levels of IL-1p and IL-6 than those from
the healthy donors (Fig. 3f), which is consistent with trained mono-
cytes having enhanced sensitivity in response to different pathogens
after an initial challenge®. There was no significant difference in the
levels of cytokine secretion between the patients that were tested
early (4 weeks) or late (10-12 weeks) following discharge (Fig. 3f).

Collectively, although systemic inflammation had returned to
a normal and healthy level (Supplementary Table 1), the CD14*
and CD16* monocytes maintained chromatin reprogramming that
promotes trained immunity and thus enables a rapid inflammatory
response against subsequent infection.

A facilitated B-cell developmental programme in individuals
convalescing from COVID-19. We identified ten B-cell clusters:
immature B cells (clusters 6 and 7) with a high SDCI score; naive
B cells (clusters 4 and 5) with high TCLIA, CDI19 and CD20 scores;
memory B cells (clusters 1, 2 and 3) with high CD27 and CD38
scores; and plasma cells (clusters 8, 9 and 10) with a high XBPI
score (Fig. 4a,b and Extended Data Fig. 4a).

Although the individuals convalescing from COVID-19 and
healthy donors had comparable frequencies of B-cell subsets
(Fig. 4c), the UMAP projection revealed preferential cell distri-
bution in each B-cell subset between healthy donors and indi-
viduals convalescing from COVID-19 (Fig. 4d and Extended Data
Fig. 4b). The transcriptional regulation of the B-cell developmen-
tal programme in healthy donors has been extensively studied™’'.
However, the B-cell lineage trajectories based on accessible chro-
matin differed between the healthy donors and individuals recov-
ering from COVID-19 (Extended Data Fig. 4b-d), suggesting that
SARS-CoV-2 infection induced different B-cell developmental
programmes.

To investigate this, we reconstructed the lineage trajectory
of B cells from the healthy donors and individuals convalescing
from COVID-19 (Fig. 4d). We observed cis-elements near known
regulators of every stage of B-cell development—such as TCLIA,
CXCR4, MEF2C, BHLHE41, BAFF, PLCG2, PAX5, EBF1 and RORA
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Fig. 1| Overview of the immune-cell epigenomic landscape of the blood of individuals convalescing from COVID-19. a, Outline of the two approaches
used for scATAC-seq: 10x-based scATAC-seq (top) and Ti-ATAC-seq (bottom). b, Cell numbers (log,,-transformed) in each sample for 10x-based
scATAC-seq. ¢, UMAP plot showing 97,315 10x-based scATAC-seq profiles of immune cells in peripheral blood—including B, NK and T cells, monocytes
and other clusters. The dots indicate individual cells and the cell-type identity is indicated by colour. d, UMAP plot showing the sample origin. e, Canonical
markers overlaid on UMAP embedding, including CD14 and CEBPB for monocytes; PAX5 and MS4AT for B cells; CD3G, CD8A and CD4 for T cells; and
KLRBT for NK cells. The UMAP plot is coloured based on the log-transformed normalized gene scores, which exhibited the accessibility of peaks linked to
the indicated genes. The gene scores were calculated as log,(normalized count +1). f, Cell-type frequencies in each sample, determined using 10x-based
scATAC-seq. The colours indicate the cell type. g, Differences in the proportion of monocyte and B-cell lineages as well as effector and memory CD8*

T cells in the samples from individuals convalescing from COVID-19 (COV; n=8 samples collected from eight individuals, one sample per individual)

and healthy donors (HD; n=4 samples, three samples collected from five HD in this study (including a pooled sample from three HD) and an additional
sample from published data (GSE139369) as indicated in b and Extended Data Fig. 1a). A two-sided unpaired Student's t-test was performed to determine
the P values. The boxplots denote the median with the quartile range (25-75%), and the length of whiskers represents 1.5x the interquartile range (IQR).
h, Number of T cells in each sample that had both scTCR-seq and ATAC-seq data.
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Fig. 2 | Epigenomic signatures of trained and activated monocytes in individuals convalescing from COVID-19. a, Subclustering UMAP of all monocytes
(see Fig. 1c). The five clusters of CD14* and CD16* monocytes indicated in the legend were annotated according to sequential differentiation states;

cDC, conventional dendritic cells; pDC, plasmacytoid dendritic cells and moDC, monocyte-derived dendritic cells. b, Surface markers overlaid on UMAP
embedding coloured according to the log-transformed normalized gene scores. ¢, Differences in the proportions of clusters 3, 4, 11 and 12 in the samples
of individuals convalescing from COVID-19 (COV; n=8 samples collected from eight individuals, one sample per individual) and healthy donors (HD;
n=4 samples, three samples collected from five HD in this study (including a pooled sample from three HD) and an additional sample from published
data (GSE139369)). A two-sided unpaired Student'’s t-test was performed to determine the P values. The boxplots denote the median with the quartile
range (25-75%), and the length of whiskers represents 1.5x the IQR. d-g, Volcano plots showing the differential TF motif accessibility using the mean TF
motif accessibility in the chromVAR TF bias-corrected deviation in clusters 3 and 4 (d), 12 and 11 (e), 13 and 11 (f), and 13 and 12 (g). The P values were
calculated using two-sided pairwise Wilcoxon test and the false discovery rate (FDR) was corrected using the Benjamini-Hochberg procedure.
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Fig. 3 | Epigenomic differentiation trajectory of CD14+ and CD16* monocytes. a, UMAP showing the lineage trajectory of CD14+ monocytes ordered based on
trained, activation and maturation states. Pseudotime values were overlaid on the UMAP embedding; the smoothed line and arrow represent the visualization
of the trajectory path from the spline fit. b, Heatmaps of the ordered cis-element accessibility (left) and TF motif accessibility (right) across pseudotime in the
CD14* monocytes (see Fig. 3a). The cis-element and TF motif accessibilities are indicated by the gene score and chromVAR TF-motif bias-corrected deviation,
respectively. ¢, Aggregated single-cell genome tracks for the indicated clusters at the /L1 (left) and CCL5 (right) loci with peak co-accessibility (Co-access).
The Co-access is indicated by the inferred peak-to-gene links for distal regulatory elements. Green shading indicates differential peaks within clusters. d, Violin
plots showing the ChromVAR TF-motif bias-corrected deviation scores of the indicated TF regulators across clusters 3 (n=1,003 cells), 4 (n=1,472 cells),

