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The global coronavirus disease 2019 (COVID-19) pandemic 
caused by the severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) has resulted in over 70 million recorded 

cases with a mortality rate of approximately 2.3%1. To date, the main 
strategy for ending the pandemic involves the development of effec-
tive vaccines, many of which are being evaluated2,3. Although most 
leading vaccine candidates can elicit virus-neutralizing antibodies, 
there is considerable uncertainty on how protective or durable these 
responses might be. Thus, a greater understanding of the innate 
and adaptive immune responses of individuals convalescing from 
COVID-19 is needed, particularly knowledge on whether immuno-
logical memory is established.

To date, studies on the immune responses to SARS-CoV-2 
have mainly focused on the aspects of pathological inflamma-
tion3–5. According to single-cell transcriptome analyses, monocytes  
from the peripheral blood or the bronchoalveolar lavage fluid 
of COVID-19 patients are characterized by high levels of 
pro-inflammatory cytokines5–8 such as IL-6, IL-1β and TNFα. In 
addition, most of the patients with COVID-19 develop lymphocy-
topenia—especially reduced numbers of CD4+ and CD8+ T cells—
within two weeks of disease onset, contributing to increased serum 
IL-6 levels. Lymphocytopenia is also predictive of the disease sever-
ity9–11, indicating that CD4+ and CD8+ T cells are critical for viral 
control and disease recovery. Moreover, single-cell transcriptomic 

analyses showed an increased ratio of plasma cells in patients 
infected with COVID-19 and early convalescent individuals7,12.

The epigenomic regulation of immune responses to primary 
SARS-CoV-2 infection remains unknown at present. Here we 
applied single-cell transposase-accessible chromatin with sequenc-
ing (scATAC-seq) to analyse chromatin remodelling in the periph-
eral immune cells of six matched and uninfected healthy donors 
(five donors collected in this study and an additional dataset from 
a public database13) and ten individuals convalescing from moder-
ate or severe COVID-19 infection at 4–12 weeks following recovery. 
The approach of 10x-based scATAC-seq enables the production 
of high-quality single-cell accessible chromatin profiles at mas-
sive scale across all major immune-cell types in peripheral blood 
mononuclear cells (PBMCs). For the T-cell analysis, we developed a 
single-cell method that combines single-cell T cell-receptor (TCR) 
sequencing (scTCR-seq), fluorescence-activated cell sorting (FACS) 
with index sorting and ATAC-seq—termed TCR–FACS–index–
ATAC sequencing (Ti-ATAC-seq)—thereby allowing us to obtain 
expression data for cell-surface markers, paired TCR sequences and 
the chromatin accessibility landscape for each cell analysed. This 
single-cell chromatin landscape approach facilitates a comprehen-
sive understanding of how effector or memory cells are established 
in both the innate and adaptive immune responses of individuals 
convalescing from COVID-19.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection often causes severe complications and even death. 
However, asymptomatic infection has also been reported, highlighting the difference in immune responses among individuals. 
Here we performed single-cell chromatin accessibility and T cell-receptor analyses of peripheral blood mononuclear cells col-
lected from individuals convalescing from COVID-19 and healthy donors. Chromatin remodelling was observed in both innate 
and adaptive immune cells in the individuals convalescing from COVID-19. Compared with healthy donors, recovered individu-
als contained abundant TBET-enriched CD16+ and IRF1-enriched CD14+ monocytes with sequential trained and activated epig-
enomic states. The B-cell lineage in recovered individuals exhibited an accelerated developmental programme from immature B 
cells to antibody-producing plasma cells. Finally, an integrated analysis of single-cell T cell-receptor clonality with the chroma-
tin accessibility landscape revealed the expansion of putative SARS-CoV-2-specific CD8+ T cells with epigenomic profiles that 
promote the differentiation of effector or memory cells. Overall, our data suggest that immune cells of individuals convalescing 
from COVID-19 exhibit global remodelling of the chromatin accessibility landscape, indicative of the establishment of immuno-
logical memory.

Nature Cell Biology | VOL 23 | June 2021 | 620–630 | www.nature.com/naturecellbiology620

mailto:lchen12@stanford.edu
mailto:mmdavis@stanford.edu
mailto:pyyang@ibp.ac.cn
http://orcid.org/0000-0001-6665-9068
http://orcid.org/0000-0001-6868-657X
http://orcid.org/0000-0003-1040-5987
http://crossmark.crossref.org/dialog/?doi=10.1038/s41556-021-00690-1&domain=pdf
http://www.nature.com/naturecellbiology


ResourceNATuRE CEll BIOlOgy

Results
Overview of the peripheral immune-cell profiling in individuals  
convalescing from COVID-19. We mapped the transposase- 
accessible chromatin at the single-cell level using 10x chromium 
scATAC-seq (10x Genomics; Fig. 1a and Supplementary Table 1).  
We collected data from 72,318 PBMCs from eight individuals conva-
lescing from COVID-19 as well as 24,997 PBMCs from five healthy 
donors and one additional dataset from a public database13 as con-
trols (Fig. 1b and Extended Data Fig. 1a). Using uniform manifold 
approximation and projection (UMAP), we analysed the distribu-
tion of the immune-cell populations based on the gene scores of 
canonical lineage markers, which demonstrate the aggregate acces-
sibility of several enhancers linked to the indicated genes—includ-
ing CD14, CD16 (FCGR3A) and CEBPB for monocytes; PAX5 and 
MS4A1 for B cells; CD8A and CD3G for CD8+ T cells; CD4 and 
CD3G for CD4+ T cells; and KLRB1 for natural killer (NK) cells 
(Fig. 1c–e). The frequencies of monocyte-lineage and effector 
and memory CD8+ T cells increased in individuals convalescing  
from COVID-19, whereas those of the B-cell lineages decreased 
(Fig. 1f,g). We further analysed and clustered the cells of each  
lineage separately.

In addition, we explored Ti-ATAC-seq to further investigate 
special clonally expanded T-cell clones (Fig. 1a and Extended Data  
Fig. 2). We collected 2,880 αβ T cells from ten individuals convalesc-
ing from COVID-19, among which 1,574 quality-control-positive 
T cells had both paired TCRαβ sequences and ATAC-seq  
(Fig. 1h). Ti-ATAC-seq had similar performance to previously  
published microfluidic platform-based T-ATAC-seq14 and other 
joint ATAC-RNA approaches15,16 (Extended Data Fig. 2c).

Sequential trained and activated monocytes in COVID-19. We 
identified and annotated 13 subclusters of monocytes (Fig. 2a). 
Clusters of CD14+ monocytes (clusters 11, 12 and 13) showed a high 
CD14 gene score. Clusters of CD16+ monocytes (clusters 3 and 4) 
were characterized by a high CD16 gene score. CD1c+ conventional 
dendritic cells (clusters 1 and 8) were defined by their high CD1c 
gene score. CLEC4C+ plasmacytoid dendritic cells showed high 
gene accessibility in the CLEC4C locus. Clusters 9 and 10, with their 
predominantly high KLF4 and CD68 gene scores, probably repre-
sented monocyte-derived dendritic cells (Fig. 2b and Extended 
Data Fig. 3a,b).