1 (n=988 cells), 12 (n=5,719 cells) and 13 (n=4,537 cells). The boxplots denote the medians and the quartile range (25-75%), and the length of whiskers
represents 1.5x the IQR. e, TF footprints of the TBET motif in clusters 3 and 4 (left) as well as the FOS (middle) and IRF1 (right) motifs in clusters 11,12 and 13.
The Tn5 insertion bias track is shown. f, Levels of IL-18 and IL-6 secreted by virus-exposed PBMCs (COV-S, n=3 samples from three individuals that recovered
from severe COVID-19; COV-M, n=7 samples from seven individuals that recovered from moderate COVID-19; HD, n=10 samples from ten healthy donors).
The error bars indicate the mean +s.e.m. A two-sided unpaired Student's t-test was performed to determine the P values.
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Fig. 4 | Accelerators facilitated the B-cell developmental programme in individuals convalescing from COVID-19. a, Subclustering UMAP plot of all

B cells (see Fig. 1c). b, Gene markers overlaid on UMAP coloured according to the log-transformed normalized gene scores for SDCT, TCL1A, CD27 and
XBP1. ¢, Relative frequencies of the B-cell subclusters in the different samples. d, Integrative lineage trajectory of B-cell states in healthy donors (HD) and
individuals convalescing from COVID-19 (COV). The smoothed line and arrow represent the visualization of the trajectory path across different states
(immature, naive, memory and plasma), and the sample origins are denoted by colour. e, Heatmaps showing the ordered gene-score trajectory across
pseudotime for B-cell differentiation. f, Heatmaps showing the positive TF regulators obtained from the integration of ordered TF gene scores (right)

with ordered TF motif accessibility (left) across pseudotime for B-cell differentiation. Positive TF regulators are TF motifs that show high bias-corrected
chromVAR TF-motif deviations that also exhibit similarly dynamic gene scores across differentiation states. g, Volcano plots demonstrating the differential
TF motif accessibility using the mean TF motif accessibility in the chromVAR TF bias-corrected deviation between COV and HD individuals in the
indicated B-cell states. The P values were calculated using a two-sided pairwise Wilcoxon test and the false discovery rate (FDR) was corrected using the
Benjamini-Hochberg procedure. h, Schematic of differential positive regulatory TFs driving B-cell differentiation of immature B cells to plasma cells in HD
and COV individuals.
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(Fig. 4e and Extended Data Fig. 5a)**-**—suggesting that the inte-
grated B-cell lineage trajectory was a well-defined developmental
programme that could be used to compare regulatory mechanisms
between the healthy donors and individuals convalescing from
COVID-19. Next, through integrated chromVAR TF deviations
with similarly dynamic gene scores across differentiation states,
we identified positive TF regulators with sequential activities of
BCL11A, IRF8, PAX5, REL, BATE IRF4, EBF1, POU2F2, TBET
and LEF1 that promote B-cell commitment, differentiation, mainte-
nance and class-switch recombination®>**~*, thus resolving the inte-
grated timing of TF activity for comparison (Fig. 4f and Extended
Data Fig. 5b-d).

We then measured the TF deviation scores and variations to
identify the differential positive TF regulators of four B-cell subsets
of the healthy donors and individuals convalescing from COVID-19
(Fig. 4g). Interestingly, NF-kB subunits, including REL, RELA and
RELB, which are involved in germinal centre B-cell maintenance
and homeostasis*>*', were enriched in four subsets of B cells of the
healthy donors (Fig. 4g and Extended Data Fig. 5d). Meanwhile,
AP-1 factors, including FOS and JUN, which are involved in the
B-cell receptor signalling pathway and indicate B-cell differentia-
tion and activation®’, were enriched in naive, memory and plasma B
cells of the individuals convalescing from COVID-19. Transcription
factors—including SPI1, EBF1, IRF4 and POU2F2—that are vital
for B-cell survival, differentiation and receptor signalling responses
were enriched in the naive B cells of the individuals convalescing
from COVID-19**%4-%_In comparison to the memory and plasma
B cells of healthy donors that showed a high REL deviation score, the
plasma cells and a subset of memory B cells of the COVID-19 group
showed high activity of TFs that are involved in class-switch recom-
bination and promote specialized immune function in class-specific
IgG* memory B cells, including TBET and BATF** (Fig. 4g and
Extended Data Fig. 5d). We also detected specific IgG antibodies
of the spike protein of SARS-CoV-2 in the blood samples of the
individuals convalescing from COVID-19 (Extended Data Fig. 5e).
Collectively, according to the results of integrated timing analysis
of TF activity, differential positive TF regulators promoted B-cell
maintenance and homeostasis in healthy donors, whereas they facil-
itated B-cell activation, differentiation and IgG class-switch recom-
bination in the individuals convalescing from COVID-19 (Fig. 4h).

CD8* T cell-fate decisions in individuals convalescing from
COVID-19. We first sub-grouped NK and T cells into 14 subclus-
ters (Fig. 5a and Extended Data Fig. 6a—c). The CD8* T-cell states
consisted of naive, intermediate, memory and effector T cells as
well as mucosal-associated invariant T cells (MAIT), whereas the
CD4* T-cell states were composed of naive, central memory (TCM)
and effector memory (TEM) T cells. In contrast to healthy donors
enriched in naive CD8" T cells, the individuals convalescing from

COVID-19 showed increased numbers of effector and memory
CD8" T cells (Figs. 1h and 5b). Thus, clusters 6 and 8 may repre-
sent SARS-CoV-2-induced effector and memory CD8* T cells,
respectively.

We next orchestrated the effector and memory CD8" T-cell
trajectories to explore CD8* T cell-fate decisions. The effector
and memory trajectories almost overlapped at the early state and
diverged into two distinct branches, that were predominantly com-
prised of cells from the individuals convalescing from COVID-19
(Fig. 5¢). The analysis of cis-elements near effector genes revealed
distinct regulatory patterns of accessibility across the pseudotime
of the effector and memory CD8* T cells (Fig. 5d,e). For example,
the cis-element accessibility in the promoter and distal enhancers in
the GZMB and IFNG loci gradually increased from the naive to the
intermediate and then to the memory and effector states (Fig. 5f),
demonstrating that the expression of effector genes was accurately
regulated by a distinct cis-element network in the different states.