We focused on CD14+ and CD16+ monocytes because the indi-
viduals convalescing from COVID-19 had a higher abundance 
of two clusters of CD14+ monocytes (clusters 11 and 12) and one 
cluster of CD16+ monocytes (cluster 4) than healthy individuals  
(Fig. 2c). We found and annotated sequential differentiation states 
from homeostasis to the mature immune inflammatory effector state 
in the COVID-19 group through differential cis- and trans-element 
analysis within the CD14+ and CD16+ clusters (Fig. 2a). For exam-
ple, cluster 4 (CD16-activation) was associated with leukocyte 
activation and the regulation of cytokine production, and showed 
high levels of activity of transcription factors (TFs) involved in 
IFNγ-induced rapid signatures and myeloid differentiation, includ-
ing TBET, JUN and FOSB17–20, whereas cluster 3 (CD16-maturation) 
was associated with haemopoiesis and the regulation of the immune 
response (Fig. 2d and Extended Data Fig. 3c). Interestingly, clus-
ter 4 had increased chromatin accessibility in the CCL5, PRF1 and 
GZMB loci (Extended Data Fig. 3a), demonstrating that IFNγ drives 
the differentiation and activation of CD16+ monocytes in the hyper-
inflammatory microenvironment of patients with COVID-19. For 
the CD14+ monocytes, the clusters 12 and 13 (CD14-activation 
and CD14-maturation, respectively) showed increased chromatin 
accessibility at inflammatory cytokine genes—including IL1β, IL6, 
IL8, CCL2, CCL3 and CCL7 (Extended Data Fig. 3a)—and enriched 
TFs that represent a mature state—including FOS, JUN and  
MAF (Fig. 2e–g)19,21. Meanwhile, cluster 11 (CD14-trained) was 

characterized by the accessibility of genes involved in leuko-
cyte activation (Extended Data Fig. 3c) and showed high activity 
of TFs involved in haematopoietic commitment and survival of  
monocytes, including HOXA9 and NR4A1 (Fig. 2e,f)22,23. In 
addition, NR4A1 TF activity, which was enriched in cluster 11  
(Fig. 2e,f), was also enriched in the activation stage of the CD16+ 
monocyte (Fig. 2d).

Innate immune cells have recently been shown to display immu-
nological memory after certain infections or vaccines, also termed 
trained immunity24–26. To understand the developmental dynamics 
of these monocytes, we constructed a lineage trajectory of CD14+ 
based on sequential differentiation states, which progressed from 
trained to activation and finally to maturation, and generated 
ordered single cells (termed as ‘pseudotime’) based on their epi-
genetic similarity (Fig. 3a). The dynamic cis-element and TF motif 
accessibility across the trajectory were consistent with the sequential 
differentiation states (Fig. 3b). For instance, the trained, activated 
and mature monocytes showed sequential chromatin accessibil-
ity in the IL1β and CCL5 loci (Fig. 3b,c). The trained stage of the 
CD14+ lineage trajectory was accompanied by increased accessibili-
ties of IRF1, IRF3 and IRF8 TF motifs (Fig. 3b,d,e), thus enhancing 
susceptibility to regulate rapid IFN-β induction and host inflamma-
tory defences in human blood monocytes20,27. The activation and 
maturation stages of these trajectories shared accessibility at TFs 
involved in monocyte activation and maturation for the activator 
protein 1 (AP-1) factors FOS and JUN (Fig. 3b,d,e)19,28,29.

To validate this, we re-challenged PBMCs with spike-nCoV 
pseudovirus or hepatitis B virus for 24 h in vitro, as mono-
cytes predominantly showed high gene scores for IL1β and  
IL6 (Fig. 1e). The PBMCs from individuals convalescing from 
COVID-19 secreted higher levels of IL-1β and IL-6 than those from 
the healthy donors (Fig. 3f), which is consistent with trained mono-
cytes having enhanced sensitivity in response to different pathogens 
after an initial challenge25. There was no significant difference in the 
levels of cytokine secretion between the patients that were tested 
early (4 weeks) or late (10–12 weeks) following discharge (Fig. 3f).

Collectively, although systemic inflammation had returned to 
a normal and healthy level (Supplementary Table 1), the CD14+ 
and CD16+ monocytes maintained chromatin reprogramming that 
promotes trained immunity and thus enables a rapid inflammatory 
response against subsequent infection.

A facilitated B-cell developmental programme in individuals 
convalescing from COVID-19. We identified ten B-cell clusters: 
immature B cells (clusters 6 and 7) with a high SDC1 score; naive 
B cells (clusters 4 and 5) with high TCL1A, CD19 and CD20 scores; 
memory B cells (clusters 1, 2 and 3) with high CD27 and CD38 
scores; and plasma cells (clusters 8, 9 and 10) with a high XBP1 
score (Fig. 4a,b and Extended Data Fig. 4a).

Although the individuals convalescing from COVID-19 and 
healthy donors had comparable frequencies of B-cell subsets  
(Fig. 4c), the UMAP projection revealed preferential cell distri-
bution in each B-cell subset between healthy donors and indi-
viduals convalescing from COVID-19 (Fig. 4d and Extended Data  
Fig. 4b). The transcriptional regulation of the B-cell developmen-
tal programme in healthy donors has been extensively studied30,31. 
However, the B-cell lineage trajectories based on accessible chro-
matin differed between the healthy donors and individuals recov-
ering from COVID-19 (Extended Data Fig. 4b–d), suggesting that 
SARS-CoV-2 infection induced different B-cell developmental 
programmes.

To investigate this, we reconstructed the lineage trajectory 
of B cells from the healthy donors and individuals convalescing 
from COVID-19 (Fig. 4d). We observed cis-elements near known 
regulators of every stage of B-cell development—such as TCL1A, 
CXCR4, MEF2C, BHLHE41, BAFF, PLCG2, PAX5, EBF1 and RORA 

Nature Cell Biology | VOL 23 | June 2021 | 620–630 | www.nature.com/naturecellbiology 621

http://www.nature.com/naturecellbiology


Resource NATuRE CEll BIOlOgy

P = 0.0824

a

d

h

M
1-

Ti
at

ac

M
2-

Ti
at

ac

M
3-

Ti
at

ac

M
4-

Ti
at

ac

M
5-

Ti
at

ac

M
6-

Ti
at

ac

M
7-

Ti
at

ac

S1
-T

ia
ta

c

S2
-T

ia
ta

c

S3
-T

ia
ta

c

0

50

100

150

200

250

c

f

b

H
D

2–
10

×-
G

SE
H

D
29

–1
0×

-b
2

H
D

30
–1

0×
-b

2
3 

H
D

s–
10

×-
b1

M
1–

10
×-

b2
M

2–
10

×-
b1

M
4–

10
×-

b1
M

5–
10

×-
b2

M
6–

10
×-

b2
S1

–1
0×

-b
1

S2
–1

0×
-b

1
S3

–1
0×

-b
2

0

1

2

3

4

lo
g 1

0(
ce

lls
)

Monocytes
Effector and memory

CD8+ T cellsB cells

0

0.25

0.50

0.75

1.00
Fr

eq
ue

nc
y

NK
Effector CD8
Memory CD8
Memory CD4
MAIT
Undefined
Naive T
Plasma
Memory B
Naive B
DC
CD16+ monocytes
CD14+ monocytes

H
D

12
–1

0×
-G

SE
H

D
29

–1
0×

-b
2

H
D

30
–1

0×
-b

2
3 

H
D

s–
10

×-
b1

M
1–

10
×-

b2
M

2–
10

×-
b1

M
4–

10
×-

b1
M

5–
10

×-
b2

M
6–

10
×-

b2
S1

–1
0×

-b
1

S2
–1

0×
-b

1
S3

–1
0×

-b
2

1–Memory CD4
2–CD14+ monocytes
3–CD16+ monocytes
4–DC
5–Undefined
6–Effector CD8
7–MAIT
8–Memory B
9–Memory CD8
10–Naive B
11–Naive T
12–NK
13–Other B
14–Other T
15–Plasma
16–Undefined

1
23

457

6

10

9

8

11

12

13

14 15

16

97,315 immune cells

Low High
Gene score

PAX5 CD14 CEBPB

CD8A

TBET IL7R

CD4CD3G KLRB1

IL6

MS4A1

IL1β

e

HD and COV
study participants

Blood

Barcoded for
10x-based

scATAC-seq

Single nuclei
of PBMCs

scTCR-seq

scATAC-seq
Ti-ATAC seq

Epigenome

Single T cell

Integrated
analysis

V J C

V J CD

Accessible sites

RNA

DNA

g

HD29–10×-b2
HD30–10×-b2
3 HDs–10×-b1
HD12–10×-GSE
M1–10×-b2
M2–10×-b1
M4–10×-b1
M5–10×-b2
M6–10×-b2
S1–10×-b1
S2–10×-b1
S3–10×-b2

P = 0.025

Fr
ac

tio
n

Fr
ac

tio
n

Fr
ac

tio
n

P = 0.0025

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

COV HDCOV HD COV HD
0

0.1

0.2

0.3

0.4

UMAP 1

U
M

AP
 2

C
el

ls

Fig. 1 | Overview of the immune-cell epigenomic landscape of the blood of individuals convalescing from COVID-19. a, Outline of the two approaches 
used for scATAC-seq: 10x-based scATAC-seq (top) and Ti-ATAC-seq (bottom). b, Cell numbers (log10-transformed) in each sample for 10x-based 
scATAC-seq. c, UMAP plot showing 97,315 10x-based scATAC-seq profiles of immune cells in peripheral blood—including B, NK and T cells, monocytes 
and other clusters. The dots indicate individual cells and the cell-type identity is indicated by colour. d, UMAP plot showing the sample origin. e, Canonical 
markers overlaid on UMAP embedding, including CD14 and CEBPB for monocytes; PAX5 and MS4A1 for B cells; CD3G, CD8A and CD4 for T cells; and 
KLRB1 for NK cells. The UMAP plot is coloured based on the log-transformed normalized gene scores, which exhibited the accessibility of peaks linked to 
the indicated genes. The gene scores were calculated as log2(normalized count + 1). f, Cell-type frequencies in each sample, determined using 10x-based 
scATAC-seq. The colours indicate the cell type. g, Differences in the proportion of monocyte and B-cell lineages as well as effector and memory CD8+ 
T cells in the samples from individuals convalescing from COVID-19 (COV; n = 8 samples collected from eight individuals, one sample per individual) 
and healthy donors (HD; n = 4 samples, three samples collected from five HD in this study (including a pooled sample from three HD) and an additional 
sample from published data (GSE139369) as indicated in b and Extended Data Fig. 1a). A two-sided unpaired Student’s t-test was performed to determine 
the P values. The boxplots denote the median with the quartile range (25–75%), and the length of whiskers represents 1.5× the interquartile range (IQR). 
h, Number of T cells in each sample that had both scTCR-seq and ATAC-seq data.
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Fig. 2 | Epigenomic signatures of trained and activated monocytes in individuals convalescing from COVID-19. a, Subclustering UMAP of all monocytes 
(see Fig. 1c). The five clusters of CD14+ and CD16+ monocytes indicated in the legend were annotated according to sequential differentiation states; 
cDC, conventional dendritic cells; pDC, plasmacytoid dendritic cells and moDC, monocyte-derived dendritic cells. b, Surface markers overlaid on UMAP 
embedding coloured according to the log-transformed normalized gene scores. c, Differences in the proportions of clusters 3, 4, 11 and 12 in the samples 
of individuals convalescing from COVID-19 (COV; n = 8 samples collected from eight individuals, one sample per individual) and healthy donors (HD; 
n = 4 samples, three samples collected from five HD in this study (including a pooled sample from three HD) and an additional sample from published 
data (GSE139369)). A two-sided unpaired Student’s t-test was performed to determine the P values. The boxplots denote the median with the quartile 
range (25–75%), and the length of whiskers represents 1.5× the IQR. d–g, Volcano plots showing the differential TF motif accessibility using the mean TF 
motif accessibility in the chromVAR TF bias-corrected deviation in clusters 3 and 4 (d), 12 and 11 (e), 13 and 11 (f), and 13 and 12 (g). The P values were 
calculated using two-sided pairwise Wilcoxon test and the false discovery rate (FDR) was corrected using the Benjamini–Hochberg procedure.
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of the trajectory path from the spline fit. b, Heatmaps of the ordered cis-element accessibility (left) and TF motif accessibility (right) across pseudotime in the 
CD14+ monocytes (see Fig. 3a). The cis-element and TF motif accessibilities are indicated by the gene score and chromVAR TF-motif bias-corrected deviation, 
respectively. c, Aggregated single-cell genome tracks for the indicated clusters at the IL1β (left) and CCL5 (right) loci with peak co-accessibility (Co-access). 
The Co-access is indicated by the inferred peak-to-gene links for distal regulatory elements. Green shading indicates differential peaks within clusters. d, Violin 
plots showing the ChromVAR TF-motif bias-corrected deviation scores of the indicated TF regulators across clusters 3 (n = 1,003 cells), 4 (n = 1,472 cells), 
11 (n = 988 cells), 12 (n = 5,719 cells) and 13 (n = 4,537 cells). The boxplots denote the medians and the quartile range (25–75%), and the length of whiskers 
represents 1.5× the IQR. e, TF footprints of the TBET motif in clusters 3 and 4 (left) as well as the FOS (middle) and IRF1 (right) motifs in clusters 11, 12 and 13. 
The Tn5 insertion bias track is shown. f, Levels of IL-1β and IL-6 secreted by virus-exposed PBMCs (COV-S, n = 3 samples from three individuals that recovered 
from severe COVID-19; COV-M, n = 7 samples from seven individuals that recovered from moderate COVID-19; HD, n = 10 samples from ten healthy donors). 
The error bars indicate the mean ± s.e.m. A two-sided unpaired Student’s t-test was performed to determine the P values.
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Fig. 4 | Accelerators facilitated the B-cell developmental programme in individuals convalescing from COVID-19. a, Subclustering UMAP plot of all 
B cells (see Fig. 1c). b, Gene markers overlaid on UMAP coloured according to the log-transformed normalized gene scores for SDC1, TCL1A, CD27 and 
XBP1. c, Relative frequencies of the B-cell subclusters in the different samples. d, Integrative lineage trajectory of B-cell states in healthy donors (HD) and 
individuals convalescing from COVID-19 (COV). The smoothed line and arrow represent the visualization of the trajectory path across different states 
(immature, naive, memory and plasma), and the sample origins are denoted by colour. e, Heatmaps showing the ordered gene-score trajectory across 
pseudotime for B-cell differentiation. f, Heatmaps showing the positive TF regulators obtained from the integration of ordered TF gene scores (right) 
with ordered TF motif accessibility (left) across pseudotime for B-cell differentiation. Positive TF regulators are TF motifs that show high bias-corrected 
chromVAR TF-motif deviations that also exhibit similarly dynamic gene scores across differentiation states. g, Volcano plots demonstrating the differential 
TF motif accessibility using the mean TF motif accessibility in the chromVAR TF bias-corrected deviation between COV and HD individuals in the 
indicated B-cell states. The P values were calculated using a two-sided pairwise Wilcoxon test and the false discovery rate (FDR) was corrected using the 
Benjamini–Hochberg procedure. h, Schematic of differential positive regulatory TFs driving B-cell differentiation of immature B cells to plasma cells in HD 
and COV individuals.
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(Fig. 4e and Extended Data Fig. 5a)30–34—suggesting that the inte-
grated B-cell lineage trajectory was a well-defined developmental 
programme that could be used to compare regulatory mechanisms 
between the healthy donors and individuals convalescing from 
COVID-19. Next, through integrated chromVAR TF deviations 
with similarly dynamic gene scores across differentiation states, 
we identified positive TF regulators with sequential activities of 
BCL11A, IRF8, PAX5, REL, BATF, IRF4, EBF1, POU2F2, TBET 
and LEF1 that promote B-cell commitment, differentiation, mainte-
nance and class-switch recombination30,35–39, thus resolving the inte-
grated timing of TF activity for comparison (Fig. 4f and Extended 
Data Fig. 5b–d).