The results of TF-activity analysis demonstrated the shared
and unique TF programmes across the pseudotime of effector and
memory CD8* trajectories in the individuals convalescing from
COVID-19 (Fig. 5d,e). For instance, in the first stage of trajectories
from the naive to intermediate state, effector and memory CD8*
T cells shared accessibility at the AP-1 factors FOS and JUNB, con-
sistent with their roles in T-cell differentiation and activation'*’;
however, effector CD8* T cells also showed accessibility at NFKB1/2
and RUNX3, whereas memory CD8 T cells were characterized by
accessibility of BATFE. IRF4 activity gradually increased across the
effector CD8* T-cell trajectory but was depleted in that of memory
CD8" T cells (Fig. 5g and Extended Data Fig. 6d), which is consis-
tent with their role in limiting the development of memory T cells*.
In contrast, BATF motifs showed accessibility earlier in the trajec-
tory of memory CD8* T cells than that of effector cells (Fig. 5d,e).
Similarly, the second stage of trajectories from the intermediate state
to either the effector or memory state identified the pivotal roles of
EOMES and TBET motifs in each pathway (Fig. 5d,e,g). Effector
CD8* T cells were also characterized by accessibility of SREBF1/2
(Fig. 5d,g), which is involved in the metabolic reprogramming of
effector T cells during extensive clonal expansion®. Memory CD8*
T-cell commitment was accompanied by the accessibility of motifs
involved in promoting memory T-cell trafficking and maintenance
of Kriippel-like factor 2/13 (KLF2/13; Fig. 5e,g)*"~. Notably, com-
pared with healthy donors, we also observed gradual increased
gene accessibility of GZMB, IFNG and TBET in the intermediate,
memory and effector CD8" T cells of individuals convalescing from
COVID-19 (Fig. 5h,i).

Furthermore, we performed TCR clonality analysis using the
paired TCRap sequences generated from Ti-ATAC-seq. The clonal
expansion rates of CD8" T cells were significantly higher than
those of CD4* T cells of individuals convalescing from COVID-19

>
>

Fig. 5 | Single-cell epigenomic profiles of T cells in individuals convalescing from COVID-19. a, Subclustering UMAP of NK and T cells (see Fig. 1c).

For the CD8* T cells, naive cells had high TCF7 and CCR7 gene scores; effector cells had high CD8A, TBX21 (TBET) and IFNG gene scores; memory cells
had high CD8A, TBX21 and KLF2/13 gene scores but low effector gene scores; and MAIT cells had high SLC4AT0 gene scores. For the CD4* T cells, naive
cells had high TCF7 and CCR7 gene scores; TCM cells had high CD4, CCR7, AQP3 and SELL gene scores; and TEM cells had high CD4 and effector gene
scores but low CCR7 gene scores. The NK cells had high NCAM, KLRC1, KLRDT and FCGR3A gene scores; and NKT cells had high NCAM and CD3E gene
scores. b, Cell-type frequencies in the different samples with the cluster identities indicated. ¢, Lineage trajectory of CD8* T-cell states, which included
naive, intermediate, effector and memory CD8* T cells. Pseudotime values overlapped on the UMAP. d,e, Pseudotime heatmap showing the ordered
cis-element accessibility (left) and TF motif accessibility (right) in effector (d) and memory (e) CD8* T-cell lineage trajectories (see c). f, Aggregated
single-cell genome tracks for the indicated clusters and states of CD8* T cells at the GZMB (top) and IFNG (bottom) loci with peak co-accessibility
(Co-access). The regions shaded in blue indicate differential peaks within clusters. g, Ridge plots showing TF deviation scores across different clusters
and states of CD8* T cells. h,i, Gene scores of IFNG (left) and GZMB (right; h), as well as the gene score (left) and TF deviation score of TBET (right; i)

in the indicated cell types. COV, individuals convalescing from COVID-19; HD, healthy donors; COV-CD8-effector, n=12,353 cells; COV-CD8-memory,
n=1,313 cells; COV-CD8-intermediate, n= 2,737 cells; COV-CD8-naive, n=1,858 cells; HD-CD8-effector, n=2,052 cells; HD-CD8-memory, n=279 cells;
HD-CD8-intermediate, n=1,408 cells; HD-CD8-naive, n=1,272 cells. The boxplots denote the medians and the quartile range (25-75%), and the length

of whiskers represents 1.5x the IQR.
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(Fig. 6a,b). Interestingly, CD8" T cells were strongly dominated by
one or two T-cell clones in each patient and the clonal expansion
rate of the largest clone ranged from 2.6% to 41.1% of the total CD8*
T cells (Fig. 6a). These results suggest that these putative SARS-CoV-
2-specific CD8* T-cell clones, rather than CD4* T cells, play a criti-
cal role in viral control and long-term immune protection. We next
integrated TCR clonality with the single-cell epigenomic profiles
generated from Ti-ATAC-seq. Notably, on comparison with unex-
panded CD8* T-cell clones, the two largest clonally expanded CD8*
T-cell clones were particularly enriched in TBET and EOMES TFs

RESOURCE

(Fig. 6¢). This is consistent with our 10x-based scATAC-seq data
showing that these two TFs are important for the development of
effector and memory CD8" T cells in the individuals convalescing
from COVID-19 (Fig. 6d).

In summary, our in-depth analysis of the epigenomic landscape
and single-cell TCR clonality in individuals convalescing from
COVID-19 revealed pivotal roles for effector CD8" T cells in the
initial viral control and the formation of memory CD8* T cells via
global chromatin accessibility remodelling and accurate regulatory
programmes.
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Fig. 6 | Single-cell epigenomic and TCR profiling of CD8* T cells in individuals convalescing from COVID-19. a, Distribution of CD4* (top) and CD8*
(bottom) T-cell TCR clonotypes, according to size, from ten individuals convalescing from COVID-19 (COV). The full-length paired TCR sequences were
obtained from the Ti-ATAC-seq platform-based scTCR-seq. For the expanded TCRs with clonotype size >1, each slide indicates a unique clonotype.
Single viable DAPI-CD3*TCRaf* T cells were gated and sorted, and the T-cell types were identified by FACS-indexed sorting. The CDR3a-CDR3p
sequences and frequencies of the largest CD8* T-cell clonotypes are shown. b, Clonal expansion rate of CD4* and CD8* T cells in ten individuals
convalescing from COVID-19. Each data point indicates a single individual and the matched data of the CD4+* and CD8* T cells are linked by distinct
lines. A two-sided unpaired Student's t-test was performed to determine the P value. ¢, Ranked TF deviation enrichment values in the aggregated
largest (left; TCR clone: CLVGGGDNTDKLIF-CASSQDRFYEQYF, n=50 cells) and second-largest clonally expanded CD8* T cells (right; TCR clone:
CAVGDTDKLIF-CASSLGSLGGGELFF, n=24 cells) versus aggregated unexpanded CD8* T cells (n=298 cells). The T-cell clonality and single-cell
epigenomic profiles were obtained from the Ti-ATAC-seq platform. The TF enrichment values were calculated as the difference in the mean TF deviation
between the two single-cell populations. d, Anti-SARS-CoV-2 CD8* T-cell response. Schematic of the differential regulatory TFs driving CD8* T-cell
differentiation from the naive state to the effector-cell or memory state in individuals convalescing from COVID-19.