We then measured the TF deviation scores and variations to 
identify the differential positive TF regulators of four B-cell subsets 
of the healthy donors and individuals convalescing from COVID-19 
(Fig. 4g). Interestingly, NF-kB subunits, including REL, RELA and 
RELB, which are involved in germinal centre B-cell maintenance 
and homeostasis40,41, were enriched in four subsets of B cells of the 
healthy donors (Fig. 4g and Extended Data Fig. 5d). Meanwhile, 
AP-1 factors, including FOS and JUN, which are involved in the 
B-cell receptor signalling pathway and indicate B-cell differentia-
tion and activation42, were enriched in naive, memory and plasma B 
cells of the individuals convalescing from COVID-19. Transcription 
factors—including SPI1, EBF1, IRF4 and POU2F2—that are vital 
for B-cell survival, differentiation and receptor signalling responses 
were enriched in the naive B cells of the individuals convalescing 
from COVID-1936,38,43–46. In comparison to the memory and plasma 
B cells of healthy donors that showed a high REL deviation score, the 
plasma cells and a subset of memory B cells of the COVID-19 group 
showed high activity of TFs that are involved in class-switch recom-
bination and promote specialized immune function in class-specific 
IgG+ memory B cells, including TBET and BATF39,47 (Fig. 4g and 
Extended Data Fig. 5d). We also detected specific IgG antibodies 
of the spike protein of SARS-CoV-2 in the blood samples of the 
individuals convalescing from COVID-19 (Extended Data Fig. 5e). 
Collectively, according to the results of integrated timing analysis 
of TF activity, differential positive TF regulators promoted B-cell 
maintenance and homeostasis in healthy donors, whereas they facil-
itated B-cell activation, differentiation and IgG class-switch recom-
bination in the individuals convalescing from COVID-19 (Fig. 4h).

CD8+ T cell-fate decisions in individuals convalescing from 
COVID-19. We first sub-grouped NK and T cells into 14 subclus-
ters (Fig. 5a and Extended Data Fig. 6a–c). The CD8+ T-cell states 
consisted of naive, intermediate, memory and effector T cells as 
well as mucosal-associated invariant T cells (MAIT), whereas the 
CD4+ T-cell states were composed of naive, central memory (TCM) 
and effector memory (TEM) T cells. In contrast to healthy donors 
enriched in naive CD8+ T cells, the individuals convalescing from 

COVID-19 showed increased numbers of effector and memory 
CD8+ T cells (Figs. 1h and 5b). Thus, clusters 6 and 8 may repre-
sent SARS-CoV-2-induced effector and memory CD8+ T cells, 
respectively.

We next orchestrated the effector and memory CD8+ T-cell 
trajectories to explore CD8+ T cell-fate decisions. The effector 
and memory trajectories almost overlapped at the early state and 
diverged into two distinct branches, that were predominantly com-
prised of cells from the individuals convalescing from COVID-19 
(Fig. 5c). The analysis of cis-elements near effector genes revealed 
distinct regulatory patterns of accessibility across the pseudotime 
of the effector and memory CD8+ T cells (Fig. 5d,e). For example, 
the cis-element accessibility in the promoter and distal enhancers in 
the GZMB and IFNG loci gradually increased from the naive to the 
intermediate and then to the memory and effector states (Fig. 5f), 
demonstrating that the expression of effector genes was accurately 
regulated by a distinct cis-element network in the different states.

The results of TF-activity analysis demonstrated the shared 
and unique TF programmes across the pseudotime of effector and 
memory CD8+ trajectories in the individuals convalescing from 
COVID-19 (Fig. 5d,e). For instance, in the first stage of trajectories 
from the naive to intermediate state, effector and memory CD8+ 
T cells shared accessibility at the AP-1 factors FOS and JUNB, con-
sistent with their roles in T-cell differentiation and activation14,31; 
however, effector CD8+ T cells also showed accessibility at NFKB1/2 
and RUNX3, whereas memory CD8+ T cells were characterized by 
accessibility of BATF. IRF4 activity gradually increased across the 
effector CD8+ T-cell trajectory but was depleted in that of memory 
CD8+ T cells (Fig. 5g and Extended Data Fig. 6d), which is consis-
tent with their role in limiting the development of memory T cells48. 
In contrast, BATF motifs showed accessibility earlier in the trajec-
tory of memory CD8+ T cells than that of effector cells (Fig. 5d,e). 
Similarly, the second stage of trajectories from the intermediate state 
to either the effector or memory state identified the pivotal roles of 
EOMES and TBET motifs in each pathway (Fig. 5d,e,g). Effector 
CD8+ T cells were also characterized by accessibility of SREBF1/2 
(Fig. 5d,g), which is involved in the metabolic reprogramming of 
effector T cells during extensive clonal expansion49. Memory CD8+ 
T-cell commitment was accompanied by the accessibility of motifs 
involved in promoting memory T-cell trafficking and maintenance 
of Krüppel-like factor 2/13 (KLF2/13; Fig. 5e,g)50–53. Notably, com-
pared with healthy donors, we also observed gradual increased 
gene accessibility of GZMB, IFNG and TBET in the intermediate, 
memory and effector CD8+ T cells of individuals convalescing from 
COVID-19 (Fig. 5h,i).