Discussion

SARS-CoV-2 causes severe pulmonary disease and complications
with significant morbidity and mortality’. Our current understand-
ing of the epigenomic regulatory mechanisms in the host immune
response to SARS-CoV-2 infection and long-term immune protec-
tion is limited; thus, it is challenging to develop urgent therapeutics
or assess the effect of different vaccine candidates.

Here we utilized high-throughput 10x-based scATAC-seq tech-
nology to measure the chromatin accessibility of all PBMCs, includ-
ing monocytes and B, NK and T cells. We also used Ti-ATAC-seq
to further investigate special clonally expanded T-cell clones with
paired TCRap sequencing and responded chromatin accessibil-
ity from each T cell. Chromatin remodelling was significantly
altered in almost all immune-cell compartments in the individuals

628

convalescing from COVID-19. Our epigenomic profiles revealed a
sequential differentiation state from homeostasis to the mature
immune inflammatory effector response in CD14" and CDI16*
monocytes of individuals convalescing from COVID-19, which
featured trained, activation and maturation states. The trained
and activation states of CD14* and CD16" monocytes were domi-
nantly enriched in the individuals convalescing from COVID-19.
Although immune memory is a well-known feature of the acquired
immune system, the activation of the innate immune system can
also heighten responsiveness to subsequent triggers, which may
provide protection during the early stage of reinfection. In B-lineage
cells, we found substantial differences in the TF regulators of each
state between the individuals convalescing from COVID-19 and
healthy donors. Furthermore, B-cell lineage trajectories revealed
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an accelerated developmental programme from immune B cells to
antibody-producing plasma cells in COVID-19. Integrated analysis
of single-cell TCR clonality with the single-cell chromatin accessibil-
ity landscape showed the dramatic clonal expansion of CD8* T cells
in individuals convalescing from COVID-19 as well as the bifur-
cation of cell-fate decisions for the putative SARS-CoV-2-specific
clonally proliferating CD8* T cells. This is consistent with effector
CD8* T cells in initial viral control and memory CD8* T cells in
long-term immune protection.

Consistent with our data, the reported scRNA-seq profiles of
PBMCs identified the abundant IL-1*CD14** monocytes and
activated monocytes in individuals convalescing from COVID-19
(ref. 7). However, our scATAC-seq profiles revealed further epigen-
etic changes in individuals convalescing from COVID-19, which
can be attributable to the fact that epigenetic changes are more
long-lived compared with transcriptional differences. Trained
immunity caused by epigenetic and metabolic reprogramming is
a ‘double-edged sword. Although it offers broad benefits for the
host immune defence against pathogens, it identifies potentially
detrimental outcomes in immune-mediated and chronic inflam-
matory diseases’**. In the context of COVID-19, persistent infec-
tion with SARS-CoV-2 results in long-term chromatin accessibility
reprogramming, which permits monocytes to remain in a ‘trained’
functional state. Well-controlled trained immunity is likely to pro-
tect against subsequent infection”. The effect of cytokine storms on
trained immunity should be studied in the future.

Previous studies of immune responses to SARS-CoV-1 and
Middle East respiratory syndrome coronavirus (MERS-CoV)
can partially offer insights into SARS-CoV-2 memory immunity.
Similar to SARS-CoV-2, SARS-CoV-1 and MERS-CoV induce
strong inflammatory responses and associated lymphopenia’.
Furthermore, long-term immune protection has been observed in
patients that have recovered from SARS-CoV-1 and MERS-CoV
and is attributed to virus-specific antibody responses and long-lived
virus-specific memory T-cell responses™**, which is consistent
with our observations on the chromatin reprogramming of B and
CD8" T cells. Recent studies on memory immune protection against
SARS-CoV-2 reinfection, including a rhesus macaque reinfection
model and COVID-19 vaccines under phase I, IT and III clinical tri-
als, suggest that primary infection with SARS-CoV-2 and vaccines
against SARS-CoV-2 can provide partial immune protection®->’.

The mechanisms of memory immunity—including that in trained
and activated monocytes, accelerated B cells and putative SARS-CoV-
2-specific clonally expanded effector and memory CD8* T cells—to
SARS-CoV-2 may be induced by cytokine storms, such as the high
production of IFNy in the serum. As we observed, IFNy-induced
TBET was significantly enriched in the activation state of trained
monocytes, B-cell acceleration and CD8* T cell-fate decisions, which
is consistent with its role in monocyte activation and maturation,
IgG™ memory B-cell development and effector and memory T-cell
differentiation'”*"***1%0-2_Therefore, the epigenomic regulation of
innate and adaptive immune memory responses we demonstrated
may not be specific for SARS-CoV-2 and could be elicited follow-
ing other infections, such as SARS-CoV-1 and MERS. Future stud-
ies comparing epigenetic changes among convalescing individuals
infected with SARS-CoV-2 and other viruses would be valuable.