Furthermore, we performed TCR clonality analysis using the 
paired TCRαβ sequences generated from Ti-ATAC-seq. The clonal 
expansion rates of CD8+ T cells were significantly higher than  
those of CD4+ T cells of individuals convalescing from COVID-19 

Fig. 5 | Single-cell epigenomic profiles of T cells in individuals convalescing from COVID-19. a, Subclustering UMAP of NK and T cells (see Fig. 1c). 
For the CD8+ T cells, naive cells had high TCF7 and CCR7 gene scores; effector cells had high CD8A, TBX21 (TBET) and IFNG gene scores; memory cells 
had high CD8A, TBX21 and KLF2/13 gene scores but low effector gene scores; and MAIT cells had high SLC4A10 gene scores. For the CD4+ T cells, naive 
cells had high TCF7 and CCR7 gene scores; TCM cells had high CD4, CCR7, AQP3 and SELL gene scores; and TEM cells had high CD4 and effector gene 
scores but low CCR7 gene scores. The NK cells had high NCAM, KLRC1, KLRD1 and FCGR3A gene scores; and NKT cells had high NCAM and CD3E gene 
scores. b, Cell-type frequencies in the different samples with the cluster identities indicated. c, Lineage trajectory of CD8+ T-cell states, which included 
naive, intermediate, effector and memory CD8+ T cells. Pseudotime values overlapped on the UMAP. d,e, Pseudotime heatmap showing the ordered 
cis-element accessibility (left) and TF motif accessibility (right) in effector (d) and memory (e) CD8+ T-cell lineage trajectories (see c). f, Aggregated 
single-cell genome tracks for the indicated clusters and states of CD8+ T cells at the GZMB (top) and IFNG (bottom) loci with peak co-accessibility 
(Co-access). The regions shaded in blue indicate differential peaks within clusters. g, Ridge plots showing TF deviation scores across different clusters 
and states of CD8+ T cells. h,i, Gene scores of IFNG (left) and GZMB (right; h), as well as the gene score (left) and TF deviation score of TBET (right; i) 
in the indicated cell types. COV, individuals convalescing from COVID-19; HD, healthy donors; COV-CD8-effector, n = 12,353 cells; COV-CD8-memory, 
n = 1,313 cells; COV-CD8-intermediate, n = 2,737 cells; COV-CD8-naive, n = 1,858 cells; HD-CD8-effector, n = 2,052 cells; HD-CD8-memory, n = 279 cells; 
HD-CD8-intermediate, n = 1,408 cells; HD-CD8-naive, n = 1,272 cells. The boxplots denote the medians and the quartile range (25–75%), and the length 
of whiskers represents 1.5× the IQR.
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(Fig. 6a,b). Interestingly, CD8+ T cells were strongly dominated by 
one or two T-cell clones in each patient and the clonal expansion 
rate of the largest clone ranged from 2.6% to 41.1% of the total CD8+ 
T cells (Fig. 6a). These results suggest that these putative SARS-CoV-
2-specific CD8+ T-cell clones, rather than CD4+ T cells, play a criti-
cal role in viral control and long-term immune protection. We next 
integrated TCR clonality with the single-cell epigenomic profiles 
generated from Ti-ATAC-seq. Notably, on comparison with unex-
panded CD8+ T-cell clones, the two largest clonally expanded CD8+ 
T-cell clones were particularly enriched in TBET and EOMES TFs 

(Fig. 6c). This is consistent with our 10x-based scATAC-seq data 
showing that these two TFs are important for the development of 
effector and memory CD8+ T cells in the individuals convalescing 
from COVID-19 (Fig. 6d).

In summary, our in-depth analysis of the epigenomic landscape 
and single-cell TCR clonality in individuals convalescing from 
COVID-19 revealed pivotal roles for effector CD8+ T cells in the 
initial viral control and the formation of memory CD8+ T cells via 
global chromatin accessibility remodelling and accurate regulatory 
programmes.
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Discussion
SARS-CoV-2 causes severe pulmonary disease and complications 
with significant morbidity and mortality1. Our current understand-
ing of the epigenomic regulatory mechanisms in the host immune 
response to SARS-CoV-2 infection and long-term immune protec-
tion is limited; thus, it is challenging to develop urgent therapeutics 
or assess the effect of different vaccine candidates.

Here we utilized high-throughput 10x-based scATAC-seq tech-
nology to measure the chromatin accessibility of all PBMCs, includ-
ing monocytes and B, NK and T cells. We also used Ti-ATAC-seq 
to further investigate special clonally expanded T-cell clones with 
paired TCRαβ sequencing and responded chromatin accessibil-
ity from each T cell. Chromatin remodelling was significantly 
altered in almost all immune-cell compartments in the individuals  

convalescing from COVID-19. Our epigenomic profiles revealed a  
sequential differentiation state from homeostasis to the mature 
immune inflammatory effector response in CD14+ and CD16+ 
monocytes of individuals convalescing from COVID-19, which 
featured trained, activation and maturation states. The trained 
and activation states of CD14+ and CD16+ monocytes were domi-
nantly enriched in the individuals convalescing from COVID-19. 
Although immune memory is a well-known feature of the acquired 
immune system, the activation of the innate immune system can 
also heighten responsiveness to subsequent triggers, which may 
provide protection during the early stage of reinfection. In B-lineage 
cells, we found substantial differences in the TF regulators of each 
state between the individuals convalescing from COVID-19 and 
healthy donors. Furthermore, B-cell lineage trajectories revealed 
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Fig. 6 | Single-cell epigenomic and TCR profiling of CD8+ T cells in individuals convalescing from COVID-19. a, Distribution of CD4+ (top) and CD8+ 
(bottom) T-cell TCR clonotypes, according to size, from ten individuals convalescing from COVID-19 (COV). The full-length paired TCR sequences were 
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an accelerated developmental programme from immune B cells to 
antibody-producing plasma cells in COVID-19. Integrated analysis 
of single-cell TCR clonality with the single-cell chromatin accessibil-
ity landscape showed the dramatic clonal expansion of CD8+ T cells 
in individuals convalescing from COVID-19 as well as the bifur-
cation of cell-fate decisions for the putative SARS-CoV-2-specific 
clonally proliferating CD8+ T cells. This is consistent with effector 
CD8+ T cells in initial viral control and memory CD8+ T cells in 
long-term immune protection.

Consistent with our data, the reported scRNA-seq profiles of 
PBMCs identified the abundant IL-1+CD14++ monocytes and 
activated monocytes in individuals convalescing from COVID-19 
(ref. 7). However, our scATAC-seq profiles revealed further epigen-
etic changes in individuals convalescing from COVID-19, which 
can be attributable to the fact that epigenetic changes are more 
long-lived compared with transcriptional differences. Trained 
immunity caused by epigenetic and metabolic reprogramming is 
a ‘double-edged sword’. Although it offers broad benefits for the 
host immune defence against pathogens, it identifies potentially 
detrimental outcomes in immune-mediated and chronic inflam-
matory diseases24,25. In the context of COVID-19, persistent infec-
tion with SARS-CoV-2 results in long-term chromatin accessibility 
reprogramming, which permits monocytes to remain in a ‘trained’ 
functional state. Well-controlled trained immunity is likely to pro-
tect against subsequent infection25. The effect of cytokine storms on 
trained immunity should be studied in the future.

Previous studies of immune responses to SARS-CoV-1 and 
Middle East respiratory syndrome coronavirus (MERS-CoV) 
can partially offer insights into SARS-CoV-2 memory immunity. 
Similar to SARS-CoV-2, SARS-CoV-1 and MERS-CoV induce 
strong inflammatory responses and associated lymphopenia9. 
Furthermore, long-term immune protection has been observed in 
patients that have recovered from SARS-CoV-1 and MERS-CoV 
and is attributed to virus-specific antibody responses and long-lived 
virus-specific memory T-cell responses2,54,55, which is consistent 
with our observations on the chromatin reprogramming of B and 
CD8+ T cells. Recent studies on memory immune protection against 
SARS-CoV-2 reinfection, including a rhesus macaque reinfection 
model and COVID-19 vaccines under phase I, II and III clinical tri-
als, suggest that primary infection with SARS-CoV-2 and vaccines 
against SARS-CoV-2 can provide partial immune protection56–59.