Overall, our broad analysis of the epigenomic landscape and
TCR profiling demonstrated that individuals convalescing from
COVID-19 established immune memory formation and trained
immunity via the global remodelling of the chromatin accessibil-
ity landscape. The stability of these changes over a longer period
requires further study.
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Methods

Subjects and specimen collection. We collected blood from five healthy donors,
seven convalescing individuals who had recovered from moderate COVID-19 and
three convalescing individuals who had recovered from severe COVID-19. They
were enrolled at the Fifth Medical Center of PLA General Hospital in May 2020.
We isolated PBMCs from the study participants using Ficoll solution according

to the manufacturer’s instructions. We defined individuals convalescing from
COVID-19 as patients who had been diagnosed as infected with COVID-19 at
admission by real-time RT-PCR, and had recovered and been discharged from

the hospital at least one month before participating in the study. The individuals
convalescing from COVID-19 were classified into mild and severe groups based on
the Fifth Revised Trial Version of the Novel Coronavirus Pneumonia Diagnosis and
Treatment Guidance. The healthy donors—three women and two men, 18-55years
old—were defined by negative test results in real-time RT-PCR analysis of the
SARS-CoV-2 gene and IgG antibody detection. This study and study protocol was
approved by the Ethics Committees of the Fifth Medical Center of Chinese PLA
General Hospital, Beijing, China (2020005D) on healthy volunteers or individuals
convalescing from COVID-19 in Medical Research and written informed

consent was obtained from all of the participants. All of the participants received
participant compensation. The clinical features of these individuals convalescing
from COVID-19 and healthy donors are listed in Supplementary Table 1.

Single T-cell index sorting. Human PBMCs were thawed after storage in liquid
nitrogen and allowed to recover overnight in R10 culture medium (RPMI1640
medium supplemented with 10% fetal calf serum, 25 mM HEPES, 1Xnon-essential
amino acids, 50 pM p-mercaptoethanol and 1xpenicillin and streptomycin).

Cell surface staining was performed with 4,6-diamidino-2-phenylindole (DAPI)
and the following antibodies: Alexa Fluor 700 anti-human CD3 (clone SK7,
1:100; BioLegend, cat. no. 344822), FITC anti-human TCRaf (clone IP26, 1:50;
BioLegend, cat. no. 306706), PerCP/Cyanine5.5 anti-human CD8 (clone SK1,
1:200; BioLegend, cat. no. 344710), PE/Dazzle 594 anti-human CD4 (clone
A161A1, 1:200; BioLegend, cat. no. 357411), PE anti-human CD25 (clone BC96,
1:200; BioLegend, cat. no. 302606), Brilliant Violet 650 anti-human CD127
(clone A019D5, 1:200; BioLegend, cat. no. 351326), APC anti-human CD137
(4-1BB) (clone 4B4-1, 1:100; BioLegend, cat. no. 309810) and Brilliant Violet 605
anti-human CD279 (PD-1) (clone EH12.2H7, 1:100; BioLegend, cat. no. 329923).
Single viable DAPI"CD3*TCRap* T cells were immediately index sorted into
96-well plates for Ti-ATAC-seq analysis using a BD FACS Aria III system.

Preparation of 10x-based scATAC-seq libraries. After storage in liquid nitrogen,
PBMCs were thawed, allowed to recover overnight in R10 culture medium and
washed three times with PBS buffer to remove debris and aggregated cells. The
cell viability of each sample exceeded 90%. For the healthy donor controls, we
performed 10x-based scATAC-seq on PBMCs from five healthy donors, including
a sample of mixed PBMCs from three healthy donors. The cells were lysed, the
nuclei were isolated, the nuclei suspensions were washed and counted, and the
transposition reaction and nuclei barcoding were performed according to the
manufacturer’s instructions. Approximately 5,000-10,000 nuclei were collected

in each sample. The protocol for library preparation and the settings for the
instrument and sequencing were provided by the manufacturer (Annoroad

and Berry Genomics) and are available at https://support.10xgenomics.com/
single-cell-atac. We also collected scATAC-seq data from a healthy donor control
from a published dataset (GSE139369)".

Preparation of single-cell Ti-ATAC-seq libraries. Single antibody-indexed

cells were sorted into 96-well plates with 6 pl ATAC-RSB buffer (10 mM Tris—

HCl at pH7.5, 10mM NaCl, 3mM MgCl, and 0.8 U pl~' RNase inhibitor) per

well. Next, 1.5 pl transposition reaction mix with 0.1 pl TTE Mix V5 (Vazyme
Biotech), 50mM TAPS-NaOH (pH 8.5), 25 mM MgCl,, 50% dimethylformamide,
0.8 U pl~! RNase inhibitor and 0.2% NP40 was carefully added to each well.

The transposition reaction was performed by incubating the mixture at 37°C

for 30 min and then stopped by the addition of 1.5 pl release buffer (125 mM
EDTA and 10mM Tris-HCl at pH 8.0), following which the reaction mixture

was incubated at 50 °C for 30 min. Quenching buffer (1 pl; 187.5mM MgCl, and
10mM Tris-HCl at pH 8.0) was then added for MgCl, quenching. The TRA and
TRB chains and transposed DNA fragments were reverse transcribed with 11 pl

of the RT-PCR reaction mix (8.8 pl of 2x1 Step buffer, 1.5 pl of TRA and TRB

RT primer mix, 0.2 pl of non-indexed custom Nextera ATAC-seq PCR primer

mix (forward, 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3' and
reverse, 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3') and

0.5 pl PrimeScript 1 Step enzyme mix (Takara Bio)) under the following RT-PCR
conditions: 50 °C for 36 min; 95 °C for 15min; and eight cycles at 94°C for 305, 62°C
for 1 min and 72°C for 1 min. The RT-PCR product was then immediately equally
divided into two 96-well plates for amplification and the barcoding of transposed
DNA fragments and TRA and TRB chains, which were performed as previously
described.® Briefly, 1.25 uM of dual-index Nextera ATAC-seq PCR primers with
1xTruePrep Amplify reaction mix (Vazyme Biotech) was prepared, and ATAC-seq
amplification and barcoding were performed under the following PCR conditions:
72°C for 5min, 98°C for 30s, and 15 cycles of 98°C for 155 and 63 °C for 30s.
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Finally, scTCR-seq and scATAC-seq libraries were respectively pooled and purified
on a single Zymo DNA clean and concentrator 5 column. Fragment-length selection
was performed (0.5X/1.5X for scATAC-seq and 300-400bp for scTCR-seq). The
scTCR-seq and scATAC-seq libraries were 150-bp paired-end sequenced on a
HiSeq X Ten platform (Illumina) with the sequencing read length and dual indexing
according to the manufacturer’s instructions (Annoroad).

Data processing of scTCR-seq libraries. The scTCR-seq data were analysed as
previously described®***. Briefly, raw reads were unpacked and joined by shared
regions and demultiplexed using a custom pipeline. The TCR V, D and ] segments
were analysed and assigned using MiXCR®.