The mechanisms of memory immunity—including that in trained 
and activated monocytes, accelerated B cells and putative SARS-CoV-
2-specific clonally expanded effector and memory CD8+ T cells—to 
SARS-CoV-2 may be induced by cytokine storms, such as the high 
production of IFNγ in the serum. As we observed, IFNγ-induced 
TBET was significantly enriched in the activation state of trained 
monocytes, B-cell acceleration and CD8+ T cell-fate decisions, which 
is consistent with its role in monocyte activation and maturation, 
IgG+ memory B-cell development and effector and memory T-cell 
differentiation17,20,24,31,39,60–62. Therefore, the epigenomic regulation of 
innate and adaptive immune memory responses we demonstrated 
may not be specific for SARS-CoV-2 and could be elicited follow-
ing other infections, such as SARS-CoV-1 and MERS. Future stud-
ies comparing epigenetic changes among convalescing individuals 
infected with SARS-CoV-2 and other viruses would be valuable.

Overall, our broad analysis of the epigenomic landscape and 
TCR profiling demonstrated that individuals convalescing from 
COVID-19 established immune memory formation and trained 
immunity via the global remodelling of the chromatin accessibil-
ity landscape. The stability of these changes over a longer period 
requires further study.
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Methods
Subjects and specimen collection. We collected blood from five healthy donors, 
seven convalescing individuals who had recovered from moderate COVID-19 and 
three convalescing individuals who had recovered from severe COVID-19. They 
were enrolled at the Fifth Medical Center of PLA General Hospital in May 2020. 
We isolated PBMCs from the study participants using Ficoll solution according 
to the manufacturer’s instructions. We defined individuals convalescing from 
COVID-19 as patients who had been diagnosed as infected with COVID-19 at 
admission by real-time RT–PCR, and had recovered and been discharged from 
the hospital at least one month before participating in the study. The individuals 
convalescing from COVID-19 were classified into mild and severe groups based on 
the Fifth Revised Trial Version of the Novel Coronavirus Pneumonia Diagnosis and 
Treatment Guidance. The healthy donors—three women and two men, 18–55 years 
old—were defined by negative test results in real-time RT–PCR analysis of the 
SARS-CoV-2 gene and IgG antibody detection. This study and study protocol was 
approved by the Ethics Committees of the Fifth Medical Center of Chinese PLA 
General Hospital, Beijing, China (2020005D) on healthy volunteers or individuals 
convalescing from COVID-19 in Medical Research and written informed 
consent was obtained from all of the participants. All of the participants received 
participant compensation. The clinical features of these individuals convalescing 
from COVID-19 and healthy donors are listed in Supplementary Table 1.

Single T-cell index sorting. Human PBMCs were thawed after storage in liquid 
nitrogen and allowed to recover overnight in R10 culture medium (RPMI1640 
medium supplemented with 10% fetal calf serum, 25 mM HEPES, 1×non-essential 
amino acids, 50 μM β-mercaptoethanol and 1×penicillin and streptomycin). 
Cell surface staining was performed with 4,6-diamidino-2-phenylindole (DAPI) 
and the following antibodies: Alexa Fluor 700 anti-human CD3 (clone SK7, 
1:100; BioLegend, cat. no. 344822), FITC anti-human TCRαβ (clone IP26, 1:50; 
BioLegend, cat. no. 306706), PerCP/Cyanine5.5 anti-human CD8 (clone SK1, 
1:200; BioLegend, cat. no. 344710), PE/Dazzle 594 anti-human CD4 (clone 
A161A1, 1:200; BioLegend, cat. no. 357411), PE anti-human CD25 (clone BC96, 
1:200; BioLegend, cat. no. 302606), Brilliant Violet 650 anti-human CD127 
(clone A019D5, 1:200; BioLegend, cat. no. 351326), APC anti-human CD137 
(4-1BB) (clone 4B4-1, 1:100; BioLegend, cat. no. 309810) and Brilliant Violet 605 
anti-human CD279 (PD-1) (clone EH12.2H7, 1:100; BioLegend, cat. no. 329923). 
Single viable DAPI−CD3+TCRαβ+ T cells were immediately index sorted into 
96-well plates for Ti-ATAC-seq analysis using a BD FACS Aria III system.

Preparation of 10x-based scATAC-seq libraries. After storage in liquid nitrogen, 
PBMCs were thawed, allowed to recover overnight in R10 culture medium and 
washed three times with PBS buffer to remove debris and aggregated cells. The 
cell viability of each sample exceeded 90%. For the healthy donor controls, we 
performed 10x-based scATAC-seq on PBMCs from five healthy donors, including 
a sample of mixed PBMCs from three healthy donors. The cells were lysed, the 
nuclei were isolated, the nuclei suspensions were washed and counted, and the 
transposition reaction and nuclei barcoding were performed according to the 
manufacturer’s instructions. Approximately 5,000–10,000 nuclei were collected 
in each sample. The protocol for library preparation and the settings for the 
instrument and sequencing were provided by the manufacturer (Annoroad 
and Berry Genomics) and are available at https://support.10xgenomics.com/
single-cell-atac. We also collected scATAC-seq data from a healthy donor control 
from a published dataset (GSE139369)13.

Preparation of single-cell Ti-ATAC-seq libraries. Single antibody-indexed 
cells were sorted into 96-well plates with 6 μl ATAC-RSB buffer (10 mM Tris–
HCl at pH 7.5, 10 mM NaCl, 3 mM MgCl2 and 0.8 U μl−1 RNase inhibitor) per 
well. Next, 1.5 μl transposition reaction mix with 0.1 μl TTE Mix V5 (Vazyme 
Biotech), 50 mM TAPS–NaOH (pH 8.5), 25 mM MgCl2, 50% dimethylformamide, 
0.8 U μl−1 RNase inhibitor and 0.2% NP40 was carefully added to each well. 
The transposition reaction was performed by incubating the mixture at 37 °C 
for 30 min and then stopped by the addition of 1.5 μl release buffer (125 mM 
EDTA and 10 mM Tris–HCl at pH 8.0), following which the reaction mixture 
was incubated at 50 °C for 30 min. Quenching buffer (1 μl; 187.5 mM MgCl2 and 
10 mM Tris–HCl at pH 8.0) was then added for MgCl2 quenching. The TRA and 
TRB chains and transposed DNA fragments were reverse transcribed with 11 μl 
of the RT–PCR reaction mix (8.8 μl of 2×1 Step buffer, 1.5 μl of TRA and TRB 
RT primer mix, 0.2 μl of non-indexed custom Nextera ATAC-seq PCR primer 
mix (forward, 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′ and 
reverse, 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3′) and 
0.5 μl PrimeScript 1 Step enzyme mix (Takara Bio)) under the following RT–PCR 
conditions: 50 °C for 36 min; 95 °C for 15 min; and eight cycles at 94 °C for 30 s, 62 °C 
for 1 min and 72 °C for 1 min. The RT–PCR product was then immediately equally 
divided into two 96-well plates for amplification and the barcoding of transposed 
DNA fragments and TRA and TRB chains, which were performed as previously 
described.63 Briefly, 1.25 μM of dual-index Nextera ATAC-seq PCR primers with 
1×TruePrep Amplify reaction mix (Vazyme Biotech) was prepared, and ATAC-seq 
amplification and barcoding were performed under the following PCR conditions: 
72 °C for 5 min, 98 °C for 30 s, and 15 cycles of 98 °C for 15 s and 63 °C for 30 s. 