Primary data pre-processing of scATAC-seq libraries. We used a previously
described workflow with minor modifications'*. Briefly, a sample name was added
to the header of each read, adaptor sequences were trimmed using Cutadapt,
reads were mapped to the hg38 human genome with Bowtie2 and those aligned

to the mitochondria were removed. The resulting cleaned single-cell files (./bam
files) of each individual convalescing from COVID-19 were merged and sorted by
read name using SAMtools. Finally, the resulting merged file of each individual
convalescing from COVID-19 was converted to a fragment file, the Tn5 insertion
site was adjusted and unique nuclear fragments were retained using BEDtools. We
then calculated the TF deviation of cells using chromVAR®.

For the pre-processing of the 10x-based scATAC-seq data, we used the
‘cellranger-atac count’ function (cellranger-atac, v1.2.0) to generate single-cell
accessibility counts for each library (https://support.10xgenomics.com/
single-cell-atac/software/pipelines/latest/using/count). Reads were aligned to the
hg38 human genome. Similarly, we created an Arrow file for each resulting fragment
file and included those single-cell libraries with at least 1,000 unique fragments and
a transcription-start-site enrichment of eight using the ArchR package®” in the R
statistical environment (v3.5.1). Finally, we created an ArchRProject for downstream
analysis by combining all of the Arrow files of the 10x-based scATAC-seq.

Dimensionality reduction and clustering analysis. We used the ‘addIterativeLSI’
function of ArchR to perform iterative latent semantic indexing"". We then used
the harmony algorithm to correct for batch-effect differences® and added clusters
using the ‘addClusters’ function. We ran UMAP using the addUMAP’ function
and plotted the results using the ‘plotEmbedding’ function in ArchR"".

Identification of marker features and differential analysis for clusters.

We created pseudo-bulk replicates using the ‘addGroupCoverages’ function

for each cluster and called peaks using the ‘findMacs2’ function. We used

the ‘addDeviationsMatrix’ function to compute per-cell deviations across

all motif annotations to create the deviation matrix ‘MotifMatrix’ Next, we

used the ‘getMarkerFeatures’ function with ‘bias’ parameter to account for
transcription-start-site enrichment and the number of unique fragments per cell to
identify the markers of clusters, including peaks, genes (based on gene scores) and
TF motifs (based on chromVAR deviations). We applied the ‘getMarkers’ function
to obtain the marker list of each cluster, the ‘addImputeWeights’ function to impute
the weights of marker features and the ‘plotEmbedding’ function to visualize the
marker features. We performed pairwise comparisons of peaks, genes and TFs for
the indicated two clusters using the getMarkerFeatures function and plotted an MA
or volcano plot using the ‘markerPlot’ function in ArchR®.

Plotting browser tracks of cis-element co-accessibility. Co-accessibility represents
the correlation between accessibility peaks across many single cells and is useful for
identifying cell type-specific peaks. We used the ‘addCoAccessibility’ function to
examine co-accessibility in ArchR®, which returned a loop track that represented
the co-accessibility information using the ‘getCoAccessibility’ function. Finally,

we plotted the genome browser tracks of peaks and co-accessibility using the
‘plotBrowserTrack” function.

TF footprinting. We performed TF footprinting to precisely predict the binding
location of a TF at a particular locus as previously described’*” using ArchR. The
Tn5 bias signal was normalized using the ‘Divide’ strategy.

Trajectory construction. We performed cellular trajectory analyses as previously
described using ArchR". First, we defined the trajectory backbone of cell groups

or clusters based on the cell differentiation states, such as the order of naive,
intermediate and effector CD8* cells in the effector CD8* T-cell trajectory. We then
created a trajectory using the ‘addTrajectory’ function and plotted the pseudotime
values on UMAP embedding using the ‘plotTrajectory’ function. We next plotted
pseudotime heatmaps of TFs, gene scores and peak accessibility using the
‘plotTrajectoryHeatmap’ function. To identify positive TF regulators, we performed
an integrative analysis of gene scores and motif accessibility across pseudotime
using the ‘correlateTrajectories’ and plotTrajectoryHeatmap functions.

Statistics and reproducibility. Statistical analyses were performed in GraphPad
Prism (v6) or R (version 3.5.1). For the frequencies of the identified clusters and
the virus rechallenge assay, a two-sided unpaired Student’s ¢-test was performed


https://support.10xgenomics.com/single-cell-atac
https://support.10xgenomics.com/single-cell-atac
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139369
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/using/count
http://www.nature.com/naturecellbiology

RESOURCE

NATURE CELL BIOLOGY

and the P values are reported. For the differential TF motif accessibility, differential
cis-element accessibility and Gene Ontology analyses, multiple-test corrections
were performed, the P values were calculated using a two-sided pairwise Wilcoxon
test and the false discovery rate was corrected using the Benjamini-Hochberg
procedure. No data were excluded from the analyses.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

Data were deposited in the Sequence Read Archive (SRA) under the accession
number PRJNA718009. Data were also deposited in the Genome Sequence
Archive for Human (GSA-Human) under the accession HRA000562. Source

data are provided with this study. The minimum dataset is posted on GitHub
(https://github.com/Yang-Chen-Lab-co/COVID19-scATAC-seq). The previously
published data that were re-analysed here are available under the accession
numbers GSE139369, GSE117089, GSE126074 and GSE107817. All other data
supporting the findings of this study are available from the corresponding authors
on reasonable request. Source data are provided with this paper.

Code availability

All of the R packages that were used are available online, as described in the
Methods. Customized code used in this study has been posted on GitHub
(https://github.com/Yang-Chen-Lab-co/COVID19-scATAC-seq).
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Extended Data Fig. 1| Quality control for the 10x-based scATAC-seq datasets. a, Table showing the information of 10x scATAC-seq based samples.

b, the transcriptional start site (TSS) enrichment score compared with the number of unique ATAC-seq nuclear fragments in each single cell that passed.
¢, Nucleosomal periodicity fragment lengths of aggregate single-cell profiles of 10x scATAC-seq based samples. d, the enrichments of normalized