Finally, scTCR-seq and scATAC-seq libraries were respectively pooled and purified 
on a single Zymo DNA clean and concentrator 5 column. Fragment-length selection 
was performed (0.5×/1.5× for scATAC-seq and 300–400 bp for scTCR-seq). The 
scTCR-seq and scATAC-seq libraries were 150-bp paired-end sequenced on a 
HiSeq X Ten platform (Illumina) with the sequencing read length and dual indexing 
according to the manufacturer’s instructions (Annoroad).

Data processing of scTCR-seq libraries. The scTCR-seq data were analysed as 
previously described63,64. Briefly, raw reads were unpacked and joined by shared 
regions and demultiplexed using a custom pipeline. The TCR V, D and J segments 
were analysed and assigned using MiXCR65.

Primary data pre-processing of scATAC-seq libraries. We used a previously 
described workflow with minor modifications14. Briefly, a sample name was added 
to the header of each read, adaptor sequences were trimmed using Cutadapt, 
reads were mapped to the hg38 human genome with Bowtie2 and those aligned 
to the mitochondria were removed. The resulting cleaned single-cell files (./bam 
files) of each individual convalescing from COVID-19 were merged and sorted by 
read name using SAMtools. Finally, the resulting merged file of each individual 
convalescing from COVID-19 was converted to a fragment file, the Tn5 insertion 
site was adjusted and unique nuclear fragments were retained using BEDtools. We 
then calculated the TF deviation of cells using chromVAR66.

For the pre-processing of the 10x-based scATAC-seq data, we used the 
‘cellranger-atac count’ function (cellranger-atac, v1.2.0) to generate single-cell 
accessibility counts for each library (https://support.10xgenomics.com/
single-cell-atac/software/pipelines/latest/using/count). Reads were aligned to the 
hg38 human genome. Similarly, we created an Arrow file for each resulting fragment 
file and included those single-cell libraries with at least 1,000 unique fragments and 
a transcription-start-site enrichment of eight using the ArchR package67 in the R 
statistical environment (v3.5.1). Finally, we created an ArchRProject for downstream 
analysis by combining all of the Arrow files of the 10x-based scATAC-seq.

Dimensionality reduction and clustering analysis. We used the ‘addIterativeLSI’ 
function of ArchR to perform iterative latent semantic indexing31,67. We then used 
the harmony algorithm to correct for batch-effect differences68 and added clusters 
using the ‘addClusters’ function. We ran UMAP using the ‘addUMAP’ function 
and plotted the results using the ‘plotEmbedding’ function in ArchR67.

Identification of marker features and differential analysis for clusters. 
We created pseudo-bulk replicates using the ‘addGroupCoverages’ function 
for each cluster and called peaks using the ‘findMacs2’ function. We used 
the ‘addDeviationsMatrix’ function to compute per-cell deviations across 
all motif annotations to create the deviation matrix ‘MotifMatrix’. Next, we 
used the ‘getMarkerFeatures’ function with ‘bias’ parameter to account for 
transcription-start-site enrichment and the number of unique fragments per cell to 
identify the markers of clusters, including peaks, genes (based on gene scores) and 
TF motifs (based on chromVAR deviations). We applied the ‘getMarkers’ function 
to obtain the marker list of each cluster, the ‘addImputeWeights’ function to impute 
the weights of marker features and the ‘plotEmbedding’ function to visualize the 
marker features. We performed pairwise comparisons of peaks, genes and TFs for 
the indicated two clusters using the getMarkerFeatures function and plotted an MA 
or volcano plot using the ‘markerPlot’ function in ArchR67.

Plotting browser tracks of cis-element co-accessibility. Co-accessibility represents 
the correlation between accessibility peaks across many single cells and is useful for 
identifying cell type-specific peaks. We used the ‘addCoAccessibility’ function to 
examine co-accessibility in ArchR67, which returned a loop track that represented 
the co-accessibility information using the ‘getCoAccessibility’ function. Finally, 
we plotted the genome browser tracks of peaks and co-accessibility using the 
‘plotBrowserTrack’ function.

TF footprinting. We performed TF footprinting to precisely predict the binding 
location of a TF at a particular locus as previously described31,67 using ArchR. The 
Tn5 bias signal was normalized using the ‘Divide’ strategy.

Trajectory construction. We performed cellular trajectory analyses as previously 
described using ArchR67. First, we defined the trajectory backbone of cell groups 
or clusters based on the cell differentiation states, such as the order of naive, 
intermediate and effector CD8+ cells in the effector CD8+ T-cell trajectory. We then 
created a trajectory using the ‘addTrajectory’ function and plotted the pseudotime 
values on UMAP embedding using the ‘plotTrajectory’ function. We next plotted 
pseudotime heatmaps of TFs, gene scores and peak accessibility using the 
‘plotTrajectoryHeatmap’ function. To identify positive TF regulators, we performed 
an integrative analysis of gene scores and motif accessibility across pseudotime 
using the ‘correlateTrajectories’ and plotTrajectoryHeatmap functions.

Statistics and reproducibility. Statistical analyses were performed in GraphPad 
Prism (v6) or R (version 3.5.1). For the frequencies of the identified clusters and 
the virus rechallenge assay, a two-sided unpaired Student’s t-test was performed 
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and the P values are reported. For the differential TF motif accessibility, differential 
cis-element accessibility and Gene Ontology analyses, multiple-test corrections 
were performed, the P values were calculated using a two-sided pairwise Wilcoxon 
test and the false discovery rate was corrected using the Benjamini–Hochberg 
procedure. No data were excluded from the analyses.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data were deposited in the Sequence Read Archive (SRA) under the accession 
number PRJNA718009. Data were also deposited in the Genome Sequence 
Archive for Human (GSA-Human) under the accession HRA000562. Source 
data are provided with this study. The minimum dataset is posted on GitHub 
(https://github.com/Yang-Chen-Lab-co/COVID19-scATAC-seq). The previously 
published data that were re-analysed here are available under the accession 
numbers GSE139369, GSE117089, GSE126074 and GSE107817. All other data 
supporting the findings of this study are available from the corresponding authors 
on reasonable request. Source data are provided with this paper.

Code availability
All of the R packages that were used are available online, as described in the 
Methods. Customized code used in this study has been posted on GitHub  
(https://github.com/Yang-Chen-Lab-co/COVID19-scATAC-seq).

References
	63.	Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor 

sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 
684–692 (2014).

	64.	Glanville, J. et al. Identifying specificity groups in the T cell receptor 
repertoire. Nature 547, 94–98 (2017).

	65.	Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity 
profiling. Nat. Methods 12, 380–381 (2015).

	66.	Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: 
inferring transcription-factor-associated accessibility from single-cell 
epigenomic data. Nat. Methods 14, 975–978 (2017).

	67.	Granja, J. M. et al. ArchR is a scalable software package for integrative 
single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

	68.	Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data 
with Harmony. Nat. Methods 16, 1289–1296 (2019).

Acknowledgements
We thank all of the healthy donors and individuals convalescing from COVID-19 
involved in this project. We also thank J. Jia and Z. Meng for their technical assistance 
with the FACS analyses. We thank T. Niu from the HPC-Service Station of the Center for 
Biological Imaging, Institution of Biophysics, Chinese Academy of Science. This work 
was supported by grants from the Chongqing International Institute for Immunology 
(grant no. 2020YJC02 to P.Y.), Strategic Priority Research Program of CAS (grant nos 
XDB29040102 and XDB37030206 to P.Y.) and National Natural Science Foundation of 
China (grant no. 81672464 to P.Y.). L.C. was funded by Cancer Research Institute (CRI) 
Postdoctoral Fellowship.