Tn5 insertions around the TSSs of 10x scATAC-seq based samples. e, ChromVAR TF motif bias-corrected deviations overlaid on UMAP projection

of 10x-scATAC-seq-based single PBMCs as showed in Fig. 1c. f, Heatmap showing the 3,967 differentially accessible genes (FDR=<0.05 and fold
change >=2) in various clusters of different sample origin (HD or COV) as indicated in Fig. Ic.
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and TRB mRNA, and then the ATAC-seq product and TCR-seq product were split for further scATAC-seq and scTCR-seq analyses. b, Shown are the gating
strategy to gate and sort single viable DAPI-CD3 + TCRap + T cells into 96-well plates. €, Number of unique ATAC-seq fragments for Ti-ATAC-seq (this
study, n=1,574 cells), T-ATAC-seq (n=300 cells, GSE107817), SNARE-seq (n=1048 cells, GSE126074), and sci-CAR-seq (n=1000 cells, GSE117089).
Boxplots show the medians and the quartile range (25% and 75%), and 1.5x interquartile ranges (IQRs) of the lengths of whiskers. d, TSS enrichment
score compared with the number of unique ATAC-seq nuclear fragments in each single cell that passed. e, Nucleosomal periodicity fragment lengths

of aggregate single-cell profiles of Ti-ATAC-seq based samples. f, the enrichments of normalized Tn5 insertions around the TSSs of Ti-ATAC-seq based
samples. g, the read counts for TRA and TRB sequences of each single T cell TCR clone in Ti-ATAC-seg-based scTCR-seq data. h, TRA and TRB dominance
of the top clone for each single T cell TCR clone in Ti-ATAC-seq-based scTCR-seq data. Each dot represents a dominant TCR clone of a single T cell.

NATURE CELL BIOLOGY | www.nature.com/naturecellbiology


http://www.nature.com/naturecellbiology

NATURE CELL BIOLOGY

a

RESOURCE

CD14 %z.ﬁ

FCGR3A.

S100A8 .
@

5,868 features
GeneScoreMatrix
22

Differential Cis-element accessibility

"+ 4431 peaks
* 'Enriched in C13

700 02 04 06 08

5 &

o S B Enriched in C4

S 4 ... 3010 peaks

L

O 21 =

=)

S (0 -HEEEE————— .|

w

22

— -4 2878 peaks
6 Enriched in C3

00 02 04 06
Log2 Mean

CXCL10@ CXCL114;
LS o L
*ﬂ. L g%
¥ ; w
CCL2 . = GZMB Log2(NormCounts + 1)
P & Low BB High
. L S -
v S || v
5 §
C
6 -Log10 FDR
3 * Enriched in C11 Enriched in C11
S 41 -* 3240 peaks | 43 mmm——mmune effector process
5 2 s 37w L eukocyte activation
o 2 22 Cellular response to interferon-gamma
O O e Enriched in C13 . )
~ 54 m— P ositive regulation of immune system process
-2 46 mmmm—inflammatory response )
it 33 mmmmmm Positive regulation of cytokine production

31 mmmmm— Positive regulation of leukocyte chemotaxis
31 mmmmmm Phagocytosis
28 mmmmm leukocyte migration

Enriched in C4
57 s Immune response
49mmmmmm Leukocyte activation
31 Regulation of cytokine production

Enriched in C3 . g o g
36 . Regulation of Leukocyte differentiation

36 I Regulation of immune response
28 Hematopoietic or lymphoid organ development
26mmmmmm  hemopoiesis

Extended Data Fig. 3 | Differentially accessible genes in various monocyte clusters. a, UMAP plot of monocytes as indicated in Fig. 2a coloured by
log-normalized gene scores. b, Heatmap showing the 5,868 differentially accessible genes (FDR=<0.05 and fold change > =2) in various monocyte
clusters as indicated in Fig. 2a. ¢, Left: MA plots showing the differential ATAC-seq peaks (red or blue dot: log2 fold change >=1and false discovery rate
(FDR) =< 0.05) for the indicated clusters including cluster C11 versus C13, cluster C4 versus C3. Right: Bar charts showing the top GO biological process
pathways of differential peaks enriched in each cluster using GREAT analysis.
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Extended Data Fig. 4 | Lineage trajectory of B cells of healthy donors and individuals convalescing from COVID-19. a, Aggregated single-cell genome
tracks for clusters as indicated in Fig. 4a at the TCLTA, CD19, CD20 (MS4A1), CD27, CD38 and XBP1 gene loci with peak co-accessibility (Co-Access).

b, Lineage trajectory of B-cell states in healthy donors and COVID-19 convalescent individuals as indicated in Fig. 43, respectively. ¢, Heatmaps showing
the positive TF regulators by the ordered TF gene scores (right) with ordered TF motif accessibility (left) across pseudotime for B-cell differentiation in
healthy donors. Positive TF regulators are TF motifs that show high bias-corrected chromVAR TF motif deviations that also exhibit similarly dynamic
gene scores across differentiation state. d, Heatmaps showing the positive TF regulators by the ordered TF gene scores (right) with ordered TF motif
accessibility (left) across pseudotime for B-cell differentiation in COVID-19 convalescent individuals.
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Extended Data Fig. 6 | Differentially accessible genes in various T- and NK-cell clusters. a, Aggregated single-cell genome tracks for clusters as
indicated in Fig. 5a at the CD4, CD8A, CD8B, CD3E, CD3D, CD3G, NCAM and IFNG gene loci with peak co-accessibility (Co-Access). b, Canonical surface
markers overlaid on UMAP embedding as indicated in Fig. 5a coloured by log-normalized gene scores for indicated genes. ¢, Heatmap showing the 3,055
differentially accessible genes (FDR=<0.05 and fold change > =2) in various clusters as indicated in Fig. 5a. d, TF footprint of the LEF1, IRF4, and KLF4

motifs in the CD8* T cell clusters as indicated in Fig. 5a. The Tn5 insertion bias track is shown below.
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Data collection  cellranger-atac (v1.2.0). Code used in this study is posted on GitHub for main analysis (https://github.com/YouMaojun/COVID19-scATAC-seq)

Data analysis Software used: R statistical environment (v3.5.1), bowtie2 (v2.3.4.1), cutadapt (v2.10), samtools (v1.7), GraphPad Prism (v6), bedtools
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- Accession codes, unique identifiers, or web links for publicly available datasets
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- A description of any restrictions on data availability

Data were deposited in the Sequence Read Archive (SRA) under the accession PRINA718009. Data were also deposited in the Genome Sequence Archive for Human
(GSA-Human) under the accession HRAOO0562. Source data are provided with this study. The minimum dataset is posted on GitHub (https://github.com/
YouMaojun/COVID19-scATAC-seq). There are no restrictions on data availability or use.

Previously published data were re-analyzed here are available under accession GSE139369,GSE117089,GSE126074, GSE107817.
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Sample size For single cell analysis, the profiles obtained from over 100,000 single cells from 8 COVID-19 convalescent individuals and 6 matched healthy
donors provide sufficient power. For functional studies, statistical significant can be obtained from the results, representing sufficient power
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Data exclusions  The single cell ATAC-seq profiles and TCR sequences obtained were subjected to quality control and low quality cells were excluded from
analysis. Exclusion criteria established in previous work and were described in detailed in Methods section.

Replication For human biological specimens, we collected data from 8 COVID-19 convalescent individuals and 6 healthy donors.
For functional studies, we conducted at least 2 independent experiments. The results presented in manuscript were reliably reproduced.

Randomization  No randomization of human specimen was used. Human specimen were allocated into health or COVID-19 group. COVID-19 convalescent
individuals were classified into mild and severe groups based on the Fifth Revised Trial Version of the Novel Coronavirus Pneumonia Diagnosis

and Treatment Guidance.

Blinding Blinding was not relevant to our study. Healthy donors were defined by negative results both in real-time RT-PCR of SARS-CoV-2 gene and IgG
antibody detection, and COVID-19 convalescent individuals were predetermined by their known disease status.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies g |:| ChIP-seq
Eukaryotic cell lines |:| |Z| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Antibodies

Antibodies used Alexa Fluor® 700 anti-human CD3 (Clone SK7, 1:100, BioLegend, Cat #344822), FITC anti-human TCR a/B (Clone IP26, 1:50,
BioLegend, Cat #306706), PerCP/Cyanine5.5 anti-human CD8 (Clone SK1, 1:200, BioLegend, Cat #344710), PE/Dazzle™ 594 anti-
human CD4 (Clone A161A1, 1:200, BioLegend, Cat #357411), PE anti-human CD25 (Clone BC96, 1:200, BioLegend, Cat #302606),
Brilliant Violet 650™ anti-human CD127 (Clone A019D5, 1:200, BioLegend, Cat #351326), APC anti-human CD137 (4-1BB) (Clone
4B4-1, 1:100, BiolLegend, Cat #309810), Brilliant Violet 605 anti-human CD279 (PD-1) (Clone EH12.2H7, 1:100, BioLegend, Cat
#329923)

Validation All antibodies were validated by the manufacturer directly in human peripheral blood mononuclear cells.

Human research participants

Policy information about studies involving human research participants

Population characteristics Seven convalescent individuals who recovered from moderate COVID-19 and three convalescent individuals who recovered
from severe COVID-19. These ten COVID-19 convalescent individuals who recovered and had been discharged from the
hospital at lease for one month, included six women and four men, ranging from 22-69 years old.

Healthy donors, included three women and three men, ranging from 18-55 years old, were defined by negative results both




in real-time RT-PCR of SARS-CoV-2 gene and IgG antibody detection

Recruitment No selective recruitment of healthy donors was performed. These ten COVID-19 convalescent individuals who recovered and
had been discharged from the hospital for at lease for one month were consented and enrolled at the Fifth Medical Center of
PLA General Hospital, regardless of age and gender. This study did not attempt to exclude healthy volunteers or COVID-19
convalescent individuals based on sex, race, or ethnicity.

Ethics oversight This study was approved by the Ethics Committees of the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
(2020005D) on healthy volunteers or COVID-19 convalescent individuals in Medical Research, and written informed consent
was obtained from all participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z| All plots are contour plots with outliers or pseudocolor plots.

|Z| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation The PBMCs from human blood were isolated using Ficoll solution according to the manufacturer’s instructions. Human
PBMCs were thawed after storage in liquid nitrogen and were allowed to recover in R10 culture medium overnight
(RPMI1640 medium supplemented with 10% fetal calf serum (FCS), 25 mM HEPES, 1x nonessential amino acids, 50 uM b-
mercaptoethanol, and 1x penicillin and streptomycin) overnight. Then, cells were collected and washed with FACS buffer for
three times, and stained with the antibody cocktail for 25 min on ice. After staining, cells were washed with FACS buffer for
three times. Single viable DAPI-CD3+TCRa/B+ T cells were immediately indexed sorted into 96-well plates for Ti-ATAC-seq.

Instrument BD FACSAria Il

Software FlowJo V10 was used for data analysis

Cell population abundance Single viable DAPI-CD3+TCR+ T cells were indexed sorted into 96-well plates via flow cytometor sorting

Gating strategy single DAPI-, CD3+ and TCRa/B+ T cells were gated and used to identify a/B T cells from other cells

|z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

S
Q
—
C
=
D
—
D
wv
(D
oY)
=
8
>
—
(D
©
@)
=
)
(@]
wv
C
=
3
)
=
<

0207 {11ay




	Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals conval ...
	Results

	Overview of the peripheral immune-cell profiling in individuals convalescing from COVID-19. 
	Sequential trained and activated monocytes in COVID-19. 
	A facilitated B-cell developmental programme in individuals convalescing from COVID-19. 
	CD8+ T cell-fate decisions in individuals convalescing from COVID-19. 

	Discussion

	Online content

	Fig. 1 Overview of the immune-cell epigenomic landscape of the blood of individuals convalescing from COVID-19.
	Fig. 2 Epigenomic signatures of trained and activated monocytes in individuals convalescing from COVID-19.
	Fig. 3 Epigenomic differentiation trajectory of CD14+ and CD16+ monocytes.
	Fig. 4 Accelerators facilitated the B-cell developmental programme in individuals convalescing from COVID-19.
	Fig. 5 Single-cell epigenomic profiles of T cells in individuals convalescing from COVID-19.
	Fig. 6 Single-cell epigenomic and TCR profiling of CD8+ T cells in individuals convalescing from COVID-19.
	Extended Data Fig. 1 Quality control for the 10x-based scATAC-seq datasets.
	Extended Data Fig. 2 Workflow and quality control for the Ti-ATAC-seq datasets.
	Extended Data Fig. 3 Differentially accessible genes in various monocyte clusters.
	Extended Data Fig. 4 Lineage trajectory of B cells of healthy donors and individuals convalescing from COVID-19.
	Extended Data Fig. 5 Integrative lineage trajectory of B-cell states in healthy donors and individuals convalescing from COVID-19.
	Extended Data Fig. 6 Differentially accessible genes in various T- and NK-cell clusters.