Author contributions
P.Y., M.M.D. and L.C. supervised the overall project design and execution. M.Y. and L.C. 
performed most of the experiments and analyses, and wrote the manuscript. D.Z. and 
P.Z. recruited the human participants with assistance from Z.C. and E.-Q.Q. Y.G. assisted 
with experiments. All authors read and gave comments to this manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41556-021-00690-1.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41556-021-00690-1.

Correspondence and requests for materials should be addressed to L.C.,  
M.M.D. or P.Y.

Peer review information Nature Cell Biology thanks the anonymous reviewers for their 
contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Cell Biology | www.nature.com/naturecellbiology

https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA718009
https://bigd.big.ac.cn/gsa/gsa/browse/HRA000562
https://github.com/Yang-Chen-Lab-co/COVID19-scATAC-seq
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139369
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117089
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126074
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107817
https://github.com/Yang-Chen-Lab-co/COVID19-scATAC-seq
https://doi.org/10.1038/s41556-021-00690-1
https://doi.org/10.1038/s41556-021-00690-1
http://www.nature.com/reprints
http://www.nature.com/naturecellbiology


ResourceNATuRE CEll BIOlOgy

Extended Data Fig. 1 | Quality control for the 10x-based scATAC-seq datasets. a, Table showing the information of 10x scATAC-seq based samples.  
b, the transcriptional start site (TSS) enrichment score compared with the number of unique ATAC-seq nuclear fragments in each single cell that passed. 
c, Nucleosomal periodicity fragment lengths of aggregate single-cell profiles of 10x scATAC-seq based samples. d, the enrichments of normalized 
Tn5 insertions around the TSSs of 10x scATAC-seq based samples. e, ChromVAR TF motif bias-corrected deviations overlaid on UMAP projection 
of 10x-scATAC-seq-based single PBMCs as showed in Fig. 1c. f, Heatmap showing the 3,967 differentially accessible genes (FDR = < 0.05 and fold 
change > =2) in various clusters of different sample origin (HD or COV) as indicated in Fig. 1c.
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Extended Data Fig. 2 | Workflow and quality control for the Ti-ATAC-seq datasets. a, Workflow of plated-based single T cell Ti-ATAC-seq. Briefly, single 
DAPI−CD3+TCRαβ+ T cells were FACS index sorted into 96-well plates, transposed as single cells with the Tn5 transposase, reverse transcribed to TRA 
and TRB mRNA, and then the ATAC-seq product and TCR-seq product were split for further scATAC-seq and scTCR-seq analyses. b, Shown are the gating 
strategy to gate and sort single viable DAPI−CD3 + TCRαβ + T cells into 96-well plates. c, Number of unique ATAC-seq fragments for Ti-ATAC-seq (this 
study, n = 1,574 cells), T-ATAC-seq (n = 300 cells, GSE107817), SNARE-seq (n = 1048 cells, GSE126074), and sci-CAR-seq (n = 1000 cells, GSE117089). 
Boxplots show the medians and the quartile range (25% and 75%), and 1.5x interquartile ranges (IQRs) of the lengths of whiskers. d, TSS enrichment 
score compared with the number of unique ATAC-seq nuclear fragments in each single cell that passed. e, Nucleosomal periodicity fragment lengths 
of aggregate single-cell profiles of Ti-ATAC-seq based samples. f, the enrichments of normalized Tn5 insertions around the TSSs of Ti-ATAC-seq based 
samples. g, the read counts for TRA and TRB sequences of each single T cell TCR clone in Ti-ATAC-seq-based scTCR-seq data. h, TRA and TRB dominance 
of the top clone for each single T cell TCR clone in Ti-ATAC-seq-based scTCR-seq data. Each dot represents a dominant TCR clone of a single T cell.
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Extended Data Fig. 3 | Differentially accessible genes in various monocyte clusters. a, UMAP plot of monocytes as indicated in Fig. 2a coloured by 
log-normalized gene scores. b, Heatmap showing the 5,868 differentially accessible genes (FDR = < 0.05 and fold change > =2) in various monocyte 
clusters as indicated in Fig. 2a. c, Left: MA plots showing the differential ATAC-seq peaks (red or blue dot: log2 fold change > = 1 and false discovery rate 
(FDR) = < 0.05) for the indicated clusters including cluster C11 versus C13, cluster C4 versus C3. Right: Bar charts showing the top GO biological process 
pathways of differential peaks enriched in each cluster using GREAT analysis.
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Extended Data Fig. 4 | Lineage trajectory of B cells of healthy donors and individuals convalescing from COVID-19. a, Aggregated single-cell genome 
tracks for clusters as indicated in Fig. 4a at the TCL1A, CD19, CD20 (MS4A1), CD27, CD38 and XBP1 gene loci with peak co-accessibility (Co-Access).  
b, Lineage trajectory of B-cell states in healthy donors and COVID-19 convalescent individuals as indicated in Fig. 4a, respectively. c, Heatmaps showing 
the positive TF regulators by the ordered TF gene scores (right) with ordered TF motif accessibility (left) across pseudotime for B-cell differentiation in 
healthy donors. Positive TF regulators are TF motifs that show high bias-corrected chromVAR TF motif deviations that also exhibit similarly dynamic 
gene scores across differentiation state. d, Heatmaps showing the positive TF regulators by the ordered TF gene scores (right) with ordered TF motif 
accessibility (left) across pseudotime for B-cell differentiation in COVID-19 convalescent individuals.
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Extended Data Fig. 5 | Integrative lineage trajectory of B-cell states in healthy donors and individuals convalescing from COVID-19. a, Aggregated 
single-cell genome tracks for clusters as indicated in Fig. 4d at the TCL1A, BCL11A, BHLHE41, and LEF1 gene loci with peak co-accessibility (Co-Access). 
b, Single-cell gene scores of the positive TF regulators as defined in Fig. 4f across pseudotime in the B-cell trajectory. Dots represent gene scores of an 
individual pseudotime-ordered scATAC-seq profiles. The smoothed line and arrow represent the visualization of the trajectory path from the spline fit.  
c, Single-cell bias-corrected chromVAR TF motif deviation scores of the positive TF regulators as defined in Fig. 4f across pseudotime in the B-cell 
trajectory. d, Ridge plots showing TF gene scores (top) and bias-corrected chromVAR TF motif deviation scores (bottom) of the indicated positive TF 
regulators across different states and samples origins as indicated in Fig. 4d. e, Shown are the SARS-CoV-2 virus specific IgG detection assays in the 5 
indicated convalescent individuals.
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Extended Data Fig. 6 | Differentially accessible genes in various T- and NK-cell clusters. a, Aggregated single-cell genome tracks for clusters as 
indicated in Fig. 5a at the CD4, CD8A, CD8B, CD3E, CD3D, CD3G, NCAM and IFNG gene loci with peak co-accessibility (Co-Access). b, Canonical surface 
markers overlaid on UMAP embedding as indicated in Fig. 5a coloured by log-normalized gene scores for indicated genes. c, Heatmap showing the 3,055 
differentially accessible genes (FDR = < 0.05 and fold change > =2) in various clusters as indicated in Fig. 5a. d, TF footprint of the LEF1, IRF4, and KLF4 
motifs in the CD8+ T cell clusters as indicated in Fig. 5a. The Tn5 insertion bias track is shown below.
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